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Abstract

Making the transition from calculus to advanced calculus/real analysis can 

be challenging for undergraduate students. Part of this challenge lies in the shift 

in the focus of student activity, from a focus on algorithms and computational 

techniques to activities focused around definitions, theorems, and proofs. The 

goal of Realistic Mathematics Education (RME) is to support students in making 

this transition by building on and formalizing their informal knowledge. There are 

a growing number of projects in this vein at the undergraduate level, in the areas 

of abstract algebra (TAAFU: Larsen, 2013; Larsen & Lockwood, 2013), 

differential equations (IO-DE: Rasmussen & Kwon, 2007), geometry (Zandieh & 

Rasmussen, 2010), and linear algebra (IOLA: Wawro, et al., 2012). This project 

represents the first steps in a similar RME-based, inquiry-oriented instructional 

design project aimed at advanced calculus.

The results of this project are presented as three journal articles. In the 

first article I describe the development of a local instructional theory (LIT) for 

supporting the reinvention of formal conceptions of sequence convergence, the 

completeness property of the real numbers, and continuity of real functions. This 

LIT was inspired by Cauchy’s proof of the Intermediate Value Theorem, and has 

been developed and refined using the instructional design heuristics of RME 

through the course of two teaching experiments. I found that a proof of the 

Intermediate Value Theorem was a powerful context for supporting the 

reinvention of a number of the core concepts of advanced calculus.
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The second article reports on two students’ reinventions of formal 

conceptions of sequence convergence and the completeness property of the real

numbers in the context of developing a proof of the Intermediate Value Theorem 

(IVT). Over the course of ten, hour-long sessions I worked with two students in a 

clinical setting, as these students collaborated on a sequence of tasks designed 

to support them in producing a proof of the IVT. Along the way, these students 

conjectured and developed a proof of the Monotone Convergence Theorem. 

Through this development I found that student conceptions of completeness 

were based on the geometric representation of the real numbers as a number 

line, and that the development of formal conceptions of sequence convergence 

and completeness were inextricably intertwined and supported one another in 

powerful ways.

The third and final article takes the findings from the two aforementioned 

papers and translates them for use in an advanced calculus classroom. 

Specifically, Cauchy's proof of the Intermediate Value Theorem is used as an 

inspiration and touchstone for developing some of the core concepts of advanced

calculus/real analysis: namely, sequence convergence, the completeness 

property of the real numbers, and continuous functions. These are presented as 

a succession of student investigations, within the context of students developing 

their own formal proof of the Intermediate Value Theorem.
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Paper #1 – The Intermediate Value Theorem as a Starting Point for Inquiry-
Oriented Advanced Calculus

Abstract: In recent years there has been a growing number of projects aimed at 

utilizing the instructional design theory of Realistic Mathematics Education (RME)

at the undergraduate level (e.g., TAAFU, IO-DE, IOLA). This project represents 

the first steps in such an instructional design effort aimed at advanced calculus. 

In this paper I describe the development of a local instructional theory (LIT) for 

supporting the reinvention of formal conceptions of sequence convergence, the 

completeness property of the real numbers, and continuity of real functions. This 

LIT was inspired by Cauchy’s proof of the Intermediate Value Theorem, and has 

been developed and refined using the instructional design heuristics of RME 

through the course of two teaching experiments. I found that a proof of the 

Intermediate Value Theorem was a powerful context for supporting the 

reinvention of a number of the core concepts of advanced calculus.

Introduction

Making the transition from calculus to advanced calculus/real analysis can 

be challenging for undergraduate students. Part of this challenge lies in the shift 

in the focus of student activity, from a focus on algorithms and computational 

techniques to activities focused around definitions, theorems, and proofs. The 

goal of Realistic Mathematics Education (RME) is to support students in making 

this transition by building on and formalizing their informal knowledge. There are 
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a growing number of projects in this vein at the undergraduate level, in the areas 

of abstract algebra (TAAFU: Larsen, 2013; Larsen & Lockwood, 2013), 

differential equations (IO-DE: Rasmussen & Kwon, 2007), geometry (Zandieh & 

Rasmussen, 2010), and linear algebra (IOLA: Wawro, et al., 2012). This project 

represents the first steps in a similar RME-based, inquiry-oriented instructional 

design project aimed at advanced calculus.

To begin this instructional design project, what I needed to find was a 

starting point that was experientially real for the students; that is, a context in 

which students could reason intuitively, using the intuition, skills, and knowledge 

developed during the calculus sequence. Further, ideally this context would be 

rich in some of the core concepts of advanced calculus. I will demonstrate how 

the proof of the Intermediate Value Theorem is just such a context.

In his Cours d’Analysis, Cauchy presented one of the first formal proofs of 

the Intermediate Value Theorem (IVT) for continuous functions (Grabiner, 1981). 

This is remarkable, at least in part, because prior to this proof many 

mathematicians had either taken the IVT as a definition of continuity, or as so 

obvious as not to require proof. Not only was the proof’s very existence novel, in 

it Cauchy utilized a novel proof technique: turning a process of approximation of 

a root into an argument for the existence of a root.

While the theorem itself is intuitive with a basic understanding of functions 

and real numbers, the proof requires a fairly sophisticated understanding of 

convergence, continuity and functions, as well as the completeness of the real 
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numbers1. These features taken together lead me to hypothesize that, for post-

calculus students, the development of a proof of the Intermediate Value Theorem

could serve as a useful context from which to develop more formal 

understandings of sequence convergence, continuity, and completeness.

Using the instructional design heuristics of RME and a design research 

approach, this project represents the initial stages in the development of a local 

instructional theory and instructional sequence, using the Intermediate Value 

Theorem as a starting point and touchstone for advanced calculus. Gravemeijer 

described design research as being, “formed by classroom teaching experiments

that center on the development of instructional sequences and the local 

instructional theories that underpin them” (2004, p. 108). In design research, 

theory and instructional practice are developed in tandem, in a reciprocal fashion 

(Cobb, et. al., 2003). Through the lens of RME (Gravemeijer, 1998), a local 

instructional theory should provide a theoretical explanation for how students 

might be supported in reinventing the desired mathematics. Such a theory can be

thought of as an idealized instructional sequence, where the design heuristics of 

RME are used to explain student activity and development. Furthermore, such a 

theory should provide the framework for an instructional sequence. As Larsen 

explains, “The primary purpose of a local instructional theory is to support the 

design of an instructional sequence that is appropriate for a given instructional 

context" (2013).

1 Even Cauchy did not explicitly acknowledge the completeness of the real numbers in 
many of his early proofs (Grabiner, 1981; Lützen, 2003).
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Below I propose a local instructional theory for the development of the 

concepts of convergence of sequences, the completeness of the real numbers, 

and continuity, using the proof of the IVT as a starting point and touchstone. The 

questions that guided the development of this local instructional theory (as well 

as the analysis of student activity) are adapted from Gravemeijer (1998):

1. What student strategies anticipate formal mathematical topics in 
advanced calculus?

2. What tasks or problems elicit these strategies?
3. How can these strategies be leveraged to support the development of 

formal mathematical topics in advanced calculus?

After discussing the relevant literature, as well as the theoretical tools I 

used in this design research, I will describe the development of this LIT. This 

description will begin with a preliminary LIT, that I developed before the teaching 

experiments and that I used to design the instructional sequence for those 

teaching experiments. I will then present data from the teaching experiments, 

illustrating how that data informed the refinement of the LIT. Finally, I will present 

the Proposed LIT.

Literature Review

Central to developing a local instructional theory (LIT) is an understanding 

not only of student thinking about the core concepts, but also how that thinking 

might grow and develop in formality. In this section I will describe the current 

state of knowledge of student thinking on the core concepts for this LIT: namely, 
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limits/convergence, completeness, and continuity.

Student understanding of limit has received a great deal of attention from 

the mathematics education research community. Much of this research has 

focused on investigating the struggles students face in working with limits and the

tools they use to deal with those struggles (Bezuidenhout, 2001; Cornu, 1991; 

Davis & Vinner, 1986; Moru, 2009; Oehrtman, 2009; Sierpińksa, 1987; Szydlik, 

2000; Tall & Schwarzenberger, 1978). The other main area of focus has been 

investigating the process of students formalizing their understanding of limit 

(Cottrill, et al., 1996; Oehrtman, Swinyard, & Martin, 2014; Swinyard & Larsen, 

2012; Williams, 1991); that is, coming to understand and work with limits in a way

that is consistent with the standard formal definition(s).

Through the calculus sequence students’ primary activity with limits 

involves finding limits. Swinyard & Larsen (2012) observed that a formal 

definition of limit is not useful in this context; rather, the formal definition is useful 

for verifying limit candidates. This observation suggested that, not only does 

student thinking about limit progress in formality, the activity has a fundamentally 

different nature at the formal level. Motivating this shift in character, while still 

building on intuitive knowledge gained in the calculus sequence, heavily 

influenced the development of the local instructional theory and task sequence 

for this design experiment. Further, this work contributes to our understanding of 

how student thinking with regards to limits progresses in formality, especially in 

the context of developing proofs with limits.
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Because there is no current research dealing directly with student thinking 

about completeness, I turned to a historical work for insight into how the 

mathematics community’s thinking about completeness developed. In what is 

possibly the first explicit treatment of the topic of completeness, Dedekind (1901) 

decries the fact that the mathematics community of the day seemed to take the 

completeness property of the real numbers as an obvious consequence of the 

geometric representation of the real numbers as a number line. This was 

unsatisfactory because so many important results in real analysis (including the 

IVT) depended on this property; Dedekind argued that such an important concept

needed an algebraic justification. In that work Dedekind laid out an algebraic 

construction of the real numbers from the rational numbers, in order to prove, 

without appealing to geometry, that the real numbers really were complete in the 

sense that real analysis needed them to be. Dedekind’s work suggests that 

students will likely take the completeness of the real numbers as a natural 

consequence of their representation as a number line, just as mathematicians did

historically. This study will contribute to our understanding of how student thinking

about completeness might develop.

Tall & Vinner (1981) identified some common informal conceptions of 

continuity in calculus students. When shown graphs of several different functions,

students were asked to determine whether each function was continuous. 

Student justifications fell into three general categories: the graph was all in one 

piece, the function was given by a single formula, or there were no sudden 
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changes in gradient (the graph was smooth). The first justification was the most 

common, and was the least problematic (for functions defined on an interval this 

is essentially correct). However, Tall & Vinner’s study demonstrates one potential 

source of difficulty identified by Jayakody & Zazkis: there is no standard definition

of a “continuous function”. Further, even limit characterizations presented in 

calculus textbooks can lead to conceptual conflict, as some books suggest a 

function is discontinuous if it is undefined (e.g., 1/x at x = 0). This is inconsistent 

with the standard formal characterization of continuity, which only applies to 

points within a function’s domain. This research suggests that students will likely 

come out of the calculus sequence thinking of continuity in terms of an unbroken 

curve or in terms of the limit characterization (which comes with its own 

difficulties), depending on the context. Unfortunately, little is known about how 

student thinking about continuity might develop. This study, and future studies in 

this instructional design project, will shed light on the development of student 

understanding of continuity.

I will now describe the theoretical constructs that supported the design and 

implementation of this design research project, as well as the development and 

refinement of the LIT.

Theoretical Framework

The local instructional theory presented in this paper was developed using
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the instructional design heuristics of RME and refined through the 

implementation and analysis of two teaching experiments. Specifically, I drew on 

the design heuristics of guided reinvention, emergent models, and didactic 

phenomenology. I will provide a brief explanation of each of these heuristics 

below.

Guided Reinvention

On a macro level, the heuristic of guided reinvention motivated my overall 

instructional goal of having the students develop their own formal definitions of 

convergence, rather than working to make sense of the standard formal 

definitions. In RME, the goal is not that everything be strictly reinvented by the 

students, but rather that, “formal mathematics would be experienced as an 

extension of [students'] own authentic experience” (Gravemeijer & Doorman, 

1999). That is, instructional activities should be designed so that the formal 

mathematics emerges from students' informal mathematical activities, so that 

students feel a sense of ownership over the mathematics developed. While 

guided reinvention provides a macro-level structure for instructional design, other

RME heuristics are more useful at filling in this structure. For actual task 

generation, sequencing, and refinement, I relied largely on the design heuristics 

of didactic phenomenology and emergent models.
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Didactic Phenomenology

As with all RME design heuristics, didactic phenomenology has been 

shaped and continues to be shaped by its use in research. Usiskin (1985) 

described phenomenology as the connections between mathematical structures 

and the complex reality which they were created to model. Thus didactic 

phenomenology refers to the consequences of these connections for instruction. 

Freudenthal (1983) argued that understanding the phenomenology of a 

mathematical topic was vital to both teaching and understanding that topic. Put 

another way, in order to engage students with a mathematical topic, it is essential

to investigate and take lessons from the historical development of said topic. 

What problems did this topic solve, and how did it solve them? How can these 

problems be made accessible to students?

Of course, undergraduate students do not have the same knowledge, 

skills, or concerns as historical mathematicians. Didactic phenomenology can still

be useful even when historical problems are not accessible to students. 

Gravemeijer and Terwel abstracted these principles, suggesting that, “situations 

should be selected in such a way that they can be organized by the mathematical

objects which the students are supposed to construct” (2000, p. 787). This is the 

essence of didactic phenomenology: if we want students to develop certain tools,

we need to provide them with problem contexts whose solution requires those 
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tools, or in which those tools have the power to help the students solve 

meaningful problems. In this way didactic phenomenology can be a powerful tool 

for instructional design.

This suggests that, in order to support students in reinventing formal 

definitions of sequence convergence and continuity, students should be 

presented with contexts and tasks in which they would able to reason intuitively, 

and in which those formal definitions would have power to organize and solve 

problems for them. Inspired by the works of Cauchy and Bolzano, I conjectured 

that approximating the roots of a polynomial using the Intermediate Value 

Theorem (IVT), and then constructing a formal proof of the theorem2, would be 

just such a context.

Emergent Models

The heuristic of emergent models provides one way to describe the 

process by which formal mathematics might emerge from informal student 

activity. The use of “models” in RME is not restricted to physical drawings or 

tools. In describing a local instructional theory for the development of the quotient

group concept, Larsen conjectured that, “the quotient group concept could 

emerge as a model-of students' informal mathematical activity as they searched 

for parity in the group D8 (the symmetries of a square)” (Larsen & Lockwood, 

2 Technically, if we restrict ourselves to establishing the existence of roots of continuous functions, then we
are only proving a special case of the IVT (sometimes referred to as Bolzano's Theorem). But the proof is 
easily adapted to the general case by a simple vertical shift.
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2013). Thus “model” in this sense can also refer to a concept or structure that the

teacher or researcher recognizes as a model of the students' mathematical 

activity, but of which the students themselves may not be aware. Continuing with 

Larsen's example, once the students had begun to reflect on their activity with 

parity and other group-like partitions of groups, conjecturing and verifying 

common properties, the concept of quotient group became a model for their 

reasoning in this new mathematical reality; a model-of informal mathematical 

activity had become a model-for more formal mathematical reasoning. “This shift 

from model of to model for concurs with a shift in the students' thinking, from 

thinking about the modeled context situation to a focus on mathematical 

relations” (Gravemeijer, 1999, p. 162).

Another way to characterize the development of an emergent model is 

with levels of activity (Gravemeijer, 1999). Initial student activity begins at the 

situational level, and is primarily composed of organizing a given problem 

context. In RME this is called horizontal mathematizing. At this level the model 

emerges as a model-of student thinking. Activity transitions to the referential level

when students refer back to their previous activity, reflecting on and organizing 

that activity. This focus on mathematical relations, the reflective practice of 

organizing their own activity, is referred to as vertical mathematizing 

(Gravemeijer, 1999). This then becomes a new, more formal level for horizontal 

mathematizing. In RME-based instruction, this progressive mathematization is 

the primary mechanism by which students develop more formal mathematics and
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create new mathematical realities for themselves. The model transitions to a 

model-for more formal reasoning as student activity transitions to the general 

level. At this level students may no longer need to refer back to the original 

context, and are able to use the model to reason in a new context.

While the principle of guided reinvention motivates the over-arching goals 

of this local instructional theory, the heuristics of emergent models and didactic 

phenomenology were more instrumental in actual task design, sequencing, and 

refinement. Didactic phenomenology suggested that I find contexts in which the 

students could reason intuitively and which required the tools I wished them to 

develop. Further, this heuristic suggested that I look to the origins of the formal 

definition of limit for inspiration. These led me to choose the context of 

approximating roots with the IVT, and adapting those strategies to a proof of said 

theorem. The heuristic of emergent models suggested I find a model (or models) 

that could characterize student activity and support students in progressive 

mathematization. At least two useful models emerged from student activity in the 

context of approximating roots with the IVT, and in turn became powerful models 

for more formal mathematical reasoning in the construction of a proof of the IVT. 

In these ways the design heuristics of RME guided the development of this LIT.

Pedagogical Content Tools

While the design theory of RME offers heuristics for instructional design, it 
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does not explicitly offer tools for teachers implementing such instructional 

sequences. Rasmussen & Marrongelle (2006) described some specific activities 

in which teachers can engage in the classroom that support student learning in 

ways that are consistent with RME. Of particular interest for this study will be the 

transformational record. The authors give two criteria for a teacher move to be a 

transformational record: “(1) some form of notation (typically informal or 

unconventional notation) was either used by a student in whole-class discussion 

or introduced by the teacher to record or notate student reasoning and (2) this 

notational record was then used by students in achieving subsequent 

mathematical goals” (p. 394).

With these constructs, I will now describe my preliminary attempt at a local

instructional theory, which focused on the concepts of limits and continuity. 

