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ABSTRACT 

Consumption of a fat-rich diet is implicated in the development of central leptin 

resistance and obesity in modern societies. Epidemiological evidence suggests that 

saturated fatty acids (SFA) and n-6 polyunsaturated fatty acids (n-6 PUFA), highly 

consumed in Western diets, induce potent inflammation and impair leptin signalling in 

the hypothalamus, leading to the dysregulation of central leptin on body energy 

homeostasis and peripheral metabolism. However, n-3 PUFA and n-3 PUFA derivatives 

have well-known anti-inflammatory properties, and exert anti-obesity effects by 

improving central leptin sensitivity and its metabolic action in peripheral tissues. 

However, the role and mechanism of distinct fatty acids, especially directly act on 

central nervous system, regulate central leptin sensitivity, hypothalamic leptin signalling 

pathways, and hepatic energy homeostasis remain largely undiscovered. 

The present thesis aims to determine the effect of intracerebroventricular (icv) injection 

of distinct fatty acids on central leptin sensitivity in C57BL/6J male mice. Body energy 

homeostasis, hypothalamic leptin signalling, and centrally regulated hepatic glucose and 

lipid metabolism in response to distinct fatty acids will be characterised. The 

contribution of hypothalamic inflammatory effects induced by different fatty acids will 

also be investigated. The fatty acids to be examined are SFA palmitic acid (PA), n-6 

PUFA arachidonic acid (ARA), n-3 PUFA docosahexaenoic acid (DHA), and n-3 

PUFA derivative α-ethyl DHA ethyl ester.  

We demonstrate that the icv administration of PA and ARA induces central leptin 

resistance, evidenced by the inhibition of central leptin's suppression on food intake and 

body weight gain. In addition to central leptin resistance, the hypothalamic leptin JAK2-

STAT3 and PI3K-Akt signalling pathways were impaired, with the down-regulation of 
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leptin signalling mediators pSTAT3, pJAK2, pAkt, and pFOXO1. Furthermore, the 

central administration of PA and ARA blunted the leptin-induced decrease of hepatic 

gluconeogenesis, glucose transportation, lipogenesis, cholesterol synthesis, and increase 

in hepatic β-oxidation. PA and ARA induced potent hypothalamic pro-inflammatory 

effects and increased pro-inflammatory cytokines and inflammatory mediators, as well 

as increased leptin signalling negative regulator SOCS3. On the other hand, central 

injection of DHA and DHA derivative exerted an anorexigenic effect by reducing 

energy intake and body weight gain in high-fat diet (HFD) mice. Both DHA and DHA 

derivative improved leptin JAK2-STAT3 and PI3K-Akt signalling in the hypothalamus, 

and consequently restored central leptin-mediated hepatic glucose and lipid metabolism. 

In addition, we also demonstrate that PA and ARA can inhibit, while DHA can improve 

central leptin action in mediating hypothalamic sympathetic activity, which may 

associated with the impaired or promoted hepatic energy metabolism. 

In summary, elevated central PA and ARA concentrations induce leptin resistance and 

pro-inflammatory response in the central nervous system, which is associated with the 

dysregulation of the central leptin effect on energy homeostasis and hepatic metabolism. 

DHA and DHA derivative reverse HFD-induced adiposity, and decrease hypothalamic 

inflammation, which contributes to an increased central leptin sensitivity and improved 

regulation of hepatic metabolism. Thus, the administration of distinct fatty acids may 

provide realistic and alternative therapeutic strategies for the treatment of obesity and 

associated metabolic disturbances. 
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Chapter One 

1.1 Introduction 

The prevalence of obesity is a major worldwide health problem, has led to increasingly 

a number of life threatening diseases as well as enormous associated personal, social 

and economic costs. There is an urgent need for improved therapeutics and a better 

understanding of the physiological process that balances energy intake and energy 

expenditure. Leptin resistance is a key feature of obesity and related metabolic disorders 

such as type II diabetes and metabolic syndrome. The consequence of leptin resistance 

is an inability to regulate energy intake and expenditure properly by utilising leptin for 

negative energy balance regulation. Improving central leptin sensitivity will break the 

vicious cycle of the dysregulation of energy balance evident in obesity. 

Diets contain different types of fats. Saturated fatty acids (SFA), n-3 polyunsaturated 

fatty acids (n-3 PUFA), and n-6 PUFA have been shown to differentially modulate 

overall energy metabolism by affecting central leptin sensitivity. For instance, both 

dietary and central administrations of SFA have been shown to induce central leptin 

resistance, accompanied by defective leptin signal transducer activator of transcription 3 

(STAT3) and phosphoinositide 3-kinase (PI3K) signalling in the hypothalamus 

(Kleinridders et al., 2009, Bates et al., 2003, Munzberg et al., 2004). n-6 PUFA can 

increase the risk of leptin resistance, obesity, and diabetes in humans and rodents 

(Phillips et al., 2010, Nuernberg et al., 2011). On the other hand, n-3 PUFA and n-3 

PUFA derivatives have been shown to exert some beneficial effects on leptin resistance 

and obesity (Pimentel et al., 2012, Rossmeisl et al., 2009, Cintra et al., 2012). However, 
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the direct effects of SFA and n-3 PUFA on leptin signalling in specific regions of 

hypothalamus and neuronal-mediated hepatic metabolism are not thoroughly elucidated. 

And especially the effects of n-6 PUFA and n-3 PUFA derivatives on central leptin 

sensitivity, hypothalamic leptin signalling and neuronal mediated hepatic metabolism 

are largely unknown. 

Evidence indicates that central leptin plays a primary role in the regulation of glucose 

and lipid metabolism in the liver and other tissues (Denroche et al., 2012). Leptin 

administration enhances insulin-mediated suppression on hepatic glucose production, 

hepatic gluconeogenesis, and glucose transportation in rodents (Rossetti et al., 1997, 

Burcelin et al., 1999, German et al., 2011, Hidaka et al., 2002). Moreover, mounting 

evidence indicates that leptin has a beneficial effect on hepatic lipid metabolism in 

regulating lipogenesis, fatty acid β-oxidation, and cholesterol metabolism (Prieur et al., 

2008, Gallardo et al., 2007). In addition, it has been suggested that the central leptin 

action on hepatic metabolism can be regulated by the alteration of central leptin 

sensitivity. For instance, HFD rich in SFA induces decreased central leptin sensitivity 

and defective leptin signalling in the hypothalamus, which leads to the dysregulation of 

peripheral metabolism, including hepatic steatosis, hyperglycaemia, and lipidaemia etc. 

(Warne et al., 2011, Milanski et al., 2009). Leptin signalling pathways, janus activated 

kinase 2 (JAK2)-STAT3 and pI3K-protein kinase B (Akt) signalling in the 

hypothalamus have been shown to be involved in hepatic glucose and lipid metabolism 

(Buettner et al., 2006, Buettner et al., 2008, Morton et al., 2005). For instance, 

attenuated hypothalamic leptin PI3K signalling is reported to contribute to adiposity and 

hepatosis in diet-induced obesity (DIO) (Warne et al., 2011). Therefore, determining the 

effects of distinct fatty acids on central leptin sensitivity will help us to understand the 
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mechanism underlying central leptin resistance, obesity, and associated metabolic 

disturbances. 

The mechanism of central leptin resistance and DIO has not yet been elucidated 

completely. Hypothalamic inflammation has been shown to be an important contributor 

to leptin resistance and DIO (Carvalheira et al., 2003, Posey et al., 2009). Recently, the 

signalling pathways, IKK-β/nuclear factor-kappa B (NF-κB), toll-like receptor 4 

(TLR4), and JNK signalling in the hypothalamus, have been suggested to be implicated 

in the inflammation underlying DIO (Tsukumo et al., 2007, Shi et al., 2006a). 

Moreover, distinct fatty acids have different inflammatory properties. SFA and n-6 

PUFA, highly present in the typical Western diet, have been demonstrated to stimulate 

potent inflammation in the hypothalamus by activating TLR4/NF-κB signalling 

(Kleinridders et al., 2009). n-3 PUFA and n-3 PUFA derivatives have been shown to 

exert anti-inflammatory effects in the hypothalamus by reducing the expression of 

inflammatory cytokines and other inflammatory mediators (Cintra et al., 2012). In 

addition, it has been shown that the hypothalamic pro-inflammatory effects induced by 

SFA lead to central leptin resistance (Kleinridders et al., 2009), while the anti-

inflammatory effects induced by n-3 PUFA are able to revert the central leptin 

resistance and related metabolic disorders (Cintra et al., 2012). Therefore, determination 

of the hypothalamic inflammation effects induced by distinct fatty acids may contribute 

to the improvement and prevention of central leptin resistance and obesity. 

Therefore, through the present thesis, we will determine the type of fatty acid that 

reduces central leptin sensitivity, as well as the type of fatty acid that best improves 

central leptin sensitivity. I aim to explore the molecular mechanism of specific fatty 

acids in regulating central leptin action on energy homeostasis, hypothalamic signalling, 
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and hepatic glucose and lipid metabolism. We determine to explore the contribution of 

hypothalamic TLR4/NF-κB and JNK/NF-κB inflammatory signalling to central leptin 

resistance and DIO. The knowledge obtained from these studies may lead to practical 

dietary interventions with the proper use of fatty acids for the control of obesity and 

type II diabetes. 

1.2 Literature Review 

1.2.1 Obesity Prevalence 

Obesity is a medical condition in which abnormal or excessive adipose mass 

accumulation resulting from a chronic imbalance between energy intake and 

expenditure (Weiser et al., 1997, Surwit et al., 1988). The incidence of obesity is 

increasing at an alarming rate, and obesity is now considered to be a worldwide 

epidemic. Nearly 35% of the adult population in most developed countries are clinically 

obese (WHO Statistics, 2013). The global epidemic of obesity has led to increasingly 

serious medical problems. Firstly, the rapid increase of obesity has increased the 

incidence of leptin resistance, insulin resistance, and type II diabetes, which correlates 

with the increased risk for numerous adverse health consequences (Visscher and Seidell, 

2001). For instance, about 80% of the individuals with type II diabetes are classified as 

overweight or obese, and 30% of obese children under the age of 12 display insulin 

resistance (Canete et al., 2007). DIO also leads to multiple metabolic dysregulations, 

such as hypertension, metabolic syndrome, hyperglycaemia, hypertriglyceridaemia, and 

dyslipidaemia (Kopelman, 2000). Moreover, obesity is an important risk factor for 

cardiovascular disease and cancer. It has been demonstrated that obesity may increase 

the risk of myocardial infarction by up to 55% (Yusuf et al., 2005). In addition to the 
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serious medical consequences, the health problems related to obesity impose substantial 

economic burdens on individuals, families, and communities. 

Several factors contribute to the worldwide epidemic of obesity and type II diabetes. 

Important etiologic factors include the increased consumption of diets rich in saturated 

fat, the prevalence of the Western diet (rich in n-6 PUFA), and the overall decreased 

intake of n-3 PUFA (Spiegelman and Flier, 2001). Combined with a sedentary lifestyle, 

the outcome is excess energy storage in the form of fat deposits in the body, which 

exacerbates the development of obesity and associated metabolic disorders. However, 

there is no effective current therapy to combat the obesity epidemic. Through 

understanding the effects of specific fatty acids on leptin resistance and obesity, and 

determining the causes and pathogenesis of obesity, it may be possible to design 

therapeutic targets to prevent and treat obesity and its associated metabolic disorders. 

1.2.2 Leptin and Central Leptin Resistance 

1.2.2.1 Leptin 

Leptin is a 16 kDa adipocyte-derived hormone consisting of 167 amino acid residues. 

Leptin communicates the repletion of body energy stores to central nervous system, 

which suppresses food intake and increases energy expenditure by controlling 

behaviour and metabolic responses (Fruhbeck, 2006, Bjorbaek and Kahn, 2004b). 

However, leptin deficiency owing to the mutation of leptin or leptin receptor (LepR) 

results in increased food intake and reduced energy expenditure and immune function, 

eventually leading to obesity (Myers et al., 2010, Bjorbaek, 2009). Generally, serum 

leptin levels are closely related to body weight and total body fat. The leptin levels and 

leptin gene expression tend to be higher in HFD obese models (Considine et al., 1996). 
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Leptin exerts its biological action through binding to and activating the LepR, of which 

multiple isoforms exist. In mice, the long isoform (LepRb) consists of 1,162 amino 

acids and is the only isoform with a clearly demonstrated signalling capacity (White et 

al., 1997). The absence of LepRb in db/db mice results in obesity, impaired growth, 

infertility and diabetes mellitus (White et al., 1997). LepR is highly expressed in the 

central nervous system, particularly in the hypothalamus, including the arcuate nucleus 

(ARC), paraventricular nucleus (PVN), dorsomedial hypothalamus (DMH), 

ventromedial nucleus (VMH), and lateral hypothalamus (LH). Leptin acts via the LepR 

to stimulate the expression of pro-opiomelanocortin (POMC) located in the ARC. 

POMC generates a range of smaller biologically active peptides, which mediates an 

anorectic response. Leptin also inhibits orexigenic pathways mediated by neurons 

expressing the melanocortin antagonist Agouti-related peptide (AgRP) and 

neuropeptide Y (NPY). 

The present studies will examine the effects of distinct fatty acids on central leptin 

sensitivity in the specific mediobasal hypothalamus (MBH) and PVN. The reason is that 

they are critical sites for leptin to regulate food intake, energy balance, and peripheral 

metabolism homeostasis (Williams et al., 2009). MBH is the primary centre of 

integration of nutrient-related signals (e.g. glucose, fatty acids, and hormones) critical to 

the regulation of energy homeostasis. As part of the MBH, the ARC serves as the leptin 

signalling centre for energy homeostasis regulation (Ring and Zeltser, 2010). ARC 

neurons, containing cocaine- and amphetamine-related transcript (CART) and POMC 

derivative α-melanocyte stimulating hormone (α-MSH), project to the PVN to generate 

the anorectic effect. The PVN has been shown to be a powerful mediator on central 

leptin to regulate energy homeostasis (Michaud et al., 1998). 
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1.2.2.2 Leptin signalling 

Leptin activates several signalling pathways in the central nervous system. The JAK2-

STAT3 pathway has been proven to be a major pathway of leptin signalling (Ghilardi et 

al., 1996, Ghilardi and Skoda, 1997, Rosenblum et al., 1996). In this leptin signalling 

cascade, leptin binds to the functional form of the LepR, and results in the activation of 

JAK2, a cytoplasmic tyrosine kinase. Activated JAK2, in turn, mediates 

phosphorylation at the specific receptor tyrosine residue, which then serves as a docking 

site for STAT3. Therefore, STAT3 becomes phosphorylated. The phosphorylated 

STAT3 becomes dimerized and translocates to the nucleus where they bind and regulate 

related gene transcription (Darnell, 1997). The activation of the STAT3 pathway will 

induce POMC, which is subsequently processed into α-MSH which inhibits appetite and 

increases body expenditure. Additionally, leptin JAK2-STAT3 signalling is negatively 

regulated by the suppressor of cytokine signalling 3 (SOCS3) (Naka et al., 1997). 

