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Abstract: The liver is intimately connected to inflammation, which is the innate defense system
of the body for removing harmful stimuli and participates in the hepatic wound-healing response.
Sustained inflammation and the corresponding regenerative wound-healing response can induce
the development of fibrosis, cirrhosis and eventually hepatocellular carcinoma. Oxidative stress
is associated with the activation of inflammatory pathways, while chronic inflammation is found
associated with some human cancers. Inflammation and cancer may be connected by the effect of the
inflammation-fibrosis-cancer (IFC) axis. Chinese medicinal herbs display abilities in protecting the
liver compared to conventional therapies, as many herbal medicines have been shown as effective
anti-inflammatory and anti-oxidative agents. We review the relationship between oxidative stress
and inflammation, the development of hepatic diseases, and the hepatoprotective effects of Chinese
medicinal herbs via anti-inflammatory and anti-oxidative mechanisms. Moreover, several Chinese
medicinal herbs and composite formulae, which have been commonly used for preventing and
treating hepatic diseases, including Andrographis Herba, Glycyrrhizae Radix et Rhizoma, Ginseng Radix
et Rhizoma, Lycii Fructus, Coptidis Rhizoma, curcumin, xiao-cha-hu-tang and shi-quan-da-bu-tang,
were selected for reviewing their hepatoprotective effects with focus on their anti-oxidative and
ant-inflammatory activities. This review aims to provide new insight into how Chinese medicinal
herbs work in therapeutic strategies for liver diseases.

Keywords: liver diseases; Chinese medicinal herbs; anti-inflammatory; anti-oxidative;
hepatoprotection

1. Introduction

More than 10% of the world population is affected by chronic liver diseases [1], which may
consequently develop to cirrhosis and hepatocellular carcinoma (HCC) caused by progressive
destruction and regeneration of liver parenchyma. Liver is not only an important digestive organ, but
also closely connected to inflammation, which is the innate defense system of the body for removing
harmful stimulus. Liver inflammation caused by infections arise from either exogenous agents
such as environmental toxins, or exposure to endogenous reactive oxygen species (ROS). Sustained
inflammation and wound regeneration processes in response to chronic liver injury can induce the
development of fibrosis, cirrhosis and eventually HCC. Actually, approximately 80% of HCC patients
progressed from hepatic fibrosis or cirrhosis [2], and this demonstrates the importance of chronic
wound-healing process to hepatocarcinogenesis, where inflammation is a key promoter.
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Various inflammatory mediators have been proven their roles of acting as targets or activators of
nuclear factor-κB (NF-κB) [3–8]. NF-κB is involved in regulating inflammatory signaling pathways and
responses in the liver [9–11]. Moreover, oxidative stress (OS) is related to the activation of inflammatory
pathways [12], and occurs when there is disequilibrium between the production of oxidants or reactive
oxygen species (ROS), which are also known as free radicals and reactive metabolites, and this can be
relieved by antioxidants. Somatic mutations and neoplastic transformation could be induced by ROS.
OS is related to the initiation of cancer and its pathogenesis, via promoting genome instability, cell
proliferation, and DNA damage or mutations [13].

Chronic inflammation, caused by chemical, biological and physical factors, is found to be related
to certain human cancers [14]. The effect of the inflammation-fibrosis-cancer (IFC) axis acts as a bridge
from inflammation to cancer [15], and therefore promotes inflamed liver evolving to fibrosis/cirrhosis
and HCC.

The therapy for hepatic diseases has been extensively explored with remarkable progress in
the last few decades, however, the outcomes are still not desirable, mostly due to complications
incurred and relatively high cost [16]. There is therefore an imminent need for the development of
new prophylactic and therapeutic agents.

Traditional Chinese medicine (TCM) has long been used to prevent and treat hepatic diseases
since ancient China, and has received more attention from the public in recent years due to its steady
supply, long-lasting curative effects and mild complications. Chinese medicinal herbs (CMHs) exhibit
hepatoprotective effects via mechanisms including blocking fibrogenesis, suppressing tumorigenesis,
eliminating viruses, and inhibiting oxidative injury [17,18].

Considering that OS and inflammation are triggers in the pathogenesis of liver diseases, CMHs
show its benefits in hepatoprotection compared to conventional therapy, as many herbal medicines
have been shown to be effective anti-inflammatories and anti-oxidative agents.

Therefore, a timely and prospective review related to the hepatoprotective effects of CMHs
is needed. Several relevant reviews have been published, for example, Wang et al. reviewed the
potential prophylactic and curative effects of Chinese medicines on human HCC and its possible
mechanisms [19]; Hong et al. reviewed the potential role, pharmacological studies and molecular
mechanisms of medicinal herbs [20]; Hu et al. reviewed anti-HCC compounds derived from Chinese
medicine and its pharmacological mechanisms [21]. These reviews mainly focused on the compounds
derived from CMHs and the associated pharmacological mechanisms in particular diseases. Here
we review how OS and inflammation are related to the pathogenesis of liver diseases, and the
hepatoprotective effects of CMHs with a focus on their anti-inflammation and anti-oxidation properties.

2. The Characteristics of Inflammation and Oxidative Stress in Hepatic Disease

Hepatic injury is mostly due to the sustained exposure of the liver to certain substances, like
alcohol, viruses, parasites, toxic substances and biotransformed metabolites, and can result in the
degeneration and inflammation of the liver, leading to chronic liver diseases (CLDs), which may
further progress to different stages of HCC, fibrosis and cirrhosis [22]. Fibrosis is a wound healing
process and initiated by inflammation and OS [23–26], and can finally develop into HCC [27]. OS leads
to architectural disarray, destruction of hepatocytes, and focal or zonal necrosis, by inflammation [22].

Alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), and chronic viral hepatitis
(B and C) are the main causes of liver cirrhosis [25]. The development of chronic hepatic disease is
associated with activation of the immune system, recruitment of lymphocytes from the sinusoids vein,
hepatic vein and portal tract, upregulation of inducible nitric oxide synthase (iNOS), and infiltration
of polymorphonuclear leukocytes (PMN). Liver diseases may also induce hepatopulmonary and
hepatorenal syndromes as well as portopulmonary hypertension in some cases [28].
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2.1. Oxidative Stress (OS) and Reactive Oxygen Species (ROS)

OS is the common etiological factor in most liver diseases, including those induced by ionizing
radiation, toxins, drugs, and other chemicals as well as NAFLD, and ALD [29]. Moreover, in the
development of many diseases, such as cardiovascular diseases (CVD), chronic kidney disease (CKD),
diabetes, obesity and sepsis, the liver could also be injured [30].

ROS is the chemical species with unpaired electrons, which are also known as free radicals, or
molecular oxygen derived ions, like hydroxyl radical (HO), singlet oxygen (O2), hydrogen peroxide
(H2O2), and superoxide anion radical (O2´) [31]. ROS are likely produced from the cytochrome
P450 and mitochondria in the hepatocyte, neutrophils and Kupffer cells (KCs) [32]. ROS stimulates
neutrophil chemotaxis and form Mallory corpuscles, by crosslinking cytokeratins, and activating
transcription factors (activator protein 1 (AP-1), NF-κB, and c-Jun N-terminal kinase (JNK)) to
up-regulate the genes implicated in fibrogenesis TIMP metallopeptidase inhibitor 1 (TIMP1), monocyte
chemoattractant protein 1 (MCP-1), and pro-collagen type I [26].

The liver is the main organ responsible for detoxification, including clearing pathogens, toxic
chemicals, and metabolic waste products, and is involved in maintaining homeostasis [14,22,33].
It contains rich populations of various resident innate immune cells such as dendritic cells, KCs, natural
killer (NK) cells and natural killer T (NKT) cells, all of which are associated with liver pathologies [34].
In physiological scenarios, the pro-oxidants like reactive nitrogen species (RNS) reactive nitrogen
species, and ROS produced by liver in aerobic metabolism can be sequestrated by antioxidants [35].
ROS acts as vital cellular mediators in different signaling and metabolic pathways [36,37]. However,
when it comes to hepatic injury, OS happens, and gives rise to an imbalance between oxidants and
antioxidants, thus increasing the generation of ROS [32,38].

Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) promotes generation of ROS in
hepatocytes that leads to DNA damage and apoptosis, in which genes further promote the synthesis
of pro-inflammatory cytokines, and eventually initiates the transformation of malignant cells [39].
Also, malondialdehyde (MDA) promotes inflammation via activating NF-κB and 4-hydroxynonenal
(4-HNE), which are tissue inhibitors of TIMP1, and responsible for upregulating procollagen and
profibrotic stimulus.

The lipid solubility, half-life and chemical reactivity of ROS varies among different species. The
ROS with short half-lives can result in the characteristics of high toxicity and reactivity, but limited
diffusion. On the contrary, the aldehydic products, like 4-hydroxynonenal (4-HNE) and MDA, can
diffuse to other locations intracellularly and extracellularly, and thus increase the activities of OS, since
they have longer half-lives [20]. Such products are produced from lipid peroxidation of organelles and
cell membranes, resulting from the damage to polyunsaturated fatty acids (PUFAs) by ROS [40–42].
Liver may clear the ROS and RNS by enzymes like thioredoxin, catalase (CAT), superoxide dismutase
(SOD) and peroxidase (GPx), as well as antioxidants, for instance glutathione (GSH) and vitamins
A, C, and E [43,44]. Among those enzymes, SOD is implicated in the transformation of H2O2 to free
oxygen and water by GPx/CAT, the dismutation of O2´ to H2O2 [45].

2.2. Leukocytes and Kupffer Cells (KCs)

KCs, also known as Browicz–Kupffer cells and stellate macrophages, release ROS, which is the
cause of fibrosis and cirrhosis, through stepping up the synthesis and proliferation of extracellular
matrix (ECM), and activating the hepatic stellate cells (HSCs) [26]. The activated hepatic phagocytes
are the main sources of OS in liver diseases and one of the resident innate immune cell populations
and the main sources of OS in liver diseases [22,34,46]. They involve in all chronic inflammatory liver
diseases and tissue response to OS [32,46,47].

Activated KCs release cytokines and inflammatory mediators, such as iNOS by NF-κB mediated
mechanism, and interleukins Tumor necrosis factor-α (TNF-α), Interleukin (IL)-1β, IL-6, IL-12, IL-18.
They also activate the generation of oxidants, which are involved in bacteria endocytosis, and
superoxide induced from NADPH [32,34,48]. The iNOS boosts NO production, thus increasing
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hepatocyte toxicity and activating particular intracellular pathways, like pro-apoptotic signals through
the caspase cascade [49,50].

Apoptosis destroys certain amount of hepatocytes and this initiates the vicious cycle of liver
damage, as the injured hepatocytes not only jeopardize the liver function, but also activate KCs and let
out the apoptotic bodies, contributing to inflammation and fibrogenic responses [49]. The activation
of KCs exacerbates inflammation through gathering neutrophils and mast cells, and accumulates
platelets that hinder local microcirculation, therefore causing ischemia reperfusion [49]. Moreover,
the mast cells and leukocytes recruited for the inflammation further deteriorates the situation, in
which more oxygen has to be consumed, and worsens the cellular respiration, thus stimulating the
production and accumulation of ROS [51]. Furthermore, morphological and functional changes due
to the inflammatory mediators, ROS, depletion of antioxidants, mitochondria damage, inflammatory
mediators, and overexpression of pro-apoptotic proteins, can provoke acute inflammatory response,
therefore causing some complications, such as fibrosis and cirrhosis [49,50]. Fibrosis is the accumulation
of too much ECM, and progresses to cirrhosis, which is accompanied with the portal hypertension,
damage to normal liver structure, development of nodules and septae, and the evolution to hepatic
insufficiency and HCC [21,52].

2.3. Hepatic Stellate Cells (HSCs)

The activated HSCs, also previously known as vitamin A-rich cells, fat-storing cells, perisinusoidal
cells, Ito cells, or lipocytes, are related to the formation of ECM components (e.g., collagen types
1,3,4), the alterations in cellular functions and increased smooth muscle α-actin (αSMA) expression,
which in turn promotes subpopulations of stellate cells [53–55]. The activation of HSCs results in
inflammation via promoting the release of pro-inflammatory cytokines that provokes apoptosis,
fibrogenesis, and hepatocyte necrosis [55]. The deactivation of hepatic stellate cells promote the
completion of fibrogenesis and regression of the extracellular matrix [49]. Proliferation, fibrogenesis,
and contractility of HSC could be altered by perpetuation phase, which is created when injuries
are under continuous stimuli and maintenance, as well as regulated by autocrine and paracrine
stimulation [56].

The damage to hepatocytes, as well as those chemokines and cytokines derived from KCs,
e.g., platelet-derived growth factor (PDGF), TNF-α, IL-1, and tissue growth factor (TGF)-β1, can
help the transformation of the activated hepatic HSCs to myofibroblasts, and therefore induce hepatic
fibrogenesis [49]. Moreover, the damaged hepatocytes release mediators, like ROS/RNS, MDA/4-HNE,
cytokines, and hepatotoxins, which are associated with the activation of HSC [49].

2.4. Oxidative Stress and DNA Methylation

OS and inflammation are major parts in the development of hepatic diseases, of which
DNA methylation is possibly the pivot point. Some studies have shown that the physiologic and
pathologic activities are involved in ROS and DNA methylation reactions [57]. DNA methylation is
a postreplication epigenetic modification and the methylation of cytosine-phosphate-guanine (CpG)
dinucleotide cytosines [58], leads to 5-methylcytosine. Methylated cytosines in human somatic
cells [59], unsymmetrically shown in the genome with CpG-rich or -poor regions, influence 70%–80%
of all CpG dinucleotides and cover 1% of total DNA bases. The methylated cytosines represented in
CpG-rich regions, also known as CpG islands, are usually nonmethylated in normal cells [60] and
include promoter regions including the first exons of certain genes [61]. DNA methyltransferases
(DNMTs) participate in DNA methylation, of which DNMT1, DNMT3a and DNMT3b are enzymes
responsible for the methyl group to be transferred from S-adenosylmethionine (SAM) to cytosine.
DNMT1 is found in somatic cells and involved in maintaining DNA methylation, by copying
methylation patterns to DNA strand after replication [62,63], which is essential for chromosome
X inactivation, proper embryo development and heredity [64,65]. DNMT1 deletion impairs the
monoallelic expression of various hereditary genes, which is based on the parental root of the
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allele. DNMT1 expression increased after melanocyte anchorage blockade [66] and global DNA
hypermethylation resulted after elevation of superoxide anions. DNMT3a and DNMT3b are also
required for de novo methylation in the genome after embryo implantation and development [67–71].
Investigators pointed out that these three enzymes are involved in de novo methylation maintenance
and pattern [72,73]. DNA methylation inhibits gene transcription by the location and density of the
promoter CpG islands [74–76].