Preliminary Local Instructional Theory

In this section I will present an overview of my early efforts at a local 

instructional theory for the development of some of the core concepts of 

advanced calculus. The concept of limit has served as the theoretical foundation 

for the calculus and its applications ever since the work of Cauchy, Bolzano, and 

others in the early and mid 19th century (Grabiner, 1981). It follows that a formal 

understanding of the limit concept is essential to any investigation of the 

theoretical underpinnings of the calculus, and for this reason much of my early 

13



effort was spent on this concept. With this project I sought to put the instructional 

design heuristics of RME to use in translating what we as a field knew with 

regard to student thinking about limit (and specifically about formalizing the limit 

concept) into an instructional sequence, the goal of which was to support 

students in developing formal definitions of different types of convergence (e.g., 

sequence convergence, and function limits at infinity and at a point, etc.). In 

accordance with didactic phenomenology, I sought contexts and problems whose

solution would require such formal definitions. Inspired by Cauchy’s proof and my

own mathematical concept analysis, I hypothesized that a proof of the 

Intermediate Value Theorem, built on adapting approximation techniques, could 

be just such a problem. In trying to construct a formal proof, students would need

formal definitions of sequence convergence and of continuity, and additionally 

they might need formal definitions related to the limit of a function at a point. 

More specifically, they would need to justify why their approximations would 

converge to a root of the polynomial (or more generally, the root of a continuous 

function), and why continuity was necessary for this process to work. In this way 

formal definitions would be born from a specific need, to be used for a specific 

purpose (constructing a formal proof).

The design heuristics of RME guided this local instructional theory on two 

levels. On a macro level, the heuristic of guided reinvention motivated my 

instructional goal of having the students develop their own formal definitions, 

rather than working to make sense of standard formal definitions. The heuristic of
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didactic phenomenology suggested that in order to have students reinvent such 

formal definitions, I needed to find contexts and tasks in which the students were 

able to reason intuitively, and which required such formal definitions in order to 

be successful. Because of the centrality of the limit concept in advanced 

calculus, my early efforts focused primarily on that concept.

The heuristic of emergent models provided a possible path for this 

development in the following way: the development of the concept of limit within 

the mathematics community in the 18th and 19th centuries suggests that the 

algebra of approximations could emerge as a model-of student activity. This idea 

is explored in more depth below, but briefly: history suggests that building from 

students' intuitions about approximation and error-bounding could support 

students in formalizing their understanding of limit. Oehrtman's research into 

curriculum design for introductory calculus gives further support to this idea 

(2008).

The algebra of approximations played a pivotal role in the historical 

development of the limit concept (Grabiner, 1981). By “the algebra of 

approximations” I refer collectively to the mathematical tools of approximation: 

inequality and absolute-value expressions, along with the algebra of operating 

with these expressions3. Mathematicians (and in particular Lagrange) of the late 

18th and early 19th centuries had made great strides in techniques of 

3 It should be understood that geometric and graphical reasoning will be an important part of this model as 
well. However, as analysis proofs generally rely primarily on algebraic representations for formal levels of 
rigor, students' geometric and graphical reasoning will be leveraged to inform and support the development 
of algebraic tools and skills.
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approximation and error-bounding in applied contexts (Grabiner, 1981). One of 

Cauchy’s great insights and contributions was to re-purpose these approximation

techniques into techniques for proving existence. In this way these approximation

techniques became a model-for constructing formal proofs of key calculus 

concepts, including the IVT (Grabiner, 1981). Thus the algebra of approximations

could be viewed as an emergent model in the historical formalization of calculus. 

I hypothesized that, in guiding students to reinvent formal conceptions of limit 

and of continuity, the algebra of approximations could serve as an emergent 

model in student activity as well. Building on students' intuitions about 

approximations and error-bounding has met with some measure of success as a 

starting point and unifying theme for introductory calculus (Oehrtman, 2008), and 

my hope was that it would also support students in the more formal endeavors of 

advanced calculus.

In Figure 1, I have put together a map of the macro-scale of my local 

instructional theory. The boxes represent horizontal mathematizing on the part of 

the students. The vertical arrows indicate vertical mathematizing, where the 

students reflect on and organize their own mathematical activity, thereby creating

new mathematical realities for themselves. The proof of the IVT very naturally 

involves three parts: an exploratory part, in which the IVT is conjectured, and 

tools for its proof (e.g., an approximation algorithm) are developed; a deductive 

part focused on the inputs of the function, in which one uses the approximation 

algorithm to construct a sequence which converges to a root-candidate (and 
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justifies this convergence); and finally, a further deductive part coordinating the 

inputs and outputs of the function, in which one proves that the continuity of the 

function guarantees that this root-candidate really is a root. This preliminary LIT 

is built around this structure.

Figure 1: A map of the preliminary LIT.

The first set of tasks (Phase 1, Figure 1) involves students approximating 

roots to a polynomial, using the idea of the IVT. The algorithm they construct will 

provide a sequence as the object of study in Phase 2. The over-arching task of 

Phases 2 and 3 is proving their strategy for finding the root will work for any 

continuous function that changes sign on an interval (the IVT). In order to 
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complete this proof, it will be necessary to have formal definitions of sequence 

convergence (for the inputs), continuity (which will like be built on the limit of a 

function at a point). Thus Phase 2 involves reflecting on the activity of Phase 1 to

construct a formal definition of sequence convergence. This will allow the 

students to justify that their algorithm gives them a root-candidate (under the 

assumption that the root exists). Then in Phase 3 students work to capture the 

ideas of continuity and limit with definitions, so that a satisfactory proof can be 

completed. It is Phase 3 in which the desired development of a formal 

understanding of the limit concept occurs, as evidenced by the construction of a 

formal definition of limit. This also results in a formal definition of continuity 

(through the limit characterization from calculus). The algebra of approximations 

(now manifested as a formal definition of limit/continuity) then becomes a model-

for more formal reasoning as students use it to complete the proof of the IVT.

In keeping with the principles of design research, this LIT has been refined

through the course of two teaching experiments. Below I describe the structure of

the two teaching experiments, as well as the manner in which I analyzed the 

data. In the Results section I will detail the activity of the students through the 

course of the two teaching experiments, highlighting how my analysis informed 

the refinement of the LIT. Finally, I will present my current LIT for the 

development of the concepts of sequence convergence, completeness, and 

continuity.
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Methods

As a part of the instructional design process, I ran two separate teaching 

experiments over the course of a year, a little more than six months apart. Each 

teaching experiment consisted of 10, hour-long sessions with myself as 

teacher/researcher4 and a pair of students working at a chalkboard at the front of 

the room. These students were volunteers selected from courses that were direct

prerequisites to advanced calculus/elementary real analysis courses (e.g. Linear 

Algebra, Discrete Mathematics, Abstract Algebra, and Introduction to Proof), and 

who had expressed an intention to take advanced calculus in the near future. All 

four participants had completed the calculus sequence, differential equations, 

and at least one proofs-based course, prior to participating in the teaching 

experiment. I will call the students from the first teaching experiment Brad and 

Matt, while the students from the second teaching experiment are here called 

Dylan and Jay.

My primary goal during ongoing analysis was to understand how students 

were thinking about the tasks in which they were engaging, as well as how they 

were thinking about the strategies they were employing. For this study I was 

particularly interested in how the concept of completeness was present in student

thinking and justifications, and how that thinking might be leveraged and 

developed. To aid in this, I wrote session summaries and I kept a spreadsheet for

each session, recording general student activities over the course of the session 

4 For the first teaching experiment I also had a graduate student operating the video camera.
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and marking segments for later transcription.

During the implementation of the teaching experiments, there were 

anywhere from three days to an entire week between sessions. During that time I

watched the videos of the previous session, creating written session summaries, 

and tried to identify student statements and strategies that begged for further 

investigation. For example, in the first session, while Brad and Matt were 

generating approximations to the root of a polynomial, they made statements 

about how “good” their approximations were. During that session I was focused 

on other things, and so did not probe this characterization. In the next session I 

made a point to ask them how they were measuring this “goodness”, and they 

made clear that they were looking at how close the outputs of the function were 

to zero. This led to a discussion where we clarified that, at least for our problem, 

we were more interested in the accuracy of the inputs.

After the conclusion of each of the teaching experiments, I performed a 

retrospective analysis of the data as a whole. I watched all of the videos again, 

transcribing segments I had flagged during the ongoing analysis, looking for 

student strategies that anticipated the formal concepts of advanced calculus. 

While my analysis ultimately identified strategies pertaining to limits, 

completeness, and continuity, initially I was looking for any strategies pertaining 

to advanced calculus topics. After identifying those strategies, for each of one I 

sought to explain what elicited such student strategies. Finally, I followed these 

strategies through the data and using the design heuristics of RME I sought to 
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explain how these strategies were leveraged to support the development of more

formal ideas, or how they might be leveraged in future implementations of the 

LIT. See Appendix B for a sample spreadsheet of this analysis.

Now let us look at the results of these two teaching experiments, and how 

these results informed the refinement of the LIT.

Results

The data presented below, as well as the LIT presented later, are 

organized into three phases. This structure, originally inspired by Cauchy’s proof 

of the IVT, has been modified from the preliminary LIT. This modification was 

based on two important insights gained from data analysis. First, the way the 

students engaged with and interpreted the tasks led me to re-frame the primary 

tasks in Phases 2 and 3. In the preliminary LIT, I had envisioned the proof of the 

IVT as encompassing Phases 2 and 3; Phase 2 focused on proving, using their 

algorithm, the existence of a root-candidate, while Phase 3 focused on proving, 

using continuity, that the root-candidate must be a root. Through the course of 

two teaching experiments it became clear that, in Phase 2, students were still 

assuming a root existed, and so did not envision their activity as proving 

existence. This led me to modify the nature of the tasks in the following way: 1) 

develop an algorithm that will approximate the root to any desired accuracy (i.e. 

find the root), and conjecture conditions under which your algorithm will be 

guaranteed to work; 2) assuming a root exists under your conditions, prove that 
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your algorithm will find it, in general; 3) use your algorithm to prove that a 

root must exist under your conditions. In this new structure, the formal proof of 

the IVT occurs in Phase 3, and students more explicitly transition from using their

algorithm for finding a root to using their algorithm to prove its existence.

The second motivation for modifying the phases, and more important for 

describing student development, was that through retrospective analysis I 

recognized that the students’ approximation algorithm was an emergent model 

through the course of the task sequence. As they constructed an approximation 

algorithm to find the root of a polynomial, their reasoning and activity depended 

on both notions of convergence and completeness of the real numbers, even 

though the students themselves were not aware of these features. In this way 

their algorithm, with all of its theoretical underpinnings, served as a model-of their

activity. By turning their attention and organizing efforts on the algorithm itself, 

students engaged in vertical mathematizing. This took the form of elaborating 

and making explicit the features of the problem, and of the algorithm itself, that 

allowed their approximation algorithm to work. By considering these justifications 

as conjectures and attempting to construct proofs of the same, students engaged

in horizontal mathematizing at a new level of formality. The construction of these 

proofs supported the development of the model toward a model-for more formal 

reasoning. While not observed in the data due to time constraints, their 

approximation algorithm would be a key part of the proof of the IVT, and its use 

would evidence the transition to a model-for more formal reasoning on the part of
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the students. In this way the students’ approximation algorithm could be seen as 

an emergent model through the course of the instructional sequence.

The design heuristic of emergent models offered further support for the 

utility of this modified three-phase structure in terms of the levels of activity. 

Student activity in Phase 1 begins in the situational realm, where they work to 

construct an algorithm to approximate the root of a specific function. In Phase 2 

student activity occurs primarily in a referential capacity, as they investigate and 

generalize their algorithm. In Phase 3 student activity occurs at the general level, 

and the approximation algorithm transitions to a model-for more formal 

reasoning, as they use their new robust understanding of that algorithm to 

complete a proof of the IVT for continuous functions.

Phase 1: Approximating the Root

Student activity begins in the first phase at the situational level. There 

were two primary goals of this initial phase of the instructional sequence in the 

teaching experiments: 1) for students to develop an algorithm that would allow 

them to approximate the root of a continuous function to any desired degree of 

accuracy, and 2) to explicitly conjecture the sufficient conditions for such a root to

exist. This student-generated algorithm would be one of the major objects of 

further investigation in the second phase, as students transitioned to the 

deductive phases of the instructional sequence. This transition to investigating 
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the algorithm evidenced the transition to a referential level of activity on the part 

of the students.

With the opening task I asked students to determine whether or not a 

given polynomial had a root on a given interval. In both teaching experiments, the

students essentially assumed the IVT (implicitly). This is evidenced by their 

argument that the polynomial must have a root in the interval because the signs 

of the outputs at each endpoint were different. Taking that as sufficient 

justification of the root's existence (for the moment), I next tasked the students 

with approximating this root to two decimal places (and then six decimal places, 

and then an arbitrary degree of accuracy). Using the heuristic of didactic 

phenomenology, this task was designed to provide students with a problem 

which the IVT would readily solve. In each of the teaching experiments the 

students were able to construct an algorithm that would allow them to 

approximate the root to any desired accuracy, by checking the sign of the 

function on increasingly fine intervals.

The remainder of the first phase of the instructional sequence was focused

on the development and generalization of their approximation algorithm. The 

generalization of their algorithm began the deductive phase of the instructional 

sequence, and served as a bridge to the second phase, in which the algorithm 

itself became the object of study.

In each of the two teaching experiments, the pairs of students 

approximated the root of the given polynomial in distinct ways. While the 
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algorithms they constructed appeared radically different on the surface, 

structurally they were really quite similar. After briefly describing the development

of each algorithm and its final structure, the similarities and differences will be 

explored in more detail.

Bisection Algorithm

In the first teaching experiment, Brad and Matt argued that p(x) = x4 – 4x3 

– 7x2 + 22x – 10  must have a root in the interval [0,3] because the function went 

from positive to negative over the interval5. They employed a small handful of 

strategies to approximate this conjectured root, but their early efforts did not give 

them any handle on how close their approximations were to the root and were 

quickly abandoned. Eventually they settled on what I have called the Bisection 

Algorithm. Brad gave a brief description of this algorithm early in the third 

session:

5 p(0) = 10, while p(3) = -14
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“So we tried to find, um, the average. And if this is greater than zero...wait. 
If this is equal to the sign of this one [pointing at ‘sign(f(a))’] then it 
becomes the new left endpoint. If it equals the sign of this one [pointing at 
‘sign(f(b))’] it becomes the new right endpoint. And we continue doing it 
over and over and over and over again, until b - a is so small that it’s less 
than the error asked for.”

One interesting feature of their algorithm at that point in the experiment 

was the use of the variables a and b. In the original numerical example, Brad and

Matt found the midpoint of each interval, using the length of the interval as an 

upper bound on the error in their approximation of the root. When they worked to 

generalize this algorithm, Brad chose to re-assign the values of a and b after 

each iteration of the algorithm (he explicitly referenced computer programming as

the motivation for this). This did not become problematic for them until the next 

session, in which they were trying to provide algebraic arguments for some of 
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their conjectures (e.g. the widths of the intervals go to zero, the endpoints 

approach each other, etc). At that point Brad suggested using an and bn to refer to

the sub-interval endpoints after n iterations of their algorithm, and this was what 

they used moving forward.

After their first numerical approximations, they were less concerned with 

giving actual approximations as with bounding the error in possible 

approximations.

Brad: So, yeah. We're cutting- because we're starting here-
Matt: Mmhm.
Brad: -with our beginning endpoints, we take the average which is gonna 

cut it down in half. Either the new mean is going to be the left 
endpoint or the right endpoint.

Matt: Making that determination will change this interval every single 
time. Upon every single iteration. And this is the algorithm we were 
using to-

Brad: And so the difference, and thus the error, will be halved each time. 
Until we get to this point [gestures at work on the board], which is-

Matt: That's smaller than the asked for...the given interval that we were 
trying to find.

Brad: Correct. Or error.

This use of an error bound is a strategy that anticipates the formal, ε-N 

definition of sequence convergence. For a sequence, {xn}, converging to a real 

number L, the formal definition looks something like this:

For every real number ε > 0, there exists an N in the natural numbers so 

that if n > N, then | xn - L | < ε.

One can think of the number ε as a bound for the error, where in this case the 

error is the distance between the nth term of the sequence and its limit, L.
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The opening tasks of the instructional sequence were designed, using the 

heuristic of didactic phenomenology, to elicit this approximation strategy. By 

asking for specific, and increasingly precise, measures of accuracy, I expected 

students to find a way to bound the error in their approximation (since knowing 

the exact error was impossible without knowing the root). One simple solution to 

this problem was to recognize that the width of the interval would bound the error,

as Brad and Matt did.

After reflecting on their algorithm in the specific case, and assigning 

variable names to relevant quantities, their final version of the general Bisection 

Algorithm could be described in this way:

1. Suppose sign(f(a)) = -sign(f(b)) and that f(x) is continuous on [a,b]. Then a 
root r must exist a < r < b.

2. Check the midpoint of a and b. Evaluate f at this midpoint; it is either 
positive or it is negative6.

3. If it has the same sign as the left endpoint, it becomes the new left 
endpoint. Otherwise it becomes the new right endpoint. Because f is 
continuous and the signs of the function at these new endpoints are 
different, a root must lie in this new smaller interval. Find the new midpoint
and repeat.

4. Let n denote the number of iterations of this algorithm, and denote the 
current interval endpoints by an, bn.

5. Note that at each iteration the maximum possible error in choosing any 
point in the interval to approximate the root r is bounded by the width of 
the current interval, or

  
In this way one can achieve any desired accuracy for the approximation to
the root by performing a sufficiently large number of iterations of this 
algorithm.

6 Neither Brad nor Matt considered the case where the midpoint was the root.
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Let us turn to a similar but distinct algorithm that was developed by the 

pair of students in the second teaching experiment. After describing this 

algorithm’s development and its final structure, I will briefly compare and contrast

the Bisection and Decimal-Expansion algorithms. I will then discuss some of the 

formal mathematical concepts upon which these algorithms depended.

Decimal-Expansion Algorithm

Jay and Dylan argued that p(x) = x5 – x – 5 must have a root in the interval

[0,2] because the outputs of the function had opposite signs at the endpoints7. 

Knowing that the root lay between 0 and 2, they proceeded to check the sign of 

p(x) at 1, 3/2, 4/3, and finally at 1.4. Again, arguing from the sign change in the 

output of the function, they then stated that the root, r, must lay somewhere 

between 1.4 < r < 1.5.

They then continued using what I call the Decimal-Expansion Algorithm. In

order to approximate the root more systematically, they checked the sign of the 

output at successive digits at the current unknown decimal-place (e.g. 1.41, 

1.42,...). From the original interval they knew that p(x) was negative to the left of 

the root, and positive to the right. Once the decimal digit at which the sign 

changed from negative to positive was found, go back to the previous digit. This 

represented the most accurate approximation so far. The next iteration of the 

algorithm involved moving to the next unknown decimal place and repeating this 

process. Three iterations of this algorithm are presented below (Figure 3).