Leptin specifically induces SOCS3 mRNA levels in the hypothalamus (Baskin et al., 

2000, Bjorbaek et al., 1998) and activates SOCS3 expression in NPY and POMC 

neurons (Elias et al., 1999). SOCS3 has been demonstrated to attenuate leptin signalling 

by inhibiting JAK2 signal transduction (Sasaki et al., 1999), Akt activation (Ernst et al., 

2009), and insulin receptor substrate (IRS) phosphorylation (Ueki et al., 2004) (Fig. 1).  
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Figure 1. Mechanism of the JAK2-STAT3 signalling pathway 

In the leptin-STAT3 signalling cascade, leptin binds to lepR, results in the activation of 

JAK2. Activated JAK2 mediates phosphorylation at the specific receptor tyrosine 

residue, which then serves as a docking site for STAT3. STAT3 becomes 

phosphorylated. Phosphorylated STAT3 becomes dimerized and translocates to the cell 

nucleus. Within the nucleus, STAT3 can bind and regulate related gene transcription. 

SOCS3 can suppress the action of leptin by binding to JAK2 and tyrosine residues. JAK-

2: janus activated kinase 2, STAT3: signal transducer activator of transcription 3, 

SOCS3: suppressor of cytokine signalling 3, PTP1B: protein-tyrosine phosphatase 1B, 

NPY: neuropeptide Y. Figure adapted from Marroquı´ L. et al (Marroqui et al., 2012). 

 

Furthermore, leptin PI3K signalling in the hypothalamus plays a crucial role in the 

development of central leptin resistance and obesity, and contributes to whole-body 

energy homeostasis (Koch et al., 2010). Leptin and insulin both have the potential to 

activate PI3K signalling in neurons and other cell types. In the hypothalamus, leptin 
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binds to the LepR and activates JAK2 via phosphorylation, leading to the 

phosphorylation of IRS proteins, which in turn activates PI3K and downstream 

molecules Akt. The phosphorylation of Akt finally induces the phosphorylation of 

forkhead box protein O1 (FOXO1) in the nucleus and inactivates FOXO1-mediated 

transcription (Wauman and Tavernier, 2011) (Fig. 2). Leptin inhibits both the activity 

and expression of hypothalamic FOXO1 through the PI3K pathway. Mechanistically, 

FOXO1 regulates food intake and energy expenditure by stimulating the expression of 

orexigenic NPY and AgRP (Ropelle et al., 2009) and inhibiting the expression of 

POMC. The deletion of FOXO1 in POMC neurons results in decreased food intake and 

body weight in mice (Plum et al., 2009). In addition, the deletion of IRS2 in the brain 

causes obesity in mice (Lin et al., 2004). Pharmacological inhibition of the PI3K in the 

hypothalamus prevents leptin-induced anorexia in mice (Niswender et al., 2001). Above 

evidence demonstrated the important role of leptin PI3K pathway in regulating energy 

homeostasis in DIO. 
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Figure 2. Mechanism of the PI3K-Akt signalling pathway 

Both the leptin and insulin receptors play a role in the initial step of IRS 1/2 

phosphorylation, which binds to the subunit of PI3K. PI3K phosphorylates PIP2 and 

following mediators, which activates and phosphorylates protein kinase B (Akt), and 

finally induces the phosphorylation of FOXO1 in the nucleus, inactivating FOXO1-

mediated transcription. JAK2: janus activated kinase 2, IRS: insulin receptor substrate, 

PI3K: phosphoinositide 3-kinase, FOXO1: forkhead box protein O1, NPY: neuropeptide 

Y, AgRP: agouti-related peptide, POMC: proopiomelanocortin, PIP2: 

phosphatidylinositol 4,5-bisphosphate. 

 

1.2.2.3 Central leptin resistance and associated mechanism 

Physiologically, leptin suppresses appetite, increases thermogenesis, and induces weight 

loss through a classical negative feedback mechanism. However, in times of excess 
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energy storage, impaired responses or ‘resistance’ to afferent input of hypothalamus 

from leptin would be predicted to favour weight gain, fat accumulation, and leptin 

resistance. Therefore, leptin resistance is characterised by the failure of elevated 

circulating leptin to suppress appetite and weight gain, which in turn exacerbates 

obesity (Enriori et al., 2006). Furthermore, the leptin resistance in the central nervous 

system has attracted much attention. In the C57BL/6J mice model, both peripheral and 

central leptin resistance have been shown to be induced during the development of DIO 

(Lin et al., 2000). Since central leptin resistance is considered to be the primary risk 

factor for the pathogenesis of overweight and obesity, understanding the mechanisms 

involved in the development of leptin resistance is crucial for the development of 

clinical treatment. 

Many mechanisms have been proposed to explain leptin resistance, including 

impairment in leptin transportation, LepR signalling, and leptin target neurons. Previous 

studies strongly suggest that impaired leptin signalling in the central nervous system 

plays an important role in the development of central leptin resistance and DIO 

(Munzberg et al., 2004). Firstly, the hypothalamic STAT3 signalling has been 

demonstrated to be involved in DIO. For instance, central leptin resistance and defective 

hypothalamic STAT3 signalling have been observed in DIO rodents (El-Haschimi et al., 

2000, Kleinridders et al., 2009). Other consistent reports show that defective STAT3 

signalling is also observed before the DIO or exposure to a HFD in obesity-prone rats 

(Levin et al., 2004). In particular, the defective STAT3 signalling in the specific site or 

sites of the hypothalamus in DIO has been investigated. Munzberg et al. first reported 

that central leptin resistance with diminished leptin-mediated STAT3 phosphorylation 

was induced in the ARC in HFD mice (Munzberg et al., 2004). Another study examined 
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pregnancy-related leptin resistance and reported that the impaired leptin-induced 

STAT3 phosphorylation exists in the ARC and VMH regions in rats (Ladyman and 

Grattan, 2004). These previous studies suggest that defective leptin STAT3 signalling in 

the hypothalamus may be responsible for the pathogenesis of central leptin resistance 

and obesity. In addition, the critical role of SOCS3 as a negative regulator of leptin 

signalling in the central nervous system has been demonstrated by previous studies in 

DIO (Zhang et al., 2008a). Increased expression of SOCS3 in the hypothalamus has 

been observed in DIO rodents, accompanied by leptin resistance, insulin resistance, and 

hepatic steatosis (Enriori et al., 2007, Munzberg et al., 2004). On the other side, mice 

lacking SOCS3 in neurons have increased phosphorylation of STAT3 in VMH, 

improved anorexigenic effect of leptin and glucose homeostasis, and are protected from 

the development of DIO (Zhang et al., 2008a). Evidently, this experimental evidence 

indicates that SOCS3 in neurons negatively regulates leptin signalling and plays an 

important role in mediating central leptin sensitivity, energy homeostasis, and glucose 

metabolism. 

The impairment of the hypothalamic leptin PI3K signalling pathway has been shown to 

play a critical role in central leptin resistance and peripheral glucose and lipid 

metabolism during DIO (Metlakunta et al., 2008, Zhao et al., 2002, Warne et al., 2011). 

Metlakunta et al. reported that the PI3K pathway of leptin signalling was impaired in 

the hypothalamus (MBH) by HFD exposure for 4 weeks (Metlakunta et al., 2008). 

Further, the chronic activation of the hypothalamic PI3K pathway increased leptin 

sensitivity and decrease adiposity, while the pharmacological inhibition of PI3K activity 

blocked the anorectic effect of leptin (Zhao et al., 2002, Hill et al., 2008). Furthermore, 

it has been suggested that the PI3K signalling in the hypothalamus is associated with the 
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regulation of central leptin on hepatic glucose and lipid metabolism in DIO (Warne et 

al., 2011). For instance, Warne et al. reported that the impairment of PI3K signalling in 

hypothalamic neurons causes severe hepatic steatosis (Warne et al., 2011). Altogether, 

these lines of evidence clearly establish an important role of PI3K signalling in energy 

homeostasis and peripheral metabolism in transducing leptin action in the 

hypothalamus. However, the effects of distinct fatty acids on specific leptin STAT3 and 

PI3K signalling pathways in the hypothalamus are still unclear. 

1.2.3 The Regulation of Central Leptin on Hepatic Energy Metabolism 

1.2.3.1 Central leptin regulation on hepatic glucose metabolism 

Leptin plays an important role in the regulation of glucose homeostasis (Fruhbeck and 

Salvador, 2000). It has been proven that the hypothalamus is implicated as a key centre 

for the glucose-lowering action of leptin and peripheral glucose homeostasis mediation 

(Schwartz et al., 1996). Previous vivo studies indicate that leptin acts directly on 

specific peripheral cells, such as hepatocytes, islet cells, and adipocytes, to regulate 

glucose homeostasis (Emilsson et al., 1997, Muller et al., 1997). Several vitro studies 

have shown that the systemic administration of leptin not only enhances glucose 

turnover in normal rodents (Rossetti et al., 1997), but also ameliorates impaired glucose 

metabolism in leptin deficient ob/ob mice (Pelleymounter et al., 1995), insulin-resistant 

mice (Shimomura et al., 1999), and insulin-deficient streptozotocin (STZ)-induced 

diabetic rats (Chinookoswong et al., 1999). 

The precise mechanism by which central leptin modulates hepatic glucose metabolism 

has not been fully elucidated. It is possible that leptin mediates glucose metabolism by 

regulating the key genes that encode glucose metabolism in the liver (Denroche et al., 
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2012). In normal Sprague-Dawley rats, an intracerebroventricular (icv) injection of 

leptin (1.5 ug/6 h) stimulated hepatic gluconeogenesis by increasing Glucose 6-

phosphatase (G6Pase) and Phosphoenolpyruvate carboxykinase (PEPCK) mRNA 

expression (Gutierrez-Juarez et al., 2004). However, central leptin has been shown to 

suppress hepatic gluconeogenesis in obese rodents (German et al., 2011, Hidaka et al., 

2002). For instance, in STZ-Diabetic rats, an icv infusion of leptin (3 ug/day) for 6 days 

normalised the hepatic glucose metabolic dysregulation, and inhibited hepatic 

gluconeogenesis by reducing the G6Pase mRNA levels (Hidaka et al., 2002). In 

addition, previous studies indicate that hepatic glycolysis is suppressed by leptin with 

down-regulated glucokinase (GK) activity in obese rodents (Tang and Chen, 2010). 

However, a few in vitro studies show that it is stimulated by leptin (Hidaka et al., 2002). 

In addition, the regulation of central leptin on glucose uptake may be one of the possible 

mechanisms underlying the regulation of heptaic homeostasis by central leptin. Glucose 

uptake is primarily mediated by glucose transpotters (GLUTs). In the liver, GLUT2 and 

GLUT4 are the primary GLUTs responsible for transporting glucose across the hepatic 

plasma membrane into hepatocytes (Oka et al., 1990). The transcription of the GLUT2 

gene in the liver has been shown to be up-regulated during hyperglycaemic states and in 

type II diabetes (Oka et al., 1990). Leptin has an inhibitory effect on hepatic glucose 

transportation. For instance, an icv infusion of leptin down-regulates GLUT2 mRNA 

expression in the liver of STZ-Diabetic rats, which contributes to the restoration of 

glucose metabolism (Hidaka et al., 2002). 

Another mechanism of the regulation of leptin on hepatic glucose metabolism may be 

associated with altered leptin sensitivity and signalling in the central nervous system. 

Previous experimental evidence suggests that hypothalamic leptin PI3K signalling is an 
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important determinant neuronal mechanism of glucose metabolism (Morton et al., 2005, 

Niswender et al., 2001). In the context of DIO, impaired PI3K signalling in the 

hypothalamus contributes to impaired hepatic glucose metabolism (Metlakunta et al., 

2008). Consistently, Warne et al. also demonstrates that the attenuation of PI3K 

signalling in LepRb neurons promotes hepatic steatosis (Warne et al., 2011). 

Furthermore, another mice study shows that a disruption leads to an impaired mRNA 

translation of insulin and GLUT2 (Chen et al., 2009). On the other hand, both antisense 

‘knockdown’ of hypothalamic insulin receptors and the infusion of a PI3K inhibitor 

cause peripheral insulin resistance and hepatic metabolic disturbances in rats (Obici et 

al., 2002, Gelling et al., 2006). These data collectively show that that leptin PI3K 

signalling in the hypothalamus is implicated in the regulation of hepatic glucose 

metabolism during DIO. In addition, other studies demonstrate that hypothalamic leptin 

STAT3 signalling may be also involved in the regulation of glucose homeostasis 

(Myers, 2004). One study has shown that the disruption of the LepR/STAT3 signalling 

in mice not only results in hyperphagia, neuroendocrine dysfunction, and obesity, but 

also exacerbates insulin resistance and glucose intolerance compared to db/db animals 

(Bates et al., 2005). Consistently, it has also been shown that the central infusion of a 

STAT3 peptide inhibitor prevented the suppressive effect of central leptin on 

gluconeogenesis (Buettner et al., 2006). Therefore, previous studies indicate that the 

activation of hypothalamic STAT3 signalling is required for hepatic glucose 

metabolism. 