Demethylating agents demonstrate the effect of DNA methylation in stable gene inactivation,
such as reducing the inactivation of retroviruses [77] and chromosome X [78–80]. This inactivation
activity was demonstrated by reactivating somatic cells in culture and X transgenes of mouse embryo
with inhibited or deficient DNMT1 [81]. As epigenetic modifications suppress one of the two alleles for
the same cell, DNA methylation is involved in heredity, however the other alleles remain active [81].
On the whole, DNA methylation is the important process, in which DNMT1 preferentially suppresses
a copy of a gene during cell division based on the parental origin [68,82].

Moreover, gene footprints are found epigenetically deregulated in various pathologies and human
syndromes [77]. For example, low expression of SOD in born preterm adults [83] and OS are related to
DNA hypermethylation of a single CpG dinucleotide. Epigenetic mechanisms speed up DNA reacting
to the positive charged intermediate SAM [66], by the influence from ROS overproduction [84,85],
where superoxide anions deprotonate the cytosine molecule and act as nucleophilic agents. Besides,
the elevation of methylation of RUNX3 (runt-related transcription factor 3) in cells exposed to
H2O2 [86], which is an epigenetic mechanism controlling SOD2 transcriptional activity throughout
the pathogenesis of human cancers [87], and upregulation of DNMT1 in colon cancer-derived cell
lines [88], result in H2O2-mediated epigenetic modifications. It was also observed from rat fetal hearts
that norepinephrine-induced ROS production reacted to increased DNA methylation of the protein
kinase C promoter [89].

In contrary, a vicious cycle established by decreased SOD activity may result in altered epigenetic
regulation, hence further stimulates epigenetic instability [82]. Several studies have demonstrated
that the antioxidant defenses are impaired by DNA methylation in cancers. For instance, the SOD2
promoter is hypermethylated in peripheral blood mononuclear cells [90,91], while the promoter of
extracellular SOD is strongly hypomethylated in fibroblasts of human embryonic lung (MRC5) [92].

In addition, hyper methylation appeared in various isoforms of glutathione peroxidase, such
as GPx7 and GPx3, in cancers and this could be repaired by 5-aza-2’-deoxycytidine [93–96]. The
double-knockout mice model with intestinal cancer showed that the aberrant methylation of polycomb
target genes mediated by inflammation are deficient in both GPx1 and GPx2 [94]. Moreover, from the
mice model with prostate cancer, it is observed that erythroid 2-related factor 2 (Nrf2), a transcription
factor responsible for the gene activation of antioxidant enzymes, was hypermethylated, whereas it
was re-expressed by curcumin with hypomethylating effect [97]. It is also shown that low gene and
protein expression appears [98], when catalase is hypermethylated in the promoter CpG II island after
long time exposure to ROS.

In general, DNA methylation, is able to damage the expression of antioxidant genes like GPx
and SOD, hence exacerbating OS and inflammation in hepatic diseases. Propitiously, many natural
agents, including curcumin [97], polyphenols (e.g., epigallocatechin 3-gallate from soya genistein and
tea) [99–101], selenite, and methyl donor substrates for DNMTs (vitamin B, methionine and folates)
have the competency to inhibit or reverse these events, most of which could be found in CMHs.

3. Inflammation and Oxidative Stress Properties in Major Hepatic Diseases

3.1. Hepatocelullar Carcinoma (HCC)

HCC is the major type of primary liver cancer [102], and mostly associated with patients with HBV,
hepatitis C virus (HCV), excessive alcohol consumption and NASH [102–104]. OS and inflammation
both contribute to its pathogenesis [40], where OS is associated with the progress of HCC via increasing
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the malignant characteristics of HCC and telomere shortening in hepatocytes. OS participates in some
intracellular signaling cascades like oxidation of DNA which has mutagenic effect in mammalian
cells [41], and cell signaling, especially transcription factors like NF-κB and AP-1, as well as expressions
of cytokines like TNF-α and IL-β1. Moreover, OS regulates matrix metalloprotease 1 (MMP1).
Consequently, apoptosis is increased and results in carcinogenesis via the generation of ROS stimulated
by increased OS [42].

Moreover, inflammation is involved in HCC carcinogenesis, in which activation of NF-κB
stimulates generation of pro-inflammatory cytokines including cyclooxygenase (COX)-1, COX-2,
TNF-α, C-reactive protein (CRP), IL-1, IL-26, IL-8, IL-18, macrophage inflammation protein (MIP)-1α,
and 5-LO [105]. Those pro-inflammatory cytokines promote the hepatic and systematic inflammation,
which then changes the microenvironment in the liver and leads to fibrosis and abnormal hepatocytic
regeneration [106].

3.2. Hepatitis C Virus (HCV)

HCV is a chronic hepatic disease with high-incidence rate and it reached 185 million infections
worldwide in past 15 years [107]. It can develop to cirrhosis and HCC, which is accounted for 23% of
HCV patients [108] due to the sustained cellular damage. The inflammation is mainly responsible for
the pathogenesis of HCV, and is closely associated with OS, as well as the development of liver fibrosis
and cirrhosis [109]. It is observed in all types of liver injuries that the increase of ROS production is
related to the decrease of antioxidant defense [110,111]. Hence, OS is implicated in the pathogenesis
of HCV, HCC and other liver diseases [112,113]. Endoplasmic stress (ER), resulting from HCV gene
expression, decreases the ER calcium accumulated and increases calcium uptake in the mitochondria,
thus promoting ROS generation which changes the nature of proteins via lipid peroxidation [114].
Activator of transcription 3 (STAT-3) and NF-κB are then activated by ROS, via the activation of
serine/threonine kinases and cellular tyrosine. NF-κB is transported into the nucleus, thus activating
the pro-oxidant and pro-inflammatory genes [115].

Iron overload is another way that OS is involved in HCV infection [116]. It was observed that
there is a significant surge of Fe+3 in the liver and serum of the HCV patients [117,118], though the
mechanism is unclear. The accumulation of hepatic iron stimulates the generation of HO´, which
causes liver injury via reacting with lipid membranes, proteins and DNA [119].

Moreover, the redox imbalance of HCV patients also dampens the endogenous antioxidant
defense [120]. Vitamin A deficiency is associated with HCV patients and this leads to poor
responsiveness to interferon-based antiviral treatment [121], as more than 90% of vitamin A in the
body is stored in the liver and serves as the main exogenous antioxidant. Also, the HSCs activated by
ROS, cause hepatic fibrosis in HCV patients. Redox changes can also be observed in the decrease of
total antioxidant status (TAS) and SOD, as well as the increase of MDA levels.

3.3. Hepatitis B Virus (HBV)

It is estimated that around 30% of population in the world are infected with HBV and it can
cause liver fibrosis, HCC, hepatic complications and other serious illness [122–124]. Metabolism of the
host cells changes due to the HBV infection, and this in turn promotes its replication and expression,
which promotes hexosamine and phosphatidylcholine biosynthesis, as well as upregulation of genes
related to lipid biosynthesis, and glutamate dehydrogenase 1 and isocitrate dehydrogenase [125–127].
Participation of OS in the pathogenesis of HBV can be visualized by increase of MDA, decrease of GPx
activity, OS index (OSI), total oxidant status (TOS), TAS, carbonyl levels, GSH consumption, β-carotene,
and ceruloplasmin levels [128,129]. Besides, OS is involved in viral replication via four open reading
frames, including Hepatitis B virus x (HBx) protein, Pol (polymerase), Sp (surface protein), and denoted
Cp (core protein), which are related to the elevation of H2O2 and elevation of GSH levels, and involved
in the double-stranded DNA genome of HBV [130]. Hence, OS appears to have a great impact on DNA
damage and hepatocarcinogenesis.
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3.4. Alcoholic Liver Disease (ALD)

As one of the most prevalent hepatic injuries in the world, ALD accounts for 4.6% and 3.8% of
all disability and mortality adjusted life-years, respectively, incurred from ethanol consumption [131].
It can evolve into different severity, from steatosis and even to cirrhosis [132]. ALD can be histologically
classified into three stages: fatty liver/hepatic steatosis, alcoholic hepatitis and chronic hepatitis with
hepatic fibrosis/cirrhosis, with inflammation and OS involved in different stages [133]. Actually,
emerging evidence demonstrated that there are multiple mechanisms involved in ALD, including
not only OS and inflammation, but also complex interactions between the immune system, lipid
metabolism and alcohol metabolism, as well as excess lipid synthesis [134]. The schematic diagram of
major pathways of alcoholic fatty liver (ALD) and potential molecular targets of herbal medicine for
the protection of ALD is summarized in Figure 1.
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Figure 1. Schematic diagram of major pathways of alcoholic fatty liver (ALD) and potential molecular
targets of herbal medicine for the protection of ALD. The arrows indicate the potential molecular targets
involved in the development of ALD and regulated by herbal medicines. ACC: Acetyl-CoA carboxylase;
AMPK: AMP-activated protein kinase; CD14: cluster of differentiation 14 COX-2: Cyclooxygenase-2;
CPT-1: Carnitine palmitoyltransferase-1; CYP2E1: Cytochrome P450 2E; FAS: Fatty acid synthase; IL-6:
Interleukin 6; MCP-1: Monocyte chemotactic protein-1; MyD88: Myeloid differentiation factor 88;
NF-κB: Nuclear factor-κB; PGC-1α: Peroxisome proliferator-activated receptor g coactivator α; PPARα:
Peroxisome proliferator activated receptor RNS Reactive nitrogen species; ROS: Reactive oxygen species;
SCD-1: Stearyl CoA desaturase-1; SIRT1: Sirtuin 1; SREBP-1c: Sterol regulatory element-binding
protein-1c; STAT-3: signal transducer and activator of transcription-3; TLR: Toll-like receptor 4; TRIF:
TIR-domain-containing adapter-inducing interferon-b; TNF-α: Tumor necrosis factor-α.

3.4.1. Oxidative Stress and Inflammation in Pathogenesis of ALD

The significance of ethanol-mediated OS in the pathogenesis of ALD was revealed [135,136].
Alcohol consumption, whether chronic or acute, suppresses cellular antioxidant levels, which leads
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to OS in various tissues, mainly in the liver, and boosts the generation of ROS, including hydrogen
peroxide, superoxide, and hydroxyl radical [137]. As alcohol-induced ROS could enhance lipid
peroxidation of cellular membrane and cause DNA damage, that inhibits physiological activities and
promotes OS, via reaction with most cellular macromolecules by inactivating enzymes or denaturing
proteins, thus its production is toxic to hepatocytes [137].

As a form of cytochrome P450 enzyme, Cytochrome P450 2E (CYP2E1) has been thought to
contribute to ROS production in response to alcohol consumption. Its activity and expression are
increased by alcohol intake, which catalyzes the ethanol process to acetaldehyde in the presence of
iron, thus leading to overproduced ROS [138]. A number of compounds derived from CMHs, like
methanol extract from the roots of Platycodon grandifloras (Jacq.) A.DC. [139] and Gentiana manshurica
Kitag. (Gentianaceae) [140], have been demonstrated to inhibit CYP2E1 catalytic process in vitro or
reduce CYP2E1 expression that causes attenuation of lipid peroxidation and ROS generation.

Endogenous antioxidant enzyme systems act as a first defense against oxidative damage and
are associated with ROS elimination, including superoxide dismutase (SOD), glutathione peroxidase
(GPX), glutathione-S-transferase (GST) and catalase (CAT) [137]. However, alcohol consumption,
especially chronic, could damage enzymatic and non-enzymatic antioxidant systems that protect
hepatocytes from ROS damage [137].

SOD is responsible for keeping cellular redox balance and scavenging ROS, which is crucial for
endogenous anti-oxidative defense system, whereas GPX catalyzes the decrease of hydrogen peroxide
and other peroxides [141].

Non-enzymatic antioxidants, like vitamins C and E, and the reduced form of glutathione (GSH),
participate in keeping the cell safe from lipid peroxidation. GSH, the most plentiful tripeptide thiol
antioxidant, acts as the substrate of GSH-related detoxifying enzymes and antioxidants, as well as a
direct ROS scavenger [141].

Hence, increasing these antioxidants may be beneficial in eliminating OS and removing ROS
induced by alcohol intake. Moreover, alcohol consumption can deplete endogenous vitamins C and
E, which are the non-enzymatic antioxidants and can be resorted by leaf water extract from Cassia
auriculata [142] and fenugreek seed polyphenol [143].

Lipid peroxidation (LPO) is the process of oxidative degradation of lipids, in which free radicals
are produced by ethanol and its metabolites [144]. Malonyldialdehyde (MDA), an end-product of LPO,
has been broadly adopted as an index for the status of OS and LPO [144]. Various studies have indicated
that different extracts from CMHs, for instance Ginkgo biloba extract [141,145], and curcumin [146],
could reverse the increase of hepatic MDA level resulting from chronic alcohol ingestion.

The bacterial lipopolysaccharide (LPS, endotoxin) is transferred into the portal circulation and
then into the liver by the effect of alcohol intake, where LPS could activate Kupffer cells and trigger a
liver inflammatory injury, via interfering with the epithelial barrier and hence increasing intestinal
permeability to macromolecules [147,148]. The intestinal barrier function is proven to be a key
biological barrier against the toxic dietary and luminal substances, by protecting the penetration of
luminal antigens [149]. Ethanol extract of Pueraria lobata has showed its significant ability to curb ALD
via suppression of ethanol induced-increase of intestinal permeability [149].

Kupffer cells also participate in hepatic inflammation in ALD [134,150]. Gut-derived endotoxin,
the protein complex adhering to LPS-binding protein (LBP) after getting into portal circulation, is
identified by Toll-like receptor-4 (TLR4) and its co-receptors, like cluster of differentiation 14 (CD14),
on the cell membrane of Kupffer cells, that triggers inflammation by further activating Kupffer cells
and the downstream TLR4-mediated pathways [150,151].