7 p(0) = -5, while p(2) = 25
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By the third iteration of the algorithm, the students were confident that the root 

must lie between 1.4519 < r < 1.4520. Dylan wrote out a brief explanation of their

algorithm on the board in the middle of the first session.

“The root must be between 1 and 2 because p crosses from – to +, 
therefore it crosses the x-axis.
By the same logic, root must be between 1.3 (-) & 1.5 (+), so we evaluated 
increasing values from 1.3 and since there are no holes or asymptotoes 
[sic] the limit from the left is the same as the one from the right. Each time 
a value went over 0, we went to the previous value and added another 
decimal place.”

In this way the students were able to approximate the desired root, one decimal 

place at a time, and were confident they could achieve any degree of accuracy 

desired.
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While the implementations were rather different, these two algorithms 

were actually quite similar. The primary idea behind each of them was that by 

considering smaller and smaller intervals, and evaluating the sign of the function 

at the endpoints of those intervals, one could essentially “zoom in” on the root. 

The Bisection Algorithm did this by cutting the interval into two equal pieces at 

each iteration, thereby halving the maximum possible error. The Decimal-

Expansion Algorithm broke the interval into ten equal pieces at each iteration, 

dividing the maximum possible error by ten8. In either case the width of the sub-

interval could serve as a bound for the error in a given approximation. 

Furthermore, the convergence of the sequences generated by each of these 

algorithms depended on the completeness of the real numbers.

The major differences between these algorithms lay in the students’ 

implementation and interpretations of these algorithms. While Brad and Matt 

explicitly considered the sub-intervals, and their widths as error-bounds, Dylan 

and Jay did not. In their implementation of the Decimal-Expansion algorithm 

Dylan and Jay focused entirely on the decimal values of their expansion; neither 

intervals nor error-bounds were ever explicitly mentioned. Brad and Matt argued 

that their algorithm converged to the root because the widths of the sub-intervals 

went to zero. Dylan and Jay argued that their sequence of approximations 

converged to the root because these approximations were monotonically 

increasing and bounded above by the root. These differences led to different 

8 It should be noted that neither Dylan nor Jay ever referenced subdividing intervals, or dividing the 
maximum possible error by a factor of 10.
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investigations in Phase 2, but ultimately supported each pair of students in 

constructing a formal definition of sequence convergence.

Summary of Phase 1

Here in Phase 1 of each of the teaching experiments we saw students 

develop algorithms for approximating the root of a continuous function to any 

desired accuracy. This situational activity with respect to the algorithm laid the 

foundation for the referential activity of Phase 2. Already strategies that anticipate

formal concepts in advanced calculus had begun to emerge. We saw Brad and 

Matt utilize error-bounds to justify why their algorithm could approximate the root 

of a continuous function to any desired accuracy. They further stated that the 

error-bound going to zero would result in a single real number. With Dylan and 

Jay, on the other hand, we saw them argue that their sequence of 

approximations converged to the root because these approximations were 

monotonically increasing and bounded above by the root.

These strategies are essentially informal characterizations of the 

completeness of the real numbers. In the case of Brad and Matt, their strategy 

was essentially the Nested Interval Property, while with Dylan and Jay their 

strategy anticipated the Monotone Convergence Theorem (see Appendix A). In 

the case of Dylan and Jay, these justifications will be analyzed and codified into 

an explicit conjecture (the MCT).
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The investigation of these conjectures aligns well with the heuristic of 

didactic phenomenology. Two concepts that lie at the heart of the IVT (and 

advanced calculus in general) are convergence and completeness. The former 

provides a solid footing for the mathematical constructs defined in terms of 

limiting processes (derivative, integral, Taylor series, etc.), while the latter 

assures us that using the real numbers for these limiting processes is a 

reasonable thing to do. In particular, the students’ approximation algorithm 

generates a sequence, one whose convergence depends upon completeness of 

the real numbers. For this reason, in order to prove their own conjectures about 

the nature of this convergence, students need to develop both a formal definition 

of sequence convergence and a formal characterization of the completeness of 

the real numbers. In this way these critical concepts are developed to solve a 

concrete problem for the students.

Finally, the students’ approximation algorithms are themselves strategies 

that anticipate the proof techniques of the IVT, and as such can also be thought 

of as emergent models. In Phase 1 students engaged in situational activity, by 

horizontally mathematizing the problem of approximating the root of a 

polynomial. Let us now turn to the second phase of each of the teaching 

experiments, in which the students engaged in vertical mathematizing as they 

began to investigate their algorithms, transitioning to activity at the referential 

level.
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Phase 2: Justifying the Algorithm

The primary task of this second phase was the following: Given that there 

is a root, how do you know that your algorithm will find it? To initiate this second 

phase students engaged in vertical mathematizing, as the focus of study shifted 

from approximating the root of a specific polynomial to the student-generated 

algorithm itself. In this way their activity transitioned to a referential level with 

respect to their algorithm. Throughout this phase student activity took on more 

formal, deductive characteristics, as they generated and modified both definitions

and conjectures related to the IVT.

It should be noted that the above task implicitly involves two steps: 1) 

using the algorithm to find a root-candidate, and 2) proving that the root-

candidate really is a root. Below I will describe how the students engaged with 

that first part, with the second part being the focus of the third and final phase.

Students began the transition to the second phase of the instructional 

sequence by engaging with the task: Given that your algorithm will never tell you 

the exact root, how do you know there is such a number? When justifying the 

convergence to a root of the polynomial of one or more of the sequences 

generated by their algorithm, students made arguments that were essentially 

informal characterizations of the completeness of the real numbers. Of course, 

they never explicitly acknowledged that the real numbers needed to be complete.

This is not surprising given that they had likely never been exposed to this 

concept; Cauchy himself did not make reference to the completeness of the real 
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numbers in many of his early formal proofs (Grabiner, 1981; Lützen, 2003). Let 

us consider the justifications made by each pair of students in turn.

Both of the student-generated algorithms offered a number of potential 

sequences of approximations to consider. In the case of the Bisection Algorithm, 

Brad and Matt focused on an interval around the root, whose length is halved 

with each iteration. The students also described their algorithm as a process by 

which both endpoints of the interval approached the root, getting closer with each

iteration of the algorithm.

Matt: Because we were establishing over here that, bn and an will get 
smaller [sic] upon more and more iterations. They'll become closer 
in value to each other. To the point where, after enough iterations- 
well, infinity iterations, bn = an.

Brad: Okay. I definitely agree that this [|bn – an|] is going to zero as n goes
to infinity. It will never reach it but it will get very very very close.

35



The students’ assertion that the error-bound for their approximation of the root 

“went to zero” served as their primary justification for the convergence of their 

algorithm. Though Brad and Matt have labeled the endpoints of the sub-intervals 

as bn and an, notation which suggested sequences, at that point in the 

experiment they had not explicitly referred to the endpoints as sequences 

themselves. Rather they spoke of the shrinking interval as the thing that was 

approaching the root. 

36

Figure 4: In the highlighted expression near Matt’s elbow, the root r is always trapped 
inside this shrinking interval, between the endpoints an and bn, the distance between which
also bounds the error in their approximation at the nth step.



When asked to justify their assertion that their algorithm converged to the 

desired root, Brad and Matt argued that the lengths of the sub-intervals went to 

zero in the limit. The idea that this process would result in a single real number is

essentially the Nested Interval Property (see Appendix A) of the real numbers, 

which is itself one of many ways to characterize that the real numbers are 

complete. A retrospective analysis suggested that having the students work to 

analyze and prove such a conjecture could be a fruitful way to motivate a formal 

definition of sequence convergence, as well as support them in developing their 

understanding of the completeness of the real numbers. For these reasons this 

activity became the focus of Phase 2 in the second teaching experiment. I will 

now describe some of the key steps in how Dylan and Jay engaged in this 

process of proof construction and analysis.

The Decimal-Expansion Algorithm provided similar but distinct 

opportunities for Dylan and Jay to investigate the concepts of “approaching” and 

“convergence”. By considering successively more accurate decimal 

approximations to the root (e.g. 1.4, 1.45, 1.451, 1.4519,...), Dylan and Jay chose

to construct a sequence of approximations that monotonically increased toward 

the root. In this case the sequence generated by the algorithm was a 

monotonically increasing sequence bounded above by the root (or by any of the 

x-values which surpassed the root). That such a sequence must converge 

seemed intuitively obvious to them. This focus, by the students, on the 

monotonicity of their approximations served as the launching point for their 
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investigations in Phase 2.

In what follows I will describe the key steps in the conjecture and 

construction of Dylan and Jay’s MCT. For a fuller description of this process, 

please see Completeness and Sequence Convergence: Interdependent 

Development in the Context of Proving the Intermediate Value Theorem (Strand, 

in preparation).

Step 1: Justifying the algorithm

Dylan and Jay had remarked that, since their algorithm gave them one 

decimal at a time, if the root were irrational this algorithm could never give it 

exactly. This prompted the following exchange.

I: So how do you know that there is such a number?
D: As long as we can recursively show that every time we step our 

function forward it gets a little bit closer to zero. This is how you do the
limit in general: every time you step it forward, every time you know 
you move forward a little bit, you get closer to the number you think 
the limit is.

Notice that Dylan’s statement, though fraught with what some would call 

“misconceptions”, was true in reference to the specific polynomial they had been 

considering. Regardless of whether Dylan actually believed his statement 

characterized limits in general, I saw the seeds of the Monotone Convergence 

Theorem (MCT) in his reasoning. This led me to hypothesize that pursuing this 

reasoning could give insight into the students’ thinking about completeness, and 

perhaps in supporting the students in formalizing this concept. In an effort to 
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isolate the key features of their reasoning, I asked Dylan and Jay if a similar 

statement could be made about the inputs. Dylan wrote

xi < xi+1 < xx,

where xx stood for the conjectured root.

I next wanted to engage Dylan and Jay in vertical mathematizing. Recall 

that vertical mathematization involves reflecting on and organizing one’s own 

mathematical activity. I codified this reasoning as a general conjecture and asked

the students to consider it. In retrospect, it would have been more valuable to the

students to codify this conjecture for themselves. However, my intention was that 

considering this conjecture that I provided would cause Dylan and Jay to analyze

and organize their own reasoning with respect to their sequence of 

approximations. Let us now consider their activity in this process.

Step 2: Conjecturing conditions to converge to a bound

I wrote the following modified compound inequality on the board.

xi < xi+1 < b

The first conjecture I had them investigate was whether or not the above 

compound inequality meant that the sequence {xi} necessarily converged to the 

bound, b. After a few moments of individual thinking time, Jay concluded that 

such a sequence need not converge to just any bound. He wrote

xi < xi+1 < 1000

and then explained (italics indicate student emphasis):
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Jay: My thing was, uh, you could have xi less than xi+1 less than, let's 
say, a thousand. But this sequence, it doesn't necessarily have to 
converge to a thousand. This would be satisfied if it converged to 
two.

Dylan: Yeah, that was my first problem: it doesn't necessarily converge to 
b. What I think is interesting is that this does mean that it 
necessarily converges. That it never passes some value.

Here we see the Monotone Convergence Theorem, even more explicitly in

Dylan’s reasoning. He then went on to explain his thinking further, and to 

conjecture some conditions for when the sequence would converge to b.

“Because if you can pick a value, some a, between xi+1 and b...and...xi+1 
passes every value of a...like every possible value of a...and passes 
b...wait, if this is true, so it doesn't pass b. So worst case scenario it 
converges to b.”

It appears that what Dylan described was essentially a characterization of 

b as the least-upper bound of the sequence. He seems to suggest that if we 

could choose a to be any arbitrary value less than b, and then we knew that a 

value of the sequence {xi} passed that value of a, then the sequence would have 

to converge to b. So there was no value of a less than b that was also an upper 

bound for the sequence. When I told Dylan and Jay that this was one way to 

characterize that b was the least-upper bound of the sequence, Dylan verbally 

interpreted that statement in the following way: “You can pick any number bigger 

than b, and this inequality would also be true. But you can't pick a number 

smaller than b.”

This condition, that the sequence passed every value of a less than b, but 
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never passed b, struck me as a powerful insight. For that reason I codified it and 

added it as a hypothesis to their conjecture. This condition would later become a 

transformational record, when it directly and explicitly influenced their eventual 

formal definition of a sequence decreasing to zero.

Dylan and Jay then considered whether this extra condition, that the 

sequence passed every value of a that was less than b, would be enough to 

guarantee convergence to b. While they both agreed that it should, they realized 
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Figure 5: The MCT, with Dylan and Jay's added characterization of b as the least-upper bound.



that they needed a more formal definition of “converges”.

Step 3: Developing a formal definition of sequence convergence

Of their own volition, Dylan and Jay chose to consider a damped sine 

curve in order to try and capture “convergence” (Figure 6). In their very first 

attempt, Dylan and Jay opted to characterize convergence in terms of a 

sequence of “errors”. They called these errors term “εi”, and defined it as the 

difference between the greatest and least outputs of the sequence from some 

point, i, on. In Figure 6, Jay had labeled the first three of these “errors”, 

corresponding to xi, xi+1, and xi+2 (though the peak for ε2 appears to be mislabeled;

it should follow xi+1).

Dylan verbally described this “error”, in terms of ε, in the following way:
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Figure 6: Jay's sketch of the damped sine curve, which he and Dylan used as their 
prototypical example of convergence.



“So this ε is...let's just define ε of xi is the biggest value the sequence- the 
difference between the biggest and smallest value the sequence takes from 
xi forward. Does that sound fair?”

Notice that in both Dylan’s statement and Jay’s sketch they have indexed 

by the outputs of their sequence {xi}, rather than by i itself. This was simply an 

oversight on their part, and they quickly corrected it when I pointed it out. They 

formally codified this definition (Figure 7), and after some discussion agreed that 

the sequence {xn} should converge provided that the sequence of ε’s went to 

zero. Dylan and Jay recognized that they had just defined “convergence” by 

using convergence of a different type, which motivated us to formally define what

was meant by “goes to zero”.

This definition of convergence in terms of a sequence of “errors” appeared

quite cumbersome, but aside from their use of “max” and “min” (which was 

problematic because not all sequences have maximum or minimum elements) it 
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Figure 7: Dylan and Jay's formal definition of sequence convergence.



was logically sound. And in fact, when Dylan and Jay were tasked with defining 

how they were using “max”, it became evident that they were thinking of a least-

upper bound (and similarly “greatest-lower bound” for min). This prompted me to 

introduce the terms “supremum” and “infimum”, and this was how they used their 

definition in the proof of the MCT.

In defining “decreases to zero”, Dylan explicitly drew on their earlier work 

with the modified MCT. Recall that I had added the extra hypothesis that the 
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Figure 8: Dylan and Jay's criteria for a sequence to "decrease to zero".



sequence “passed every a less than b”. Dylan adapted this condition to a 

sequence monotonically decreasing to zero: in order to converge to zero, such a 

sequence would have to pass every positive real number (represented as b in 

Figure 8). He then explained this definition:

“So the boundary we know we want is zero. So we're going to talk about 
all the numbers that aren't zero, above zero. So these numbers [gestures 
at his definition, “positive reals not equal to zero”]...So we know this is 
always getting smaller. Down to some...you know, whatever. It goes off to 
somewhere. But do you know it goes to zero? And you do as long as you 
can pick any of these numbers [positive real numbers] and just keep going
through until you find some k [sic] that's smaller than it.”

The earlier hypothesis involving “passes every a less than b” had become 

a transformational record: it was an inscription of student thinking that the 

students subsequently used as a tool to achieve a mathematical goal, namely 

that of formally defining a sequence decreasing to zero.

With a formal definition of convergence (in two parts), we returned to the 

original statement of their conjectured MCT and attacked the proof.

Step 4: Completing the proof of their MCT

Recall that the statement of their MCT read simply:

If there exists a ‘b’ in the reals s.t. xi < xi+1 < b for all ‘i’ in the Naturals, then

{xn} converges.

To prove this using their definition in terms of a sequence of “errors”, they needed

to identify the supremum and infimum of the sequence from some point on, and 
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then show that the difference between those values decreased to zero. They 

readily recognized that because the sequence was monotonically increasing, the 

infimum from some point on would always be the current sequence value; that is,

the infimum of the sequence from i on would be xi.

The critical piece of the proof came when Dylan and Jay tried to identify 

the supremum of the sequence {xn}. Dylan wanted to call this value L, but Jay 

was not comfortable simply assuming that such an L would exist.

“My problem with using the sup, is that you assume that this- it's like 
you're assuming it converges...So if there's nothing bigger than it, and... I 
can always get as close as I want to it. So you're basically arguing that it 
converges.”

In some sense Jay was correct. Assuming the existence of the supremum 

was the key step in completing the proof, and he had basically outlined the 

remainder of the argument. Dylan, though, felt differently: “But I think we can 

make an argument that the sup exists, from just knowing that there’s some 

maximum bound.” His argument relied on his intuitive understanding of the real 

numbers, and in particular their representation via the real number line. He 

argued that, if the given upper bound b was not the least upper bound, then there

had to be a smaller upper bound, c. (Italics in the transcript represent the 

student’s emphasis.)
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Jay: But we don't know that there's another-
Dylan: There has to be. That's what I'm saying. By the properties of the 

real numbers here. If there- if this [xi+1] never gets- like, if I pick a 
number that's smaller than b, that this value [xi+1] is never bigger 
than, then- I guess that's how a number line works, right? Let's say 
it does this kind of increasing behavior [Figure 9], but this is our b, 
so there is some value c. That's less than b. If this statement [upper
bound inequality] is also true, if we can replace some c for this b? 
And this inequality remains true? We keep doing that.

Jay: Yeah. I can deal with that.