1.2.3.2 Central leptin regulation on hepatic lipid metabolism 

Several studies support a direct effect of central leptin on hepatic lipid metabolism 

(Silver et al., 1999, Farooqi et al., 2002). Leptin exerts its effect on lipid metabolism 
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predominantly through the hypothalamus by regulating the transcription of key genes 

that involved in metabolism (Fei et al., 1997, Gallardo et al., 2007). Leptin 

administration inhibits lipogenesis, while promotes lipolysis in rodents (Bryson et al., 

1999). For instance, in wild-type mice, the central infusion of leptin for 7 days 

decreased triglyceride (TG) levels and hepatic lipogenic enzymes, including acetyl-CoA 

carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD1), and 

sterol regulatory element binding protein 1c (SREBP-1c), (Gallardo et al., 2007). In 

ob/ob mice, an icv infusion of leptin (1 ug) for 3 days inhibited hepatic lipogenesis by 

down-regulating ACC, FAS, and SCD1 mRNA levels (Prieur et al., 2008). In contrast, 

in leptin-deficient ob/ob mice, de novo lipogenesis markers (e.g. ACC, FAS, and SCD1) 

in the liver were improved, accompanied by increased fasting glucose, insulin, and 

hepatic TG content (Perfield et al., 2013). These results demonstrate the possible role of 

leptin regulation on lipogenesis in the hepatic metabolism underlying DIO. 

Furthermore, the regulation of leptin on hepatic fatty acid oxidation has been 

demonstrated. Central leptin has been suggested to increase hepatic fatty acid oxidation 

both in normal and obese rodents, resulting in lower tissue TG accumulation (Havel, 

2004, Gallardo et al., 2007). For instance, adenovirus-induced hyperleptinaemia has 

been demonstrated to up-regulate peroxisome proliferator-activated receptor α 

(PPARα), a master mediator of enhanced hepatic β-oxidation in wild-type mice (Lee et 

al., 2002). Another report from Prieur et al. indicated that central leptin acts directly on 

the liver to increase lipid oxidative metabolism by up-regulating acyl-CoA oxidase 

(AOX), carnitine palmitoyltransferase 1 (CPT1), and acetyl-CoA acetyltransferase 1 

(ACAT1) mRNA levels in ob/ob mice (Prieur et al., 2008). 
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In addition, emerging data now indicates that central leptin is an important regulator in 

the control of hepatic cholesterol metabolism. It has been demonstrated that leptin 

inhibits cholesterol synthesis and improves cholesterol transportation (Prieur et al., 

2008). For instance, a low dose icv injection of leptin was effective to decrease the de 

novo synthesis of cholesterol by decreasing the activities of 3-hydroxy-3-

methylglutaryl-CoA reductase (HMG-CoA reductase) in normal Sprague-Dawley rats 

(Vanpatten et al., 2004). In obese mice, icv injection of leptin down-regulated the gene 

expression of HMG-CoA reductase and up-regulated the gene expression of 

apolipoprotein A1 (ApoA1) in the liver (Prieur et al., 2008). ApoA1 is the main 

component of high-density lipoprotein (HDL). As a result, it can be seen that leptin 

central administration is sufficient to decrease plasma TG and free fatty acid levels by 

approximately 50% and suppress the low-density lipoprotein (LDL)/HDL1-cholesterol 

profile. 

1.2.3.3 Central leptin regulation on hepatic glucose and lipid metabolism via tyrosine 

hydroxylase (TH) 

Experimental evidence indicates that central leptin regulates peripheral glucose and 

lipid metabolism by affecting sympathetic nervous system activity (Stanley et al., 2010, 

Warne et al., 2011). For instance, chronic central administration of leptin down-

regulates hepatic lipogenic genes expression by activating the sympathetic nervous 

system (Warne et al., 2011). The attenuation of leptin-mediated PI3K signalling in the 

hypothalamus in turn causes severe hepatic steatosis and decreased hepatic sympathetic 

tone (Warne et al., 2011). In addition, leptin is known to activate the sympathetic 

nervous system through increasing catecholamine output in rodents and humans 

(Buettner et al., 2008, Rosenbaum et al., 2005, Satoh et al., 1999). TH is a rate-limiting 
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enzyme in the synthesis of catecholamine. TH-positive neurons in the hypothalamus 

directly project to brainstem autonomic regions (Geerling et al., 2010). From there, the 

catecholamine-synthesising neurons in the brainstem send efferent signals to the spinal 

cord and exert autonomic control on many organs, including the liver, to regulate 

glucose and lipid metabolism. In addition, in the context of obesity, the TH expression 

in the hypothalamus is decreased, which accounts for the down-regulation of 

sympathetic outflow (Li et al., 2009, Shi et al., 2013). Therefore, TH activation in the 

hypothalamus may be a significant indicator of sympathetic nervous system activity 

connecting the central action of leptin to hepatic glucose and lipid metabolism. 

1.2.4 The Effects of Distinct Fatty Acids on Leptin Sensitivity 

SFA, n-6 PUFA, n-3 PUFA, and n-3 PUFA derivatives have been shown to 

differentially modulate overall energy metabolism, leptin and insulin sensitivity (Cintra 

et al., 2012, Munzberg et al., 2004). The biochemical and molecular mechanisms 

underlying central leptin sensitivity changes induced by distinct fatty acids remain 

unclear. Understanding and exploring the effects of fatty acids on central leptin 

sensitivity and the pathogenesis of obesity may enable us to design therapeutic targets 

for the prevention and treatment of obesity and associated complications. 

A number of studies have demonstrated that the levels of specific fatty acids in plasma 

are reflective of fatty acids consumed in the diet (Ma et al., 1995, Raatz et al., 2001). 

The intake of typical western diet has an influence on the fatty acids found in 

circulation. For instance, the high intake of safflower oil (high n-6 PUFA content) led to 

significant increases in 20:3 (n-6) levels but decreases in 18:3 (n-3) and 20:5 (n-3) 

levels (Sinclair et al., 1994). The high consumption of fish, fish oil, and 

docosahexaenoic oil (high in n-3 PUFA) increased n-3 PUFA and decreased n-6 PUFA 



 

Licai Cheng 19 

 

compositions of plasma fractions in human (Vidgren et al., 1997). Previous studies with 

arachidonic acid (n-6 PUFA), docosahexaenoate (n-3 PUFA) , palmitate (SFA), and the 

essential fatty acids linoleic acid and linolenic acid, each labelled with 14C or 3H, 

showed that fatty acids administered orally or intravenously were rapidly taken up by 

the brain and quickly incorporated into brain lipids (Washizaki et al., 1994) (Innis, 

2007)  (Wainwright et al., 1992). Previous studies show that there is a significant 

positive relationship between the levels of n-3 PUFA (especially DPA and DHA) and n-

6 PUFA (especially ARA) in plasma and their levels in cerebrospinal fluid in humans 

(Guest et al., 2013). The icv injection method used for fatty acid administration in our 

project would be expected to mimic the central effects of fatty acids. The dosage used in 

our project was based upon a previous literature report in rodents (Kleinridders et al., 

2009).” 

 1.2.4.1 Palmitic acid and leptin sensitivity 

SFA are derived from dairy products, fatty meats, palm oil, coconut oil, and some 

processed foods. Palmitic acid (PA, C16:0) is the most common SFA in the human diets 

(Gunstone et al., 2007). SFA are important candidates for diet-induced central leptin 

and insulin resistance (Galgani et al., 2008, Koch et al., 2014, Kleinridders et al., 2009). 

For instance, maintaining a high-SFA diet tends to reduce insulin and leptin sensitivity, 

and even cause leptin resistance in the central nervous system (Benoit et al., 2009, 

Milanski et al., 2009). In addition to central leptin resistance, a diet rich in SFA has 

been observed to impair leptin-evoked STAT3 and PI3K signalling in the hypothalamus 

(Metlakunta et al., 2008). Previous studies suggest that the molecular mechanism of 

high SFA consumption induced central leptin and insulin resistance is implicated in 

hypothalamic TLR4 signalling (Milanski et al., 2009). In the hypothalamus, dietary 
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SFA trigger a pro-inflammatory response, which leads to an increased inflammatory 

gene transcription and hypothalamic dysfunction predominantly by inducing TLR4 

activation (Moraes et al., 2009, Milanski et al., 2009). Further, Milanski et al. further 

demonstrated that icv injection of stearic and arachidic acid (SFA) activated pro-

inflammatory gene expression in the hypothalamus in a TLR4-dependent manner 

(Milanski et al., 2009). The central administration of palmitate (SFA) has been shown to 

promote the interaction between TLR4 and myeloid differentiation factor-88 (MyD88, 

an essential signal adaptor for most TLRs), induce downstream inflammation signalling, 

and consequently activate an inflammatory response (Kleinridders et al., 2009). 

Furthermore, recent studies have demonstrated that the central inflammation induced by 

SFA may contribute to central leptin resistance and defective leptin-activated STAT3 

signalling in the hypothalamus (Zhang et al., 2008b). Therefore, SFA play an important 

role in hypothalamic inflammation and the development of central leptin resistance and 

obesity during HFD. 

PA is a primary SFA, and can be found in meat, cheese, butter, and dairy products, 

accounting for approximately 65% of SFA and 32% of total fatty acids in human serum 

(Yu et al., 2012). Recently, PA has drawn particular attention for its effect on leptin 

signalling (Shi et al., 2006a). It has been shown that both dietary and central infusion of 

PA cause leptin resistance in the central nervous system (Benoit et al., 2009, Posey et 

al., 2009, Milanski et al., 2009). In particularly, Kleinridders et al. reported that an 

single icv injection of palmitate (66 pmol) acutely induced central leptin resisitance and 

inhibited central leptin anorexigenic action in regulating food intake and body weight 

gain in male C57/BL6 mice (Kleinridders et al., 2009). However, the precise role and 

mechanism of PA on central leptin sensitivity, leptin signalling in specific regions of the 
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hypothalamus, and central-mediated hepatic glucose and lipid metabolism is still 

unclear. 

1.2.4.2 Arachidonic acid and leptin sensitivity 

Major sources of n-6 PUFA are vegetable oils such as corn, safflower, soybean, and 

typical Western diet. ARA is the most biologically relevant n-6 PUFA. With an 

increased consumption of n-6 PUFA and an decreased n-3 PUFA intake, the n-6 PUFA 

to n-3 PUFA ratio can be as high as 25:1 (Simopoulos, 2010). The high n-6 PUFA to n-

3 PUFA ratio increases the risk of serious of chronic disease, including type II diabetes 

and cardiovascular diseases (Das, 2006). Previous evidence about the effects of n-6 

PUFA on leptin sensitivity is scarce. Some studies have reported that a HFD rich in n-6 

PUFA induced insulin and leptin resistance in mice (Nuernberg et al., 2011), rats 

(Storlien et al., 1991, Jucker et al., 1999), and humans (Heine et al., 1989). In addition, 

the effects of n-6 PUFA on leptin sensitivity in central nervous system have been 

explored by Pimentel et al. He reported that a high-soy oil diet impaired hypothalamic 

insulin signalling by inhibiting insulin receptor and IRS-2 activation, and decreasing 

Akt serine phosphorylation (Pimentel et al., 2012, Pimentel et al., 2013). However, 

some studies show different results, and indicate that n-6 PUFA increase leptin and 

insulin sensitivity in rodents and obese humans (Storlien et al., 1997, Asp et al., 2011, 

Summers et al., 2002, Perez-Matute et al., 2003). Therefore, more evidence is needed to 

determine the effects of n-6 PUFA on central leptin sensitivity and the development of 

obesity. 

Arachidonic acid (ARA, 20:4 n-6), an predominant n-6 PUFA, is a major component of 

mammalian cell membranes, and accounts for up to 25% of all phospholipid fatty acids 

(Calder, 2006). ARA is synthesised in the liver from linoleic acid (LA, 18:2, n-6), and is 
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transported to other cell types via serum albumin or lipoproteins (Simopoulos, 1999). A 

major function of ARA is as a precursor to the eicosanoid family of hormones that 

modulate immune and inflammatory responses in the body (Habenicht et al., 1990). 

Excessive production of eicosanoids from ARA gives rise to pathophysiological 

signalling and increases inflammation (Fritsche, 2008), which may contribute to a 

number of disease states, including obesity (Garaulet et al., 2001), diabetes (Pelikanova 

et al., 2001), metabolic syndrome (Williams et al., 2007), and heart disease (Kark et al., 

2003). Specifically, ARA has been shown to decrease insulin and leptin sensitivity, 

decrease glucose tolerance, and promote adiposity (Ailhaud et al., 2006, Asp et al., 

2011). However, until now, the impact of direct central administration of ARA on leptin 

signalling in the hypothalamus and central regulated hepatic glucose and lipid 

metabolism has not been investigated. 

Cumulative evidence indicates that ARA induces a potent pro-inflammatory response in 

the central nervous system. ARA can alter the gene expression and production of 

inflammatory mediators, such as increasing pro-inflammatory cytokines and decreasing 

anti-inflammatory cytokines (Calder, 2011). For instance, a diet enriched with soy oil 

(n-6 PUFA) for 2 months led to increased levels of tumor necrosis factor receptor-

associated factor-6 (TRAF6) and NF-κB p65 in the hypothalamus in rats, indicating the 

stimulation of the inflammatory NF-κB pathway in the central nervous system 

(Pimentel et al., 2013). Furthermore, ARA is processed by the cyclooxygenase-2 (COX-

2) or lipoxygenase metabolic pathways into eicosanoids (prostaglandins, thromboxanes, 

leukotrienes) (Di Marzo, 1995). ARA-derived eicosanoids have pro-inflammatory 

effects (Hanaka et al., 2009). For instance, refeeding with soy diet increased c-Fos 

immunoreactivity in the DMH (+271%) and LH (+303%) of the hypothalamus 
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(Watanabe et al., 2009). In addition, ARA has been proved to increase NF-κB 

activation, promote IKK associate with NF-κB and IκB complex, and lead to the pro-

inflammatory response (Zhu et al., 2008, Siriwardhana et al., 2012). Therefore, previous 

studies suggest that hypothalamic inflammation induced by ARA may be associated 

with the development of central leptin resistance and obesity.  