TLR4 activates pathways via recruiting adapter molecules, consisting of TIR-domain-containing
adapter-inducing interferon-b (TRIF) and myeloid differentiation factor 88 (MyD88), which activates
NF-κB and subsequently discharges various inflammatory mediators [150,152].

It was observed that individual compounds and crude extracts isolated from different CMHs could
suppress the activation of Kupffer cells via interfering with TLR4 pathway. In particular, Baicalin from
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ethanol extract from Cinnamomi Cassiae Cortex [153], Scutellaria baicalensis Georgi (Lamiaceae) [154],
and aqueous extract of Agrimonia eupatoria L. (Rosaceae). [152] suppressed nuclear translocation of
NF-κB via suppressing the expression of MyD88 and TLR4. Besides, curcumin from Curcuma longa L.
(Zingiberaceae) [146,155] has been demonstrated to curb NF-κB activation in liver.

Moreover, NF-κB, a key transcription factor modulating the transcription of many inflammatory
genes in ALD, causes increased expression of inflammatory factors, which include eicosanoid
metabolism enzymes (e.g., cyclooxygenase-2, COX-2) that synthesize inflammatory lipid mediators
chemokines (e.g., MCP-1), adhesion molecules, and cytokines (e.g., TNF-α, IL-1, IL-6, IL-8 and
IL-12) [156]. TNF-α, a cytokine produced by sensitized Kupffer cells and recruited monocytes, has
been broadly thought to be vital to alcohol-induced hepatic damage, other than direct toxic effect on
hepatocytes. TNF-α possibly ameliorates fatty acid de novo synthesis [157], for instance, curcumin
from Curcuma longa also inhibits expression of cytokines COX-2 in isolated Kupffer cells, chemokine
(MCP-1) and (TNF-α and IL-12), and stops LPS-mediated activation of NF-κB [155].

3.4.2. Lipid Synthesis and Fatty Acid β-Oxidation in Pathogenesis of ALD

Hepatic steatosis often occurs in chronic alcohol consumption. Hepatic steatosis is due to
triacylglycerols (TG) accumulation in hepatocytes, and it was shown in some studies that the
development of ALD during alcohol consumption is slowed down by reducing fat accumulation
in liver [158,159]. Increased lipogenesis is closely related to hepatic TG accumulation, and causes
excessive de novo fatty acids and TG synthesis in hepatocytes. It is believed that a transcription factor
sterol regulatory element-binding protein-1c (SREBP-1c) is pivotal in regulating lipid homeostasis
via moderating the expression of more than 30 lipogenic genes [140,160]. Studies showed that
administration of some herbal extracts and single compounds, such as methanol extract from
Gentiana manshurica [140], ethanol extract from Magnolia officinalis [161], and Green Tea extract [162],
honokiol [161], resveratrol [163], and caffeine [134], can restrain increased maturation of SREBP-1c
in the liver caused by alcohol consumption. SREBP-1c-regulated lipogenic enzymes participates in
TG synthesis, such as diacylglycerol acyltransferase (DGAT) [140,160], and fatty acid synthesis, for
instance ATP-citrate lyase (ACLY), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS) and stearyl
CoA desaturase-1 (SCD-1). ACLY and ACC are enzymes involves in the carboxylation of acetyl-CoA
and synthesis of cytosolic acetyl-CoA to produce malonyl-CoA, respectively. FAS is responsible for
synthesizing the long-chain fatty acids from acetyl-CoA and malonyl-CoA, which are unsaturated
by SCD-1 [161,164]. The increased expression of lipogenic enzymes due to alcohol ingestion could
be inhibited by various crude extracts and individual compounds isolated from CMHs, such as
resveratrol [163], honokiol and ethanol extract from Magnolia officinalis [161,164].

Moreover, alcohol-induced SREBP-1c activation might be modulated by curbing sirtuin 1 (SIRT1)
activity [158] and AMP-activated protein kinase (AMPK) activity [158,165]. AMPK has been reported
as a key regulator of lipid metabolism via modulating SREBP-1c activity by decreasing its protein
levels and mRNA, and its downstream lipogenic genes in hepatocytes [165]. In the development of
alcoholic liver inflammation, TNF-α and IL-6 might not only participate in upregulating the SREBP-1c
activity, through activation of signal transducer and activator of transcription-3 (STAT-3) [166,167], but
also through contributing to lipid synthesis.

Carnitine palmitoyltransferase-1 (CPT-1) is vital for regulating the transportation of fatty
acids from cytoplasm into mitochondria where fatty acids are metabolized through mitochondrial
β-oxidation pathway [158]. AMPK-induced inhibition of ACC causes alleviated synthesis and elevated
degradation of malonyl-CoA and hence the alleviated malonyl-CoA inhibiting mitochondrial CPT-1,
thus causing increased influx of fatty acids into mitochondria and subsequent oxidation. Peroxisome
proliferator-activated receptor coactivator α (PGC-1α), a transcriptional coactivator, stimulates target
gene transcription implicated in mitochondrial fatty acid utilization and oxidation via interacting with
PPARα [168]. Moreover, alcohol consumption inhibits mitochondrial fatty acids oxidation and CPT-1
gene expression, which might cause fatty acid overload and hepatic fat accumulation [169].
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3.5. Non-Alcoholic Steatohepatitis (NASH)

NASH is prevalent in chronic liver diseases, and found in 20%–30% in the general population
with this condition, of which 70%–90% are patients with obesity and diabetes [170]. Actually, it is
an extreme case of non-alcoholic fatty liver disease (NAFLD), which may lead to fatty liver where
fat is deposited in the liver resulting from causes other than alcohol consumption. NASH causes
inflammation and hepatic cell damage, thus finally developing into cirrhosis and HCC. Many factors
are associated with the pathogenesis of NASH, such as insulin resistance (IR), inflammation, OS,
advanced glycation end products (AGEs), and lipid metabolism alterations [171].

Day et al. suggested the “two-hit” theory to explain the participation of inflammation and OS
in NASH [172]. The first hit is the accumulation of free fatty acids (FFA) and triglycerides (TG) into
hepatocytes, via increasing IR, dietary influx, and hepatic lipogenesis; the second hit is hepatocyte
damage and progression of liver fibrosis by lipid peroxidation, inflammation and mitochondrial
dysfunction [171].

Nitrogen species (RONS) is associated with regulating lipid metabolism through the activation
and inhibition of signal pathways, such as the pathogenesis of steatohepatitis due to immune system
activation and enhancement of adipokines. Moreover, signal pathways induced by RONS may initiate
IR [173]. Changes of markers of redox and inflammation also can be observed from NAFLD/NASH
patients, for instance AGEs, increased high sensitivity C-reactive protein (hsPCR), of which the
MDA and hydroxyl radical-mediated oxidation of lipids, as well as the decrease of TAS and SOD
are involved [172,174–178]. NASH-associated inflammation may be due to gut microbiota, as a
response to the circulating inflammatory cells, inflamed adipose tissue, as well as infiltration of
macrophage-inflammatory protein-2 and neutrophil chemokines. ROS is also involved in hepatic
inflammation by means of the activity of cytokine and enzyme CYP2E1, which is associated with the
generation of ROS, and increased expression in NASH [179]. The pathophysiology of nonalcoholic
fatty liver disease NAFLD is demonstrated in Figure 2.
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3.6. Drug-Induced Liver Injury (DILI)

Due to different characteristics of drugs, the pathogenic factors of DILI varies and these include OS,
interference on mitochondrial respiration, physicochemical characteristics, depletion of antioxidants,
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reactive metabolites formation, and threshold dose [35,180]. The OS incurred form DILI may be
resulted from the cytosolic stress in drug metabolism by injured liver cells [180]. Acetaminophen
(APAP) is the most common example of DILI inducer [35,180].

N-acetyl-p-benzoquinone imine (NAPQI) is generated by OS implicated in APAP with cytochrome
P450, and is a toxic metabolite, which not only oxidizes the thiol group of GSH to reduce the GSH/
GSSG ratio, but also attacks and modifies proteins covalently [181]. APAP exhibits oxidative capacity
and leads to hepatotoxicity via generating peroxidation reaction products and RNS and ROS. The drug
toxicity can initiate inflammation via generating cytokines by KCs and neutrophils, e.g., IL-1α, IL-1β,
IL-6, IFN-γ and TNF-α [182]. These cytokines control the adaptive immune-mediated cell damage,
or promotes hepatocytes to biochemical stress. Furthermore, an antigen, the drug-protein adducts,
initiates the adaptive immune activities via binding T-cell receptors of CD4 cells, thus activating CD8
cytotoxic T-cells.

4. Current Strategies for Anti-Inflammation and Anti-Oxidation

Corticosteroid is one of the most commonly used medications for the inflammation and can
regulate the fat and protein metabolisms. However, corticosteroid therapy has side-effects such
as sepsis and gastrointestinal hemorrhage, and this limits its benefit to the patients [183,184].
Comparing to applying corticosteroids alone, the combined interventions of corticosteroids and
N-acetylcysteine showed fewer incidences of hepatorenal syndrome and infection. But the related
infections possibly have to be further treated by antibiotics, as it is considered as the contradiction to
the drug treatment [185]. Besides, pentoxifylline is considered as a favorable medication for patients
with sepsis complications due to its anti-tumor necrosis factor (anti-TNF) and antioxidant effects, thus
alleviating hepatorenal syndrome [183,186,187].

Chemically selective substances used by anticytokine synthesis therapy exhibited obvious
effects to inhibit inflammation, but are still not introduced into clinical practice, as cytokines can
promote liver regeneration, though their inhibition can restrain hepatic diseases [185,188]. Inhibition
of interleukin-receptor (IL-R) showed some side-effects including delay of liver regeneration and
increase of bacterial infection [185,188]. IL-22 is another hepatoprotective cytokine and has fewer
side effects for treating liver injuries. Its combination with steroid and TNF-α inhibitors may
eliminate the steroid-induced bacterial infection and stimulate liver regeneration, due to its antioxidant,
antimicrobial and antiapoptotic and antisteatotic effects. And quite to the contrary, anti-TNF-α therapy
alone is more prone to cause severe infection and death. Nonetheless, IL-22 may promote hepatic
carcinogenesis by promoting cell proliferation and survival of liver tumors. It is only safe to be used
for alcoholic hepatitis patients without cirrhosis and hepatic carcinoma [183,188–191].

COX inhibition is another option of decreasing the production of prostaglandin, and the analgesic
effect of aspirin is an example. However, aspirin treatment also has adverse effects, especially in
gastrointestinal complications and antiplatelet activity, and therefore nonsteroidal anti-inflammatory
drugs (NSAIDs) have been introduced. Ibuprofen, ketoprofen, piroxicam and indomethacin are the
most well known NSAIDs, but they also have been observed to present allergy symptoms to patients.
Therefore, such COX-2 inhibitors as roficoxib and celecoxib were withdrawn in 2004.

COX-1 (constitutive isoform) and COX-2 (inducible isoform) are two types of cyclooxygenases.
NSAIDs were reported to have higher anti-inflammatory effect toward COX-2 than COX-1, and
considered as powerful drugs for anti-inflammation, as they have lesser adverse effects by inhibiting
COX-2. When inflammation happens, COX-2 is activated to produce pro-inflammatory prostaglandins
and thromboxane. It was observed that COX-2 converts free arachidonic acid to prostaglandin
precursor, prostaglandin H2, which is then converted to prostaglandin E2 in turn, so as to mediate
inflammation. Hence, NSAIDs are introduced to the inhabitation of synthesis of thromboxane and
prostaglandin. Likewise, lipoxygenase (LOX) plays a critical role as an inflammation mediator by
converting fatty acids into pro-inflammatory leukotrienes, and promotes the production of cytokines
to intensify inflammation. Therefore, the anti-inflammatory therapy also targets to the enzyme [192].
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The principal function of antioxidants is to antagonize OS so as to prevent or delay the oxidation
of substrates, such as lipids, proteins, DNA, DNA mutations, and other cell damage [193]. Vitamin E
supplementation is related to an obvious decrease in protein oxidation, lipid peroxidation and increase
in the antioxidant defense system. Vitamin E may relieve liver diseases by lowering OS. While early
studies pointed out that antioxidant supplementation could be beneficial to health, some current studies
report that excess intake (greater than 400 IU/day/vitamin E) of particular supplementations could be
harmful and even result in mortality [194–199]. It appears that single antioxidant supplementation
may not be beneficial, however diets with high antioxidants from fruit and vegetables are good for
health. The explanation may be that the mixture of antioxidants from fruits and vegetables presents
as a continuous antioxidant chain, while the supplementations mostly work as the combination
of not more than two substances [194–200]. The antioxidants from the incomplete chain cannot be
restored and becomes pro-oxidant after scavenging free radicals, and results in non-effective or harmful
supplementations [193,201]. Therefore, vegetables, fruits, and herbal drugs with high anti-oxidative
effects are more preferable than complimentary antioxidants in antioxidative therapy [193,201], and
they can relieve systemic OS [202–206].

As the pathogenesis of liver diseases is associated with OS and inflammation, anti-oxidative and
anti-inflammatory therapies should have potential value in its treatment. CMHs have relatively less
side effects, and most of them have anti-inflammatory and OS effects [207,208].

5. The Anti-Inflammatory and Anti-Oxidative Activities of Herbal Chinese Medicine for
Hepatic Diseases

Since most of the CMHs have anti-inflammatory and OS effects with lesser side effects to humans,
it could be the new perspective of the therapy to hepatic diseases [207,208]. In this review, some major
CMHs and formulae commonly prescribed for treatment and prevention of liver diseases are examined
for their anti-oxidative and anti-inflammatory effects.

5.1. Epigenetics in Traditional Chinese Medicines for Hepatic Diseases

Epigenetics pertains to gene expression with mitotically stable alterations, of which DNA
sequence is not involved. The epigenetic mechanisms in mammalian cells involve RNA interference,
post-translational modifications of histone proteins, and CG dinucleotides methylation [209,210].
Gene silencing is associated with microRNA (miRNA) expression, histone deacetylation and DNA
methylation, [211,212]. Environment perturbations can easily influence miRNA expression profile and
epigenetic marks (epigenome) [213,214]. The predisposition of such diseases as autoimmune disease,
Alzheimer’s disease, and heart disease increases with that of an aberrated profile [215–217]. Especially,
gene-specific hypermethylation and genome-wide hypomethylation are regarded as distinctive features
of cancerous cells [218]. The normal development of eukaryotes including plants [59,219] and animals
are closely associated with epigenetic events [220].