At that point Jay was convinced (or at least capitulated), and he and Dylan

agreed to call the supremum L. In this way the students identified a 

characterization of completeness that they were willing to take as an assumption 

without proof. As my primary goal was simply to engage students in a single 

instance of justifying a characterization of completeness (i.e., using the existence

47

Figure 9: Dylan's sketch arguing why the least-upper bound of the sequence must exist.



of least-upper bounds to justify the MCT), I did not push them for further 

justification. Additionally, many authors of real analysis textbooks use the least-

upper bound property as their axiom of completeness for the real numbers, or as 

its primary characterization in the case of construction (Bartle & Sherbert, 2000; 

Krantz, 2013; Ross, 1980; Rudin, 1964; Wade, 2004), and so it seemed to me a 

reasonable foundation for the students to use.

All that remained to finish the proof was for Dylan and Jay to show that, 

given an arbitrary positive real number α,

α > | L - xi |

They rearranged that statement to the following inequality,

xi > L - α

Which they interpreted as: are there elements of the sequence within α of L? 

Proceeding by contradiction, they supposed that there were not. This gave them 

the next inequality:

xi ≤ L - α,

which had to be true for all elements of the sequence {xn}. Dylan and Jay then 

recognized that this was not possible: the above inequality would imply that L - α 

was an upper bound for the sequence, and one that was smaller than L. But L 

was chosen as the least-upper bound, so this must be a contradiction. This 

completed the proof of their MCT.

With the proof completed, and with their newly constructed understandings

of sequence convergence and completeness, I asked Dylan and Jay to once 
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again return to their algorithm and the sequence of approximations it generated. I

then tasked them with formally proving that their algorithm would find a root. 

Interestingly, rather than applying the Monotone Convergence Theorem directly, 

Dylan and Jay used the techniques from their proof. They first verified that their 

sequence of approximations was monotonically increasing, and that it was 

bounded above. By their previous argument, this allowed them to conclude that 

there was a least-upper bound for their approximations. In a similar proof by 

contradiction, they formally showed that their sequence of approximations must 

converge to that least-upper bound. This marked the end of the second phase of 

the instructional sequence, and the question of why such a number must be a 

root motivated the transition to the third and final phase.

Having formally proven that their algorithm would find a number, Dylan 

and Jay were ready to begin the third and final phase of the instructional 

sequence: proving that their conditions guaranteed the existence of a root. 

Though Dylan and Jay did not complete this proof in the teaching experiment, we

will consider their initial attempts to formalize their notion of continuity.

Summary of Phase 2

Activity in the second phase of the instructional sequence comprised the 

bulk of both teaching experiments. Here in Phase 2 student activity transitioned 

to the referential level, as they referred back to their activity in the first phase to 

investigate how and why their algorithm worked.
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With Brad and Matt, we saw how the justifications that their algorithm 

would find a root were essentially the Nested Interval Property. Unfortunately at 

the time I did not recognize this characterization in their thinking; only in 

retrospective analysis did this characterization become evident to me. This 

caused me to modify the LIT (and the instructional sequence) for the second 

teaching experiment. Specifically, I had Dylan and Jay more explicitly address 

(and ultimately prove) why their algorithm would find a number.

In the case of Dylan and Jay, this involved proving the Monotone 

Convergence Theorem (MCT). We saw how they justified their belief that their 

sequence of approximations converged by appealing to the fact that it was 

increasing and bounded above. In order to dig into their informal conceptions of 

completeness, as well as to provide the need for them to develop a formal 

definition of sequence convergence, I codified this justification as an explicit 

conjecture (their MCT) and had the students try to prove it. The proof of the MCT 

requires two main steps: to use a formal definition of sequence convergence, and

to appeal to another characterization of the completeness of the real numbers. In

terms of didactic phenomenology, this provided the students with a need not only

to develop a formal definition of what it meant for a sequence to converge, but 

also to formulate another characterization of completeness. Through this process

Dylan and Jay uncovered the need for the existence of least-upper bounds (a 

characterization of completeness they accepted without proof). Using this 

property, along with their definition of sequence convergence, they were able 
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successfully to complete their proof of the MCT.

Now let us turn to the third and final phase of the instructional sequence. 

Here we will examine the informal conceptions of continuity expressed by both 

pairs of students. We will then consider how Dylan and Jay made the first steps 

in formalizing the idea that a continuous function has no “jumps” or “breaks”, and 

this development’s implications for the LIT.

Phase 3: Proving Existence of the Root

Originally (as we will see in the data) I had intended the third phase of the 

instructional sequence to focus solely on continuity, and its role in proving the 

IVT. With the tasks in the second phase I expected students to develop a solid 

understanding of why and how their algorithm would find a number that would 

serve as a candidate for a root. However, in analyzing the data it became evident

that the students acted as if a root must exist, and that the job of their algorithm 

was simply to find it. When I describe the local instructional theory in the 

succeeding section, I will detail my current thinking about the structure of this 

third phase. For now, let us examine the informal characterizations of continuity 

given by each pair of students, as they wrestled with the role of continuity in their 

proof of the IVT.

In both teaching experiments, initially the existence of a root seemed to be

an obvious consequence of the continuity of the given function; this was not at all
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surprising, given the students’ experiences with functions, as well as the 

historical development of the IVT. Let us look at the students’ justifications for the 

existence of a root when they were first putting together, and then generalizing, 

their approximation algorithms.

In the first teaching experiment, working on the opening task, Brad and 

Matt quickly recognized that the existence of a root relied on the continuity of the 

function in question.

Brad: So if we have it going from positive to negative, is has to hit zero at 
some point.

Matt: Yeah.
Brad: Is it the Mean Value Theorem, I think? Whatever it is. But from 

positive to negative it has to hit zero in between. If it’s continuous at 
least, which it is.

Matt: Yes. All polynomials are continuous.

A few minutes later, the two students provided two different explanations for what

it meant for a function to be continuous.

I: So, we may not want to dig into this just yet, but what does 
“continuous” mean?

B: Do you remember the definition at all?
M: The idea of continuous...for a function or a graph is that there are no

spontaneous jumps from one x, from one- actually, one x-value or 
input value to another.

B: Yeah, so there can’t be a hole or an asymptote that splits it all up.
M: A vertical asymptote, yeah.
B: Right. Or, I think...I remember hearing some sort of technical 

definition. I think it’s at every point x, there has to be an f(x), it has to
have a limit from both sides,-

M: -Correct.
B: -and the limit has to equal the point.
M: Yes, that’s right.
B: So, at any point there’s something that exists, ‘cause there’s no 

holes. How we justify that I have no idea. And then the limit, you go 
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from the left and right it will always hit where that point is.

Brad and Matt gave two standard characterizations of what it meant for a function

to be continuous, at least as encountered in an undergraduate calculus course. I 

will explore each of these characterizations in greater depth when I describe the 

LIT in the next section.

In the second teaching experiment, Dylan and Jay spontaneously gave 

very similar justifications for the existence of a root, and similar characterizations 

of continuity.

I: What does continuous mean?
Dylan: There aren’t any breaks and any jumps in the function, any corners 

where it would change suddenly. And there aren’t any holes- there 
aren’t any places basically where you can’t evaluate the function.

Jay: If I remember from calculus correctly, it also has to do with- if you 
have- you make sure that at every point, every point that the left-
hand limit and the right-hand are always converging to the same 
spot for every single spot. At least on your interval.

Notice that Dylan had added the extra condition that the function not have “any 

corners where it would change suddenly”. A short while later, he and Jay would 

eventually agree that this condition actually described differentiability, and was 

not necessary for their algorithm to work. Interestingly, while both Dylan and Jay 

recalled the limit characterization, neither of them appealed to it when attempting 

to formalize their definition of continuity.

Unfortunately, with Dylan and Jay we did not have a great deal of time for 

them to explore and refine their understanding of continuity. However, they made 
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some insightful and illuminating statements that suggested some promising 

routes for the emerging LIT. It was clear that, to Jay, the IVT followed trivially from

the continuity of a function: 

“If f is continuous – that means there's no breaks or nothing, 
just...from a to b it's a line, it's a curve – and let's say, we'll do the 
first case here, f is less than zero, then f is greater than zero, and it's
continuous, you have- you have to cross zero.”

Though when pressed, Jay agreed that perhaps a more precise definition of 

continuity would help us to understand why this would be so. This quote 

highlights one of the fundamental difficulties in an advanced calculus course: 

putting together formal proofs of what seem to be obvious results. 

After this discussion Dylan and Jay attempted to write a formal definition of

continuity on the board (Figure 10). They seemed to be trying to capture Dylan’s 

statement that continuity meant, “you could walk from one point to the next”:
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Evidently what they had written in mathematical notation was equivalent 

to: “for every point in the interval [a,b], the function is defined.” When I asked 

them if this captured continuity like they wanted it to, Dylan quickly recognized 

that, while it did eliminate holes or asymptotes, it did not eliminate jumping 

behavior. To illustrate this fact to Jay, Dylan sketched a step function, which 

satisfied their definition, but clearly was not continuous on the interval.

This conversation focused their efforts on trying to capture what was 

meant by a function having “no jumps”. Dylan made reference to connected 
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Figure 10: Dylan and Jay's first attempt at a formal definition of "continuous".



graphs from graph theory, but struggled to make an analogous statement for a 

function of the real numbers. It was then that Dylan verbalized an idea that struck

me as anticipating an ε-δ characterization of continuity.

“On the x-axis- for every point on the x-axis, the point on the y-axis 
is also...like, the change is proportionate amounts? Like if you 
change x a very small amount, like you have some dx, your dy also 
can't be much larger, so you're not getting these gaps.”

In that moment I did not have a good strategy for how to capitalize on this 

promising idea. And shortly after this the conversation turned to issues of 

convergence for their algorithm, and our focus shifted in that direction for the next

few sessions. Ultimately we did not have time to return to this discussion in order 

to develop these ideas further.

Summary of Phase 3

Here in Phase 3 we saw the students describe their informal conceptions 

of continuity in trying to make sense of the IVT. In both cases, the students 

described a continuous function as one having “no jumps or breaks”, but they 

also recalled that limit characterization: namely that the function is continuous at 

a point if the limit equals the function’s value.

In the case of Dylan and Jay, we saw them take the first steps in 

attempting to formalize the idea that a continuous function should have no 

“jumps” or “breaks”. This was the essential feature on which they focused to 

justify why the number approached by their sequence of approximations must be 
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a root of the function. Though they were not able to construct a formal definition 

of continuity, Dylan’s statement that “if you change x a small amount...your dy 

can’t be much larger” could be modeled by the ε-δ definition of continuity. This 

suggested to me that such a definition might be a useful emergent model as 

students worked to develop a formal definition, and then used that definition to 

complete a proof of the IVT. I intend to test this hypothesis in future teaching 

experiments.

Having seen the most important developments through two teaching 

experiments, I will now present the most up-to-date version of the LIT. As with the

instructional sequence, this LIT will be presented in three phases. As I mentioned

in the introduction to the Results section, this structure was motivated by my 

analysis of the students’ activity. It became clear that their algorithm could be 

used as an emergent model; each of the three phases roughly corresponds to 

the levels of activity (situational, referential, general) in which students engage 

with their approximation algorithm. Briefly, students begin at the level of 

situational activity as they develop an algorithm to approximate the root of a 

specific polynomial, using the principles underlying the IVT. Students transition to

activity at the referential level as they investigate and seek to justify the behavior 

of their algorithm. Finally, students operate the general level as they use their 

algorithm to construct a proof of the IVT. Along the way we will see how students 

are supported in developing the concepts of sequence convergence, 

completeness, and continuity.
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Proposed Local Instructional Theory

In this section I will present a local instructional theory for using the 

Intermediate Value Theorem as a starting point and touchstone for multiple 

advanced calculus topics. I have refined this LIT through the course of 

implementing and analyzing the two teaching experiments detailed above. I will 

present this LIT in the paragraphs below as a generalized instructional sequence 

consisting of three phases. Briefly, in the first phase student activity consists of 

horizontal mathematizing, as they develop an algorithm to approximate the root 

of a continuous function. It is also in this first phase that students make a 

conjecture equivalent to the Intermediate Value Theorem. Student activity 

transitions to vertical mathematizing in the second phase, as the focus of study 

shifts to the algorithm itself. In this phase student strategies emerge that 

anticipate the formal concepts of both sequence convergence and completeness,

as students work to justify their conjecture that their algorithm will find a given 

root. In the third and final phase, students work to use their algorithm and their 

newly constructed understandings as tools with which to prove the IVT as they 

have conjectured it.

Using the design heuristics of emergent models and didactic 

phenomenology, I will describe the key steps in each of the three Phases of the 

LIT below.
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Phase 1: Approximating the Root

Inspired by Cauchy’s adaptation of a root-approximating algorithm into his 

proof of the IVT, the initial tasks should support students in developing such an 

algorithm. This algorithm will then serve as an emergent model through the 

subsequent phases of the LIT, as students analyze and investigate the algorithm,

and then use it as a tool to complete a proof of the IVT.

Using the heuristic of didactic phenomenology, one problem that requires 

such an algorithm is approximating the root of a polynomial that changes sign 

over a given interval. For this reason student activity begins at the situational 

level, as they work to approximate the root of a given polynomial on a given 

interval. While there are many valid techniques for approximating roots (e.g., 

using secant lines, or Newton’s method, etc.), it is important that the students 

develop an algorithm that generates a sequence9 that approaches the 

conjectured root. This is because the algorithm and the sequence(s) it generates 

will be the objects of study in Phase 2, in which students investigate the nature of

sequence convergence and the completeness of the real numbers. This, in turn, 

will lay the foundation for Phase 3, in which students use their algorithm, and at 

least one of the sequences it generates, in constructing a proof of the IVT.

To put students in the mindset of thinking in terms of the IVT, the opening 

task of the LIT simply asks students whether or not a given polynomial has a root

in the given interval10. Student justifications are based on the sign change of the 

9 In fact, it is most probable that their approximation algorithm will generate a multitude of sequences.
10 Recall that in the second teaching experiment, students were given x^5 - x - 5 on the interval [0,2].
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function over the interval, as well as its assumed continuity. These justifications 

serve as the first conjecture of the IVT, and prepare the students to reason from 

the sign-change when subsequently constructing their algorithm.

Follow-up tasks have students approximate the root of a polynomial to 

specific, and increasingly demanding, measures of accuracy. While many such 

approximations are possible, breaking the interval into smaller pieces and 

checking for sign changes of the function is a powerful strategy. Such a strategy 

not only allows one to achieve a given degree of accuracy with certainty (as the 

task requires), but is also readily iterated to achieve any desired accuracy (as the

follow-up tasks require). Didactic phenomenology suggests that such follow-up 

tasks might be useful in supporting students in constructing an algorithm that 

meets the desired requirements.

The concluding tasks of Phase 1 of the LIT serve as a bridge to the 

deductive Phase 2, in which students will begin vertical mathematization, as the 

algorithm itself becomes the object of study. One task that can initiate the 

transition to Phase 2 is to have the students identify and describe all of the 

possible sequences generated by their approximation algorithm. This is also a 

useful task to motivate a discussion about what a sequence is.

A number of different sequences arise from the students’ approximation 

algorithms. One may consider approximations that approach the root in a 

monotonic fashion, either from the left or from the right. Similarly, reasoning from 

sign changes in the outputs, it is possible to construct a sequence of 
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approximations that bounces around the root. Alternatively, one may also 

consider the intervals themselves as a sequence of sets, which converge to a set

containing a single element: the root itself. Yet another sequence arises if one 

considers the lengths of the interval after each iteration as a bound on the error 

in each approximation. These error bounds form a sequence that monotonically 

approaches zero11. While student approximation algorithms may differ in structure

and implementation, the most important artifacts for the students to record and 

analyze will be the resulting sequences.

This task has a number of potential benefits. First, it transitions the 

students to mathematizing their previous activity, by initiating the students’ 

reflection on and investigation of their own algorithm. This vertical 

mathematization facilitates the development of their algorithm as a model-for 

more formal reasoning about the IVT by transitioning students to a more general 

level of mathematical activity. Second, it produces a set of artifacts (sequences) 

for further investigation. This investigation will serve as the primary activity in the 

second phase of the LIT.

Phase 2: Justifying the Algorithm

In this second phase of the LIT the emergent models design heuristic 

provides particularly powerful tools for describing student activity and 

development. In this phase student activity is at the referential level, as they refer

11 In the case of the Bisection Algorithm, this sequence was given by a simple algebraic formula: |b - 
a|/2^n, while in the Decimal-Expansion Algorithm this formula would be: |b - a|/10^n.
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back to their root-finding activity and continue the process of mathematizing that 

activity. It is at this stage, through this process of progressive mathematizing, that

their algorithm begins to transition from a model-of their activity to a model-for 

more formal reasoning about the IVT. This transition will be complete in the third 

phase, as student activity transitions to the general level and their approximation 

algorithm becomes a model-for completing their proof of the IVT.

The primary task of the second phase of the LIT is: How do you know that 

your algorithm will find a number? Note that students will likely talk about this 

number as if it is a root, even though proving that it is a root requires a formal 

definition of continuity. Using the heuristic of didactic phenomenology, the task of 

justifying that their algorithm finds a number will ultimately require students to 

formally define sequence convergence, and to articulate the completeness of the 

real numbers in some way. Student justifications at this point depend on the 

convergence of the sequence(s) generated by their approximation algorithm.

While a number of possible sequences emerge from the students’ 

algorithm, their convergence necessarily depends on the completeness of the 

real numbers. This is due to the fact that the root-candidate is not known in 

advance; their sequence converges to a number presumed to exist due to the 

completeness of the real numbers. For this reason, one of the most important 

things for the students to clearly record is their own justification for why their 

sequence converges. For example, students will give justifications like “the 

widths of the intervals go to zero” or “the approximations are always increasing 
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and never pass the root”. These justifications amount to assertions of the 

completeness of the real numbers: in the first case, the fact that “widths going to 

zero” results in a unique real number is essentially the Nested Interval Property; 

in the second, the fact that such a sequence must necessarily converge is the 

Monotone Convergence Theorem. While the students’ thinking about 

convergence is informal at this point, there are useful features that can be 

leveraged to support the development of more formal thinking. These features 

will be elaborated below.