1.2.4.3 Docosahexaenoic acid and leptin sensitivity 

n-3 PUFA, present in milk and fatty fish (e.g. salmon, tuna, and mackerel). The 

principal n-3 PUFA include α-linolenic acid (ALA, C18:3, n-3), DHA, and 

eicosapentaenoic acid (EPA, 20:5 n-3). n-3 PUFA are known to have numerous 

beneficial effects on body health. It is well documented that n-3 PUFA exert a 

protective function against obesity by increasing leptin sensitivity both in peripheral 

tissues and in central nervous system (Reseland et al., 2001, Ukropec et al., 2003, Cintra 

et al., 2012). For instance, dietary n-3 PUFA have been shown to reduce the expression 

of leptin mRNA and the level of plasma leptin in peripheral tissues in vivo and in vitro 

(Reseland et al., 2001, Ukropec et al., 2003, Mori et al., 2004). In recent years, more 

evidence has shown that n-3 PUFA increase the leptin sensitivity in the central nervous 

system in regulating energy homeostasis and improving hypothalamic leptin signalling 

(Cintra et al., 2012). For instance, in a mouse model of DIO, both dietary substitution of 

flax seed oil (rich in C18:3) and central injection of ALA reversed hypothalamic leptin 

resistance by increasing the activation of pJAK2, pSTAT3, pAkt, and pFOXO1 in the 

hypothalamus (Cintra et al., 2012). Consistently, another study showed that the 

consumption of a diet enriched with fish oil prevented hyperleptinaemia by stimulating 

hypothalamic Akt serine phosphorylation (Pimentel et al., 2012). Furthermore, n-3 

PUFA has been reported to prevent some metabolic disturbances induced by HFD by 



 

Licai Cheng 24 

 

preventing the glucose tolerance and leptin and insulin resistance (Daniele et al., 1997, 

Rajas et al., 2002), decreasing TG, cholesterol, and VLDL (Kasbi Chadli et al., 2012), 

as well as increasing HDL levels (Rivellese and Lilli, 2003, Carpentier et al., 2006). 

n-3 PUFA have well-known anti-inflammatory effects in both peripheral tissues and 

central nervous system. n-3 PUFA serve as precursors for eicosanoids. However, unlike 

n-6 PUFA, the eicosanoids derived from n-3 PUFA (e.g. EPA and DHA) are anti-

inflammatory (Schmitz and Ecker, 2008) (Fig. 3). n-3 PUFA can improve the 

inflammatory profile by altering the inflammatory mediators, such as pro-inflammatory 

cytokines, anti-inflammatory cytokines in vitro and in vivo (Novak et al., 2003, Zhao et 

al., 2004, Caughey et al., 1996, Kelley et al., 1999). Recently, the anti-inflammatory 

effects of n-3 PUFA in central nervous system have also been provided. For instance, a 

diet rich in fish oil for 2 months reduced the levels of tumor necrosis factor α (TNF-α), 

interleukin 6 (IL-6), and TRAF6, and increased the levels of anti-inflammatory factor 

interleukin 10 (IL-10) in the hypothalamus in male rats (Pimentel et al., 2013). 

Consistently, the direct central administration of n-3 PUFA has a similar effect, as 

shown by a report indicated that icv treatment of n-3 PUFA ALA for 7 days reduced 

hypothalamic inflammation by decreasing the expression of inflammatory markers, 

TNF-α, IL-6, and pJNK, and increasing the expression of the anti-inflammatory 

cytokine IL-10 (Cintra et al., 2012). In addition, GPR120, as an unsaturated fatty acid 

receptor, has been suggested to be involved in the anti-inflammation in the 

hypothalamus induced by n-3 PUFA underlying DIO. A central injection of n-3 PUFA 

has been demonstrated to reverse central leptin resistance by exerting an anti-

inflammatory effect by activation GPR120 in rodents (Cintra et al., 2012). 
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Docosahexaenoic acid (DHA, 22:6 n-3) is an n-3 PUFA primarily found in marine fish. 

DHA participates in regulation of a great number of functions in an organism. Firstly, 

DHA is an important structural component of the cell membranes in the brain and 

retina, and help to maintain normal brain function (Schmitz and Ecker, 2008). DHA is 

taken up by the brain in preference to other fatty acids, and the turnover of DHA in the 

brain is very fast (Horrocks and Yeo, 1999). Therefore, DHA plays a very important 

role in human growth and intellectual development during fetal development, early 

infancy, and old age (Ruxton et al., 2005). Furthermore, DHA is beneficial for 

preventing and treating several diseases, such as hypertension, diabetes mellitus, 

arthritis, cardiovascular disease, and some cancers. In addition to the preventive effect 

on these diseases, DHA also shows beneficial effects on the central regulation of hepatic 

glucose and lipid homeostasis (Clarke, 2000, Han et al., 2008, Carpentier et al., 2006). 

Additionally, DHA exhibits anti-inflammatory properties by competitively inhibiting 

the ARA cascades, most importantly via the COX pathway, thus reducing the pro-

inflammatory eicosanoids derived from ARA (Lo et al., 1999, Weldon et al., 2007) (Fig. 

3). However, the effect of direct central injection of DHA on central leptin sensitivity, 

hypothalamic inflammation, and central-mediated hepatic energy metabolism has not 

been demonstrated. 
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Figure 3. Metabolisms of n-3 PUFA and n-6 PUFA 

ARA and DHA are the parent (n-6) and (n-3) long-chain PUFA. ARA is converted from LA. 

And EPA and DHA are converted from ALA. ARA-derived eicosanoids are pro-

inflammatory, while the mediators formed from EPA and DHA are anti-inflammatory. 

COX: cyclooxygenase. Figure adapted from Kalupahana  et al. (Kalupahana et al., 2011) 

1.2.4.4 α-ethyl DHA ethyl ester and leptin sensitivity 

α-ethyl DHA ethyl ester, as a promising DHA derivative, exhibits a similar range of 

beneficial effects on obesity and associated metabolic disorders as natural n-3 PUFA. It 

has been shown that α-ethyl DHA ethyl ester can prevent and even partially reverse the 

development of obesity and associated metabolic disturbances, including glucose 

intolerance, fat accumulation, and dyslipidaemia in C57BL/6J HFD mice (Rossmeisl et 

al., 2009). However, there are few reports on the effect of DHA derivative on insulin 
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and leptin sensitivity. Only one study showed that DHA derivative markedly decreased 

food intake, feeding efficiency, and plasma leptin levels, reflecting the improved effect 

of DHA derivative on leptin sensitivity (Rossmeisl et al., 2009). 

Consistent with the effects of n-3 PUFA, DHA derivatives show beneficial effects on 

the regulation of glucose and lipid metabolism. In addition to preventing glucose 

intolerance, DHA derivative (α-ethyl DHA ethyl ester) has been shown to not only to 

lower plasma TG, non-esterified fatty acids, and cholesterol levels, but also to strongly 

promote hepatic fatty acid oxidation by increasing the mRNA expression of PPARα, 

AOX-1, and CPT1α in HFD rodents (Rossmeisl et al., 2009). Since SCD1 gene 

expression in skeletal muscle was shown to be down-regulated by α-ethyl DHA ethyl 

ester, this could imply a suppressive effect of DHA derivative on lipogenesis 

(Rossmeisl et al., 2009). 

Systematic metabolomic studies reveal that n-3 PUFA derivatives exert potent anti-

inflammatory effects (Morin et al., 2011). For example, CRBM-0244, a DHA 

monoglyceride derivative, has anti-inflammatory properties and prevents airway hyper-

responsiveness in lung tissue (Morin et al., 2011). This study showed that DHA 

derivative prevented the degradation of Iκ-Bα and the subsequent nuclear translocation 

of the NF-κB p65 subunit. However, until now, no studies have reported the effects of 

DHA derivative on central leptin sensitivity, hypothalamic inflammation, and neuronal-

regulated hepatic metabolism. 

1.2.5 Hypothalamic Inflammation Mechanism involved in HFD-induced Obesity 

1.2.5.1 Hypothalamic IKK-β/NF-κB signalling 
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A large body of evidence reveals that hypothalamic inflammation during HFD is 

associated with the development of central leptin resistance and obesity (Yu et al., 2013, 

Zhang et al., 2008b). IKK-β/NF-κB signalling is a key intracellular pro-inflammatory 

pathway involved in this process. Various studies have demonstrated that IKK-β/NF-κB 

signalling in the hypothalamus is activated in HFD-fed rodents (Zhang et al., 2008b). 

For instance, HFD consumption for 1 week induced a low-grade hypothalamic 

inflammation, evidenced by the increase of pro-inflammatory cytokines, such as TNF-α, 

IL-1β, and IL-6 (De Souza et al., 2005). The increased cytokines activate the NF-κB 

inflammatory signalling pathway by phosphorylating and degrading IκBα, and allowing 

NF-κB proteins to translocate to the nucleus and regulate the transcription of numerous 

genes, and induce a serious of inflammatory responses (Hayden and Ghosh, 2008). 

Recently, hypothalamic inflammation has even been observed after 1 day HFD feeding 

(Thaler et al., 2012) and acute fatty acids (SFA and OA) central injection (Posey et al., 

2009, Zhang et al., 2008b). Furthermore, constitutive activation of NF-κB inflammatory 

signalling in the hypothalamus induces central leptin resistance and impairs leptin 

signalling in rodents. For instance, a study performed by Zhang et al. revealed that 

overnutrition activated the IKK-β/NF-κB inflammatory pathway in the hypothalamus, 

and was accompanied by blunted hypothalamic leptin and insulin signalling (Zhang et 

al., 2008b). On the other hand, in the same report, a genetic or pharmacological 

blockade of hypothalamic inflammatory signals (e.g. IKK-β) was shown to improve 

leptin sensitivity and pSTAT3 activation in the hypothalamus and protect against 

obesity. Therefore, hypothalamic inflammation has been suggested to be a predominant 

contributor to central leptin resistance and obesity. 
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In addition, up and down-stream hypothalamic inflammatory mediators affect leptin 

signalling by regulating the leptin signalling negative regulators, such as SOCS3. HFD-

activated IKK-β/NF-κB signalling, especially the activation of pro-inflammatory 

cytokine expression in the hypothalamus has been shown to be associated with the 

promotion of SOCS3 expression (Wang et al., 2012, Zhang et al., 2008b). More 

evidence shows that the overexpression of both hypothalamic IKK-β and IL-6 signalling 

elevates SOCS3 mRNA expression through the IKK-β/NF-κB pathway. The 

overexpression of SOCS3 induced by IL-6 signalling induces the degradation of IRS 

proteins, which plays a specific role in the regulation of energy balance and the 

development of central leptin sensitivity and obesity (Tups, 2009, Zhang et al., 2008b, 

Morton and Schwartz, 2011). These findings reveal that the up-regulation of 

hypothalamic SOCS3 plays a critical role in mediating hypothalamic inflammation and 

leptin resistance. Above all, strategies to reduce the aberrant activation of inflammatory 

signalling in the hypothalamus are of great interest to improve the central leptin and 

insulin action and prevent obesity and related diseases. 

1.2.5.2 Hypothalamic TLR4 signalling 

TLR4 is the receptor for LPS and plays a critical role in innate immunity. The activation 

of TLR4 signalling leads to a pro-inflammatory response by regulating the induction of 

cytokines and the expression of other immune-related genes. In the hypothalamus, 

TLR4 is predominantly expressed by microglia. SFA have been reported to induce 

inflammation via TLR4 signalling (Huang et al., 2012). In the signalling cascades, free 

SFA or LPS bind and activate TLR4, which binds to MyD88 and after some 

intermediate steps leads to the recruitment of TRAF6. Its interactions with several 

proteins lead to phosphorylation of the inhibitory factor I𝜅B. This releases NF-κB, 
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whose subunit undergoes phosphorylation and translocates to the nucleus, where it 

binds to its target genes to produce pro-inflammatory cytokines and a series of 

inflammatory response (Verstak et al., 2009, Spiegelman and Flier, 2001). It has been 

suggested that hypothalamic TLR4 signalling is the molecular mechanism which link 

the consumption of HFD to leptin and insulin resistance and obesity (Tsukumo et al., 

2007, Shi et al., 2006a). Hypothalamic TLR4 expression and activity are increased in 

HFD-feeding (Wang et al., 2012, Ropelle et al., 2010). The interaction between TLR4 

and MyD88 in the hypothalamus has also been demonstrated to be promoted by the 

central administration of SFA (palmitate), which stimulates TLR4 couple with 

intracellular inflammatory signalling cascades JNK and IKK-β/NF-κB, and induce 

hypothalamic inflammation (Kleinridders et al., 2009). On the other hand, the peripheral 

and central administration of TLR4 inhibitor has been demonstrated to diminish the 

high SFA-induced hypothalamic inflammation, and decrease food intake and body 

weight gain in rats (Milanski et al., 2009). Similarly, the deletion of neuronal TLR 

adaptor molecule MyD88 protects against leptin resistance and obesity induced by HFD 

(Kleinridders et al., 2009). In addition, the same study shows that an icv injection of 

palmitate inhibits leptin-induced pSTAT3 in the hypothalamus, which is dependent on 

MyD88 signalling (Kleinridders et al., 2009). Taken together, these studies indicate that 

hypothalamic TLR4 signalling plays a critical role in the development of central leptin 

resistance and DIO. 

1.2.5.3 Hypothalamic JNK signalling 

The JNK inflammatory pathway appears to play a crucial role in the development of 

leptin resistance and obesity. JNK is activated by multiple inflammatory and 

environmental stimuli, and is thought to exert its pro-inflammatory effect by stabilising 
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mRNAs encoding pro-inflammatory cytokines and other inflammatory mediators 

(Velloso and Schwartz, 2011). The activity of JNK in the hypothalamus is up-regulated 

during chronic HFD in rodents (Prada et al., 2005, Belgardt et al., 2010). Consistently, 

the direct exposure of SFA arachidic acid in the central nervous system led to 

hypothalamic JNK activation (Milanski et al., 2009). The up-regulation of hypothalamic 

JNK activity induced by HFD has been suggested to be associated with the increase of 

NF-κB activation, TLR4 activity, pro-inflammatory cytokines, and SOCS3 gene 

expression (De Souza et al., 2005, Milanski et al., 2009). On the other hand, whole body 

and brain-specific JNK deletion and the icv infusion of a JNK inhibitor have been 

shown to protect against HFD-induced obesity (Belgardt et al., 2010, Hirosumi et al., 

2002). Therefore, the JNK signalling may represent a candidate pathway for HFD-

mediated leptin resistance and obesity. However, some studies reveal that JNK 

signalling is not responsible for mediating leptin resistance upon HFD feeding. 