Actually, four dietary sources (i.e., tea, soy, cabbage and turnip) are believed to be responsible
for DNA methylation modification [221]. Tea and turnip are revealed as interacting with MBD,
which may interact with DNMTs [222]. Many of the CMHs, 29.8%, have an impact on the miRNA
expression and epigenomes of human cells. It was demonstrated that there are 48,491 chemicals
among 3294 CMHs which interact with epigenetic-related proteins, 29.8% of which are miRNA- and
epigenome-modulating through interactions with methyl CpG-binding proteins and the Polycomb
group [223]. Composite formulas are commonly used in TCM clinical practice. Therefore, the role of
epigenetics in TCM should be evaluated by examining the participation of epigenetics in composite
formulas, which are determined as epigenetic when at least one of the composing herbal medicines is
epigenetic. It is demonstrated that though only 30% of the TCMs are epigenetic, 99% of the composite
formulas are found to be epigenetic [223]. Moreover, the long-term and holistic effects of TCM
prescriptions may be due to their epigenetic characteristics, of which the related proteins are numerous
and acquired patterns are mitotically stable.
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Over 1500 miRs have been identified in humans and they are now becoming innovative
therapeutic agents in multiple diseases, as revealed by their miRNA profiling of particular hepatic
diseases such as drug-induced liver injury, ALD, NAFLD, and chronic hepatitis C and B [224,225].
For example, miR-122 has been shown to protect HCV RNA against nucleolytic degradation, increase
translation of viral proteins, and promote HCV replication via connecting to various sites in 50
untranslated regions of the HCV RNA genome [226]. In addition, miR-122 regulates insulin, lipid
metabolism and iron homeostasis. Antagonizing it may exert numerous positive effects, such as
reducing cholesterol levels and low density lipoprotein (LDL) via controlling fatty acid biosynthesis
genes and hepatic cholesterol, thus resulting iron deficiency with lower levels of plasma and liver iron
as well as β oxidation of fatty acids [227].

Histone deacetylases (HDAC) and histone acetyl transferases (HAT) are two groups of enzymes
conducting the acetylation of histones. HDAC3 is related to hepatosteatosis, hepatic energy metabolism
and circadian regulation [228]. The evolution of “insulin hypersensitivity’”, triglyceride accumulation
and marked steatosis are stimulated by liver-specific knockdown of HDAC3. It keeps normal blood
glucose during daytime, and drops it down to stimulate lipid at night, via promoting metabolic
sources towards gluconeogenesis and negatively regulating lipogenic genes. Moreover, reduced
HDAC3 expression levels are always associated with global acetylation of histones in macrophages
and hepatocytes [229].

Hepatic wound-healing and fibrosis are closely associated with the transdifferentiation of hepatic
stellate cells (HSC) to a myofibroblast-like phenotype. This modification in phenotype related to HSC
transdifferentiation is supported by global alterations in gene expression.

While DNA methylation exists in some genes that are highly expressed in inactivated HSCs,
it is silenced as the cells are activated. DNA methylation may be the novel therapeutic target for
preventing and treating liver fibrosis. For example, baicalin and rosmarinic acid (active ingredients of
composite formulas of TCM, Yang–Gan–Wan), prevent methyl-CpG binding protein 2—enhancer of
zeste homolog 2 (MeCP2-EZH2) relay, hence prohibiting hepatic fibrosis via allowing re-expression of
PPAR-c [230].

Thus, it is crucial to understand the interactions between methyl binding proteins, DNA
methylation and enzymes that control histone modifications, so as to design interventions targeting
these pathways. Due to the complexity of the system, the epigenetic mechanisms and their interactions
are still not well understood. With greater knowledge, the epigenome may be able to be selectively
modulated by applying CMHs intervention to change the course of diseases.

5.2. Chinese Medicinal Herbs

5.2.1. Andrographis Herba

TCM utilizes the aerial parts or the leaves of Andrographis Herba, which carry abundant medicinally
useful phytochemicals, particularly glycosides, flavonoids (>20), and diterpene lactones (>20) [231,232].

Andrographis Herba is a famous therapeutic herb for hepatic disorders and upper respiratory
tract infections [233–238]. Its anti-inflammatory and immune-stimulant properties have also been
observed [239]. For treating hepatic diseases, it works by alleviating chronic hepatitis B virus
infection, and inducing hepatoprotective and hepatostimulating activities [235,238,240,241]. It has
also demonstrated outstanding hepatoprotective properties among 58 chemically defined compounds
of plant origin and 107 plants [242]. Moreover, the plant extract is believed to contain enormous
amounts of phytochemicals to lower the process of lipid peroxidation. The phytochemicals mainly
contain phenolic compounds, which is around 5.96 mg/g of leaf extract [242,243]. The plant extract, at
concentrations of 50 mg/kg body weight, exhibited hepatoprotective effects in albino Wistar rats by
restoring anti-oxidative enzymes [237].

Andrographolide, a labdane diterpenoid that has been isolated from the stem and leaves
of Andrographis Herba, showed anti-inflammatory properties by reducing the expression of
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pro-inflammatory mediators [244,245]. It was demonstrated in in vivo and in vitro experiments that
andrographolide reduced the expression of pro-inflammatory proteins in neutrophils by inhibiting the
NF-κB signaling pathway [246–253]. NF-κB is believed to regulate genes associated with innate and
adaptive immunity. The IC50 of andrographolide was found to prevent the activation of NF-κB [248].
Several studies showed that andrographolide could dampen the nitric oxide synthase (iNOS) and
COX-2 expression in neutrophils and microglial cells, and TNF production in macrophages, thus
reducing the production of nitric oxide and prostaglandin E2 [254–256]. Its anti-inflammatory activities
have been demonstrated and result from the interference of the andrographolide to protein kinase
C-dependent pathway, phosphoinositol-3-kinase (PI3K)/Akt (also known as protein kinase B, PKB) or
extracellular signal-regulated kinase (ERK) 1/2 [251].

ROS-induced OS in tissues or cells leads to alcohol-induced liver damage. OS is often examined
according to the levels of antioxidant defense enzymes (e.g., glutathione S-transferase and catalase,
glutathione peroxidase, and superoxide dismutase), thiobarbituric acid reactive substances (TBARS)
and lipid peroxides.

The effects of these enzymes are elevated under stress situations against excessive ROS [257–260].
Various studies reported that Andrographis Herba extract could deter enzymes from leaking into
the blood circulation of alcohol-induced animals, further repair hepatic injury, and restore cellular
permeability [261–263].

The plant extract is believed to have many phytochemicals acting as antioxidants to hinder lipid
peroxidation. Around 5.96 mg/g of the leaf extract are composed of phenolic constituents [242]. Based
on phytochemical analysis, the water extract of the plant demonstrated greater antioxidant activity
than ethanolic extract [264].

Comparing to ethanolic extract, water extract was found to have a higher concentration of
flavonoids [265]. At the concentration of 50 mg/kg body weight of albino Wistar rats, the plant
extract could restore the anti-oxidative enzymes for hepatoprotection [265]. The plant extract also
exhibited free-radical scavenging activity [243]. Lipid peroxide and TBARS in liver could be dropped
by 33%–48% after given Andrographis Herba extract from 50–200 mg/kg of body weight [237]. During
inflammation, lipid peroxides and TBARS appear to be elevated. The surge of lipid peroxidation was
reported resulting from the damage of Kupffer cells [238]. The decrease of lipid peroxides and TBARS
in the liver of ethanol-induced albino Wistar rats were reported due to the depletion of free-radical
generation [266]. Compared to IC50 of ascorbate of 410 µg/mL, the free-radical scavenging activity
of the plant extract demonstrated IC50 of 370 µg/mL. The decrease of lipid peroxides and TBARS in
liver reached up to 33%–48% after Andrographis Herba extract from 50–200 mg/kg of body weight was
administered. On the contrary, 100 mg/kg body weight of silymarin, the synthetic drug, is required to
decrease the fatty accumulation in CCl4-induced liver inflammatory rat model [267]. Histopathological
observation in the rats given herbal extract also demonstrated the obvious drop down in necrosis and
fatty degeneration [268].

Hepatic toxicity was revealed by serum activities of bilirubin, alkaline phosphatase, alanine
aminotransferase, and aspartate aminotransferase [269,270]. It was also demonstrated that alkaline
phosphatase could be the marker of cell membrane functional integrity and cellular leakage. After
given Andrographis Herba extract at 250 mg/kg body weight for 45 days, these markers demonstrated a
decrease of 28%–43%.

The liver protective activity of Andrographis Herba was shown to be dose-dependent. The weight
of inflamed liver of Swiss male mice was reduced approximately 50% with Andrographis Herba with a
dosage of 12 mg/kg body weight [238]. Based on liver protein analysis and liver morphology on mice
with paracetamol-induced damaged liver, obvious hepatoprotective effect was observed after doses as
low as 10 mg/kg of methanolic extract of Andrographis Herba.

Nonetheless, andrographolide has a number of bioavailability limits, though it is quickly
absorbed into the blood by oral administration. Its elimination half-life increased when in
phospholipid-complexed form, thus lowering the clearance of the molecule in this form [271].
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5.2.2. Glycyrrhizae Radix et Rhizoma

Glycyrrhizae Radix et Rhizoma, also known as licorice root, is mostly used to treat HCV and
interferon therapy [272]. Its major components include glycyrrhetic acid, β-sitosterol, flavonoids,
and hydroxycoumarins. Beta-sitosterol has properties of glucocorticoids and mineralocorticoids.
It could decrease alanine transaminase (ALT) level by 20 mg for five days per week for 10-year
HCV patients [273], and AST and ALT levels in an animal model of concanavalin A-induced
liver damage [274]. Moreover, glycyrrhetic acid could decrease the inflammation response by
regulating NF-κB and the MAPK pathway, inhibiting ROS, TNF-α, and pro-inflammatory interleukins
like IL-6 and IL-1β [274–276]. It improves CCI4-induced liver damages, likely by promoting
heme oxygenase-1 and down-regulating proinflammatory mediators [277]. It is reported that
18β-glycyrrhetinic acid (GA) down-regulates MyD88 expression and inhibits NF-κB activation, and
thus causes reduced macrophage inflammation protein (MIP)-1α expression on Kupffer cells. Overall,
GA is involved in anti-inflammation by inhibiting MIP-1α [278]. Diammonium glycyrrhizinate (DG),
extract from Glycyrrhizae Radix et Rhizoma, can enhance the production of IL-6 and IL-10. DG may
exert its hepatoprotection activity by two pathways: inhibiting T-cell-mediated inflammation via
an IL-10-dependant pathway, and deterring hepatocytes from apoptosis via an IL-6-dependant
pathway [279].

Glycyrrhetic acid was demonstrated to prohibit sialylation of hepatitis B surface antigen (HBsAg),
inducing its retention in the trans-Golgi apparatus and regulating glycosylation in a cell culture
study [113]. Glycyrrhetic acid is demonstrated its hepatoprotective effect via repressing the activity
of prostaglandin E2 production by macrophages and 11-beta-hydroxysteroid dehydrogenase activity,
as well as its antioxidative effect via inducing glutathione-S-transferases and catalase [280]. Some
findings exhibited that the inactivation of NF-κB is associated with an anti-fibrotic effect in the CCl4
rat model [281].

In a study of sub-acute liver failure patients administered glycyrrhetic acid daily for a month
followed by a two-month glycyrrhetic acid administration every other day, patients were reported
to have a better survival rate compared to historical controls from the past decade [282]. Moreover,
another study of patients with HCV antibodies treated by glycyrrhetic acid showed an obvious
dropping down of relative risk by 2.5-fold in development to HCC [212]. Glycyrrhetic acid treatment
also could lower ALT levels but disappeared upon terminating therapy in human trials [283].
The aldosterone-like activities of glycyrrhetic acid result in such adverse effects as hypertension,
deterioration of ascites and dropping down of potassium [284].

Pharmacokinetics analysis of glycyrrhetinic acid in humans and experimental demonstrated that
glycyrrhetinic acid has a half-life of 3.5 h in humans in the second elimination phase and a biphasic
elimination from the central compartment with a dose-dependent second elimination phase [285].

5.2.3. Ginseng Radix et Rhizoma

Ginseng Radix et Rhizoma is a popular tonic for various diseases such as diabetes and hepatic
diseases [286]. The bioactive components of this herb are principally dammarane triterpene
O-glycosides, in particular, ginsenoside, of which ginsenoside Rd is one of the major active
components [287]. Ginsenoside Rd (20-(β-D-glucopyranosyloxy)-12β-hydroxydammar-24-en-3β-yl
2-O-β-D-glucopyranosyl-β-D-glucopyranoside) carries diverse bioactivities which are associated
with treating metabolic disorders and cancers by its anti-inflammation and immune
enhancement activities [288,289]. Ginsenoside Rg 1 (3β,12β-dihydroxydammar-24-ene-6α,20-diyl
bis-β-D-glucopyranoside) has demonstrated its ability to block the transcriptional activity of
TNF-α-mediated NF-κB, gene expression of COX-2-induced inflammatory enzymes and iNOS [290].
Many studies demonstrated the various pharmacological activities of ginsenosides, including their
ability to inhibit inflammation and OS as well as their vasorelaxation effect [291–293]. Ginseng
regulates antioxidant effects via Nrf2 and levels of antioxidant enzymes by increasing superoxide
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dismutase and glutathione peroxidase [294,295], and protects rabbit pulmonary endothelium from
ROS toxicity [64].

Ginsenoside Rd acts as an antioxidant, as glucose is attached to the sixth carbon instead
of the 20th [296]. Ginsenoside Rb1 (20-[(6-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy]-12β-
hydroxydammar-24-en-3β-yl 2-O-β-D-glucopyranosyl-β-D-glucopyranoside) showa its protective
activities on human umbilical vein endothelial cells [297]. Water extract of Korean red ginseng was
demonstrated to promote angiogenesis in human umbilical vein endothelial cells via activating the
phosphoinositol-3-kinase (PI3K)/Akt-dependent extracellular signal-regulated kinase 1/2 pathways
and endothelial nitric oxide synthase (eNOS) [298].

In clinical studies, the long half-life of ginsenoside Rd, 19.29 h, showed that it might be metabolized
moderately after intravenous administration. In rat models, glycosylation and oxygenation were
demonstrated to be the main metabolic pathway of Rd in intravenous administration, while
deglycosylation was the main metabolic pathway in oral administration [287].