The next step in vertical mathematization involves the students analyzing 

these justifications. To facilitate this, the students should work to codify these 

justifications as conjectures (e.g., “The intersection of a sequence of nested 

intervals whose length goes to zero contains a single element”, or  “a 

monotonically increasing sequence that is bounded above converges”). The task 

then is to prove these conjectures, which for the students is horizontal 

mathematizing at a new level of formality. In terms of didactic phenomenology, 

constructing proofs of these conjectures presents students with a need to 

formally define sequence convergence, and to develop some formal 

characterization of completeness. The students may not explicitly recognize this, 

but they will need to find a characterization of completeness which they can 

accept as an assumption in order to complete the proof. We saw this with Dylan 

and Jay when they agreed to assume the existence of least-upper bounds for 

bounded sets.
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For the proofs of some conjectures, students may only need to define a 

specific type of sequence convergence (e.g., monotonic convergence). To 

motivate a more general definition of convergence, consider other (carefully 

selected) sequences generated by their algorithm(s). In this context, having the 

students iteratively refine their definitions against such a set of examples (and 

non-examples) of convergent sequences has been shown to be particularly 

fruitful (Swinyard & Larsen, 2012; Oehrtman, Swinyard, & Martin, 2014).

The completion of their proof that their algorithm will find a given root 

marks the end of the second phase of the LIT. Rather than assuming the 

existence of a root, students will now be explicitly tasked with proving the root’s 

existence under the conditions they have described. It is in this third phase that 

student activity moves to the general level, with respect to their algorithm, as this 

algorithm becomes a tool and model-for more formal reasoning about the IVT. 

Students will also work to develop their understanding of continuity in this third 

and final phase of the LIT.

Phase 3: Proving Existence of the Root

In the third phase of the LIT, the primary task is: Prove that given your 

conditions, namely that a continuous function changes sign on an interval, a root 

must exist. In terms of didactic phenomenology, this proof requires several tools. 

First, it requires students to re-purpose their algorithm: rather than using to find 

find a root, students now use it to provide a justification for the root’s existence. 
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This is a non-trivial shift, and in fact is one of Cauchy’s major contributions to 

early real analysis (Grabiner, 1981). Doing so represents the final step in the 

transition of their algorithm into a model-for more formal reasoning about the IVT.

Second, this proof requires students to develop a formal definition of what it 

means for a function to be continuous at a point. Below I will describe how 

continuity first emerges as a model-of students justifications for their conjectured 

IVT. Though this part of the LIT is currently the least developed, I will outline my 

hypotheses for how this model might develop into a model-for more formal 

reasoning about continuity and the IVT.

There are two primary presentations of the idea of continuity in most 

calculus courses. The first and most intuitive is that a continuous function is one 

that “can be drawn without removing your pen from the paper” (Stewart, 2003). 

(Note that for functions of the real numbers that are continuous on an interval this

is accurate, though not particularly helpful in formal proofs.) The other 

presentation involves limits and goes something like this:

A function f is continuous at a point a if all of the following are true:

1. f(a) exists
2. the limit as x approaches a exists and
3. this limit is equal to f(a)

A function is then continuous on an interval provided that this condition is met for 

each point in the interval.

As students begin to construct a proof of the IVT, they articulate their 

65



conceptions of continuity, and to begin to reflect on how those conceptions might 

help explain the Intermediate Value Property. While students will likely remember 

one or both of the above characterizations from calculus, it will be their 

interpretations of these characterizations in the context of this root-approximation

task that anticipate a formal characterization of continuity. In this way continuity 

emerges as a model-of their thinking. Depending on which of these 

interpretations is preferable, a choice can be made about which development 

path to follow. In either case, students should be supported in developing a 

formal definition of continuity, which will serve as a model-for more formal 

reasoning about continuity in the context of proving the IVT.

In constructing their proof of the IVT, students encounter, perhaps for the 

first time, questions that cause them to reflect on and consider more deeply their 

understanding of what it means for a function to be continuous. Using the 

heuristic of didactic phenomenology, it is this problem whose solution requires a 

formal definition of what it means for a function to be continuous at a given point. 

One possible path, as followed by Brad and Matt in the first teaching experiment, 

would be to reflect on and formalize the limit definition of continuity as 

encountered in a differential calculus class. Again using the heuristic of didactic 

phenomenology, this problem can be used further to motivate the need for a 

formal definition of the limit of a function at a point.

Alternatively, one may have the students begin with their informal notions 

of continuity (“able to be drawn without lifting the pen”). Recall from the second 
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teaching experiment how Dylan attempted to capture this idea more formally:

“On the x-axis- for every point on the x-axis, the point on the y-axis is 
also...like, the change is proportionate amounts? Like if you change x a very
small amount, like you have some dx, your dy also can't be much larger, so 
you're not getting these gaps.”

From an instructional design perspective Dylan’s statement shows promise as a 

starting point for developing continuity more formally. I will explain why this is a 

promising statement, what might have elicited it, and how it might be leveraged 

to support more formal student thinking. First, his statement can be loosely 

modeled by the ε-δ characterization of continuity, and as such it can be 

considered a strategy or idea that anticipates a formal conception of continuity. 

There are some important details to work out, not the least of which is the 

necessary switch to a range-first perspective (similar to that for formal limits, as 

proposed by Swinyard & Larsen (2012)), but the idea of small changes in x 

resulting in small changes in y at least contains the core idea of formal continuity 

at a point. Second, this statement was prompted by considering the very informal

notion of a continuous function having “no jumps”. For this reason it seems likely 

that this task (of formalizing either what we mean by “no jumps” or possibly what 

would constitute a “jump”) might elicit a similar statement from other students. 

Finally, it seems plausible that this statement could be leveraged to 

support students in developing a formal definition of continuity. More research is 

needed to learn how to leverage this idea to develop a definition. As they reflect 

on their algorithm, other continuous functions, and perhaps their recent work in 
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formalizing sequence convergence, they will construct such a definition for 

themselves. Then, as they work to complete the proof of the IVT, this definition 

will serve as a model for more formal reasoning about continuous functions and 

the IVT.

The third phase of the LIT concludes when students have successfully 

completed their proof of the IVT. Though likely time intensive, students have 

developed quite a bit through the course of this LIT. In broad strokes, through 

developing an approximation algorithm, analyzing and justifying that algorithm, 

and then using that algorithm to construct a formal proof of the IVT, students 

have developed more formal understandings of the topics of sequence 

convergence, completeness, and continuity. These are some of the core 

concepts in an advanced calculus course, and so this sets students on solid 

footing to explore further the theoretical underpinnings of the calculus.

I will now present an instructional sequence developed using this LIT. Like 

the LIT, this instructional sequence has been modified through the course of the 

two teaching experiments described above. 

Proposed Instructional Sequence

In this section I will present an instructional sequence that aligns well with 

the LIT described above. First I will give a brief overview of each phase, and then

I will present the tasks in outline form.
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Phase 1: Approximating the Root of a Polynomial

In this situational phase students develop an algorithm that allows them to 

approximate a root of a polynomial using the principles underlying the IVT. This 

algorithm will serve as the object of study in the second phase, and will support 

them in proving the IVT in Phase 3. The development of such an algorithm can 

be motivated by the following tasks:

● Task 1: Does p(x) = x^5 - x - 5 have a root in the interval [0,2]? Justify your
conclusion.

● Task 2: Approximate the root to two decimals places.
○ Follow-up: Approximate the root to six decimal places.
○ Follow-up: Can you approximate the root to any desired degree of 

accuracy? Justify.
● Task 3: Describe your algorithm for a general function f(x) on an interval 

[a,b].
○ Follow-up: Under what conditions will your algorithm be guaranteed

to find a root?
● Task 4: What are all the possible sequences generated by your algorithm?

Phase 2: Justifying the Algorithm

In this referential phase students engage in vertical mathematizing by 

reflecting on and organizing their previous activity. Here we see student 

strategies that anticipate the concept of completeness. These strategies can be 

codified into conjectures. By developing, analyzing, and refining a proof of one of 

these conjectures, students engage in horizontal mathematizing at a new, more 

formal level. Also through this process, students will need to develop a formal 

definition of sequence convergence and some form of the completeness axiom. 

The following tasks support this development:
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● Task 1: Assuming that a root exists, how do you know that your algorithm 
will find it? This will entail the students making claims about convergence 
which can be codified as conjectures. Informal notions of continuity may 
appear here; these should be recorded for further examination in Phase 3.

● Task 2: Prove [justification modified as conjecture]
○ Follow-up: Formally define needed type of sequence convergence

Phase 3: Proving the Existence of a Root

In the third and final phase students engage in general activity with 

respect to their approximation algorithm. This algorithm becomes a model-for 

more formal reasoning and a tool for students to complete the first part of the 

proof of the IVT; namely, proving the existence of a root-candidate. It is in 

justifying that this root-candidate really is a root that  continuity emerges as a 

model-of student strategies, and is developed into a model-for more formal 

reasoning about continuity in the context of proving the IVT. The development of 

this model is facilitated by the construction of a formal definition of continuity at a 

point, which students can then use to complete the proof of the IVT.

● Task 1: Prove that, under your conditions, a root is guaranteed to exist.
○ Follow-up: Formally define what it means for a function to be 

continuous at a point.

Conclusion

The RME design heuristic of guided reinvention suggests that students 

begin their investigations in contexts that are “experientially real” for them; that is,

contexts in which they have familiarity, intuition, and tools for reasoning. Given 
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their experience with real functions in calculus, the Intermediate Value Theorem 

is just such a context. Within the context of approximating the root of a 

continuous function (that changes sign across an interval), the Intermediate 

Value Theorem is a theorem that post-calculus students are likely to conjecture. 

The RME design heuristic of didactic phenomenology suggests that problems 

and tasks be chosen whose solution requires the formal structures and tools we 

wish students to develop. The proof of the IVT presents students with a need to 

formally define such fundamental advanced calculus topics as sequence 

convergence and continuity, in addition to requiring them to wrestle with the 

concept of completeness for the first time. In accordance with the RME 

instructional design heuristics of guided reinvention and didactic phenomenology,

this context is a promising one to motivate the development of formal 

understanding of sequence convergence, completeness, and continuity.

In this context, the students’ approximation algorithm serves as the central

emergent model in the LIT, motivating the three-phase structure corresponding to

the levels of activity of the emergent models design heuristic: situational, 

referential, and general. As detailed in the LIT, this model also describes the 

process by which sequence convergence, completeness, and continuity are 

formally developed.

There is still much work to be done. The data so far suggest that the 

concepts of convergence and completeness are deeply intertwined, especially in 

the context of the IVT. A more in-depth exploration of how these concepts 
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develop in tandem, and how they support one another, could greatly inform 

instructional design for advanced calculus and real analysis. For the first efforts 

in this direction, see Completeness and Sequence Convergence: Interdependent

Development in the Context of Proving the Intermediate Value Theorem (Strand, 

in preparation).

Additionally, more data is needed regarding how students think about and 

engage with the larger goals of advanced calculus: namely, developing solid 

theoretical foundations for the calculus. In these experiments we saw students 

formulate important conjectures, and develop their own formal, powerful 

definitions for proving those conjectures. Future research should investigate 

more explicitly how students understand the process of developing foundations. 

A part of this process involves developing tools for formal proofs (e.g., formal 

definitions, using theorems and lemmas in larger proofs, etc.). Another aspect of 

this process involves choosing what are acceptable foundations. On a larger 

level this entails answering questions like, “What constitute acceptable proofs?” 

On a more specific level, with respect to completeness, this involves choosing a 

characterization that is acceptable without proof. (For Dylan and Jay in the 

second teaching experiment, this was the existence of least-upper bounds.) 

Explicit discussions with the students on these foundational ideas would shed 

light on when and how these topics should be addressed in the LIT.

Finally, far too little is known about how student conceptions of continuity 

grow and develop, which is one of the central goals of the third phase of the LIT. 
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While this research has identified promising student strategies as starting points 

for formalizing continuity, further research will be needed detail and elaborate 

how these strategies can be leveraged to support the desired development. Also 

central to Phase 3 of the LIT is the students’ re-purposing of their algorithm into a

tool for proving existence. While to an observer the students’ activity in Phase 2 

could be construed as doing exactly this, there is little evidence that students 

conceived of their activity in this way. As this re-purposing of an approximation 

technique was one Cauchy’s great insights and contributions, further research is 

needed to understand how students can be supported in understanding this 

fundamental shift in purpose. Future design experiments will investigate the third 

phase of the instructional sequence, and seek to inform further refinement of the 

LIT. 
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Paper #2 – Completeness and Sequence Convergence: Interdependent 
Development in the Context of Proving the Intermediate Value Theorem

Abstract: As a part of a larger RME-based instructional design project for 

advanced calculus, this paper reports on two students’ reinventions of formal 

conceptions of sequence convergence and the completeness property of the real

numbers in the context of developing a proof of the Intermediate Value Theorem 

(IVT). Over the course of ten, hour-long sessions I worked with two students in a 

clinical setting, as these students collaborated on a sequence of tasks designed 

to support them in producing a proof of the IVT. Along the way, these students 

conjectured and developed a proof of the Monotone Convergence Theorem. 

Through this development I found that student conceptions of completeness 

were based on the geometric representation of the real numbers as a number 

line, and that the development of formal conceptions of sequence convergence 

and completeness were inextricably intertwined.

Introduction

The transition from lower-division mathematics courses, where the 

emphasis is often on calculational approaches, to upper-division courses, 

primarily concerned with proof and more abstract mathematics, is a challenging 

one for many undergraduate students. There has been growing interest in 

developing research-based, student-centered curricula for undergraduate 

mathematics to address this issue in the areas of abstract algebra (TAAFU: 
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Larsen, 2013; Larsen & Lockwood, 2013), differential equations (IO-DE: 

Rasmussen & Kwon, 2007), geometry (Zandieh & Rasmussen, 2010), and linear 

algebra (IOLA: Wawro, et al., 2012). The data presented in this paper comes 

from early efforts at similarly-motivated instructional design for advanced 

calculus. One of the central ideas underpinning all areas of advanced calculus is 

that of limits and convergence. One of the features of the real numbers that 

makes limits and convergence so important (indeed, possible) is that of 

completeness. While a large body of research exists about how students think 

about limits and how that thinking develops in formality, there is a dearth of 

research dealing directly with students’ conceptions of the completeness of the 

real numbers.

This paper reports on the strategies employed by a pair of students that 

anticipated the concept of completeness, as those strategies emerged in the 

context of a teaching experiment. This experiment was part of an instructional 

design effort to develop the proof of the Intermediate Value Theorem (IVT) as a 

starting point for inquiry-oriented advanced calculus12. The students in the 

teaching experiment began by approximating the (irrational) root of a polynomial 

using the principles behind the IVT. They developed a sequence of 

approximations by looking for the sign change of the function on smaller and 

smaller intervals. As the IVT (and many other facets of convergence) implicitly 

depend on the completeness of the real numbers, I expected that investigations 

12 see Paper #1

75



of these kind would give insight into students’ informal conceptions of 

completeness, as well as insight into how students might be supported in 

reinventing formal characterizations of completeness.

In this paper I will detail how early student justifications anticipated the 

Monotone Convergence Theorem (MCT)13, and how the proof of that theorem 

became a powerful context for the interdependent development of more formal 

conceptions of sequence convergence and completeness.

Literature Review

A great deal of research has investigated student understanding of the 

concept of limit. The focus of these investigations has shifted over the last few 

decades. Initially, a large number of studies sought to describe the difficulties 

students encountered when trying to work with limits (Bezuidenhout, 2001; 

Cornu, 1991; Davis & Vinner, 1986; Moru, 2009; Sierpińska, 1987; Szydlik, 2000;

Tall, 1980; Tall & Schwarzenberger, 1978; Williams, 1991). Gradually, more and 

more studies have investigated how student conceptions might progress in 

formality (Cottrill, et al., 1996; Oehrtman, 2009; Oehrtman, Swinyard, & Martin, 

2014; Swinyard & Larsen, 2012). One important feature of formal work with 

limits, first given prominence by Swinyard & Larsen (2012), is the shift from 

finding limits to verifying limit candidates. While limit problems in calculus are 

often centered around the use of algebra to find limits, formal activity with limits is

13 MCT: If {an} is a bounded, monotonic sequence, then it converges.
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usually centered around using formal definitions to prove that a limit exists or to 

prove general properties about limits. What has received almost no study is what 

the process of developing such formal definitions of limits looks like in the context

of proving, or what role completeness plays in this process of formalization.

While Cauchy is widely recognized as one of the fathers of real analysis, 

his proofs conspicuously lack any mention of the completeness of the real 

numbers (Grabiner, 1981; Lützen, 2003). In fact, one of the first explicit 

treatments of the completeness14 of the real numbers was Dedekind’s “Continuity

and Irrational Number” essay, originally published in 1872 (1901), over fifty years 

after Cauchy’s Cours d’Analyse. Up until Dedekind’s time completeness, when it 

was discussed at all, was taken as a natural consequence of the geometric 

representation of the real numbers as a one-dimensional line (Dedekind, 1901). 

For these reasons it seems plausible that post-calculus students, who have a 

great deal of experience with the real number line, will treat completeness as an 

obvious property, when they think of it at all. However, it is a critical component of

the proof of the Intermediate Value Theorem, and so identifying student 

strategies that anticipate formal conceptions of completeness in this context will 

be critical in developing instruction for advanced calculus using this context as a 

starting point.

As such, the specific questions that guided this component of this design 

research project were the following:

14 The German word that Dedekind used was the word for “continuity”, but it is clear that he describing 
the modern concept of the completeness of the real numbers.
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1. In the context of proving the IVT, what student strategies anticipate the 
concept of completeness?

2. In what ways do the developments of completeness and sequence 
convergence support one another?

Theoretical Framework

The instructional design heuristics of RME have guided the development 

and implementation of this design project. They have also been indispensable as

tools for analyzing student thinking and activity. In particular the heuristic of 

emergent models provides language and tools for describing students’ activity at 

the informal level and also for describing the development of their activity toward 

greater formality and rigor. In RME, these models emerge from student activity, in

the sense that the models provide a way for a teacher/researcher to describe 

student activity (Larsen & Lockwood, 2013).