Evidence shows that the inhibition of JNK in the brain, either by genetic deletion or 

pharmacological inhibition, fails to rescue the impairment of leptin anorexigenic action 

and STAT3 signalling induced by HFD (De Souza et al., 2005, Kleinridders et al., 

2009). More evidence is needed to elucidate the contribution of hypothalamic JNK 

signalling to the development of central leptin resistance and obesity induced by dietary 

fatty acids. 

 

1.3 Aims and Hypothesis 

1.3.1 Aim 

General Aim 
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To examine the effects of distinct fatty acids (PA, ARA, DHA, and α-ethyl DHA ethyl 

ester) on central leptin sensitivity, hypothalamic leptin signalling, hypothalamic 

inflammation, and central-regulated hepatic glucose and lipid metabolism, in order to 

elucidate the molecular mechanisms of central leptin resistance, obesity and associated 

metabolic disturbances. 

Specific Aims 

(1) Study 1 aims to determine the effect of central administration of PA on central leptin 

sensitivity, hypothalamic leptin JAK2-STAT3 and PI3K-Akt signalling, hypothalamic 

inflammation, and neuronal-mediated hepatic glucose and lipid metabolism. 

(2) Study 2 aims to determine the effect of central administration of ARA on central 

leptin sensitivity, hypothalamic leptin JAK2-STAT3 and PI3K-Akt signalling, 

hypothalamic inflammation, and neuronal-mediated hepatic glucose and lipid 

metabolism. 

(3) Study 3 aims to determine the effect of central administration of DHA and α-ethyl 

DHA ethyl ester on central leptin sensitivity, hypothalamic leptin JAK2-STAT3 and 

PI3K-Akt signalling, and hypothalamic inflammation. 

(4) Study 4 aims to determine the effect of central administration of DHA and α-ethyl 

DHA ethyl ester on neuronal-mediated hepatic glucose and lipid metabolism. 

1.3.2 Hypothesis 

I hypothesis that the icv administration of PA and ARA will lead to central leptin 

resistance, evidenced by the inhibition of central leptin’s anorexigenic effect, as well as 

impaired leptin JAK2-STAT3 and PI3K-Akt signalling in the hypothalamus. Decreased 

central leptin sensitivity may affect the central leptin regulation of hepatic metabolism, 
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and lead to the attenuation of hepatic glucose and lipid metabolism. PA and ARA will 

trigger a pro-inflammatory response in the hypothalamus and activate inflammatory 

cytokines and mediators, which contributes to the central leptin resistance and hepatic 

metabolic disturbances. The activation of hypothalamic TH in response to central leptin 

will be down-regulated by icv injection of PA and ARA. 

I also hypothesis speculate that the central injection of DHA and α-ethyl DHA ethyl 

ester will have a significant anorexigenic effect in reducing energy intake and body 

weight gain in HFD mice. I expect that DHA and DHA derivative will restore the leptin 

JAK2-STAT3 and PI3K-Akt signalling pathway in the hypothalamus by up-regulating 

the key signalling mediators. As a result of increased central leptin sensitivity, the 

regulation of leptin on hepatic glucose and lipid metabolism will also be ameliorated. 

The central injection of DHA and DHA derivative corrects the HFD-induced 

hypothalamic inflammation by reducing the hypothalamic pro-inflammatory cytokines 

and inflammatory mediators. The effect of central leptin in regulating hypothalamic TH 

will be improved by DHA and DHA derivative, thus connecting the central action of 

leptin to hepatic energy metabolism. 

 

1.4 Experimental Design and Methods 

1.4.1 Ethics Statement 

This study was approved by the Animal Ethics Committee, University of Wollongong 

(Application Approval #: AE12/03), and complied with the ‘Australian Code of Practice 

for the Care and Use of Animals for Scientific Purposes’ (Australian Government 

National Health and Medical Research Council, 2004). This is in accordance with the 
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International Guiding Principles for Biomedical Research Involving Animals. All 

efforts have been made to minimise animal stress and prevent suffering. 

1.4.2 Animals, Diet and Drug Treatment 

Male C57BL/6J mice were obtained from the Animal Resource Centre (Perth, WA, 

Australia) and housed in environmentally controlled conditions (temperature 22°C, 12 

hour light/dark cycle). Mice were maintained on a normal lab chow diet (LC, Vella 

Stock feeds, Doonside, NSW, Australia). After 1 week of acclimatization, mice were 

anesthetized by isoflurane inhalation and placed in a stereotactic device. An icv cannula 

was implanted into the right lateral brain ventricle (0.25 mm posterior and 1.0 mm 

lateral relative to Bregma and 2.5 mm below the surface of the skull) as described in our 

previous study (Wu et al., 2014). The accuracy of cannula implantation into the lateral 

ventricle was confirmed by examining the needle track in the brain sections of each 

animal (Fig. 4). 

 

Figure 4. The location confirmation of cannula implantation 

The accuracy of cannula implantation into the lateral ventricle was confirmed by 

examining the needle track in the brain sections of each animal (A). A pre-experimental 

confirmation of the correct location of the injection was carried out using a Methylene 

Blue injection (B). 

1.4.3 Experimental Design 
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The experiments in this thesis have been divided into two parts. The first experiment 

(for Study 1 and Study 2) investigated the effect of icv injection of PA and ARA on 

central leptin sensitivity, hypothalamic inflammation, and central-regulated hepatic 

energy metabolism in normal mice. The second experiment (for Study 3 and Study 4) 

investigated the effect of icv injection of DHA and α-ethyl DHA ethyl ester on central 

leptin sensitivity, hypothalamic inflammation, and central-regulated hepatic energy 

metabolism in HFD mice. 

1.4.3.1 Experiment proposal 1 (Study 1 and Study 2) 

All of the 72 mice (10 weeks old, body weight: 22.74 ± 3.22g) were randomized into 

one of six groups: vehicle + saline (SS), vehicle + leptin (SL), PA + saline (PS), 

PA + leptin (PL), ARA + saline (AS), ARA + leptin (AL) (n=12/group). The mice 

were allowed to recover for 1 week after the cannula implantation. The mice received 

icv injection of PA, ARA, or vehicle (25 pmol/time/mouse, twice a day, 50 pmol/day) 

for 2.5 days (Abizaid and Horvath, 2008). Then, a central leptin sensitivity test was 

performed as described (Yu et al., 2013). After recovery for 3 days (day 5-7), the mice 

were treated with icv injection of PA and ARA for another 2.5 days (day 8-10) as 

described previously. On day 10, the mice were treated with an icv injection of either 

leptin (0.5 μg in 2 μl) or vehicle (2 μl saline) 1 hour after the last PA/ARA injection. 

The efficacy of central leptin in controlling blood glucose was determined by carrying 

out a glucose tolerance test 30 minutes after the icv leptin/saline administration (Roman 

et al., 2010). After 3 days of recovery (day11-13), another round of PA, ARA, or 

vehicle injection was conducted (day14-16), and subsequently the leptin/saline injection 

was administrated. 1 hour after the icv injection of leptin/saline, all of the mice were 

sacrificed (Fig. 5). As described previously (Ross et al., 2010), PA (P5585, Sigma-
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Aldrich, Australia) and ARA (A9673, Sigma-Aldrich, Australia) were dissolved in 96% 

ethanol, dried using nitrogen gas, dissolved in 40% hydroxypropyl-b-cyclodextrin 

(HPB) (H107, Sigma-Aldrich), and then stored at -20 °C. 

 

Figure 5. Flow chart of experiment for Study 1 and Study 2 

 wk(s): week(s); D1-3: day 1-3; icv: intracerebroventricular; h: hour(s); min: minute(s); 

FI: food intake; BW: body weight; GTT: glucose tolerance test; PA: palmitic acid; ARA: 

arachidonic acid. 

1.4.3.2 Experiment proposal 2 (Study 3 and Study 4) 

All of the 80 mice (10 weeks old, body weight: 25.35 ± 1.83 g) were randomized into 

one of eight groups: Lab chow + saline (LS), lab chow + leptin (LL), high-fat diet 

+ saline (HS), high-fat diet + leptin (HL), high-fat diet +DHA + saline (HDS), 

high-fat diet + DHA + leptin (HDL), high-fat diet + DHA derivative + saline 

(HDdS), high-fat diet + DHA derivative + leptin (HDdL) (n=10/group). 1 week 

after the cannula implantation, the mice in the lab chow group were fed lab chow (5%, 

3.21 kcal/g), and the mice in the HFD group were fed a high-fat diet (60%, 4.58 kcal/g). 

The mice in the HFD group were treated with icv injection of DHA, DHA derivative, or 

vehicle (1.5 nmol/time/mouse, twice a day, 3 nmol/day) at the same time for two days 

(Schwinkendorf et al., 2011). At the end of day 2, the mice in each group received either 
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an icv injection of leptin (0.5 μg in 2 μl saline) or vehicle (2 μl saline). Energy intake 

and body weight were measured at the beginning and at the end of HFD (48 hours) (Fig. 

6). As described previously (Ross et al., 2010), DHA (D2534, Sigma-Aldrich) and α-

ethyl DHA ethyl ester were dissolved in 96% ethanol, dried using nitrogen gas, 

dissolved in 40% HPB, and stored at -20 °C. 

 

Figure 6. Flow chart of experiment for Study 3 and Study 4 

wk(s): week(s); icv: intracerebroventricular; h: hour(s); EI: energy intake; BW: body 

weight; LC: lab chow; HFD: high fat diet; DHA: docosahexaenoic acid; DHA derivative: 

α-ethyl DHA ethyl ester. 

1.4.4 Leptin Sensitivity Test 

In Study 1 and Study 2, after fasting overnight, the mice were treated with an icv 

injection of either leptin (0.5 μg in 2 μl) or vehicle (2 μl saline) 1 hour after the last 

PA/ARA injection. The food intake for 1, 4, 16, 24 hours, and body weight for 24 hours 

and 48 hours were measured. 

1.4.5 Glucose Tolerance Test 

In Study 1 and Study 2, after the second interval of fatty acids and leptin injection, 

glucose tolerance tests were performed 30 minutes after leptin/saline injection. Blood 
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glucose was measured at 0, 30, 60, and 120 minutes after glucose administration (0.5 

g/kg glucose, intraperitoneally) using a glucometer (Alameda, CA). 

1.4.6 Blood Glucose Level Test 

In Study 3 and Study 4, the blood glucose levels were examined 1 hour after the 

injection of leptin or saline using a glucometer. 

1.4.7 Tissue Collection 

After fasting overnight, the mice were treated with an icv injection of leptin or saline. 1 

hour after the leptin/saline injection, the mice were sacrificed by CO2 asphyxiation. The 

brain and liver were immediately collected, snap frozen in liquid nitrogen, and stored at 

-80 °C for further processing and analysis. In a cryostat at a temperature of -18°C, 500 

µm frozen brain sections were cut from Bregma -0.58 mm to -2.72 mm according to a 

standard mouse brain atlas (Paxinos and Franklin, 2002). The MBH and PVN were 

dissected using a Stoelting Brain Punch (#57401, 0.5 mm diameter, Wood Dale, 

Stoelting Co, USA) from frozen coronal sections based on previously described 

coordinates (Paxinos and Franklin, 2002, Yu et al., 2013). 

1.4.8 Quantitative real-time PCR (qRT-PCR) 

Total RNA from the hypothalamus and the liver was extracted using the Aurum total 

RNA mini kit (Bio-Rad Laboratories, Hercules, CA) according to the manufacturer’s 

instruction. Purity and concentration were determined with a Nanodrop 1000 

spectrophotometer (Thermo Scientific). RNA was used to synthesize the first-strand 

complementary DNA using a high-capacity cDNA reverse transcription kit (AB 

Applied Biosystems, CA, USA) according to the manufacturer’s instructions. qRT-PCR 

was performed in a 20 μl final reaction volume using a SYBR green I master on a 

http://en.wikipedia.org/wiki/California
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Lightcycler 480 RT-PCR System (F. Hoffmann-La Roche Ltd, Switzerland). 

Amplification was carried out with 45 cycles of 95 °C for 10 seconds, 60°C for 30 

seconds, and 72°C for 30 seconds. The mRNA expression levels were normalized to 

GAPDH, which served as the internal control. Expression levels for each gene were 

calculated using the comparative threshold cycle value (Ct) method, using the formula 

2–ΔΔCt (where ΔΔCt =ΔCt sample - ΔCt reference) as described previously (Livak and 

Schmittgen, 2001). The primers used are listed in Table 1. The mRNA expression of the 

hypothalamic cytokines (TNF-α, IL-1β, IL-6) in Study 3 and Study 4, and the mRNA 

expression of hepatic glucose and lipid metabolism in Study 1 - 4 were examined by 

qRT-PCR. 