5.2.4. Curcumin

Curcumin, also known as turmeric yellow, and compound of curcuma longa, showed
various pharmacological effects including anti-inflammatory, anti-oxidative, and hepatoprotective
activities [299]. It was reported to decrease the production of cytokines including TNF-α and
TNF-β via inhibiting NF-κB, and thus it likely possesses the prophylactic effect on liver diseases
by anti-inflammatory effects [300]. It could decrease hepatic MDA and inhibit NF-κB activation in
alcohol-induced female Sprague-Dawley rats [146]. It also demonstrated its anti-oxidant effect via
inhibiting ROS generation in ethanol-exposed mice. However, it is not suggested as a favorable
treatment option due to its low bioavailability and rapid metabolism.

Moreover, curcumin acts on liver injuries by targeting multiple sites, for example platelet-derived
growth factor-β receptor (PDGF-βR) [301], tissue growth factor β (TGFβ) [302,303], toll-like
receptors (TLRs) [304], matrix metalloproteinases (MMPs) [301,305], peroxisome proliferator-activated
receptors (PPARc) [305], apoptotic pathway [303,306] microRNAs [307], and inflammatory
cytokines [304,305,308,309].

In an in vitro study, curcumin was also demonstrated to inhibit the stimulatory effects of leptin by
suppressing the phosphorylation and expression of leptin receptor (Ob-R) [310]. The latter is initiated
by decreasing OS and stimulating PPARc activity [305]. Moreover, it abolished stimulatory effects
of leptin on HSC activation through regulating intracellular lipids and elevating AMPK activity in
HSCs. Curcumin inhibits HSC activation by preventing leptin from increasing intracellular glucose
levels in activated HSCs. Also, curcumin inhibits HSC activation by activating AMPK activity, leading
to the induction of gene expression associated with elevating triglycerides (TGs) and intracellular
fatty acids (FAs), and accumulating lipids [305]. It is also found to inhibit HSC activation by stopping
AGE-caused activation of leptin signaling in activated HSC [311]. Moreover, its activation to AMPK
showed various functions in other cell types, such as 3T3-L1 adipocytes [312], HT-29 colon cancer
cells [311] and hepatoma cells [311]. These findings postulated that curcumin possibly exerts specific
activities on lipid accumulation according to cell types and on regulating gene expression, in which
curcumin exhibits its epigenetic events.

Interestingly, curcumin at lower concentrations acts as a powerful agent in modulating miRNAs
expression, particularly inactivating or activating gene expression, via exerting its effect on HDACs
and acetyl transferases [313].

However, the kinetic behavior of curcumin degradation is complicated as its half-life varies among
different pH and solvents. The half-life of curcumin is around 6.6 ˆ 103 h at pH 1.23, and shortened
when the pH is elevated to 7.98; the stability of curcumin followed the decreasing trend: methanol
(92.7 h) > ethyl acetate (15.1 h) > acetonitrile (6.3 h) > chloroform (2.7 h) [314].



Int. J. Mol. Sci. 2016, 17, 465 17 of 37

5.2.5. Lycii Fructus

Lycii Fructus, also known as Wolfberry, the fruit of plant Lycium barvarum of the family Solanaceae,
is a popular herbal drug targeting liver and eyes [315]. Lycii Fructus carry amino acids, betaine,
flavonoids, scopoletin (6-methoxy-7-hydroxycoumarin, also known as, scopoletol, gelseminic acid,
ecopoletin, and chrysatropic acid), cerebroside, minerals, β-sitosterol, vitamins (e.g., ascorbic acid,
thiamin and riboflavin), stable vitamin C analog 2-O-β-D-glucopyranosyl-l-ascorbic acid, carotenoids
(β-carotene and zeaxanthin), glucosylated precursor, and plentiful polysaccharides (LBPs), which
can be found in 5%–8% of dried fruits [316]. LBPs are regarded as the most crucial components in
Lycii Fructus and associated with various effects, most of which depend on galacturonic acid, and the
bioactivities are often reversely proportional to molecular weights. LBPs have been demonstrated to
be effective in promoting health, and therapies for different diseases in clinical and preclinical studies.

For example, a zebra fish model showed positive effects of LBPs on a p53-mediated signaling
pathway and cell apoptosis, which may be responsible for aging. Its mechanism was shown by
SA-β-gal and phenotypic assays and evaluated by survival rates in vivo [317].

Moreover, LBPs were demonstrated to have promising effects against OS and stimulate immune
functions in an aged mice model study [318]. By measuring total antioxidant capacity (TAOC),
superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) of aged mice treated
with LBPs, elevated antioxidant effects and alleviated endogenous lipid peroxidation were observed
in the brain, liver, lungs and heart. The elevated non-enzymatic system and antioxidant enzymes may
be one of the mechanisms of the lowering effect on lipid peroxidation. The immune functions of aged
mice treated with LBPs was also restored to normal as evaluated by phagocytic index, phagocytic
activity, as well as spleen and thymus index. Moreover, the MDA level and lipofuscin level (a key
indicator for oxidative injury), which were obviously higher in aged mice, was suppressed by LBP
administration [318].

Another study of mice demonstrated that administration of LBPs dose-dependently significantly
elevated peripheral and hepatic antioxidant enzymes activities (CAT, SOD, GPx, and TAOC level) and
GSH level, but dropped down MDA and NO-level [319].

Clinical study showed different effects on apoptosis in human hepatic cancer SMMC-7721 cells,
cell cycle distribution, and proliferation with different amounts of LBPs at doses of 50–400 mg/L
for two, four and six days. The proliferation of human hepatoma QGY7703 cells was suppressed
by 100 mg/L LBPs, hence leading to cell cycle arrest, and significantly elevated intracellular Ca2+

level [320]. Another in vivo study of 50 Chinese healthy adults demonstrated that GPx and serum SOD
level were elevated by 8.7% and 8.4% respectively via administration of 13.6 mg/mL LBPs at a dose of
120 mL/day [321].

5.2.6. Coptidis Rhizoma

Berberine (BBR), an alkaloid isolated from Coptidis Rhizoma, showed its anti-steatotic effect via
reactivating AMPK and up-regulating low-density lipoprotein receptor expression by the extracellular
signal-regulated kinase (ERK) pathways and c-Jun N-terminal kinase (JNK) [322,323]. Moreover, BBR
also demonstrated its ability to reduce hepatic inflammatory response, by the modulation of the NF-κB
signaling pathway [324,325].

BBR showed obvious inhibitory effects on OS in a series of diabetic animal models [326–334]
and cells cultured with high glucose-containing medium [141]. The antioxidant activity of BBR was
demonstrated by changing antioxidant enzymes and OS markers including malondialdehyde (MDA),
a product of lipid peroxidation which increased during OS [335], and glutathione (GSH), which often
declines during OS [336]. Antioxidant enzymes are a part of the antioxidant defense mechanisms,
which are responsible for keeping the balance of redox in organisms and could be damaged in the
pathogenesis of diabetes mellitus [337].

According to both in vitro and in vivo studies, the anti-inflammatory activity of BBR was
observed by decreasing the pro-inflammatory cytokines and acute phase proteins [326,327,338–343].
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In pancreatic β-cells, cultured metabolic cells (adipocytes and liver cells), or immunocytes
(macrophages and splenocytes), BBR prohibited the production of C-reaction protein (CRP)
and haptoglobin (HP), matrix metalloprotease 9 (MMP9), inducible nitric oxide synthase
(iNOS), cyclooxygenase-2 (COX2), TNF-α, IL-6, IL-1β, and monocyte chemoattractant protein 1
(MCP-1) [338–341,344]. The anti-inflammatory activity of BBR demonstrated in insulin resistant HepG2
cells was related to its insulin-sensitizing effect [339]. BBR administration obviously lowered cytokine
production and serine phosphorylation, whereas it elevated insulin-mediated tyrosine phosphorylation
of IRS in HepG2 cells treated with palmitate [339].

5.3. Composite Formulae

5.3.1. Xiao-Cha-Hu-Tang

Xiao-Cha-Hu-Tang, also known as Sho-saiko-to in Japan, had been used for treating liver
diseases since ancient China, and comprises seven herbal constituents including: pinellia tuber,
ginger rhizome, glycyrrhiza root, bupleurum root, jujube fruit, scutellaria toot, and ginseng root.
It has been demonstrated as an effective anti-inflammatory agent via reducing inflammatory process
and regulating ALT levels [325]. Saikosaponin-A (SSA) and Saikosaponin-D (SSD) are two extracts
from bupleurum, one of the constituents of Xiao-Cha-Hu-Tang. SSA, an antioxidant, can increase
anti-inflammatory cytokine IL-10, inhibit hepatic proinflammatory cytokines, such as IL-1β, IL-6 and
TNF-α, as well as suppress inflammation and fibrogenesis [308]. The formula has shown its efficacy
for chronic hepatitis and liver cirrhosis.

5.3.2. Shi-Quan-Da-Bu-Tang

This formula, also known as Juzen-taiho-to in Japan, is a famous tonic remedy and has been used
for treating general weakness, anemia, anorexia, and fatigue for nearly a thousand years in China.
It consists of 10 herbal components including Panax ginseng, Atractylodes macrocephala, Angelica sinensis,
Cinnamomum cassia, Paeonia lactiflora, Astragalus membranaceus, Poria cocos, Rehmannia glutinosa,
Liqusticum wallichii, and Glycyrrhiza uralensis.

It was demonstrated to inhibit the secretion of IL-2, but promote IL-4, IL-5, IL-6 and INF-γ from
stimulated hepatic lymphocytes. The amount of CD3-positive intermediate cells among NKT cells was
elevated after oral intake of the formula. It increased IL-12 mRNA transcription in the liver, which may
also result in the induction of NKT cells [345]. Hence, this formula can suppress hepatic inflammation
and induce NKT cells. However, some studies pointed out that the formula could not improve liver
dysfunction, as its pre-surgical administration appeared to inhibit the post-surgical hyperammonemia,
but did not improve post-surgical liver dysfunction [346].

Xiao-Cha-Hu-Tang and Shi-Quan-Da-Bu-Tang both demonstrated inhibition of fibrosis and
necroinflammation in the livers of a murine NASH model, though the mechanisms were not clear [347].
Overall, they both appeared to be effective anti-inflammation agents by inducing NKT cells. However,
there are some cases of adverse events and hepatotoxicity resulting from herbal medicines [348]; it
was observed that Xiao Chaihu Tang (Sho-saiko-to) may cause acute interstitial pneumonia in chronic
hepatitis patients, when used alone or in combination with interferon [349].

6. Conclusions and Future Perspectives

Although there are some negative opinions [348–351], evidence shows that CMHs are effective
anti-inflammatory and anti-oxidative agents with milder and fewer side effects, and can act as tonics
to prevent diseases in prophylactic strategies.

In the theory of TCM, herbal composite formulae are composed of several kinds of herbs, based
on the syndrome differentiation according to patient symptoms. Therefore, it is relatively difficult
to probe which component from the formula is the main contributor to the therapy and without
applying the syndrome differentiation, the results of most of the current randomized clinical trials
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for CMHs are difficult to assess. This may explain the less favorable effects of CHMs in treating
and preventing hepatic diseases reported in clinical trials, though desirable effects are obtained from
laboratory experiments.

Actually, in the clinical practice of TCM, herbs do not work independently, but are prescribed
in formulae. It is believed that these anti-oxidative and anti-inflammatory activities of TCM may
stem from its additive or synergistic active effects. Therefore, large-scale clinical studies based
on TCM syndrome differentiation should be performed to further evaluate the anti-oxidative and
anti-inflammatory effects of CMHs on liver diseases.
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AC Autoimmune cholestatic liver diseases
ACC Acetyl-CoA carboxylase
ACLY ATP-citrate lyase
ADH Alcohol dehydrogenase
AIH Autoimmune hepatitis
ALD Alcoholic liver disease
ALP Alkaline phosphatase
ALT Alanine transaminase
ALDH Aldehyde dehydrogenases
AMPK AMP-activated protein kinase
AOX Acyl-CoA oxidase
ARE Antioxidant response element
AST Aspartate aminotransferase
BHA Butylated hydroxyanisole
bw Body weight
CAT Catalase
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COX-2 Cyclooxygenase-2
CPT-1 Carnitine palmitoyltransferase-1
CYP2E1 Cytochrome P450 2E
DGAT Diacylglycerol acyltransferase
EGCG Epigallocatechin-3-gallate
ER Endoplasmic reticulum
FAS Fatty acid synthase
GGT γ-Glutamyl transferase
GPX Glutathione peroxidase
GSH-Px Glutathione peroxidase
GSH Glutathione
GRD Glutathione reductase
GST Glutathione S-transferase
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HDL High density lipoprotein
HCV Hepatitis C virus
IL-6 Interleukin 6
INH Anti-tuberculosis agent isoniazid
iNOS Inducible nitric oxide synthase (iNOS)
INrf2 Inhibitor of Nrf2
IKK β IkB kinase-β
IRS Insulin receptor substrate
JNK C-Jun N-terminal kinases
Keap1 Kelch-like ECH-associated protein-1
LBP LPS-binding protein
LPO Lipid peroxidation
LPS Lipopolysaccharide
LDH Lactate dehydrogenase
LDL Low density lipoprotein
MCAD Mitochondrial medium-chain acyl-CoA dehydrogenase
MCP-1 Monocyte chemotactic protein-1
MDA Malondialdehyde
MEOS Microsomal ethanol oxidizing system
MyD88 Myeloid differentiation factor 88
NADPH Nicotinamide adenine dinucleotide phosphate-oxidase
NAFLD Non-alcoholic fatty liver disease NAFLD
NF-κB Nuclear factor-κB
NO Nitric Oxide
NQO1 NAD(P)H Dehydrogenase, Quinone 1
Nrf1 Nuclear respiratory factor 1
Nrf2 Erythroid 2-related factor 2
PGC-1α Peroxisome proliferator-activated receptor g coactivator α
PKC Protein kinase C
PPARα Peroxisome proliferator activated receptor RNS Reactive nitrogen species
ROS Reactive oxygen species
SCD-1 Stearyl CoA desaturase-1
SIRT1 Sirtuin 1
SOD Superoxide dismutases
SREBP-1c Sterol regulatory element-binding protein-1c
STAT-3 Signal transducer and activator of transcription-3
TAA Thioacetamide
TB Total bilirubin
TBARS Thiobarbituric acid-reactive substances
TC Total cholesterolsTCM Traditional Chinese Medicine
TG Triglyceride
TLR4 Toll-like receptor 4
TNF Tumor necrosis factor
TNF-α Tumor necrosis factor-α
TRIF TIR-domain-containing adapter-inducing interferon-b
ZO-1 Zonula occludens-1
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142. Radosavljević, T.; Mladenović, D.; Vučević, D. The role of oxidative stress in alcoholic liver injury. Med.
Pregled 2009, 62, 547–553. [CrossRef]