These models emerge as students engage in organizing some kind of 

problem context, also referred to as horizontal mathematizing. Led by the model, 

the teacher/researcher then tasks the students with reflecting on and organizing 

their own mathematical activity, a process known as vertical mathematizing. This 

then creates a new, more formal mathematical reality for horizontal 

mathematizing by the students. This process is known as progressive 

mathematization. Through progressive mathematizing, the model transitions from

a model-of student activity to a model-for more formal reasoning on the part of 

the student. “This shift from model of to model for concurs with a shift in the 

students' thinking, from thinking about the modeled context situation to a focus 
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on mathematical relations” (Gravemeijer, 1999, p. 162). In this way the design 

heuristic of emergent models provides ways not only to describe and make 

sense of student activity, but also to support students in reinventing the desired 

mathematics and in making the transition to more formal mathematical activity.

In emergent models, the model-of/model-for transition captures large, 

significant developments in student activity and thinking (Gravemeijer, 1999). For

describing more local development of these models, Rasmussen and 

Marrongelle described the construct of a transformational record (2006). Such a 

record is an inscription or notation recorded by the students, or used by the 

teacher to capture student thinking, that later is used by the students for further 

mathematical development. This construct can be particularly useful for teachers 

in supporting the development of emergent models. In the Results section I will 

illustrate how I used a transformational record to support students in developing 

a more formal understanding of sequence convergence.

Transformational records can also be described using the RME construct 

of record-of/tool-for (Johnson, 2014; Larsen, 2004; Larsen, 2013). A record-of 

student activity generally refers to an inscription or notation that represents one 

form of the larger emergent model. This record-of becomes a tool-for when 

students use it for further mathematical development. This transformation of the 

record at a local level represents a development of the larger emergent model. A 

model-of students’ activity can be evidenced by many different forms. For 

example, in the TAAFU curriculum students’ initial activity working the 
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symmetries of an equilateral triangle can be modeled by the group structure. This

model takes on different forms at different times: a list of symmetries, an 

operation table, or set of rules for combining symmetries, etc. (Larsen, 2013). 

One way to describe the development of this model toward a model-for is 

through “students’ increasing ability to reason with various forms of the model” 

(Johnson, 2014). Continuing with the previous example, when recording 

combinations of triangle symmetries, students construct an operation table; this 

table serves as a record-of student thinking about combining symmetries and is 

one form of the larger group structure as an emergent model. Such a table 

becomes a tool-for student reasoning as they work to develop a set of rules for 

combining symmetries, using the table to reason about patterns and 

relationships. While not as significant as a model-of/model-for transition, which 

represents the students becoming aware of and using the model as a whole, 

these record-of/tool-for transitions nonetheless represent important 

developments in student activity.

In the study reported here, we will see how the concept of completeness 

emerged as a global model-of student reasoning about the convergence of an 

approximation algorithm. Later least-upper bounds, as one form of that global 

model, emerged as a record-of student thinking. This form of the model then 

developed into a tool-for more formal activity as student used least-upper bounds

in two important developments: 1) formally defining a specific mode of sequence 

convergence, and 2) completing a proof of the Monotone Convergence Theorem.
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After describing the structure and implementation of the teaching experiment, as 

well as the manner in which I analyzed the data, I will describe in detail how 

completeness emerged as a model-of student activity, and how that model 

developed through the course of the teaching experiment.

Methods

As a part of the early stages of an instructional design project, I ran two 

separate teaching experiments over the course of a year, a little more than six 

months apart. Each teaching experiment consisted of 10, hour-long sessions with

myself as teacher/researcher and a pair of students working at a chalkboard at 

the front of the room. These students were volunteers selected from courses that

were direct prerequisites to advanced calculus/elementary real analysis courses 

(e.g. Linear Algebra, Discrete Mathematics, Abstract Algebra, and Introduction to 

Proof), and who had expressed an intention to take advanced calculus in the 

near future. All four participants had completed the calculus sequence, 

differential equations, and at least one proofs-based course, prior to participating 

in the teaching experiment.

This data for this paper comes primarily from the second teaching 

experiment, with students who will hereafter be referred to as Dylan and Jay. 

With the first teaching experiment, my attention was primarily focused on issues 

of convergence. It was not until retrospective analysis that I discerned the 
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importance of the role that completeness could play in this context. For this 

reason I modified the task sequence for the second teaching experiment, which 

resulted in an abundance of data relating to student understanding of 

completeness. For these reasons this paper focuses on the experiences of Dylan

and Jay.

My main goal during ongoing analysis was to understand how students 

were thinking about the tasks in which they were engaging, as well as how they 

were thinking about the strategies they were employing. For this study I was 

particularly interested in how the concept of completeness was present in student

thinking and justifications, and how that thinking might be leveraged and 

developed. To aid in this, I wrote session summaries and I kept a spreadsheet for

each session, recording general student activities over the course of the session 

and marking segments for later transcription.

During the implementation of the teaching experiment there were 

anywhere from three days to an entire week between sessions. During that time I

watched the videos of the previous session, creating written session summaries, 

and tried to identify student statements and strategies that begged for further 

investigation. For example, Dylan and Jay justified the convergence of a 

particular sequence by appealing to the fact that the sequence was increasing 

and was bounded. But it was not clear from their statements whether they 

thought such a sequence had to converge to the given bound. To start the next 

session I gave them exactly this conjecture and observed their discussion.
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After the conclusion of each of the teaching experiments, I performed a 

retrospective analysis of the data as a whole. I watched all of the videos again, 

transcribing segments I had flagged during the ongoing analysis, looking for 

student strategies that anticipated the completeness of the real numbers. For 

each of these I sought to explain what elicited these strategies. Finally, I followed 

these strategies through the data and using the design heuristics of RME I 

sought to explain how these strategies were leveraged to support the 

development of more formal ideas, or how they might be leveraged in future 

implementations of the LIT. For example, when describing a monotonic 

sequence converging to its bound, b, Dylan made a statement like “passes every

a less than b”. It appeared that this strategy was elicited when Dylan tried to 

conjecture conditions under which such a sequence to converge to a given 

bound. This strategy then acted as a transformational record, when Dylan and 

Jay later used it as a tool to develop a formal definition of a sequence decreasing

to zero. In the following section I will explain in detail how such anticipatory 

strategies emerged from Dylan and Jay’s activity, and how these strategies were 

developed to support their construction of a proof of the Monotone Convergence 

theorem.

Results

In the context of developing their own proof of the IVT, I found that 
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characterizations of the completeness of the real numbers emerged from Dylan 

and Jay’s activity. This suggested to me that completeness, as a collection of 

varied but equivalent characterizations, could be seen as a model-of students’ 

activity. While in this teaching experiment I did not see this model transition to a 

model-for more formal reasoning for the students, there were some significant 

developments. Using primarily the emergent models design heuristic, I will 

describe the students’ progressive mathematization as they conjectured, and 

then worked to prove, the Monotone Convergence Theorem.

To begin the experiment, Dylan and Jay had asserted that p(x) = x5 - x - 5 

had a root in the interval [0,2] because it was a continuous function that changed 

sign over the interval. This reasoning was essentially the Intermediate Value 

Theorem (IVT). Dylan and Jay subsequently constructed an algorithm that 

allowed them to approximate the conjectured root of p(x) to any desired 

accuracy. Checking the sign of the function at values within the interval provided 

an expedient way for Dylan and Jay to narrow their search for the root: a point in 

the interior of the interval must evaluate to either positive, negative, or zero. If 

zero, then the search for a root is completed. If not, then the root must lie 

between sign changes of the function, and this gave them a smaller range to 

consider. Dylan and Jay identified successively more accurate decimal 

approximations to the root (e.g. 1.4, 1.45, 1.451, 1.4519,...) (Figure 11); this 

process amounted to a decimal expansion of the root. In this way Dylan and Jay 

constructed a sequence of approximations that monotonically increased toward 
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the root, and which were bounded above by that root. That such a sequence 

must converge seemed intuitively obvious to them. This focus by the students on 

the monotonicity of their approximations served as the launching point for their 

investigations into completeness and convergence.

When justifying the convergence of their approximations Dylan and Jay 

made no arguments that relied on the widths of intervals, nor did they explicitly 

bound the error at a given iteration of their algorithm. Instead, their arguments 

tended to rely on the monotonic behavior of their approximations15. The transcript

excerpt below came from a conversation in which Dylan, Jay, and I were 

discussing how they knew that their algorithm would find a root of the function in 

15 Though they utilized ideas and notation that suggested sequences, Dylan and Jay did not themselves use 
sequence language until I asked them about sequences explicitly in the fourth session.
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question. They had recently established that, if the root were irrational, their 

Decimal-Expansion algorithm would never give them the exact root.

I: So how do you know that there is such a number?
D: As long as we can recursively show that every time we step our 

function forward it gets a little bit closer to zero. This is how you do the
limit in general: every time you step it forward, every time you know 
you move forward a little bit, you get closer to the number you think 
the limit is.

There are a few problems with Dylan’s characterization of a “limit in 

general”. For one, he is a describing convergence in a monotonic fashion, and so

is not truly giving a general description. Second, as can be seen in Figure 12, he 

is characterizing the convergence of their sequence of approximations using the 
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monotonicity of the outputs of the function. This held true of the specific 

polynomial with which their investigations had started, but it was not necessary in

general for their algorithm to work.

While there were many details to be worked out, Dylan’s statement 

represented very promising reasoning. Here we see that the concept of 

completeness, here taking the form of the Monotone Convergence Theorem, 

served as a model-of he and Jay’s explicit justifications for the convergence of 

their sequence of approximations. More specifically, his statement suggested that

he believed an increasing sequence, that was bounded above, should converge. 

Whether or not he really believed that this characterized limits in general was 

immaterial at that moment. This emergent model suggested that codifying and 

analyzing Dylan’s justification could be very fruitful.

In Figure 12, Dylan had written:

f(xi) < f(xi+1) < 0 (1)

In an attempt to draw their attention away from the outputs for a moment, I asked

Dylan and Jay whether a similar statement could be made about the inputs. I did 

this because I wanted to have them analyze Dylan’s statement, but I did not want

considerations about the behavior of the function to muddy the water. Without 

any discussion, Dylan wrote:

xi < xi+1 < xx (2)

(where xx was the conjectured root). Then he and Jay explained why the second 

compound inequality might be preferable.
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Jay: We're controlling this [gestures at (2)] more than we're controlling 
this [gestures at (1)]. We can't control the outputs, but we can 
control the inputs.

Dylan: Right. I guess we just observe this [gestures at (1)] for this particular
function.

With Dylan and Jay in agreement with the statement about the 

monotonicity and boundedness of the inputs, we were ready to consider their 

justification as a conjecture. Completeness, manifested as the Monotone 

Convergence Theorem, was an even clearer model-of their thinking about the 

convergence of their sequence of approximations. In order to support the 

development of their thinking, I set Dylan and Jay tasks that would have them 

engage in vertical mathematizing, by having them reflect on and analyze their 

own reasoning about convergence.

At this point, it was not clear to me whether they thought that a monotone 

sequence with a known bound had to converge to that bound. In an attempt to 

better understand their thinking, I offered them the following conjecture:

If xi < xi+1 < b, then the sequence converges to b.

In a larger sense, what I was doing with this sequence of tasks was working to 

develop completeness as a useful model for the students. I was giving them 

tasks that caused them to reflect on both their own activity (specifically their 

algorithm) and on their own thinking, by presenting them with their justification 

codified as a conjecture. This vertical mathematization was the first step in 

supporting the transition of completeness from a model-of Dylan and Jay’s 
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thinking to a model-for more formal reasoning. While the model-for transition was

not realized in the teaching experiment, the development of the model provided 

insight into the students’ thinking about both completeness and convergence, as 

we will see.

After a few moments of individual thinking time, Jay concluded that such a 

sequence need not converge to just any bound. He wrote

xi < xi+1 < 1000

and then explained:

Jay: My thing was, uh, you could have x_i less than x_{i+1} less than, 
let's say, a thousand. But this sequence, it doesn't necessarily have
to converge to a thousand. This would be satisfied if it converged to
two.

Dylan: Yeah, that was my first problem: it doesn't necessarily converge to 
b. What I think is interesting is that this does mean that it 
necessarily converges. That it never passes some value.

Dylan agreed with Jay’s reasoning, but made the additional observation 

that, given these hypotheses, the sequence must converge to something. He 

then went on to explain his thinking further, and to conjecture some conditions for

when the sequence would converge to b.

“Because if you can pick a value, some a, between xi+1 and b...and...xi+1 
passes every value of a...like every possible value of a...and passes 
b...wait, if this is true, so it doesn't pass b. So worst case scenario it 
converges to b.”

It appears that what Dylan described was essentially a characterization of 

b as the least-upper bound of the sequence. He seems to suggest that if we 
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could choose a to be any arbitrary value less than b, and then we knew that a 

value of the sequence {xi} passed that value of a, then the sequence would have 

to converge to b. So there was no value of a less than b that was also an upper 

bound for the sequence.

This condition, that the sequence passes every value of a less than b, but 

never passes b, proved to be pivotal in Dylan and Jay’s developments of both 

completeness and convergence. A short while after this, I incorporated this 

condition as an added hypothesis to their MCT and had them consider it; in this 

way it became a record-of their thinking, and also represented one form of the 

larger completeness model. Subsequent to that discussion Dylan explicitly 

leveraged the condition to define "decreases to zero". Both of these 

developments will be discussed in greater detail shortly.

Though Dylan and Jay briefly attempted to prove their MCT, they quickly 

realized that they would need a more precise definition of convergence in order 

to do so. Their first attempts at defining monotonic convergence relied on the fact

that the successive differences must be decreasing. But Dylan recognized that 

this was not sufficient; even if the successive differences decreased, the 

sequence might still diverge to infinity (he cited the Harmonic series as an 

example of this).

Dylan: How do we better define when we know a sequence is going to 
approach a number? Because literally the counter-example is, well, 
this is 1/i.

Jay: The distance?
Dylan: Yeah. This distance every time is 1/i, and this will keep adding 'til we 
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add up to infinity, for whatever reason. But we know, like, 1/i^2 
doesn't...What's the difference?

Though this consideration of successive differences was reminiscent of 

Cauchy’s criterion for convergence, Dylan and Jay were unable to identify 

conditions that would guarantee convergence at that point in time. They were 

very clearly stuck.

In an effort to help them, I suggested a different approach. I asked them to

try and define what it would mean for a general sequence to converge, rather 

than a monotonic one. Of their own accord they began considering different 

examples of convergent sequences. Though they briefly considered monotonic 

sequences that increased or decreased toward a limit, ultimately they settled on 

the damped sine curve as their prototypical example. They agreed that such a 

sequence converged, and so they set about trying to characterize that 

convergence.
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Dylan and Jay first characterized general sequence convergence by 

considering the “error”, which they defined as the difference between the 

maximum value of the sequence and the minimum value of the sequence, from 

some point on (Figure 13).

“So this ε is...let's just define ε of xi is the biggest value the sequence- the 
difference between the biggest and smallest value the sequence takes from 
xi forward. Does that sound fair?”

Dylan and Jay then defined the convergence of the sequence {xn} as occurring 

when this sequence of errors decreased.

This, of course, is not quite sufficient, for a few reasons. First, the “errors” 

must decrease to zero to guarantee convergence. This error term can be thought

of as a measure of the sequence’s oscillation (though Dylan and Jay did not refer

to it this way). If it decreased toward a non-zero constant, then the sequence 

would forever bounce back and forth between two constant values. Dylan and 

Jay recognized these difficulties, as evidenced by this exchange:
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Dylan: So could [the errors] converge to, say, 1? Then [the original 
sequence] would converge to a shift of the sine curve. So...does 
[the sequence of errors] need to converge to zero? Because a 
function like that doesn't.

Jay: If these errors are always- the errors are getting closer and closer 
to one? You're not- the actual sequence isn't converging to 
anything. It's still oscillating.

Dylan: Right. So that is a problem.
Jay: So there's a limit involved.
Dylan: Yeah, it has to go to zero. Period.

Second, Dylan and Jay’s use of “max” appeared problematic because 

there are many sequences for which no “max” exists. For example, consider xn = 

3n/(n+1), which monotonically increases toward 3 without having a maximal 

element. However, it became apparent later that Dylan and Jay were using “max”

in a way that could mean “max” (biggest element of a set) or could mean 

“supremum” (least-upper bound of a set) in standard terminology. Whether or not

they believed at this point that all sequences had maximal and minimal elements 

cannot be determined from this evidence.

Finally, their use of indices was a bit problematic as well. Note that 

throughout their definition they have indexed by “xi”, rather than by “i”. This was 

problematic because it suggested that they were indexing by the outputs of the 

sequence, when their sketches, gestures, and discussion made clear that they 

meant to index by the inputs. One possible explanation for this choice of index 

was that the sequence {xi} originally represented a sequence of values on the x-

axis. In the interest of time I chose not to address this issue directly. The next 

time we referenced this definition I wrote it on the board with the correct indexing 
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and the students used it correctly from that point on.

In the teaching experiment these issues served as opportunities for 

investigation and formalization of further ideas. In particular, reflecting on this 

definition of convergence in terms of “errors” motivated a number of other 

developments. The requirement that the “errors” decrease to zero motivated the 

development of a formal definition of what it meant for a sequence to “decrease 

to zero”. This definition of convergence in terms of “max” and “min” values of the 

sequence from some point on motivated a clarification of the concepts of “max” 

versus “supremum”, and the introduction of the terminology for “supremum” and 

“infimum”.

Interestingly, this construct of “the sup from some point on” anticipates the 

idea of a “lim sup” or “limit supremum”. In this way their definition of convergence

could be seen as a strategy that anticipated the concept of a limit supremum, and

potentially could be leveraged to support the development of the formal concept 

of limit supremum. However, from an instructional design perspective, I do not 

know how to elicit this very complicated characterization of completeness on 

purpose. For this reason I did not follow up with this particular potential 

development.

In a brief interlude, I returned our attention to the statement we were trying

to prove: their conjectured MCT. Recalling Dylan’s statement earlier about the 

sequence “passing every a less than b”, I presented them with a modified version

of their conjecture. I then asked them if this added condition would guarantee 

94



convergence to the bound, b (Figure 14). This was an intentional move to further 

refine the emergent model of completeness. Implicit in this statement is the fact 

that b is the least upper bound of the sequence. By having the students reflect on

and make sense of this property, I hoped to support the development of 

completeness as an emergent model. I anticipated that this non-standard 

characterization of least-upper bounds would help them with their proof, and that 

completeness, possibly manifested as the existence of least-upper bounds, 

would in this way become a tool-for more formal reasoning about completeness 

and convergence. In this way, my codifying Dylan’s earlier statement about 

“passing every a less than b” was setting up a potential transformational record. 