Table 1. The primers used in experiment 

 

1.4.9 Western Blotting 

GENE Forward primer Reverse primer
NCBI 
reference

G6Pase CTGTGAGACCGGACCAGGA GACCATAACATAGTATACACCTGCTGC NM_008061.3
PEPCK CAGGATCGAAAGCAAGACAGT AAGTCCTCTTCCGACATCCAG NM_011044.2
GLUT2 ACCCTGTTCCTAACCGGG TGAACCAAGGGATTGGACC NM_031197.2 
GK GTGGTGCTTTTGAGACCCGTT TTCAATGAAGGTGATTTCGCA NM_010292.4 
FAS AGGGGTCGACCTGGTCCTCA GCCATGCCCAGAGGGTGGTT NM_007988.3
SCD1 CTTCTTGCGATACACTCTGG TGAATGTTCTTGTCGTAGGG NM_009127.4 
HMG-CoA reductase CACCTCTCCGTGGGTTAAAA GAAGAAGTAGGCCCCCAATC NM_008255.2 
APoAI GTGGCTCTGGTCTTCCTGAC ACGGTTGAACCCAGAGTGTC NM_009692.3
ACAT1 CCGAGACAACTACCCAAGGA CACACACAGGACCAGGACAC NM_009230.3 
ACOX ATGAATCCCGATCTGCGCAAGGAGC AAAGGCATGTAACCCGTAGCACTCC NM_015729.2
ACCa GAAGTCAGAGCCACGGCACA GGCAATCTCAGTTCAAGCCAGTC NM_133360.2 
PPARa GCCTGTCTGTCGGGATGT GGCTTCGTGGATTCTCTTG NM_011144.6
CPT1a TTGGGCCGGTTGCTGAT GTCTCAGGGCTAGAGAACTTGGAA NM_013495.2
SREBP-1c ACCCTGGTGAGTGGAGGGACCATCTTGG CTTTGCTTCAGTGCCCACCACCAGGTCTTT NM_011480.3
GAPDH TGAAGCAGGCATCTGAGGG CGAAGGTGGAAGAGTGGGAG NM_008084.2
TNF-α CATCTTCTCAAAATTCGAGTGACAA TGGGAGTAGACAAGGTACAACCC NM_013693.3
IL-1β TACAAGGAGAACCAAGCAACGACA GATCCACACTCTCCAGCTGCA NM_008361.3
IL-6 GTGGCTAAGGACCAAGACCA GGTTTGCCGAGTAGATCTCA NM_031168.1
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Western Blotting was performed on protein extracts from frozen tissue as described in 

our previous study (Wu et al., 2014). The hypothalamus was quickly dissected and 

homogenized in solubilisation buffer on ice at 4 °C. The protein concentration of the 

supernatants was determined by BCA assay (Bio-Rad Laboratories, Inc., Hercules, CA, 

USA). The whole tissue extracts were denatured by boiling (5 min) in Laemmli sample 

buffer containing 100 mM DTT. Precision plus proteinTM dual color marker (BioRad, 

#161-0374) was used as the molecular weight standard. Electrotransfer of proteins from 

the gel to nitrocellulose membranes was performed in a semi-dry transfer apparatus 

(Bio-Rad Laboratories). Nonspecific protein binding to the membrane was reduced by 

pre-incubation for 1 h at 22°C in blocking buffer. The nitrocellulose membranes were 

incubated overnight at 4°C with primary antibody (detailed in table 2). The blots were 

subsequently incubated with peroxidase-conjugated secondary antibodies for 1 hour. 

Specific bands were detected by chemiluminescence, and visualization/ capture was 

performed by exposure of the membranes to Amersham Hyperfilm ECL (GE Healthcare 

Life Sciences, USA). The expression of specific proteins was determined using the 

following antibodies: TNF-α, IL-1β, IL-6, pIκBα, pJAK2, JAK2, pJNK, and Akt from 

Santa Cruz Biotechnology (Santa Cruz, CA, USA), and pSTAT3, STAT3, SOCS3, 

pAkt, pFOXO1, FOXO1, TLR4, and pIkk from Cell Signalling Technology (Beverly, 

MA, USA), and TH (Anti-Tyrosine Hydroxylase from EMD Millipore (USA). Bands 

corresponding to the proteins of interest were scanned and band density analysed using 

the automatic imaging analysis system, Quantity One (Bio-Rad). All quantitative 

analyses were normalized to β-actin, based on our previous studies (du Bois et al., 

2012). Due to the small amount of tissue in the MBH and PVN of the hypothalamus, we 

used a previously-described modified multi-strip western blot (Yu et al., 2013). Multi-
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strip Western blotting is a modified immunoblotting procedure, which is based on 

simultaneous transfer of proteins from multiple gel-strips onto the same membrane, and 

is compatible with any conventional gel electrophoresis system. In contrast to the 

traditional “one protein detection per electrophoresis cycle”, this procedure allows 

simultaneous monitoring of up to nine different proteins. All of the hypothalamic 

inflammation markers in Study 1 and Study 2, some of the inflammatory markers in 

Study 3 and Study 4 (pJNK, TLR4), and the leptin signalling mediators, and TH protein 

expression in the MBH and PVN in study 1 - 4 were examined by Western Blotting.  

Table 2. The antibodies used in experiment 

 

1.4.10 Statistical Analysis 

Data were analysed using the statistical package SPSS 19.0 (SPSS, Chicago, IL, USA). 

The two-tailed student’s t-test was used to compare hypothalamic cytokines expression 

between the vehicle groups and treatment groups (PA, ARA) in Study 1 and Study 2. 

One-way, two way analysis of variance (ANOVA) and the post hoc Tukey–Kramer 

honestly significant difference (HSD) test were used to analyse the food intake, energy 



 

Licai Cheng 42 

 

intake, body weight gain, the protein expression of hypothalamic leptin signalling 

molecules, the mRNA expression of hypothalamic inflammatory cytokines (Study 3 and 

Study 4), and mRNA expression of enzymes involved in hepatic glucose and lipid 

metabolism (Study 1 - 4). p<0.05 was regarded as statistically significant. Values are 

expressed as mean ± SEM. 
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Chapter Two 

Palmitic acid induces central leptin resistance and impairs hepatic 

glucose and lipid metabolism in male mice (Study 1) 

 

Reprinted from Journal of Nutritional Biochemistry, Cheng, L., Yu, Y., , Szabo A., 

Wu Y., Wang H., Camer D., Huang, X.-F. (2015). Palmitic acid induces central leptin 

resistance and impairs hepatic glucose and lipid metabolism in male mice. 2015 May 26 

(5): 541-548. Copyright (2015), with permission from Elsevier.  

 

 

Available at: http://www.sciencedirect.com/science/article/pii/S0955286315000273 
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Chapter Three 

Arachidonic acid impairs hypothalamic leptin signaling and 

hepatic energy homeostasis in mice (Study 2) 

 

Reprinted from Molecular and Cellular Endocrinology, Cheng, L., Yu, Y., , Zhang Q. 

Szabo A. Wang H., Huang, X.-F. (2015). Arachidonic acid impairs hypothalamic leptin 

signalling and hepatic energy homeostasis in mice. 2015 April. 25(411): 12-18. 

Copyright (2015), with permission from Elsevier.  

 

 

Available at: http://www.sciencedirect.com/science/article/pii/S0303720715002269 
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Chapter Four 
 

DHA and α-ethyl DHA ethyl ester improve central leptin 

sensitivity with anti-inflammatory response in high fat diet mice 

(Study3) 

 

Conditional accepted by Endocrinology, Cheng, L., Yu, Y., Zhang Q., Wang H., 

Huang, X.-F. DHA and α-ethyl DHA ethyl ester improve central leptin sensitivity with 

anti-inflammatory response in high fat diet mice. 12/2015. 
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Abstract: 

Purpose: Anti-obesity effects and improved leptin sensitivity from n-3 polyunsaturated 

fatty acids have been reported in diet-induced obese animals. However, the acute central 

effect of DHA and DHA derivative on leptin signalling within specific regions of 

hypothalamus is still unclear. This study sought to determine the impact of DHA and 

DHA derivative (α-ethyl DHA ethyl ester) on energy homeostasis, hypothalamic leptin 

signalling, and hypothalamic inflammation. 

Methods: Intracerebroventricular (icv) administration of DHA or DHA derivative (3 

nmol/day) was performed for 2 days in C57BL/6 mice fed a high fat diet (HFD, 60%, 

4.58 kcal/g). 

Results: The central injection of DHA and DHA derivative not only reduced energy 

intake and body weight gain, but also corrected the HFD-induced hypothalamic 

inflammation. This was demonstrated by the reduced hypothalamic expression of pro-

inflammatory molecules TNF-α, IL-1β, and IL-6, the inflammatory mediator pJNK, and 

the leptin signalling inhibitor SOCS3. In addition, both DHA and DHA derivative 

improved the leptin JAK2-STAT3 and PI3K-Akt signalling pathways in the 

hypothalamus by up-regulating the important mediators pJAK2, pSTAT3, and pAkt.  

Conclusions: These results suggest that DHA and DHA derivative  act directly on the 

hypothalamus to prevent HFD-induced inflammation and improve central leptin 

sensitivity, thus representing a promising potential therapeutic target for treating obesity 

and associated metabolic disturbances. 
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Introduction: 

Hypothalamic leptin signalling plays a critical role in the development of obesity and its 

related metabolic disorders, such as type II diabetes (Bjorbaek and Kahn, 2004a, Posey 

et al., 2009). Improving central leptin sensitivity breaks the vicious cycle of energy 

balance dysregulation as evidenced in obesity. Leptin acts via several pathways, 

including the Janus kinase 2 (JAK2)-signal transducers and activators of transcription 3 

(STAT3) and the phosphatidylinositol 3-kinase (PI3K)-Akt signalling in the central 

nervous system (Buettner et al., 2006). In diet induced obese rodents, leptin-induced 

pJAK2, pSTAT3, and pAkt activation in the hypothalamus are attenuated (Levin et al., 

2004, Munzberg et al., 2004). This is accompanied by increased suppressor of cytokine 

signalling 3 (SOCS3), a negative regulator of the leptin signalling, which may be the 

cause of leptin resistance (Munzberg et al., 2004). In addition, it has been evident that 

the leptin PI3K signalling pathway is impaired during the development of diet induced 

obesity (DIO) in FVB/N mice (Metlakunta et al., 2008). Therefore, it seems that the 

defective regulation of above leptin pathways in the hypothalamus play a role in the 

pathogenesis of leptin resistance and obesity. 

 

The sensitivity of various fatty acids to hypothalamic leptin plays an important role in 

the complex network of leptin signals controlling energy metabolism. Saturated fatty 

acids (SFA) have been shown to decrease leptin sensitivity and inhibit the anorexigenic 

effect of leptin in rodents (Kleinridders et al., 2009, El-Haschimi et al., 2000). n-3 

polyunsaturated fatty acids (PUFA) and n-3 PUFA derivatives have been shown to exert 

some beneficial effects in against obesity and diabetes (Cintra et al., 2012, Pimentel et 

al., 2012, Rossmeisl et al., 2009). For instance, previous studies have found that n-3 
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PUFA improve hypothalamic leptin signalling by activating the phosphorylation of 

some downstream molecules of leptin signalling , including JAK2, STAT3 and Akt 

(Cintra et al., 2012). However, the role and mechanism of docosahexaenoic acid (DHA, 

22:6 n-3) and DHA derivative (α-ethyl DHA ethyl ester) in modulating the 

hypothalamic leptin signalling underlying DIO remain largely undiscovered. 

 

The molecular mechanisms by which high fat diet (HFD)-induced abnormal leptin 

activity and defective hypothalamic leptin signalling are involved in the hypothalamic 

inflammation (Carvalheira et al., 2003, Posey et al., 2009). SFA have been reported to 

induce hypothalamic inflammation by activating signal transduction through toll-like 

receptor 4 (TLR4) - nuclear factor-kB (NF-κB) signalling (Tsukumo et al., 2007, Shi et 

al., 2006b). The activation of TLR4 signalling leads to the coordinated induction of 

cytokines and other inflammatory mediators, such as tumor necrosis factor receptor-

associated factor-6 (TRAF6), serine kinase c-Jun N-terminal Kinase (JNK), and the 

inhibitor of nuclear factor-kB kinase (Ikkβ). The activation of pro-inflammatory 

cytokines and NF-κB signalling pathway induce insulin and leptin resistance in the 

central nervous system (Akira et al., 2006). However, n-3 PUFA and their derivatives 

have well-known anti-inflammatory effects by reducing the intracellular inflammatory 

mediators (Cintra et al., 2012). For instance, HFD feeding enriched with fish oil (n-3 

PUFA) for 2 months was found to reduce the hypothalamic levels of TNF-𝛼, IL-6, and 

TRAF6, and increase the level of the anti-inflammatory cytokine IL-10 in male Wistar 

rats (Pimentel et al., 2013). A newly synthesized DHA derivative (CRBM-0244) was 

reported to exert anti-inflammatory properties by decreasing the activation of NF-κB 
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and related gene expression of pro-inflammatory mediators in lung tissue (Morin et al., 

2011). 

 

DHA, obtained directly from maternal milk or fish oil, is an omega-3 fatty acid that is a 

primary structural component of the human brain. It exerts beneficial effects in 

preventing the dysregulation of leptin signalling and the development of obesity 

(Vasickova et al., 2011, Pimentel et al., 2013). DHA derivative appears to exhibit 

therapeutic utility for obesity and associated metabolic disorders as naturally occurring 

n-3 PUFA by preventing weight gain, glucose intolerance, and decreasing lipids 

accumulation and adipose tissue inflammation with higher efficacy (Rossmeisl et al., 

2009). In this study, we propose to examine the effect of central DHA and DHA 

derivative (α-ethyl DHA ethyl ester) on hypothalamic leptin sensitivity in short-term 

HFD mice. Energy intake, body weight gain, hypothalamic inflammation, and 

hypothalamic leptin JAK2-STAT3 and PI3K-Akt signalling in response to the 

administration of DHA and DHA derivative were investigated. 

 

Materials and Methods:  

Animals 

80 Male C57BL/6J mice (10 weeks old, body weight: 25.35 ± 1.83 g) were obtained 

from the Animal Resource Centre (Perth, WA, Australia) and housed in 

environmentally controlled conditions (temperature 22 °C, 12 hour light/dark cycle). All 

experimental procedures were approved by the Animal Ethics Committee, University of 

Wollongong, Australia, and complied with the Australian Code of Practice for the Care 

and Use of Animals for Scientific Purposes. 
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Experiment Protocols 

After 1 week of acclimatization, mice were randomized into one of the eight groups: 

Lab chow +saline (LS), lab chow + leptin (LL), high fat + saline (HS), high fat + 

leptin (HL), high fat +DHA +saline (HDS), high fat + DHA +leptin (HDL), high 

fat +DHA derivative + saline (HDdS), high fat + DHA derivative +leptin (HDdL) 

(n=10/group). All mice were anesthetized by isoflurane inhalation and placed in a 

stereotactic device. An intracerebroventricular (icv) cannula was implanted into the 

right lateral brain ventricle (0.25 mm posterior and 1.0 mm lateral relative to Bregma 

and 2.5 mm below the surface of the skull) as described in our previous study (Wu et al., 

2014). The accuracy of cannula implantation into the lateral ventricle was confirmed by 

examining the needle track in the brain sections of each animal (Supplementary Fig. 2). 