143. Kaviarasan, S.; Sundarapandiyan, R.; Anuradha, C. Protective action of fenugreek (Trigonella foenum graecum)
seed polyphenols against alcohol-induced protein and lipid damage in rat liver. Cell Biol. Toxicol. 2008, 24,
391–400. [CrossRef] [PubMed]

144. Zhao, M.; Du, Y.-Q.; Yuan, L.; Wang, N.-N. Protective effect of puerarin on acute alcoholic liver injury. Am. J.
Chin. Med. 2010, 38, 241–249. [CrossRef] [PubMed]

145. Yuan, G.; Gong, Z.; Li, J.; Li, X. Ginkgo biloba extract protects against alcohol-induced liver injury in rats.
Phytother. Res. 2007, 21, 234–238. [CrossRef] [PubMed]

146. Samuhasaneeto, S.; Thong-Ngam, D.; Kulaputana, O.; Suyasunanont, D.; Klaikeaw, N. Curcumin decreased
oxidative stress, inhibited NF-κB activation, and improved liver pathology in ethanol-induced liver injury in
rats. J. Biomed. Biotechnol. 2009, 2009. [CrossRef] [PubMed]

147. Bharrhan, S.; Koul, A.; Chopra, K.; Rishi, P.; Lee, T. Catechin suppresses an array of signalling molecules
and modulates alcohol-induced endotoxin mediated liver injury in a rat model. PLoS ONE 2011, 6, e20635.
[CrossRef] [PubMed]

148. Rao, R.K.; Seth, A.; Sheth, P.; Rao, P. Recent advances in alcoholic liver disease. I. Role of intestinal
permeability and endotoxemia in alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286,
G881–G884. [CrossRef] [PubMed]

149. Zhang, R.; Hu, Y.; Yuan, J.; Wu, D. Effects of puerariae radix extract on the increasing intestinal permeability
in rat with alcohol-induced liver injury. J. Ethnopharmacol. 2009, 126, 207–214. [CrossRef] [PubMed]

150. Hritz, I.; Mandrekar, P.; Velayudham, A.; Catalano, D.; Dolganiuc, A.; Kodys, K.; Kurt-Jones, E.; Szabo, G.
The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR
adapter MyD88. Hepatology (Baltim. Md.) 2008, 48, 1224–1231. [CrossRef] [PubMed]

151. Yin, M.; Bradford, B.U.; Wheeler, M.D.; Uesugi, T.; Froh, M.; Goyert, S.M.; Thurman, R.G. Reduced early
alcohol-induced liver injury in CD14-deficient mice. J. Immunol. 2001, 166, 4737–4742. [CrossRef] [PubMed]

152. Yoon, S.-J.; Koh, E.-J.; Kim, C.-S.; Zee, O.-P.; Kwak, J.-H.; Jeong, W.-J.; Kim, J.-H.; Lee, S.-M. Agrimonia
eupatoria protects against chronic ethanol-induced liver injury in rats. Food Chem. Toxicol. 2012, 50, 2335–2341.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0140-6736(09)60746-7
http://dx.doi.org/10.1002/hep.23258
http://www.ncbi.nlm.nih.gov/pubmed/20034030
http://dx.doi.org/10.1007/s00011-010-0176-6
http://www.ncbi.nlm.nih.gov/pubmed/20221667
http://dx.doi.org/10.1016/j.mam.2007.09.004
http://www.ncbi.nlm.nih.gov/pubmed/18045675
http://dx.doi.org/10.1080/14786410802525487
http://www.ncbi.nlm.nih.gov/pubmed/20623423
http://dx.doi.org/10.1055/s-0029-1214370
http://www.ncbi.nlm.nih.gov/pubmed/19387914
http://dx.doi.org/10.1517/17425255.1.4.671
http://www.ncbi.nlm.nih.gov/pubmed/16863432
http://dx.doi.org/10.1271/bbb.60523
http://www.ncbi.nlm.nih.gov/pubmed/17587688
http://dx.doi.org/10.1021/jf103976y
http://www.ncbi.nlm.nih.gov/pubmed/21105651
http://dx.doi.org/10.1016/j.fct.2007.01.016
http://www.ncbi.nlm.nih.gov/pubmed/17467134
http://dx.doi.org/10.2298/MPNS0912547R
http://dx.doi.org/10.1007/s10565-007-9050-x
http://www.ncbi.nlm.nih.gov/pubmed/18240000
http://dx.doi.org/10.1142/S0192415X10007816
http://www.ncbi.nlm.nih.gov/pubmed/20387222
http://dx.doi.org/10.1002/ptr.2054
http://www.ncbi.nlm.nih.gov/pubmed/17154234
http://dx.doi.org/10.1155/2009/981963
http://www.ncbi.nlm.nih.gov/pubmed/19606259
http://dx.doi.org/10.1371/journal.pone.0020635
http://www.ncbi.nlm.nih.gov/pubmed/21673994
http://dx.doi.org/10.1152/ajpgi.00006.2004
http://www.ncbi.nlm.nih.gov/pubmed/15132946
http://dx.doi.org/10.1016/j.jep.2009.08.044
http://www.ncbi.nlm.nih.gov/pubmed/19735712
http://dx.doi.org/10.1002/hep.22470
http://www.ncbi.nlm.nih.gov/pubmed/18792393
http://dx.doi.org/10.4049/jimmunol.166.7.4737
http://www.ncbi.nlm.nih.gov/pubmed/11254735
http://dx.doi.org/10.1016/j.fct.2012.04.005
http://www.ncbi.nlm.nih.gov/pubmed/22525864


Int. J. Mol. Sci. 2016, 17, 465 28 of 37

153. Kanuri, G.; Weber, S.; Volynets, V.; Spruss, A.; Bischoff, S.C.; Bergheim, I. Cinnamon extract protects against
acute alcohol-induced liver steatosis in mice. J. Nutr. 2009, 139, 482–487. [CrossRef] [PubMed]

154. Kim, S.-J.; Lee, S.-M. Effect of baicalin on toll-like receptor 4-mediated ischemia/reperfusion inflammatory
responses in alcoholic fatty liver condition. Toxicol. Appl. Pharmacol. 2012, 258, 43–50. [CrossRef] [PubMed]

155. Nanji, A.; Jokelainen, K.; Tipoe, G.; Rahemtulla, A.; Thomas, P.; Dannenberg, A. Curcumin prevents
alcohol-induced liver disease in rats by inhibiting the expression of NF-κB-dependent genes. Am. J. Physiol.
Gastrointest. Liver Physiol. 2003, 284, G321–G327. [CrossRef] [PubMed]

156. Neuman, M.G. Cytokines-central factors in alcoholic liver disease. Alcohol Res. Health J. Natl. Inst. Alcohol
Abuse Alcohol. 2003, 27, 307–316.

157. Thurman, R.G. Mechanisms of hepatic toxicity II. Alcoholic liver injury involves activation of Kupffer cells
by endotoxin. Am. J. Physiol. Gastrointest. Liver Physiol. 1998, 38, G605–G611.

158. Purohit, V.; Gao, B.; Song, B.J. Molecular mechanisms of alcoholic fatty liver. Alcohol. Clin. Exp. Res. 2009, 33,
191–205. [CrossRef] [PubMed]

159. You, M.; Crabb, D.W. Molecular mechanisms of alcoholic fatty liver: Role of sterol regulatory element-binding
proteins. Alcohol 2004, 34, 39–43. [CrossRef] [PubMed]

160. Horton, J.D.; Goldstein, J.; Brown, M.S. Srebps: Activators of the complete program of cholesterol and fatty
acid synthesis in the liver. J. Clin. Investig. 2002, 109, 1125–1131. [CrossRef] [PubMed]

161. Yin, H.Q.; Kim, Y.C.; Chuang, Y.S.; Kim, Y.C.; Shin, Y.K.; Lee, B.H. Honokiol reverses alcoholic fatty liver
by inhibiting the maturation of sterol regulatory element binding protein-1c and the expression of its
downstream lipogenesis genes. Toxicol. Appl. Pharmacol. 2009, 236, 124–130. [CrossRef] [PubMed]

162. Chen, K.-H.; Li, P.-C.; Lin, W.-H.; Chien, C.-T.; Low, B.-H. Depression by a green tea extract of alcohol-induced
oxidative stress and lipogenesis in rat liver. Biosci. Biotechnol. Biochem. 2011, 75, 1668–1676. [CrossRef]
[PubMed]

163. Ajmo, J.M.; Liang, X.; Rogers, C.Q.; Pennock, B.; You, M. Resveratrol alleviates alcoholic fatty liver in mice.
Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G833–G842. [CrossRef] [PubMed]

164. Yin, H.-Q.; Je, Y.-T.; Kim, Y.-C.; Shin, Y.-K.; Sung, S.; Lee, K.; Lee, B.-H.; Jeong, G.-S.; Kim, Y.-C. Magnolia
officinalis reverses alcoholic fatty liver by inhibiting the maturation of sterol regulatory element-binding
protein-1c. J. Pharmacol. Sci. 2009, 109, 486–495. [CrossRef] [PubMed]

165. Long, Y.C.; Zierath, J.R. AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Investig.
2006, 116, 1776–1783. [CrossRef] [PubMed]

166. Endo, M.; Masaki, T.; Seike, M.; Yoshimatsu, H. TNF-α induces hepatic steatosis in mice by enhancing gene
expression of sterol regulatory element binding protein-1c (SREBP-1c). Exp. Biol. Med. 2007, 232, 614–621.

167. Lawler, J.F., Jr.; Yin, M.; Diehl, A.M.; Chatterjee, S.; Roberts, E. Tumor necrosis factor-α stimulates the
maturation of sterol regulatory element binding protein-1 in human hepatocytes through the action of
neutral sphingomyelinase. J. Biol. Chem. 1998, 273, 5053–5059. [CrossRef]

168. Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.;
Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic
disease by activating SIRT1 and PGC-1α. Cell 2006, 127, 1109–1122. [CrossRef] [PubMed]

169. Wada, S.; Yamazaki, T.; Kawano, Y.; Miura, S.; Ezaki, O. Fish oil fed prior to ethanol administration prevents
acute ethanol-induced fatty liver in mice. J. Hepatol. 2008, 49, 441–450. [CrossRef] [PubMed]

170. Grasselli, E.; Compalati, A.D.; Voci, A.; Vecchione, G.; Ragazzoni, M.; Gallo, G.; Borro, P.; Sumberaz, A.;
Testino, G.; Vergani, L. Altered oxidative stress/antioxidant status in blood of alcoholic subjects is associated
with alcoholic liver disease. Drug Alcohol Depend. 2014, 143, 112–119. [CrossRef] [PubMed]

171. Vernon, G.; Baranova, A.; Younossi, Z. Systematic review: The epidemiology and natural history of
non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther.
2011, 34, 274–285. [CrossRef] [PubMed]

172. Day, C.P.; James, O.F. Steatohepatitis: A tale of two “HITS”? Gastroenterology 1998, 114, 842–845. [CrossRef]
173. de Medeiros, I.C.; de Lima, J.G. Is nonalcoholic fatty liver disease an endogenous alcoholic fatty liver

disease?—A mechanistic hypothesis. Med. Hypotheses 2015, 85, 148–152. [CrossRef] [PubMed]
174. Houstis, N.; Rosen, E.D.; Lander, E.S. Reactive oxygen species have a causal role in multiple forms of insulin

resistance. Nature 2006, 440, 944–948. [CrossRef] [PubMed]

http://dx.doi.org/10.3945/jn.108.100495
http://www.ncbi.nlm.nih.gov/pubmed/19126670
http://dx.doi.org/10.1016/j.taap.2011.10.005
http://www.ncbi.nlm.nih.gov/pubmed/22019745
http://dx.doi.org/10.1152/ajpgi.00230.2002
http://www.ncbi.nlm.nih.gov/pubmed/12388178
http://dx.doi.org/10.1111/j.1530-0277.2008.00827.x
http://www.ncbi.nlm.nih.gov/pubmed/19032584
http://dx.doi.org/10.1016/j.alcohol.2004.07.004
http://www.ncbi.nlm.nih.gov/pubmed/15670664
http://dx.doi.org/10.1172/JCI0215593
http://www.ncbi.nlm.nih.gov/pubmed/11994399
http://dx.doi.org/10.1016/j.taap.2008.12.030
http://www.ncbi.nlm.nih.gov/pubmed/19371623
http://dx.doi.org/10.1271/bbb.110163
http://www.ncbi.nlm.nih.gov/pubmed/21897050
http://dx.doi.org/10.1152/ajpgi.90358.2008
http://www.ncbi.nlm.nih.gov/pubmed/18755807
http://dx.doi.org/10.1254/jphs.08182FP
http://www.ncbi.nlm.nih.gov/pubmed/19372631
http://dx.doi.org/10.1172/JCI29044
http://www.ncbi.nlm.nih.gov/pubmed/16823475
http://dx.doi.org/10.1074/jbc.273.9.5053
http://dx.doi.org/10.1016/j.cell.2006.11.013
http://www.ncbi.nlm.nih.gov/pubmed/17112576
http://dx.doi.org/10.1016/j.jhep.2008.04.026
http://www.ncbi.nlm.nih.gov/pubmed/18620774
http://dx.doi.org/10.1016/j.drugalcdep.2014.07.013
http://www.ncbi.nlm.nih.gov/pubmed/25107314
http://dx.doi.org/10.1111/j.1365-2036.2011.04724.x
http://www.ncbi.nlm.nih.gov/pubmed/21623852
http://dx.doi.org/10.1016/S0016-5085(98)70599-2
http://dx.doi.org/10.1016/j.mehy.2015.04.021
http://www.ncbi.nlm.nih.gov/pubmed/25956735
http://dx.doi.org/10.1038/nature04634
http://www.ncbi.nlm.nih.gov/pubmed/16612386