This also fit nicely with the heuristic of didactic phenomenology, as the resolution 

of this proof would require the students to use least-upper bounds and a formal 

definition of convergence. 

This record-of their thinking supported their development of sequence 

convergence in ways that I did not anticipate. This transformation will be 

evidenced when we consider how the students defined what it meant for a 

sequence to decrease to zero.
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Figure 14: Dylan and Jay's first proof of a modified MCT.

Figure 15: The students' argument reproduced for legibility.



Dylan and Jay agreed that this extra condition should guarantee 

convergence to b, and then set about trying to prove this. They argued that if the 

sequence did not converge to b, then there must be some smaller upper bound 

for the sequence, alpha. But since the sequence passed every a that was less 

than b, this resulted in a contradiction. Their technique was sound; all they 

needed was a formal definition of “converge” to make the proof rigorous. This 

motivated our return to the task of refining and clarifying their formal definition of 

sequence convergence.

At that point I opted to share with Dylan and Jay that their characterization,

though non-standard, was one way to define the least upper bound of a 

sequence.

“So this condition that you guys came up with actually has a name. And if a 
number satisfies this condition- there are different ways to say it, but b in 
this case is called the least upper bound.”

After a brief discussion of this concept, Dylan summarized his understanding in 

this way:

“You can pick any number bigger than b, and this inequality would also be 
true. But you can't pick a number smaller than b.”

The discussion of this concept would resurface when I asked the students to 

define the “max” of a sequence, as used in their definition of convergence.

We then returned to their characterization of convergence in terms of 

“errors”. After a brief discussion clarifying that convergence could only happen in 
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the case the εi’s decreased to zero, we set about formally defining what it meant 

for a sequence to “decrease to zero”. Recall that earlier, Dylan and Jay had 

struggled to define monotonic convergence, in particular because they had been 

considering successive differences. Remarkably, Dylan generated the pictured 

definition on the first try (Figure 16).

In the following exchange Dylan explained the genesis of this definition.

Jay: How'd you get that?
Dylan: Basically going from our last idea that if a number converges to...to b,

I guess. So, this would be kind of like our- or this is kind of formally 
writing out that a, like, for every b that's less than a, or- which is zero 
in this case, I guess- is between where we're starting and the 
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Figure 16: Students' definition of a sequence "decreasing to zero"



boundary.

Dylan made a connection back to their work with a previous conjecture: that if a 

monotonically increasing sequence was bounded by b, but passed every a less 

than b, then it must converge to b. Though the roles of the variables have been 

reversed, Dylan has described adapting their idea of “passes every a less than b”

to this case of a sequence monotonically decreasing to zero.

Dylan goes on to explain his definition in more detail.

“So the boundary we know we want is zero. So we're going to talk about all 
the numbers that aren't zero, above zero. So these numbers [gestures at his
definition, “positive reals not equal to zero”]...So we know this is always 
getting smaller. Down to some...you know, whatever. It goes off to 
somewhere. But do you know it goes to zero? And you do as long as you 
can pick any of these numbers [positive real numbers] and just keep going 
through until you find some k [sic] that's smaller than it.”

Here we see the results of the students successfully leveraging a 

transformational record. Earlier in the experiment, when reasoning about the 

conditions under which a monotonic sequence might converge to its bound, 

Dylan’s made the statement “passes every a less than b”. A little later I recorded 

this reasoning, presenting it back to the students as an additional hypothesis to 

their MCT; in this way this characterization of least-upper bounds served as a 

record-of their thinking. And above we saw how this record became a tool-for 

solving the problem of defining the convergence of a sequence decreasing to 

zero. In this way an informal strategy of the students developed into a tool-for 

reasoning more formally about limits. More specifically, my presentation of their 
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strategy re-packaged as a conjecture acted as a transformational record, which 

they used to solve the problem of defining a sequence decreasing to zero.

The final step in clarifying their definition was to better understand how 

they were using the terms “max” and “min”. To do this, I simply asked them to 

define the word “maximum”, in the context of their definition. Jay defined it as the 

“least-upper bound”, and illustrated this idea with a sketch of a sequence 

monotonically increasing toward its limit (Figure 17).

Figure 17: Jay's first attempt at defining "maximum".

Initially I thought that Dylan and Jay’s use of “max” in their definition of 

convergence represented an error (since the “max” of sequence need not exist, 

in general). However, it became apparent that the problem Dylan and Jay faced 

was a lack of standard vocabulary to express their very robust conception of 

“max”.
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Jay’s initial inscription (Figure 17) clearly captures the idea that L should 

be an upper bound for the sequence {ai}. What is not clear, at least from the 

formal mathematical notation, is that this L should be the least of these upper 

bounds. Also, Jay’s use of a strict inequality precludes the possibility of the 

“least-upper bound” being a member of the sequence (and so a “max” in the 

standard sense).

The subsequent discussion made clear that these were problems of which

Dylan and Jay were well aware, and wanted to solve. (Italics represent the 

student’s emphasis.)

Dylan: Yeah, 'cause I think there needs to be a condition that it's the least 
one-

Jay: Right.
Dylan: And also, what if it's- what if you have a known maximum? That's 

where I kind of stopped myself. So let's say it's decreasing. So let's 
say it starts here, and then goes down... So this is the maximum. It's 
not the number that's very slightly greater than that. It's actually that 
number.

Dylan uses an example of a monotonically decreasing sequence, whose 

maximum would clearly be its first element, to illustrate a shortcoming in their 

definition. In the process of recording on the board the substance of their 

discussion, Dylan and Jay actually solved both of these problems (Figure 18).
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Figure 18: Dylan and Jay's refined definition of the "maximum" of a sequence.

Notice that in this new statement, L is allowed to be greater than or equal 

to all the elements of the sequence an; this allowed for the fact that the 

“maximum” might be an element of the sequence. Also note the arrow, which 

points from M toward the first inequality, L ≥ an. This arrow was used to indicate 

that M should also satisfy this inequality; that is, M stood in the place of all other 

upper bounds of the sequence. In this way they have given the two conditions for

what is commonly called the supremum of a set (here stated specifically for a 

sequence): that L be an upper bound for the set, and that if there were another 

upper bound, M, then L  must be less than or equal to M. So when they used the 

word “max” in their definition of convergence, evidently what they were using was

the concept of a “least-upper bound” in the standard sense. Whether this was 

Dylan and Jay’s original intent with their definition, or whether this was something

they only realized upon focused reflection, I do not have the data to determine.
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Here my motivations as a researcher were two-fold. I wanted to better 

understand their thinking, and how they were using the term “maximum” in this 

context. But I also recognized that completeness, manifested as the existence of 

least-upper bounds, would be a powerful tool in helping them finish their proof of 

the MCT. The task of defining “maximum” served as vertical mathematization: the

students reflected on their own activity, and attempted to capture this thinking in 

a more formal definition. This provided students explicit access to least-upper 

bounds, further developing completeness as a global emergent model.
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Once they were satisfied that their definition of “maximum” captured what 

they intended, we had a brief discussion in which I shared the standard 

terminology (“supremum” and “infimum”)  with them. From that point on Dylan 

and Jay used “sup” and “inf” in their definition of convergence. With a formal 

definition of convergence and a more explicit understanding of 

supremum/infimum, they returned to the task of proving their Monotone 

Convergence Theorem (Figure 19).

Jay determined that the first step in showing that the sequence, {xn} 

converged involved showing that the sequence of “errors” for the sequence {xn}, 

denoted εi, was indeed decreasing. In fact, once Jay had successfully shown this 

he thought that this was sufficient to prove convergence.
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Figure 19: Statement of the students' conjectured MCT.
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Figure 20: Jay's string of inequalities showing that the εi's were decreasing.

Figure 21: Jay's string of inequalities reproduced for legibility.



Jay began the proof by writing out the elements εi and εi+1 for the 

monotonically increasing sequence {xn} given in the statement of the theorem. 

Note that since the sequence {xn} is monotonically increasing, the infimum from i 

on will always be the current element, xi. Though Jay would later protest the 

assumption of a single supremum for the whole sequence {xn}, here he followed 

Dylan’s suggestion and changed the “sup(i, ∞)” statement to simply b. Though 

this seems an odd choice from the outside, given that the upper bound in the 

hypotheses was called b, both Dylan and Jay recognized that the value would 

cancel, whatever it was, and so were unconcerned with its actual designation.

In Figure 21 Jay’s proof that the sequence {εi} (their sequence of “errors”) 

was decreasing consisted of a string seven inequalities. Jay began with line (1), 

which was what he wanted to show. He proceeded to algebraically simplify and 

cancel, until he arrived a statement he knew to be true; namely, that the 

sequence {xn} was monotonically increasing (line (7)). Jay then went back and 

verified that the logic was valid in the reverse direction; that is, that he could start 

with line (7) and work his way back to line (1). He indicated this validity by pre-

fixing each line with the double-implication arrows. Having satisfied both himself 

and Dylan that the proof was correct, he concluded that the sequence {ε i} was 

indeed decreasing, and that therefore the sequence {xn} converged. To conclude 

that {xn} converged, it was actually necessary to show that the sequence {ε i} 

converged to zero. Dylan and Jay would get to that shortly.

Jay’s proof that the sequence {εi} was decreasing appeared to depend on 
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two specific (and related) features of the sequence {xn}: that {sup xn(i, ∞)}i was 

constant, and that {xn} was monotonically increasing. However, it turns out that 

neither of these conditions are necessary, and that the sequence {ε i} will be 

decreasing for any sequence (for which it is defined). To see why this must be so,

consider the two primary components of εi: sup xn(i,∞) and inf xn(i,∞). There are 

only two possibilities for the sequence {sup xn(i, ∞)}i: either it is constant (some 

real number, or possibly infinity) or it is monotonically decreasing. To see this, 

consider the sequence in Figure 22. Since we are choosing the supremum (least 

upper bound) from some point on, it is clear that this value can never increase; if 

it did, that would simply mean that we did not choose the proper supremum at a 

previous step. Since it cannot increase, it follows that it must be constant or 

monotonically decreasing16

16 A sequence is decreasing provided that j > i implies xj ≤ xi, so that technically a constant sequence is 
monotonically decreasing. However, my intention is to distinguish between the case where the sequence is 
always constant and when it is only occasionally constant.
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.
Figure 22: A damped oscillating sequence

A similar argument shows that the sequence {inf xn(i, ∞)}i must either be a 

constant (some real number, or possibly negative infinity) or monotonically 

increasing. And so, in general, the sequence {εi} will be monotonically 

decreasing, for any sequence17.

As Dylan and Jay noted previously, showing that the sequence {ε i} was 

decreasing was not sufficient to show convergence of the sequence {xn}. Dylan 

seemed to recall that something was missing, “Our definition of convergence to 

start off with was that this error...was decreasing? Right? And going to zero?” 

With this question they both consulted their definition of convergence, and 

17 This is true except in the case where either the supremum or the infimum of the sequence is infinite. But 
in either of those cases the sequence is unbounded and therefore diverges.
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confirmed that they still needed to show that the sequence {ε i} actually decreased

to zero.

There were a number of interesting features of their activity as they tried to

prove this rigorously. Dylan and Jay argued about whether they could assume 

the existence of a least-upper bound for their sequence {xn}. They then used their

understanding of least-upper bounds as a tool-for completing the proof. Along the

way they also wrestled with quantifiers; in some statements they were using xi to 

stand for a specific element of the sequence {xn}, while in others they were using 

it to stand for all elements. Each of these will be elaborated below.

Dylan wrote out their definition of εi for the hypothesized monotonic 

sequence, {xn}:

εi = | L - xi |,

where L represented the supremum of {xn} and “xi” was used in place of “inf xn(i, 

∞)” since the sequence was monotonically increasing. But Jay was 

uncomfortable assuming that such an L existed.

“My problem with using the sup, is that you assume that this- it's like 
you're assuming it converges...So if there's nothing bigger than it, and...I 
can always do whatever integer I want- I can always get as close as I want
to it. So you're basically arguing that it converges.”

In some sense Jay was correct. Assuming the existence of the supremum 

is the key step in completing the proof, and he had basically outlined the 

remainder of the argument. Dylan, though, felt differently: “But I think we can 

make an argument that the sup exists, from just knowing that there’s some 
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maximum bound18.” His argument relied on his intuitive understanding of the real 

numbers, and in particular their representation via the real number line. He 

argued that, if the given upper bound b was not the least upper bound, then there

had to be a smaller upper bound, c. (Italics represent the student’s emphasis.)

Jay: But we don't know that there's another-
Dylan: There has to be. That's what I'm saying. By the properties of the 

real numbers here. If there- if this [xi+1] never gets- like, if I pick a 
number that's smaller than b, that this value [xi+1] is never bigger 
than, then- I guess that's how a number line works, right? Let's say 
it does this kind of increasing behavior [Figure 23], but this is our b, 
so there is some value c. That's less than b. If this statement [upper
bound inequality] is also true, if we can replace some c for this b? 
And this inequality remains true? We keep doing that.

18 Throughout this discussion Dylan used “maximum bound” in a way that was generally consistent with 
“upper bound”.
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Figure 23: The sketch supporting Dylan's argument that they could assume the existence of
a supremum.



By appealing to “properties of the real numbers”, and stating that “I guess 

that’s how a number line works, right?” Dylan seemed to indicate that, for him, 

the existence of a supremum was a feature of the real numbers, something safe 

to assume without proof. Further, this argument convinced Jay that it was 

reasonable to use a supremum to continue with their proof.

Assuming the existence of a supremum, L, of their sequence {xn}, all that 

remained was to show that the sequence {εi} decreased to zero. Recall that, 

according to Dylan and Jay’s definition, a sequence “decreased to zero” provided

that for any positive real number, they could find elements of the sequence less 

than that number. Dylan chose an arbitrary, positive real number, α, and set up 

the inequality that he and Jay attempted to verify:

α > εi = | L - xi |

They quickly rearranged the inequality, arriving at:

xi > L - α,

which they interpreted as: “We can always find an xi bigger?” If not, then the 

following inequality must be true:

xi ≤ L - α

Dylan and Jay interpreted this to mean that  L - α was an upper bound for 

the sequence, and an upper bound that was clearly smaller than L. But since L 

was the least upper bound, this appeared to be a contradiction. Dylan and Jay 

then began to re-examine their argument to determine if this in fact completed 

the proof.
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It became apparent that there seemed to be some confusion about what xi

stood for in each of the above inequalities. When examining the first inequality, 

Jay asked, “You’re saying this xi is the entire sequence, right?” After a moment’s 

consideration, Dylan responded, “Yeah. It’s the entire sequence.” Unfortunately 

this did not accurately reflect the argument that they had constructed.

When initially constructing the argument and writing the inequalities on the

board, Dylan and Jay were verbally using quantifiers to make sense of these 

inequalities. However, they did not express these quantifiers in mathematical 

notation. In the first inequality, Dylan said “an xi”, indicating an existential 

quantifier. But then when considering the negation of that inequality, he said 

“every single element here” (pointing at the xi), indicating a universal quantifier.

In the interest of time, I chose to re-voice their original argument, 

inscribing the proper quantifiers as I spoke.

“Let's be a little careful. So I think what we're saying here is, we're trying to 
find an index, right? So we're kind of like, there is an i that does this [first 
inequality]. And if the answer's “No,” then the negation of that is, “Then for 
all i,” that [second inequality] has to be true.”

Dylan and Jay affirmed my summary, and then proceeded to recapitulate the 

proof one last time. Jay summarized, “The two big implications were that there's 

a least-upper bound, and that least-upper bound implies convergence.” Dylan 

agreed, and with that they had completed their proof of their Monotone 

Convergence Theorem.
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Summary

The design heuristic of emergent models is useful for describing the 

development of Dylan and Jay’s thinking with respect to convergence and 

completeness. When they initially justified that their algorithm would find a root, 

their reasoning could be modeled by the completeness of the real numbers 

(specifically as characterized in the Monotone Convergence Theorem). In order 

to engage the students in vertical mathematizing, I tasked Dylan and Jay with 

reflecting on and trying to prove that justification as a conjecture. Least-upper 

bounds emerged as a record-of their thinking about conditions for a monotonic 

sequence to converge to an upper bound. Again, I codified this conjecture and 

tasked the students with analyzing and then proving it, supporting further 

refinement of this form of the global emergent model. Equipped with the 

language and concept of least-upper bounds, Dylan and Jay returned to the 

proof of the MCT. In order to complete this proof, Dylan and Jay had to convince 

themselves of the existence of least-upper bounds under the conditions of their 

theorem. They then had to use the properties of least-upper bounds, coupled 

with their definition of convergence, to construct a formal, algebraic argument to 

complete the proof of their MCT. The completeness of the real numbers in the 

form of the Least-Upper Bound Property19, had become a tool-for more formal 

reasoning about completeness and convergence.

With the proof completed, and with their newly constructed understandings

19 A non-empty set that is bounded above has a least-upper bound.
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of sequence convergence and completeness, I asked Dylan and Jay to once 

again return to their algorithm and the sequence of approximations it generated. I

then tasked them with formally proving that their algorithm would find a root. 

Interestingly, rather than applying the Monotone Convergence Theorem directly, 

Dylan and Jay used the techniques from their proof. They first verified that their 

sequence of approximations was monotonically increasing, and that it was 

bounded above. By their previous argument, this allowed them to conclude that 

there was a least-upper bound for their approximations. In a similar proof by 

contradiction, they formally showed that their sequence of approximations must 

converge to that least-upper bound. This marked the end of the second phase of 

the instructional sequence, and the question of why such a number must be a 

root motivated the transition to the third and final phase of the instructional 

sequence. The rest of that story can be found in The Intermediate Value 

Theorem as a Starting Point for Inquiry-Oriented Advanced Calculus (Strand, in 

preparation).