Energy homeostasis test  

Seven days after the cannula implantation, The mice in LS and LL group were fed lab 

chow (5%, 3.21 kcal/g) (LC, Vella Stock feeds, Doonside, NSW, Australia), and the 

other five groups were fed high fat diets (60%, 4.58 kcal/g). The mice in the HFD 

groups were treated with icv injection of DHA, DHA derivative, or saline 

(3nmol/day/mouse) at the same time for two days (Abizaid and Horvath, 2008). Energy 

intake and body weight were measured after the HFD feeding for 48 hours. At the end 

of day 2, the mice receive either an icv injection of leptin (0.5 μg in 2 μl saline) or 

vehicle (2 μl saline) according the group design. As described previously (Ross et al., 

2010), DHA (D2534, Sigma-Aldrich) and DHA derivative (α-ethyl DHA ethyl ester) 

were dissolved in 96% ethanol, dried using nitrogen gas, dissolved in 40% 

hydroxypropyl-b-cyclodextrin (HPB) (H107, Sigma-Aldrich), and stored at -20 °C. The 
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working solution contained 3 nmol DHA or DHA derivative for every injection (Yu et 

al., 2013).  

Tissue collection 

1 hour after the leptin and saline central injection, the mice were sacrificed by CO2 

asphyxiation. The brains were immediately collected, snaps frozen in liquid nitrogen, 

and stored at -80°C for further processing and analysis. At a temperature of -18°C, 

500 µm frozen brain sections were cut using a cryostat from Bregma -0.58 mm to -2.72 

mm according to a standard mouse brain atlas (Paxinos and Franklin, 2002). The 

mediobasal (MBH) and the paraventricular nucleus (PVN) of the hypothalamus were 

dissected from frozen coronal sections using a Stoelting Brain Punch (#57401, 0.5 mm 

diameter, Wood Dale, Stoelting Co, USA) based on previously described coordinates  

(Yu et al., 2013). 

Western blot analysis 

Western blotting was performed on protein extracts from frozen tissue as described in 

our previous study (Wu et al., 2014). The expression of specific proteins was 

determined using the following antibodies: pJAK2 (sc-21870) (Santa Cruz 

Biotechnology, California), pSTAT3 (Tyr705) (#9145), SOCS3 (#2932), pAkt (#9271), 

phosphor-forkhead box protein O1 (pFOXO1) (#9461), TLR4 (#2219S), and pJNK 

(#9251) (Cell Signalling Technology Beverly, MA, USA). Bands corresponding to the 

proteins of interest were scanned and band density was analyzed using the Quantity 

One automatic imaging analysis system (Bio-Rad Laboratories, Hercules, CA, USA). 

All quantitative analyses were normalized to β-actin, based on our previous studies (du 

Bois et al., 2012). Due to the small amount of tissue in the MBH and PVN of the 

hypothalamus, we used a previously-described modified multi-strip western blot, which 
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allows the detection of multiple proteins with a smaller sample size than the standard 

western blot (Yu et al., 2013). 

RNA isolation and RT-PCR 

Total RNA from the hypothalamus was extracted using the Aurum total RNA mini 

kit (Bio-Rad Laboratories, Hercules, CA, USA) and reverse-transcribed to first-strand 

complementary DNA using the high-capacity cDNA reverse transcription kit (AB 

Applied Biosystems, CA, USA) according to the manufacturer’s instructions. 

Quantitative real-time PCR (qPCR) was performed in a 20 μl final reaction volume 

using a SYBR green I master on a Lightcycler 480 Real-time PCR System (F. 

Hoffmann-La Roche Ltd, Switzerland). Amplification was carried out at 95°C for 10 

seconds, 60°C for 30 seconds, and 72°C for 30 seconds. This was repeated for a total of 

45 cycles. The mRNA expression levels of inflammatory molecules were normalized to 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which served as the internal 

control. Expression levels for each gene were calculated using the comparative 

threshold cycle value (Ct) method, using the formula 2–ΔΔCt (where ΔΔCt = ΔCt 

sample - ΔCt reference) as described previously (Livak and Schmittgen, 2001). 

Statistics 

Data were analyzed using the statistical package SPSS 19.0 (SPSS, Chicago, IL, USA). 

One-way analysis of variance (ANOVA) and the post hoc Tukey–Kramer honestly 

significant difference (HSD) test were used to analyze central leptin sensitivity, 

hypothalamic leptin signalling molecules, and the mRNA expression of inflammatory 

cytokines. p<0.05 was regarded as statistically significant. Values are expressed as 

mean ± SEM. 

 

http://en.wikipedia.org/wiki/California
http://en.wikipedia.org/wiki/California
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Results: 

1. icv DHA and DHA derivative reduce energy intake and body weight gain in 

HFD mice 

Initially, male C57BL/6J mice were fed either a lab chow (5%, 3.21 kcal/g) or a HFD 

(60%, 4.58 kcal/g) for two days. The HFD significantly increased energy intake 

(+44.85%, p<0.001, Fig. 1A) and body weight gain (+149.90%, p<0.001, Fig. 1B) in 48 

hours in comparison to the lab chow group. To examine the direct effect of central 

administration of n-3 PUFA and n-3 PUFA derivatives on the regulation of energy 

intake and body weight gain, all of the mice in the HFD groups were treated with icv 

injection of DHA or DHA derivative (α-ethyl DHA ethyl ester) (3 nmol/day/mice) for 

two days. After 2 days icv injection, DHA decreased energy intake (-15.22%, p<0.01, 

Fig. 1A) and body weight gain (-51.85%, p<0.05, Fig. 1B) compared to the HF group. 

DHA derivative decreased energy intake (-11.84, p<0.05, Fig. 1A) compared to the HF 

group. These results indicate that the central administration of DHA and DHA 

derivative alone exert an anorexigenic effect. 

2. icv DHA and DHA derivative reduce hypothalamic inflammation 

Cumulative evidence has shown the effect of high-fat diets on the induction of 

hypothalamic inflammation (De Souza et al., 2005). n-3 PUFA have well-known anti-

inflammatory effects and inflammation-resolving actions (Cintra et al., 2012). To 

determine the direct impact of central treatment of DHA and DHA derivative on 

hypothalamic inflammation, the expression of pro-inflammatory markers and cytokines 

in the MBH and PVN of the hypothalamus was measured. Consistent with previous 

researches, HFD increased the hypothalamic activation of the inflammatory cytokines in 
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both the MBH and the PVN, including TNF-α (MBH: p<0.05, Fig. 2A; PVN: p<0.05, 

Fig. 3A), IL-1β (MBH: p<0.01, Fig. 2A; PVN: p<0.05, Fig. 3A), and IL-6 (MBH: 

p<0.05, Fig. 2A; PVN: p<0.05, Fig. 3A). This was accompanied by the up-regulation of 

some proteins involved in inflammatory signal transduction, such as TLR4 (both p<0.05, 

Fig. 2B&3B) and pJNK (both p<0.05, Fig. 2C&3C) in MBH and PVN. Administration 

of DHA centrally inhibited the mRNA expression of TNF-α (PVN: p<0.05, Fig. 3A), 

IL-1β (MBH: p<0.05, Fig 2A; PVN: p=0.091 Fig. 3A), IL-6 (both p<0.05, Fig. 

2A&3A), and protein level of pJNK (MBH: p<0.05, Fig.2C) in the hypothalamus of 

HFD groups. Similarly, DHA derivative decreased the mRNA expression of TNF-α 

(both p<0.05, Fig. 2A&3A), IL-1β (both p<0.05, Fig. 2A&3A), IL-6 (both p<0.05, Fig. 

2A&3A), and protein level of pJNK (MBH: p<0.05, Fig. 2C) in MBH and PVN nucleus. 

These data demonstrate that the central administration of DHA and DHA derivative 

exerts a potent anti-inflammatory response in the hypothalamus of HFD mice. SOCS3 is 

a member of the family of SOCS proteins that bind with their central SH2 domains to 

phosphor-tyrosine residues in the cytokine receptors (Howard and Flier, 2006). In the 

current study, the level of SOCS3 was significantly elevated in the MBH and PVN of 

the HFD mice (both p<0.05, Fig 2D&3D). This effect was inhibited by treatment with 

central DHA (MBH: p<0.05, Fig. 2D) and DHA derivative (MBH: p<0.05, Fig. 2D; 

PVN: p<0.05, Fig. 3D). 

3. icv DHA and DHA derivative improve leptin JAK2-STAT3 and PI3K-Akt 

signalling in the hypothalamus 

Leptin plays a key role in energy homeostasis through the JAK2-STAT3 and PI3K-Akt 

signalling in the hypothalamus (Plum et al., 2006, Myers, 2004). The effect of central 

administration of DHA and DHA derivative on these two signalling pathways in MBH 
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and PVN of hypothalamus was examined. In the lab chow feed groups, the level of 

pJAK2, pSTAT3, pAkt, and pFOXO1 was increased significantly by the leptin injection 

(supplementary Fig. 1). In the HF groups, the leptin-induced activation changes on 

above parameters were partly attenuated, except for pSTAT3 (in MBH) and pFOXO1 

(in PVN) where increase were evidenced (both p<0.05, Fig. 4B&5D). The ratios of 

pSTAT3/STAT and pJAK2/JAK2 also demonstrate central leptin resistance 

significance in HFD mice. This suggests, to some trend, there is a central leptin 

resistance in HFD mice. However, the central administration of DHA significantly 

improved leptin signal transduction through the up-regulation of pJAK2 (MBH: p<0.05, 

Fig 4A; PVN: p <0.05, Fig. 4C), pSTAT3 (MBH: p<0.05, Fig 4B; PVN: p<0.05, Fig. 

4D), and pAkt (MBH: p<0.05, Fig 5A; PVN: p<0.05, Fig. 5C) in the HFD group 

compared with vehicle injection. The central administration of DHA derivative also 

significantly improved pJAK2 (p<0.05, Fig. 4C), pSTAT3 (p<0.05, Fig.4D), and pAkt 

(p<0.01, Fig. 5C) in response to central leptin in the PVN but not in the MBH nucleolus. 

These data suggest that the central administration of DHA improves leptin signalling 

through the JAK2-STAT3 and PI3K-Akt pathways in both the MBH and the PVN, 

while DHA derivative only exerts this effect in the PVN. There is no alteration for 

pFOXO1 between DHA and DHA derivative treatment groups (Fig. 5). 

 

Discussion: 

Supplementation with n-3 PUFA has anti-inflammatory properties, providing a 

protective effect against the development of obesity (Schmitz and Ecker, 2008, Cintra et 

al., 2012). The present study determine to ascertain the acute effect of central 

administration of n-3 PUFA and n-3 PUFA derivatives on inflammatory response and 
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leptin signalling in the MBH and the PVN of hypothalamus. We provide the first 

evidence that DHA and DHA derivative improve hypothalamic leptin sensitivity and 

leptin signalling in HFD-fed mice. DHA and DHA derivative (α-ethyl DHA ethyl ester) 

are thus positioned to play an important role in the prevention of obesity. 

 

It has been well established that n-3 PUFA are associated with the prevention of HFD-

induced obesity in vivo and in vitro studies (Storlien et al., 1987, Reseland et al., 2001, 

Ukropec et al., 2003, Mori et al., 2004). However, the potential effect of central n-3 

PUFA, especially n-3 PUFA derivatives on energy homeostasis is largely undiscussed. 

In the present study, HFD feeding induced a significant increase of energy intake and 

body weight gain than that in lab chow-fed mice. Importantly, the icv administration of 

DHA and DHA derivative decreased energy intake and body weight gain in HFD mice. 

This result is in agreement with previous study by Schwinkendorf ’s group have shown 

that the central administration of DHA reduced food intake and body mass in male 

Sprague-Dawley rats (Schwinkendorf et al., 2011). Few reports have covered DHA 

derivative, and only one study has demonstrated that dietary DHA derivative ( α-ethyl 

DHA ethyl ester) feeding for 4 months reduced the food intake and body weight gain in 

HFD mice, which is consistent with our finding (Rossmeisl et al., 2009). The present 

study demonstrates for the first time that central administration of DHA derivative 

exerts anorexigenic effect. 

 

In addition to pharmacological and genetic approaches, dietary fatty acids could be 

attractive candidates for controlling the hypothalamic inflammation in the installation 

and progression of diet-induced obesity. It has been determined that both HFD 
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consumption and the central administration of SFA can induce an inflammatory 

response in the hypothalamus (Kleinridders et al., 2009, Milanski et al., 2009). However, 

whether the direct central action of n-3 PUFA and n-3 PUFA derivatives have a 

beneficial effect on hypothalamic inflammation is still unclear. In the current study, we 

initially administered the HFD (60%, 4.58 kcal/g) to mice. The result indicated that 

HFD for 2 days induced an acute pro-inflammatory response in the hypothalamus (as 

demonstrated by the increased mRNA expression of TNF-α, IL-1β, and IL-6), which is 

consistent with a recent study made by Thaler et al. (Thaler et al., 2012). In addition, the 

increased activation of the hypothalamic inflammatory molecules, TLR4, pJNK, and 

SOCS3 in the HFD is in agreement with the previous report that demonstrated HFD 

induced hypothalamic inflammation through TLR4-NF-κB signalling. On the other 

hand, the present study showed that the central administration of DHA and DHA 

derivative reduced the intracellular inflammatory cytokines and their mediators, 

including TNF-α, IL-1β, IL-6, and pJNK in hypothalamus. The result is in line with 

previous dietary n-3 PUFA reports (Pimentel et al., 2013, Milanski et al., 2009), and 

suggests that the exposure of central DHA and DHA derivative suppress the 

hypothalamic inflammatory profile. Combined with the inhibitive effect of the DHA 

derivative on TLR4 and following downstream parameter pJNK, our results predict that 

the central administration of DHA derivative might exert an anti-inflammatory function 

through TLR4/NF-κB pathway (Oh et al., 2010). 