Int. J. Mol. Sci. 2016, 17, 465 29 of 37

175. Al Rifai, M.; Silverman, M.G.; Nasir, K.; Budoff, M.J.; Blankstein, R.; Szklo, M.; Katz, R.; Blumenthal, R.S.;
Blaha, M.J. The association of nonalcoholic fatty liver disease, obesity, and metabolic syndrome, with
systemic inflammation and subclinical atherosclerosis: The multi-ethnic study of atherosclerosis (MESA).
Atherosclerosis 2015, 239, 629–633. [CrossRef] [PubMed]

176. Ozenirler, S.; Erkan, G.; Konca Degertekin, C.; Ercin, U.; Cengiz, M.; Bilgihan, A.; Yilmaz, G.; Akyol, G. The
relationship between advanced oxidation protein products (AOPP) and biochemical and histopathological
findings in patients with nonalcoholic steatohepatitis. J. Dig. Dis. 2014, 15, 131–136. [CrossRef] [PubMed]

177. Sayre, L.M.; Lin, D.; Yuan, Q.; Zhu, X.; Tang, X. Protein adducts generated from products of lipid oxidation:
Focus on hne and one*. Drug Metab. Rev. 2006, 38, 651–675. [CrossRef] [PubMed]

178. Farhangi, M.A.; Alipour, B.; Jafarvand, E.; Khoshbaten, M. Oral coenzyme q10 supplementation in patients
with nonalcoholic fatty liver disease: Effects on serum vaspin, chemerin, pentraxin 3, insulin resistance and
oxidative stress. Arch. Med. Res. 2014, 45, 589–595. [CrossRef] [PubMed]

179. Horoz, M.; Bolukbas, C.; Bolukbas, F.F.; Sabuncu, T.; Aslan, M.; Sarifakiogullari, S.; Gunaydin, N.; Erel, O.
Measurement of the total antioxidant response using a novel automated method in subjects with nonalcoholic
steatohepatitis. BMC Gastroenterol. 2005, 5. [CrossRef] [PubMed]

180. Koruk, M.; Taysi, S.; Savas, M.C.; Yilmaz, O.; Akcay, F.; Karakok, M. Oxidative stress and enzymatic
antioxidant status in patients with nonalcoholic steatohepatitis. Ann. Clin. Lab. Sci. 2004, 34, 57–62.
[PubMed]

181. Chen, M.; Suzuki, A.; Borlak, J.; Andrade, R.J.; Lucena, M.I. Drug-induced liver injury: Interactions between
drug properties and host factors. J. Hepatol. 2015, 63, 503–514. [CrossRef] [PubMed]

182. Tan, C.Y.; Saw, T.Y.; Fong, C.W.; Ho, H.K. Comparative hepatoprotective effects of tocotrienol analogs against
drug-induced liver injury. Redox Biol. 2015, 4, 308–320. [CrossRef] [PubMed]

183. Mathurin, P.; Hadengue, A.; Bataller, R.; Addolorato, G.; Burra, P.; Burt, A.; Caballeria, J.; Cortez-Pinto, H.;
Day, C.P.; Forrest, E.H. EASL clinical practical guidelines: Management of alcoholic liver disease. J. Hepatol.
2012, 57, 399–420. [CrossRef]

184. Imperiale, T.F.; McCullough, A.J. Do corticosteroids reduce mortality from alcoholic hepatitis?:
A meta-analysis of the randomized trials. Ann. Intern. Med. 1990, 113, 299–307. [CrossRef] [PubMed]

185. Louvet, A.; Wartel, F.; Castel, H.; Dharancy, S.; Hollebecque, A.; Canva–Delcambre, V.; Deltenre, P.;
Mathurin, P. Infection in patients with severe alcoholic hepatitis treated with steroids: Early response
to therapy is the key factor. Gastroenterology 2009, 137, 541–548. [CrossRef] [PubMed]

186. Lebrec, D.; Thabut, D.; Oberti, F.; Perarnau, J.M.; Condat, B.; Barraud, H.; Saliba, F.; Carbonell, N.; Renard, P.;
Ramond, M.J. Pentoxifylline does not decrease short-term mortality but does reduce complications in
patients with advanced cirrhosis. Gastroenterology 2010, 138, 1755–1762. [CrossRef] [PubMed]

187. De, B.K.; Gangopadhyay, S.; Dutta, D.; Baksi, S.D.; Pani, A.; Ghosh, P. Pentoxifylline versus prednisolone
for severe alcoholic hepatitis: A randomized controlled trial. World J. Gastroenterol. 2009, 15, 1613–1619.
[CrossRef] [PubMed]

188. Gao, B. Hepatoprotective and anti-inflammatory cytokines in alcoholic liver disease. J. Gastroenterol. Hepatol.
2012, 27, 89–93. [CrossRef] [PubMed]

189. Park, O.; Wang, H.; Weng, H.; Feigenbaum, L.; Li, H.; Yin, S.; Ki, S.H.; Yoo, S.H.; Dooley, S.; Wang, F.S.
In vivo consequences of liver-specific interleukin-22 expression in mice: Implications for human liver disease
progression. Hepatology 2011, 54, 252–261. [CrossRef] [PubMed]

190. Ren, X.; Hu, B.; Colletti, L.M. IL-22 is involved in liver regeneration after hepatectomy. Am. J. Physiol.
Gastrointest. Liver Physiol. 2010, 298, G74–G80. [CrossRef] [PubMed]

191. Aujla, S.; Kolls, J. IL-22: A critical mediator in mucosal host defense. J. Mol. Med. 2009, 87, 451–454.
[CrossRef] [PubMed]

192. Luo, P.; Wang, M.-H. Eicosanoids, β-cell function, and diabetes. Prostaglandins Other Lipid Mediat. 2011, 95,
1–10. [CrossRef] [PubMed]

193. Rafieian-Kopaei, M.; Baradaran, A.; Rafieian, M. Oxidative stress and the paradoxical effects of antioxidants.
J. Res. Med. Sci. 2013, 18, 628.

194. Miller, E.R.; Pastor-Barriuso, R.; Dalal, D.; Riemersma, R.A.; Appel, L.J.; Guallar, E. Meta-analysis:
High-dosage vitamin E supplementation may increase all-cause mortality. Ann. Intern. Med. 2005, 142, 37–46.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.atherosclerosis.2015.02.011
http://www.ncbi.nlm.nih.gov/pubmed/25683387
http://dx.doi.org/10.1111/1751-2980.12113
http://www.ncbi.nlm.nih.gov/pubmed/24528633
http://dx.doi.org/10.1080/03602530600959508
http://www.ncbi.nlm.nih.gov/pubmed/17145694
http://dx.doi.org/10.1016/j.arcmed.2014.11.001
http://www.ncbi.nlm.nih.gov/pubmed/25450583
http://dx.doi.org/10.1186/1471-230X-5-35
http://www.ncbi.nlm.nih.gov/pubmed/16283935
http://www.ncbi.nlm.nih.gov/pubmed/15038668
http://dx.doi.org/10.1016/j.jhep.2015.04.016
http://www.ncbi.nlm.nih.gov/pubmed/25912521
http://dx.doi.org/10.1016/j.redox.2015.01.013
http://www.ncbi.nlm.nih.gov/pubmed/25637740
http://dx.doi.org/10.1016/S0168-8278(12)61033-2
http://dx.doi.org/10.7326/0003-4819-113-4-299
http://www.ncbi.nlm.nih.gov/pubmed/2142869
http://dx.doi.org/10.1053/j.gastro.2009.04.062
http://www.ncbi.nlm.nih.gov/pubmed/19445945
http://dx.doi.org/10.1053/j.gastro.2010.01.040
http://www.ncbi.nlm.nih.gov/pubmed/20102716
http://dx.doi.org/10.3748/wjg.15.1613
http://www.ncbi.nlm.nih.gov/pubmed/19340904
http://dx.doi.org/10.1111/j.1440-1746.2011.07003.x
http://www.ncbi.nlm.nih.gov/pubmed/22320924
http://dx.doi.org/10.1002/hep.24339
http://www.ncbi.nlm.nih.gov/pubmed/21465510
http://dx.doi.org/10.1152/ajpgi.00075.2009
http://www.ncbi.nlm.nih.gov/pubmed/19875704
http://dx.doi.org/10.1007/s00109-009-0448-1
http://www.ncbi.nlm.nih.gov/pubmed/19219418
http://dx.doi.org/10.1016/j.prostaglandins.2011.06.001
http://www.ncbi.nlm.nih.gov/pubmed/21757024
http://dx.doi.org/10.7326/0003-4819-142-1-200501040-00110
http://www.ncbi.nlm.nih.gov/pubmed/15537682


Int. J. Mol. Sci. 2016, 17, 465 30 of 37

195. Greenland, S. Weaknesses of bayesian model averaging for meta-analysis in the study of vitamin E and
mortality. Clin. Trials 2009, 6, 42–46. [CrossRef] [PubMed]

196. Nasri, H.; Rafieian-Kopaei, M. Medicinal plants and antioxidants: Why they are not always beneficial? Iran.
J. Public Health 2014, 43, 255–257. [PubMed]

197. Hajian, S.; Rafieian-Kopaei, M.; Nasri, H. Renoprotective effects of antioxidants against cisplatin
nephrotoxicity. J. Nephropharmacol. 2015, 3, 39–42.

198. Madihi, Y.; Merrikhi, A.; Baradaran, A.; Rafieian-Kopaei, M.; Shahinfard, N.; Ansari, R.; Shirzad, H.;
Mesripour, A. Impact of sumac on postprandialhigh-fat oxidative stress. 2013, 29. [CrossRef]

199. Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts.
J. Nephropharmacol. 2015, 4, 27–30.

200. Baradaran, A.; Nasri, H.; Rafieian-Kopaei, M. Oxidative stress and hypertension: Possibility of hypertension
therapy with antioxidants. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2014, 19, 358–367.

201. Hajivandi, A.; Amiri, M. World kidney day 2014: Kidney disease and elderly. J. Parathyr. Dis. 2015, 2, 3–4.
202. Rafieian-Kopaei, M.; Baradaran, A. Teucrium polium and kidney. J. Renal Inj. Prev. 2013, 2, 3–4. [PubMed]
203. Tamadon, M.-R.; Ardalan, M.-R.; Nasri, H. World kidney day 2013; acute renal injury; a global health

warning. J. Parathyr. Dis. 2015, 1, 27–28.
204. Hulbert, A.J.; Turner, N.; Storlien, L.; Else, P. Dietary fats and membrane function: Implications for

metabolism and disease. Biol. Rev. 2005, 80, 155–169. [CrossRef] [PubMed]
205. Baradaran, A.; Nasri, H.; Nematbakhsh, M.; Rafieian-Kopaei, M. Antioxidant activity and preventive effect

of aqueous leaf extract of aloe vera on gentamicin-induced nephrotoxicity in male wistar rats. La Clin. Ter.
2013, 165, 7–11.

206. Rafieian-Kopaei, M.; Motamedi, P.; Vakili, L.; Dehghani, N.; Kiani, F.; Taheri, Z.; Torkamaneh, S.; Nasri, P.;
Nasri, H. Green tea and type 2 diabetes mellitus. J. Nephropharmacol. 2015, 3, 21–23.

207. Nasri, H.; Shirzad, H. Toxicity and safety of medicinal plants. J. HerbMed Plarmacol. 2013, 2, 21–22.
208. Mogharabi, M.; Abdollahi, M.; Faramarzi, M.A. Safety concerns to application of graphene compounds in

pharmacy and medicine. Daru 2014, 22(1), 22–23. [CrossRef] [PubMed]
209. Bernstein, B.E.; Meissner, A.; Lander, E.S. The mammalian epigenome. Cell 2007, 128, 669–681. [CrossRef]

[PubMed]
210. Landgraf, P.; Rusu, M.; Sheridan, R.; Sewer, A.; Iovino, N.; Aravin, A.; Pfeffer, S.; Rice, A.; Kamphorst, A.O.;

Landthaler, M.; et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell
2007, 129, 1401–1414. [CrossRef] [PubMed]

211. Fuks, F. DNA methylation and histone modifications: Teaming up to silence genes. Curr. Opin. Genet. Dev.
2005, 15, 490–495. [CrossRef] [PubMed]

212. Kim, D.H.; Saetrom, P.; Snøve, O.; Rossi, J.J. MicroRNA-directed transcriptional gene silencing in mammalian
cells. Proc. Natl. Acad. Sci. USA 2008, 105, 16230–16235. [CrossRef] [PubMed]

213. Baccarelli, A.; Bollati, V. Epigenetics and environmental chemicals. Curr. Opin. Pediatr. 2009, 21, 243–251.
[CrossRef] [PubMed]

214. Hudder, A.; Novak, R.F. Mirnas: Effectors of environmental influences on gene expression and disease.
Toxicol. Sci. 2008, 103, 228–240. [CrossRef] [PubMed]

215. Hewagama, A.; Richardson, B. The genetics and epigenetics of autoimmune diseases. J. Autoimmun. 2009,
33, 3–11. [CrossRef] [PubMed]

216. Yang, B.; Lin, H.; Xiao, J.; Lu, Y.; Luo, X.; Li, B.; Zhang, Y.; Xu, C.; Bai, Y.; Wang, H.; et al. The muscle-specific
microrna miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 2007,
13, 486–491. [CrossRef] [PubMed]

217. Wang, S.-C.; Oelze, B.; Schumacher, A. Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS
ONE 2008, 3, e2698. [CrossRef] [PubMed]

218. Andrew, P.F.; Rolf, O.; Steven, H. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 2006, 7,
21–33.

219. Zhang, X. The epigenetic landscape of plants. Science 2008, 320, 489–492. [CrossRef] [PubMed]
220. Maccani, M.A.; Marsit, C.J. Review Article: Epigenetics in the Placenta. Am. J. Reprod. Immunol. 2009, 62,