Discussion

In the context of developing a proof of the Intermediate Value Theorem, 

we have seen how the informal strategies of two students anticipated formal 

characterizations of completeness. Two characterizations of completeness 

emerged in this teaching experiment, both of which were rooted in the specific 
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tasks with which Dylan and Jay were engaged. The Monotone Convergence 

Theorem (MCT) emerged because the students were considering the 

convergence of their (monotonically increasing, bounded) sequence of 

approximations to a root. That such a sequence must converge was intuitively 

clear to them. The rest of their activity took place within the context of proving 

this idea. Least-upper bounds also emerged from their activity, for the first time 

when they were trying to identify what conditions would guarantee that a 

monotonically increasing sequence would converge to an upper bound. Dylan 

and Jay subsequently utilized this idea, using the term “max”, to define an “error” 

term for sequences in general, with which they defined sequence convergence. 

Least-upper bounds also supported the students in constructing a formal 

definition of what it meant for a sequence to decrease to zero. Finally, in 

constructing a proof of the MCT, Dylan and Jay debated the existence of least-

upper bounds, ultimately accepting their existence as a consequence of the real 

number line. The existence and properties of least-upper bounds were the key 

ideas in the ultimate completion of their proof of the MCT.

One way to frame this development is using the RME construct of 

emergent models. In justifying the convergence of their sequence of 

approximations, the students’ thinking could be modeled by the larger concept of 

the completeness of the real numbers. Dylan and Jay were eventually able to 

use aspects of this model as a tool-for reasoning more formally about 

convergence. The development of this model was inextricably tied up with the 
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development of their understanding of convergence. So much so, in fact, that it 

would be impossible to describe one without describing the other. It was in the 

process of defining sequence convergence that least-upper bounds emerged as 

a record-of their thinking. Through the process of reflecting on and formally 

defining “maximum” (which helped them solidify their definition of sequence 

convergence) completeness, specifically as signified with least-upper bounds, 

began to transition to a tool-for the students to reason more formally about 

convergence and to complete a proof of the MCT. In this way the development of 

their understanding of completeness supported and was supported by the 

development of their understanding of sequence convergence.

Future research will investigate further the nature of this interdependent 

concept development in this context. For example, in my first teaching 

experiment, the pair of students considered a sequence of nested, shrinking 

intervals, rather than a sequence of approximations to a root. This thinking could 

also be modeled by the larger concept of the completeness of the real numbers, 

as it is essentially the Nested Interval Property. Though I did not pursue the 

development of that model in that first teaching experiment, didactic 

phenomenology suggests that analyzing and codifying this as a conjecture, and 

working to develop a proof of said conjecture, would be a promising approach for

supporting students in reinventing formal characterizations of sequence 

convergence and completeness. From an instructional design perspective, it will 

be important to investigate the constraints and affordances of going through this 
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process starting with different characterizations of completeness. While this 

research suggests a promising instructional design approach, knowing more 

about how these two concepts develop together would be invaluable for these 

efforts. In particular it will be interesting to know if least-upper bounds serve the 

same role as a transformational record, and if that characterization is the one 

students choose as a foundation.

Also of great interest is students’ perception of completeness from an 

axiomatic perspective. In this research Dylan and Jay seemed content to rely on 

the existence of least-upper bounds. In that sense the existence of least-upper 

bounds served as an axiom in the classical Greek sense: it was a property that 

seemed evidently true solely from the properties of the real numbers. But it is 

also true that I did not press Dylan and Jay to question this assumption. On what 

other characterizations of completeness might students rely when trying to prove 

the existence of least-upper bounds? I would be very interested to know how 

other students view the choice of a foundation; when is it okay to “stop digging”? 

Answers to these questions could have a strong impact on instruction of 

advanced calculus/real analysis.

This paper contributes to our understanding of how students think about 

completeness. Specifically in the context of the Intermediate Value Theorem, 

there is strong evidence that completeness can be a powerful model, first as a 

record-of student thinking about convergence, and then for use by the students 

as a tool-for developing more formal conceptions of sequence convergence and 
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completeness itself. This further suggests that intuitive notions of completeness 

could support students in developing their understanding of sequence 

convergence and completeness in other contexts, as well; for example, in an IBL 

(Inquiry-Based Learning) or even a traditional lecture-based advanced calculus 

course. There is also evidence that these informal student characterizations of 

completeness are rooted in representations of the real numbers as a number 

line; the historical development of completeness lends credence to this idea 

(Dedekind, 1901). While there is still much to uncover about how students think 

about completeness and how that thinking might progress, it is evident that there 

are important connections between completeness and convergence in students’ 

minds.
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Paper #3 – Pedagogical Inspirations for Advanced Calculus from Cauchy's 
Proof of the Intermediate Value Theorem

Making the transition from more computation-based lower-division math 

classes to more abstract, proof-based upper-division courses can be quite 

challenging for undergraduate students. The transition from calculus to advanced

calculus is a prime example. Part of this challenge lies in the aforementioned 

dramatic shift in student activity, from a dependence on algorithms and 

computational techniques to a focus on definitions, theorems, and proofs. In 

order to address these challenges, I sought to engage students in activities in a 

context that would engage their knowledge and skills gained through the calculus

sequence, and would motivate their investigation into the deeper questions of the

how and why of calculus. I wanted to give them a problem embedded in a 

context that would cause them to seek things like a formal definition of sequence 

convergence. In this article I will explain how Cauchy’s proof of the Intermediate 

Value theorem provides just such a context.

The instructional sequence described in this paper comes from a larger 

instructional design project for advanced calculus, developed using the design 

heuristics of Realistic Mathematics Education (RME). Briefly, the RME approach 

is founded on the principle of guided reinvention: “The idea is to allow learners to 

come to regard the knowledge they acquire as their own private knowledge, 

knowledge for which they themselves are responsible” (Gravemeijer, 1999). Thus
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mathematical learning is conceptualized as a process by which “formal 

mathematics comes to the fore as a natural extension of the student’s 

experiential reality” that is, an extension of the student’s informal knowledge and 

intuition (Gravemeijer, 1999).

This instructional sequence is intended for use in a classroom centered 

around student inquiry. There are a number of powerful, well-regarded sets of IBL

(Inquiry-Based Learning) notes for advanced calculus/real analysis (Mahavier & 

Clark, 2016) that have been developed and refined through many, many 

classroom implementations. Such notes, generally speaking, are primarily 

geared toward supporting students in developing the deductive system of real 

analysis from the ground up; that is, students are presented with foundational 

definitions, and then tasked with proving theorems and conjectures, culminating 

with powerful results like the Fundamental Theorem of Calculus. The goal of this 

project, however, is to develop student-centered, research-based curriculum for 

advanced calculus that supports students in formalizing their informal knowledge.

Another way to frame this is that, in the RME approach, we give students a 

problem in a context with which they are intuitively familiar (e.g., the IVT), and 

then the students build the machinery (definitions, theorems, etc.) needed to 

solve the problem. In any case, the underlying motivation is the same: to have 

the students doing the math in the classroom, rather than the teacher. The 

teacher should act only as an expert guide.
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Figure 24: The Intermediate Value Theorem for continuous functions.

Cauchy’s proof of the Intermediate Value Theorem (IVT) was significant in 

the historical development of real analysis for a number of reasons (Grabiner, 

1981). He and Bolzano are credited with developing the first formal proofs of the 

IVT in the early 1820s. Up until that time, the IVT was generally taken to be an 

obvious consequence of continuity, if not a definition of continuity itself (Lützen, 

2003). Cauchy’s proof technique was novel as well: he adapted the 

approximation techniques of Lagrange and others into tools for proving existence

(Grabiner, 1981). In the subsequent sections I will describe an instructional 
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sequence, inspired by Cauchy’s proof, that supports students in developing their 

own proof of the IVT. Along the way, students will discover the need for formal 

definitions of sequence convergence and continuity, in addition to a formal 

characterization of the completeness of the real numbers. These are some of the

core concepts in advanced calculus, so developing formal conceptions in this 

way will give students a solid footing on which to continue their investigations of 

real numbers and functions.

An Approximation Algorithm

Students begin their investigations with a relatively simple question: Does 

p(x) = x5 - x - 5 have a root in [0,2]? This polynomial is an unsolvable quintic, and 

so no analytic techniques will help them find the root. This might seem a funny 

way to start off investigations designed to build on students informal knowledge, 

but the goal here is to get students thinking in terms of the Intermediate Value 

Theorem (IVT). Of course this polynomial does have a root on the given interval, 

and though the exact wording may vary, student justifications for this amount to a

conjecture that is equivalent to the IVT: namely that the polynomial is continuous 

and changes sign on the interval, so it therefore must cross the x-axis in that 

interval. It is the proof of this general conjecture, that a sign change of the 

(continuous) function implies a root, that drives the subsequent investigations. 

Trying to establish this intuitive results will motivate the students to develop the 
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definitions and proof techniques necessary to do so.

In order to lay the foundation for this proof, we set the students a problem 

whose solution requires them to construct an algorithm that, in its fundamental 

features, resembles the algorithm used by Cauchy in his proof of the IVT. Given, 

for now, that their conditions imply the existence of a root, students engage with 

the following task: Approximate the root to exactly two decimal places. The 

students’ earlier assertion that the root existed because the function changed 

sign provides a simple and powerful solution to this problem of approximation. 

Checking the sign of the function at values within the interval provides an 

expedient way to narrow their search for the root: a point in the interior of the 

interval must evaluate to either positive, negative, or zero. If zero, then the 

search for a root is completed. If not, then the root must lie between sign 

changes of the function, and we now have a smaller range to consider. 

Furthermore, the distance between these successive values provides a 

bound for the error in using an interior point for our approximation, which allows 

us to know for certain how many digits of our approximation are correct. Follow-

up tasks require the students to achieve greater degrees of accuracy: for 

example, Now approximate the root to six decimal places, and then, 

Approximate the root to an arbitrary degree of accuracy. This provides students 

with a need to iterate their reasoning into an approximation algorithm.
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This algorithm may take on different forms, but should utilize the same 

core feature: namely that of iteratively approaching a root by analyzing the sign 

change of the function. I have worked with two separate pairs of students 

investigating this context. In Figure 25, a student has described their algorithm, 

which was essentially equivalent to the Bisection Method. Another pair of 

students I worked with developed an algorithm that involved checking the sign at 

successive decimal values; when the sign changed, they then went to the next 

unknown decimal place and began checking again (Figure 26). This amounted to

a decimal expansion of the root. Though markedly different, both of these 

algorithms used the sign change of the function to generate increasingly accurate
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approximations to a conjectured root, and both algorithms resulted in a number 

of convergent sequences.

Sequence Convergence & Completeness

After developing their approximation algorithm, the development of a proof

of their conjectured IVT logically requires students to focus on the convergence 

of one (or more) of the sequences generated by their approximation algorithm. 

One question that can prompt these investigations is: How do you know that your

algorithm will find a single, real number? Due to the nature of the problem, 

student justifications will amount to characterizations of the completeness of the 

real numbers. For example, a pair of students who developed an algorithm based
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approximating a root.



on the Bisection Method argued its finding of a root using a justification 

equivalent to the Nested Interval Property. They recognized that the width of the 

interval in question was a bound on the error in choosing any point in that interval

to approximate the root. For example, if they had narrowed the interval down to 

[1.25, 1.5], then the error in choosing any point in that interval as an 

approximation to the root could never be worse than 1.5 - 1.25 = 0.25. Because 

each iteration of their algorithm halved the maximum possible error, in the limit 

the error would go to zero. The idea that a sequence of (nested) intervals whose 

length goes to zero contains a unique real number is essentially the Nested 

Interval Property.

For a pair of students who developed the Decimal Expansion algorithm, 

the justification was an entirely different characterization of the completeness 

property. With their implementation of the algorithm, they chose to focus only on 

the sequence of decimal approximations (e.g., 1.4, 1.41, 1.4.19,..., etc.). These 

students argued that this sequence of approximations must converge because it 

was increasing and bounded above (by the root, for one). This is essentially the 

Monotone Convergence Theorem (Figure 27).
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Codifying their justification as a conjecture provides students the next 

problem to solve. This problem motivates the development of a formal definition 

of sequence convergence and of a formal characterization of completeness. The 

proof of any of these conjectures will require the students to appeal to another 

characterization of completeness, one which they can accept as a basic 

assumption without proof. This is due to the fact that completeness is an 

axiomatic property of the real numbers, since we are not constructing them from 

the Rational numbers. The students who argued using the MCT reinvented the 

existence of least-upper bounds as their formal characterization of completeness,

and the idea of least-upper bounds was instrumental for them in completing the 

proof. Through the process of developing, analyzing, and refining this proof, 
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MCT).



students gain a more formal understanding of completeness.

In order to complete a formal proof, the students will also need to develop 

a formal definition of sequence convergence. Depending on the justification they 

chose, the students may only need a formal definition of sequence convergence 

that applies to a sequence monotonically decreasing to zero, or to a sequence 

monotonically increasing toward its limit. Subsequently, any of the myriad other 

sequences generated by their algorithm can be used to motivate more general 

definitions of sequence convergence. Though reflecting on their original 

algorithm and working to construct the proof should help students develop a 

formal definition, it has also been shown that generating a set of examples and 

non-examples can help support the process of developing a formal definition of 

sequence convergence (Swinyard & Larsen, 2012; Oehrtman, Swinyard, & 

Martin, 2014). With such a definition students should be ready to complete the 

proof of their characterization of completeness. In this way they have developed 

more formal understandings of sequence convergence and completeness, and 

formally established that their algorithm approximates something. All that remains

is to formally prove the IVT (as they have conjectured it), which will involve re-

purposing their algorithm as a tool to establish the existence of a root candidate, 

and then to use continuity to show that it must, in fact, be a root.
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Continuity

With their approximation algorithm firmly established as a tool, and with 

their newly constructed understandings of sequence convergence and 

completeness, the students are now ready to return to the larger proof of the IVT.

Building on their previous activity, they should be ready to begin proof 

construction: Prove that, under your conditions, a function f must have a root in 

[a,b]. Students should be supported in re-purposing their algorithm, to use it to 

show the existence of a unique real number that serves as a root-candidate.

With a root-candidate in hand, the remainder of the proof involves using 

the continuity of the function to show that the root-candidate is a root of the 

function. Informal student conceptions are likely to take one (or both) of two 

forms: 1) a continuous function is one with no “jumps” or “breaks”, or 2) the limit 

characterization from calculus: a function is continuous at a point if the limit at 

that point equals the function’s value. In order to formalize the second 

characterization, students will need to develop a formal definition of the limit of a 

function at a point. This activity is supported by their previous work with their 

algorithm and with defining sequence convergence.
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Formalizing the first characterization presents the opportunity of 

developing an epsilon-delta definition of continuity without first defining the limit 

of a function at a point. In this case it might be useful to have students formally 

define what is meant by a function having “no jumps or breaks”. As a first 

attempt, one student I worked with suggested that the changes in x and y had to 

be proportional, somehow, so that a small change in x could not result in a much 

larger change in y. While this statement is focused first on the inputs and lacks 

any usable quantification, this characterization bears some remarkable 

similarities to the reasoning behind the formal epsilon-delta definition of 

continuity. By codifying this statement, and having students analyze and refine it, 
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students can be supported in developing a formal definition of continuity. 

However it is developed, with a formal definition of continuity students are ready 

to complete their proof of the IVT.

Summary

Cauchy’s proof of the Intermediate Value Theorem offers a rich context for 

developing some of the fundamental concepts of real analysis. Further, it offers a

very accessible entry point for students who have completed the calculus 

sequence. Student inquiry begins with approximating the root of a polynomial. 

Students should develop an algorithm that uses the sign change of the function 

to “zoom in” on the root. Student justifications for why this algorithm finds a root 

will depend on one (or more) of the sequences it generates, and these 

justifications will be equivalent to characterizations of the completeness of the 

real numbers (e.g., the Monotone Convergence Theorem, the Nested Interval 

Property, the Least-upper Bound Property, etc.). This can serve as a motivation 

to consider the development and proof of different characterizations of the 

completeness property. The proof of these characterizations will require students 

to develop a formal definition of sequence convergence. Finally, the task of 

putting together a proof of the Intermediate Value Theorem, building on the 

students’ algorithm and their formal characterizations of sequence convergence 

and completeness, can be used to motivate the investigation of continuity, and 

the development of one or more formal definitions of continuity. In this way 
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Cauchy’s proof of the Intermediate Value theorem can be a touchstone that 

supports students in making the transition to the more formal world of advanced 

calculus, and specifically supports them in developing more formal conceptions 

of sequence convergence, completeness, and continuity.

While these insights have been presented for a classroom centered 

around student inquiry, I believe they could be useful in a more traditional 

classroom environment as well. The IVT is an intuitive result, and as such can be

used as a starting point and a touchstone to motivate development of the topics 

of limits and convergence, the completeness of the real numbers, and what it 

means for a function to be continuous. Each of these topics can be thought of as 

branches, growing out of the trunk that is the IVT. When the development of one 

branch is complete, one can return to Cauchy’s proof to motivate development 

along a subsequent branch. In this way some of the core ideas of advanced 

calculus/real analysis can be developed, and motivated by the historical 

development of analysis.
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Appendix A

List of Relevant Mathematical Definitions and Theorems

Cauchy Sequence

A sequence of real numbers {an} is called a cauchy sequence provided that for 
any ε greater than 0 there exists an N in the Naturals so that for any m >= n > N, 
| am - an | < ε.

Dedekind Completeness

Let A and B be sets of real numbers such that:
1. Every real number is either in A or in B;
2. No real number is in A and in B;
3. Neither A nor B is vacuous;
4. If α is in A and β is in B then α < β.

Then there is one (and only one) real number γ such that α ≤ γ for all α in A, and 
γ ≤ β for all β in B. (Rudin, 1953)

The Intermediate Value Theorem (Bolzano’s Theorem)

Suppose that f is continuous on [a,b] and that sign(f(a)) = -sign(f(b)). Then there 
exists a c in (a,b) so that f(c) = 0.

The Least-Upper Bound Property

A non-empty, bounded set of real numbers has a least upper bound.

The Limit of a Function at a Point

limx→a f(x) = L provided that for any ε greater than zero there exists a δ greater 
than zero such that if | x - a | < δ then | f(x) - f(a) | < ε.

The Monotone Convergence Theorem

If a sequence {an} is monotonic and bounded (i.e. there exists an M so that |an| <
M for all n), then the sequence converges.

The Nested Interval Property

The intersection of any sequence of closed, bounded, nested intervals is non-
empty.
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