78–89. [CrossRef] [PubMed]
221. Johnson, I.T.; Belshaw, N.J. Environment, diet and CPG island methylation: Epigenetic signals in

gastrointestinal neoplasia. Food Chem. Toxicol. 2008, 46, 1346–1359. [CrossRef] [PubMed]

http://dx.doi.org/10.1177/1740774509103251
http://www.ncbi.nlm.nih.gov/pubmed/19254932
http://www.ncbi.nlm.nih.gov/pubmed/26060753
http://dx.doi.org/10.12669/pjms.291(Suppl).3529
http://www.ncbi.nlm.nih.gov/pubmed/25340111
http://dx.doi.org/10.1017/S1464793104006578
http://www.ncbi.nlm.nih.gov/pubmed/15727042
http://dx.doi.org/10.1186/2008-2231-22-23
http://www.ncbi.nlm.nih.gov/pubmed/24450435
http://dx.doi.org/10.1016/j.cell.2007.01.033
http://www.ncbi.nlm.nih.gov/pubmed/17320505
http://dx.doi.org/10.1016/j.cell.2007.04.040
http://www.ncbi.nlm.nih.gov/pubmed/17604727
http://dx.doi.org/10.1016/j.gde.2005.08.002
http://www.ncbi.nlm.nih.gov/pubmed/16098738
http://dx.doi.org/10.1073/pnas.0808830105
http://www.ncbi.nlm.nih.gov/pubmed/18852463
http://dx.doi.org/10.1097/MOP.0b013e32832925cc
http://www.ncbi.nlm.nih.gov/pubmed/19663042
http://dx.doi.org/10.1093/toxsci/kfn033
http://www.ncbi.nlm.nih.gov/pubmed/18281715
http://dx.doi.org/10.1016/j.jaut.2009.03.007
http://www.ncbi.nlm.nih.gov/pubmed/19349147
http://dx.doi.org/10.1038/nm1569
http://www.ncbi.nlm.nih.gov/pubmed/17401374
http://dx.doi.org/10.1371/journal.pone.0002698
http://www.ncbi.nlm.nih.gov/pubmed/18628954
http://dx.doi.org/10.1126/science.1153996
http://www.ncbi.nlm.nih.gov/pubmed/18436779
http://dx.doi.org/10.1111/j.1600-0897.2009.00716.x
http://www.ncbi.nlm.nih.gov/pubmed/19614624
http://dx.doi.org/10.1016/j.fct.2007.09.101
http://www.ncbi.nlm.nih.gov/pubmed/17976883


Int. J. Mol. Sci. 2016, 17, 465 31 of 37

222. François, F.; Wendy, A.B.; Alexander, B.; Luke, H.-D.; Tony, K. DNA methyltransferase DNMT1 associates
with histone deacetylase activity. Nat. Genet. 2000, 24, 88–91.

223. Hsieh, H.-Y.; Chiu, P.-H.; Wang, S.-C. Epigenetics in traditional chinese pharmacy: A bioinformatic study at
pharmacopoeia scale. Evid. Based Complement. Altern. Med. 2011, 2011. [CrossRef] [PubMed]

224. Veerle, R.; Anders, M.N. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol. 2012,
13, 239–250.

225. Szabo, G.; Sarnow, P.; Bala, S. MicroRNA silencing and the development of novel therapies for liver disease.
J. Hepatol. 2012, 57, 462–466. [CrossRef] [PubMed]

226. Machlin, E.; Sarnow, P.; Sagan, S.M. Combating hepatitis C virus by targeting microrna-122 using locked
nucleic acids. Curr. Gene Ther. 2012, 12, 301–306. [CrossRef] [PubMed]

227. Lanford, R.E.; Hildebrandt-Eriksen, E.S.; Petri, A.; Persson, R.; Lindow, M.; Munk, M.E.; Kauppinen, S.;
Ørum, H. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection.
Science 2010, 327, 198–201. [CrossRef] [PubMed]

228. Feng, D.; Liu, T.; Sun, Z.; Bugge, A.; Mullican, S.E.; Alenghat, T.; Liu, X.S.; Lazar, M.A. A circadian rhythm
orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011, 331, 1315–1319.
[CrossRef] [PubMed]

229. Zheng, S.; Russell, A.M.; Rajesh, T.P.; Jie, C.; Ravindra, D.; Hong, W.; Dongyan, Z.; Mark, J.G.; Terry, G.U.;
Gerald, I.S.; et al. Hepatic HDAC3 promotes gluconeogenesis by repressing lipid synthesis and sequestration.
Nat. Med. 2012, 18, 934–942.

230. Yang, M.D.; Chiang, Y.M.; Higashiyama, R.; Asahina, K.; Mann, D.A.; Mann, J.; Wang, C.C.; Tsukamoto, H.
Rosmarinic acid and baicalin epigenetically derepress peroxisomal proliferator-activated receptor γ in
hepatic stellate cells for their antifibrotic effect. Hepatology 2012, 55, 1271–1281. [CrossRef] [PubMed]

231. Akbar, S. Andrographis paniculata: A review of pharmacological activities and clinical effects.
Altern. Med. Rev. 2011, 16, 66–77. [PubMed]

232. Wagner, H.; Bauer, R.; Melchart, D.; Xiao, P.-G.; Staudinger, A. Chromatographic Fingerprint Analysis of Herbal
Medicines; Springer: Berlin, Germany, 2011.

233. Girish, C.; Koner, B.; Jayanthi, S.; Rao, K.; Rajesh, B.; Pradhan, S. Hepatoprotective activity of six polyherbal
formulations in paracetamol induced liver toxicity in mice. Indian J. Med. Res. 2009, 129, 569–578. [PubMed]

234. Handa, S.; Sharma, A.; Chakraborti, K. Natural products and plants as liver protecting drugs. Fitoterapia
1986, 57, 307–351.

235. Kapil, A.; Koul, I.; Banerjee, S.; Gupta, B. Antihepatotoxic effects of major diterpenoid constituents of
Andrographis paniculata. Biochem. Pharmacol. 1993, 46, 182–185. [CrossRef]

236. Jarukamjorn, K.; Nemoto, N. Pharmacological aspects of Andrographis paniculata on health and its major
diterpenoid constituent andrographolide. J. Health Sci. 2008, 54, 370–381. [CrossRef]

237. Vetriselvan, S.; Subasini, U.; Rajamanickam, C.; Thirumurugu, S. Hepatoprotective activity of Andrographis
paniculata in ethanol induced hepatotoxicity in albino wistar rats. Pharm. Glob. 2011, 2, 1–4.

238. Trivedi, N.; Rawal, U. Hepatoprotective and toxicological evaluation of Andrographis paniculata on severe
liver damage. Indian J. Pharmacol. 2000, 32, 288–293.

239. Hidalgo, M.A.; Romero, A.; Figueroa, J.; Cortés, P.; Concha, I.I.; Hancke, J.L.; Burgos, R.A. Andrographolide
interferes with binding of nuclear factor-κB to DNA in HL-60-derived neutrophilic cells. Br. J. Pharmacol.
2005, 144, 680–686. [CrossRef] [PubMed]

240. Shen, Y.C.; Chen, C.F.; Chiou, W.F. Andrographolide prevents oxygen radical production by human
neutrophils: Possible mechanism(s) involved in its anti-inflammatory effect. Br. J. Pharmacol. 2002, 135,
399–406. [CrossRef] [PubMed]

241. Visen, P.K.; Saraswat, B.; Vuksan, V.; Dhawan, B. Effect of andrographolide on monkey hepatocytes against
galactosamine induced cell toxicity: An in vitro study. J. Complement. Integr. Med. 2007, 4. [CrossRef]

242. Yoshikawa, M.; Ninomiya, K.; Shimoda, H.; Nishida, N.; Matsuda, H. Hepatoprotective and antioxidative
properties of salacia reticulata: Preventive effects of phenolic constituents on CCL4-induced liver injury in
mice. Biol. Pharm. Bull. 2002, 25, 72–76. [CrossRef] [PubMed]

243. Prakash, E.L. Evaluation of in vitro antioxidant activity of leaf extract of Andrographis paniculata. Res. J. Pharm.
Biol. Chem. Sci. 2011, 2, 891–895.

http://dx.doi.org/10.1093/ecam/neq050
http://www.ncbi.nlm.nih.gov/pubmed/21785634
http://dx.doi.org/10.1016/j.jhep.2012.01.030
http://www.ncbi.nlm.nih.gov/pubmed/22504335
http://dx.doi.org/10.2174/156652312802083558
http://www.ncbi.nlm.nih.gov/pubmed/22856605
http://dx.doi.org/10.1126/science.1178178
http://www.ncbi.nlm.nih.gov/pubmed/19965718
http://dx.doi.org/10.1126/science.1198125
http://www.ncbi.nlm.nih.gov/pubmed/21393543
http://dx.doi.org/10.1002/hep.24792
http://www.ncbi.nlm.nih.gov/pubmed/22095555
http://www.ncbi.nlm.nih.gov/pubmed/21438648
http://www.ncbi.nlm.nih.gov/pubmed/19675387
http://dx.doi.org/10.1016/0006-2952(93)90364-3
http://dx.doi.org/10.1248/jhs.54.370
http://dx.doi.org/10.1038/sj.bjp.0706105
http://www.ncbi.nlm.nih.gov/pubmed/15678086
http://dx.doi.org/10.1038/sj.bjp.0704493
http://www.ncbi.nlm.nih.gov/pubmed/11815375
http://dx.doi.org/10.2202/1553-3840.1059
http://dx.doi.org/10.1248/bpb.25.72
http://www.ncbi.nlm.nih.gov/pubmed/11824561


Int. J. Mol. Sci. 2016, 17, 465 32 of 37

244. Parichatikanond, W.; Suthisisang, C.; Dhepakson, P.; Herunsalee, A. Study of anti-inflammatory activities
of the pure compounds from Andrographis paniculata (Burm. F.) nees and their effects on gene expression.
Int. Immunopharmacol. 2010, 10, 1361–1373. [CrossRef] [PubMed]

245. Lim, J.C.W.; Chan, T.K.; Ng, D.S.; Sagineedu, S.R.; Stanslas, J.; Wong, W. Andrographolide and its analogues:
Versatile bioactive molecules for combating inflammation and cancer. Clin. Exp. Pharmacol. Physiol. 2012, 39,
300–310. [CrossRef] [PubMed]

246. Panossian, A.; Davtyan, T.; Gukassyan, N.; Gukasova, G.; Mamikonyan, G.; Gabrielian, E.; Wikman, G.
Effect of andrographolide and Kan Jang—Fixed combination of extract SHA-10 and extract SHE-3—On
proliferation of human lymphocytes, production of cytokines and immune activation markers in the whole
blood cells culture. Phytomedicine 2002, 9, 598–605. [CrossRef] [PubMed]

247. See, D.; Mason, S.; Roshan, R. Increased tumor necrosis factor α (TNF-α) and natural killer cell (NK) function
using an integrative approach in late stage cancers. Immunol. Investig. 2002, 31, 137–153. [CrossRef]

248. Xia, Y.-F.; Ye, B.-Q.; Li, Y.-D.; Wang, J.-G.; He, X.-J.; Lin, X.; Yao, X.; Ma, D.; Slungaard, A.; Hebbel, R.P.
Andrographolide attenuates inflammation by inhibition of NF-κB activation through covalent modification
of reduced cysteine 62 of p50. J. Immunol. 2004, 173, 4207–4217. [CrossRef] [PubMed]

249. Bao, Z.; Guan, S.; Cheng, C.; Wu, S.; Wong, S.H.; Kemeny, D.M.; Leung, B.P.; Wong, W.F. A novel
antiinflammatory role for andrographolide in asthma via inhibition of the nuclear factor-κB pathway.
Am. J. Respir. Crit. Care Med. 2009, 179, 657–665. [CrossRef] [PubMed]

250. Chao, W.-W.; Kuo, Y.-H.; Li, W.-C.; Lin, B.-F. The production of nitric oxide and prostaglandin E2 in peritoneal
macrophages is inhibited by Andrographis paniculata, angelica sinensis and morus alba ethyl acetate fractions.
J. Ethnopharmacol. 2009, 122, 68–75. [CrossRef] [PubMed]

251. Chao, W.-W.; Lin, B.-F. Review isolation and identification of bioactive compounds in Andrographis paniculata
(chuanxinlian). Growth 2010, 10. [CrossRef]

252. Chao, W.-W.; Kuo, Y.-H.; Hsieh, S.-L.; Lin, B.-F. Inhibitory effects of ethyl acetate extract of Andrographis
paniculata on NF-κB trans-activation activity and LPS-induced acute inflammation in mice. Evid. Based
Complement. Altern. Med. 2011, 2011. [CrossRef]

253. Lien, L.M.; Su, C.C.; Hsu, W.H.; Lu, W.J.; Chung, C.L.; Yen, T.L.; Chiu, H.C.; Sheu, J.R.; Lin, K.H. Mechanisms
of andrographolide-induced platelet apoptosis in human platelets: Regulatory roles of the extrinsic apoptotic
pathway. Phytother. Res. 2013, 27, 1671–1677. [CrossRef] [PubMed]

254. Chiou, W.F.; Chen, C.F.; Lin, J.J. Mechanisms of suppression of inducible nitric oxide synthase (iNOS)
expression in RAW 264.7 cells by andrographolide. Br. J. Pharmacol. 2000, 129, 1553–1560. [CrossRef]
[PubMed]

255. Wang, T.; Liu, B.; Zhang, W.; Wilson, B.; Hong, J.-S. Andrographolide reduces inflammation-mediated
dopaminergic neurodegeneration in mesencephalic neuron-glia cultures by inhibiting microglial activation.
J. Pharmacol. Exp. Ther. 2004, 308, 975–983. [CrossRef] [PubMed]

256. Chiou, W.F.; Lin, J.J.; Chen, C.F. Andrographolide suppresses the expression of inducible nitric oxide synthase
in macrophage and restores the vasoconstriction in rat aorta treated with lipopolysaccharide. Br. J. Pharmacol.
1998, 125, 327–334. [CrossRef] [PubMed]

257. Marı, M.; Cederbaum, A.I. Induction of catalase, α, and microsomal glutathione s-transferase in CYP2E1
overexpressing HepG2 cells and protection against short-term oxidative stress. Hepatology 2001, 33, 652–661.
[CrossRef] [PubMed]

258. Zhou, Z.; Sun, X.; James Kang, Y. Metallothionein protection against alcoholic liver injury through inhibition
of oxidative stress. Exp. Biol. Med. 2002, 227, 214–222.

259. Adamska, T.; Młynarczyk, W.; Jodynis-liebert, J.; Bylka, W.; Matławska, I. Hepatoprotective effect of the
extract and isocytisoside from aquilegia vulgaris. Phytother. Res. 2003, 17, 691–696. [CrossRef] [PubMed]
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