 

Defective JAK2-STAT3 signalling in the hypothalamus contributes to the development 

of HFD-induced central leptin resistance and obesity (Ghilardi et al., 1996, Munzberg et 

al., 2004, Bjornholm et al., 2007). Our results demonstrate that the central 
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administration of DHA and DHA derivative up-regulate pJAK2 and pSTAT3 

expression at specific nuclei in the hypothalamus, which may represent a potential route 

to improve leptin signalling. Our finding is consistent with previous studies showing 

that the icv administration of n-3 PUFA (linolenic acid) improves hypothalamic leptin 

signal transduction via the JAK2-STAT3 pathway (Cintra et al., 2012). The mechanism 

for this amelioration effect has been further explored in the present study via SOCS3, a 

potent inhibitor of leptin signalling. A previous study has shown that SOCS3 inhibits 

JAK2, a tyrosine kinase believed to be required for all known leptin-dependent 

signalling pathways (Bjorbaek et al., 1999, Bjorbaek and Kahn, 2004a). In addition, it 

has also been proven that heterozygous SOCS3-deficient mice exhibit an enhanced 

activation of leptin-induced hypothalamic STAT3 phosphorylation (Howard et al., 

2004). These SOCS3-deficient mice have an increased sensitivity to the weight-

reducing effects of leptin, and they are resistant to the development of DIO. These 

findings suggest a critical role of SOCS3 in mediating hypothalamic leptin resistance 

via the JAK2-STAT3 pathway. The present study demonstrated that the level of SOCS3 

was specifically elevated in the hypothalamus in HFD animals, and also that DHA and 

DHA derivative reduced hypothalamic SOCS3 levels. Therefore, both previous reports 

and the present results indicate that DHA and DHA derivative may exert its beneficial 

effect via inhibiting the level of SOCS3 through the JAK2-STAT3 signalling. 

 

Another potential mechanism for the development of obesity is the impaired regulation 

of the PI3K-Akt pathway (Warne et al., 2011, Metlakunta et al., 2008). Both dietary and 

central administration of n-3 PUFA have been shown to improve the PI3K signalling 

transaction significantly by enhancing the protein level of pAkt and pFOXO1 (Pimentel 
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et al., 2012, Cintra et al., 2012). In line with previous studies, we demonstrated that the 

central administration of DHA and DHA derivative promoted leptin PI3K-Akt 

signalling (via pAkt and pFOXO1), suggesting a potential preventive effect on leptin 

resistance and obesity. In particular, this is the first evidence to show that the central 

administration of DHA derivative exerts a facilitative effect on leptin signalling in the 

hypothalamus. The KATP channel activation induced by fatty acids may be a possible 

mechanism for the effect of fatty acids on hypothalamic leptin signalling. It has been 

reported that n-3 PUFA are able to activate K(+)(ATP) channels in the neuron 

membrane (Hirafuji et al., 2003). And also KATP channel activation and leptin mediated 

phosphorylation of cellular signalling intermediates are PI3K dependent in ARC 

neurones (Mirshamsi et al., 2004). Taken together, our findings and previous reports 

may help to explain the potential mechanism of n-3 PUFA on leptin PI3K signalling. In 

our current study, compare with the effect of DHA on leptin signalling, the promoting 

effect of DHA derivative on leptin JAK2-pSTAT3 and PI3K-Akt signalling specifically 

exists in PVN but not in the ARC, indicating that the DHA derivative may be more 

sensitive to hypothalamic leptin in the PVN than in other nucleus.  

 

Recent findings imply that hypothalamic inflammation is the possible mechanism 

underlying diet induced obesity and central insulin and leptin resistance (Cintra et al., 

2012). Constitutive activation of hypothalamic Ikkβ has been reported to induce central 

leptin resistance and impaired leptin signalling by reducing STAT3 phosphorylation 

(Zhang et al., 2008b). In contrast, a pharmacological blockade of inflammatory 

signalling in the hypothalamus improved leptin sensitivity and pSTAT3 activation 

(Milanski et al., 2012). In this study, the central administration of DHA and DHA 
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derivative inhibited the hypothalamic inflammation by decreasing the genetic 

expression of the pro-inflammatory cytokines and inflammatory signalling molecules. 

This may contribute to the improved leptin sensitivity and restored hypothalamic leptin 

signalling through pSTAT3. Therefore, the current study indicates that the protective 

effect of n-3 PUFA and their derivatives on reducing inflammation is beneficial to the 

prevention of obesity (Cintra et al., 2012, Pimentel et al., 2013). Another potential 

beneficial mechanism of n-3 PUFA on obesity is the binding with GPR120, an 

important mediator of the anti-inflammatory and leptin-sensitizing effects of 

unsaturated fatty acids in the hypothalamus (Cintra et al., 2012). It has been proved that, 

in the hypothalamus of obese rats, n-3 PUFA is able to bind with GPR120, and GPR120 

activates signal transduction through β-arrestin 2/TAB1, which switches-off the TLR4 

and TNF-α inflammatory pathways (Cintra et al., 2012). However, a different viewpoint 

from another report suggests that n-3 FA derivatives were unable to stimulate GPR120 

activation in cell assay (Oh et al., 2010). Therefore, further studies are warranted to 

confirm the detailed role and mechanism of DHA derivative in this pathway and DIO-

induced central leptin resistance. 

 

In summary, the present study demonstrates that DHA and DHA derivative exhibit 

beneficial effects on obesity and associated metabolic disorders. Exposure of central 

DHA and DHA derivative (α-ethyl DHA ethyl ester) can lead to significant anti-

inflammatory response and clearly improve leptin JAK2-STAT3 and PI3K-Akt 

signalling pathways in the hypothalamus. Therefore, these compounds could be an 

attractive therapeutic target for the prevention and treatment of obesity, dyslipidemia, 
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and diabetes. Moving forward, greater consideration should be given to designing 

nutritional interventions that target multiple leptin signalling pathways.  
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Supplementary data: 

 

 

Fig. 2  The location confirmation of cannula implantation (same as Figure 4. in 

thesis) 
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Figure legends: 

Fig. 1 The effect of icv DHA and DHA derivative on energy intake and body weight 

gain. 

Energy intake (A) and body weight gain (B) for 48 hours were significantly increased in 

the HF-diet group, and inhibitory effects were induced by the icv injection of DHA and 

DHA derivative. **p <0.01 vs LC; #p<0.05, ## p <0.01 vs HF. 

 

Fig. 2 The effect of icv DHA and DHA derivative on the inflammatory response in 

the MBH. 

The mRNA expression of TNF-α, IL-1β, and IL-6 in the MBH was detected by RT-

PCR. The protein level of TLR4 (B), pJNK (C), and SOCS3 (D) in the MBH was 

detected by western blot after the icv injection of DHA, DHA derivative, and vehicle in 

the HFD mice. *p<0.05, **p<0.01 vs LS; #p<0.05 vs HS. 

 

Fig. 3 The effect of icv DHA and DHA derivative on the inflammatory response in 

the PVN. 

The mRNA expression of TNF-α, IL-1β, and IL-6 in the PVN was detected by RT-PCR. 

The protein level of TLR4 (B), pJNK (C), and SOCS3 (D) in the PVN was detected by 

western blot after icv injection of DHA, DHA derivative, and vehicle in the HFD mice. 

*p<0.05 vs LS; #p<0.05 vs HS; + 0.05< p<0.1 vs HS. 

 

Fig. 4  icv DHA and DHA derivative improve leptin JAK2-STAT3 signaling in the 

hypothalamus. 
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Phospho-JAK2 (pJAK2) (A/C) and phospho-STAT3 (pSTAT3) (B/D) in the MBH and 

PVN were detected by western blot after an icv injection of leptin or saline followed by 

the icv injection of DHA, DHA derivative, and vehicle in the HFD mice.  *p<0.05 vs 

saline injection, #p<0.05 vs HS. 

 

Fig. 5 icv DHA and DHA derivative improve leptin PI3K-Akt signaling in the 

hypothalamus. 

Phospho-Akt (pAkt) (A/C) and phospho-FOXO1 (pFOXO1) (B/D) in the MBH and 

PVN were detected by western blot after an icv injection of leptin or saline followed by 

the icv injection of DHA, DHA derivative, and vehicle in the HFD mice. *p<0.05, 

**p<0.01 vs saline injection.  
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Chapter Five 
 

DHA and α-ethyl DHA ethyl ester improve hepatic glucose and 

lipid metabolism via central leptin regulation in HFD male mice 

(Study 4) 

 

Submitted to Journal of Neuroendocrinology. Cheng, L., Yu, Y. Zhang Q., Huang, X.-

F. (2015). DHA and α-ethyl DHA ethyl ester improve hepatic glucose and lipid 

metabolism via central leptin regulation in HFD male mice, 12/2015.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Licai Cheng 89 

 

DHA and α-ethyl DHA ethyl ester improve hepatic glucose and lipid metabolism 

via central leptin regulation in HFD male mice 

Licai Cheng1, Yinghua Yu1, 2*, Qingsheng Zhang1, Xu-Feng Huang1, 2* 

 

Affiliations:  

1.School of Medicine, University of Wollongong and Illawarra Health and Medical 

Research Institute, NSW 2522, Australia 

2.Schizophrenia Research Institute (SRI), 405 Liverpool St, Sydney, NSW 2010, 

Australia 

 

 

Abbreviated Title: DHA and DHA derivative improve hepatic energy metabolism 

Key words: n-3 PUFA, docosahexaenoic acid, α-ethyl DHA ethyl ester, leptin 

resistance, hepatic glucose and lipid metabolism 

 

    

 

*Corresponding author:  

 

Senior Professor Xu-Feng Huang, MBBS, PhD, DSc 

Illawarra Health and Medical Research Institute, 

School of Medicine, Faculty of Science, Medicine and Health, 

University of Wollongong, 

Northfields Avenue, NSW 2522, Australia 

 

Tel.: 61-02-4221-4300 

Fax: 61-02-4221-8130 

E-mail address: xhuang@uow.edu.au 

 
 
 Disclosure statement: The authors of this manuscript have nothing to disclose. 

  

mailto:xhuang@uow.edu.au


 

Licai Cheng 90 

 

Abstract: 

N-3 polyunsaturated fatty acids and their derivatives exert anti-obesity effects by 

improving leptin sensitivity and metabolic action in peripheral tissues. However, the 

precise role of these fatty acids on energy homeostasis and hepatic metabolism in the 

central nervous system is still unclear. This study sought to determine the influence of 

central docosahexaenoic acid (DHA) and α-ethyl DHA ethyl ester on energy intake and 

body weight gain, hepatic glucose and lipid metabolism in high-fat diet (HFD) mice. 

C57BL/6 mice were treated with intracerebroventricular (icv) injection of DHA, DHA 

derivative, or vehicle (3nmol/day), together with HFD feeding for 2 days. Acute central 

injection of DHA and DHA derivative exhibits an anorexigenic effect in HFD mice. Icv 

injection of DHA and DHA derivative improves the effect of central leptin in regulating 

hepatic glucose metabolism by down-regulating glucose transportation (GLUT2) and 

glycolysis (GK). DHA and DHA derivative also ameliorate hepatic lipid metabolism, 

which is mediated by the decreased activity of lipogenesis (FAS, SCD1, and SREBP-

1c) and cholesterol synthesis (HMG-CoA reductase), and the increased activity of β-

oxidation (PPARα, ACAT1, and ACOX). Icv injection of DHA enhanced the activation 

of TH in mediobasal hypothalamus, connecting the action of central leptin to hepatic 

metabolism. Central administration of DHA and DHA derivative reversed HFD-induced 

adiposity and improved leptin’s regulation on hepatic glucose and lipid metabolism by 

increasing central leptin sensitivity. Thus, the administration of DHA and DHA 

derivative may provide realistic and alternative therapeutic strategies for the treatment 

of obesity and associated metabolic disturbances. 
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Introduction:  

There is growing evidence that dietary lipid components are implicated in altering 

central leptin sensitivity, leptin signal transduction pathways, and the central regulation 

of hepatic glucose and lipid homeostasis (Obici et al., 2002, Warne et al., 2011, Morgan 

et al., 2004). Diets rich in saturated fatty acids are associated with decreased leptin 

sensitivity, obesity-induced defective leptin signaling in the hypothalamus, and 

dysregulation of peripheral metabolism, including hepatic steatosis, hyperglycemia, 

lipidemia etc. (Warne et al., 2011, Milanski et al., 2009). In contrast, n-3 

polyunsaturated fatty acids (n-3 PUFA) and their derivatives exert a range of protective 

effects against high-fat diet (HFD)-induced leptin resistance, glucose intolerance, and 

hepatic metabolic abnormalities (Cintra et al., 2012, Clarke, 2001, Rossmeisl et al., 

2009). Intracerebroventricular (icv) injection of an n-3 PUFA α-linolenic acid (ALA, 

C18:3, n-3) has been reported to reduce food intake and body adiposity and increase 

hypothalamic leptin sensitivity and leptin signaling in obese rodents (Cintra et al., 

2012). The DHA derivative (α-ethyl DHA ethyl ester) has also been demonstrated to 

reduce plasma leptin level, glucose intolerance, and adiposity (Rossmeisl et al., 2009). 

 

Docosahexaenoic acid (DHA, C22:6, n-3), a major fatty acid in n-3 PUFA, is found in 

maternal milk and marine fish oil. DHA is the predominant fatty acid of membrane 

phospholipids in the retina and brain matter of mammals (Guesnet and Alessandri, 

2011). Dietary DHA exhibits therapeutic utility for obesity and metabolic syndrome, 

and restores hyperglycemia and hyperlipidemia in obese rodents (Bays, 2007, Rustan et 

al., 1992, Vasickova et al., 2011, Pimentel et al., 2013). Similarly, the DHA derivative 

α-ethyl DHA ethyl ester has shown promise for the treatment of HFD-induced obesity, 
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dyslipidemia and insulin resistance in rodents (Rossmeisl et al., 2009). We have 

recently shown that administration of DHA and α-ethyl DHA ethyl ester (DHA 

derivative) improves leptin signaling in the hypothalamus in HFD-fed mice (data not 

shown). However, whether DHA and DHA derivative are able to exert beneficial effects 

on the regulation of hepatic glucose and lipid metabolism via the central leptin signaling 

pathway is still unclear. 

 

Leptin, an adipocyte-derived hormone, initiates  negative feedback within the 

hypothalamus, including the restraint of food intake and stimulation of energy 

expenditure (Friedman, 2002). In times of excess energy storage, impaired responses or 

‘resistance’ to the afferent input of leptin to the hypothalamus favour weight gain, fat 

accumulation, and peripheral metabolic dysregulation. This may in turn contribute to 

the development of obesity and type 2 diabetes. Previous studies indicate that defective 

signal transducers and activators of transcription 3 (STAT3) signaling (El-Haschimi et 

al., 2000, Munzberg et al., 2004) and phosphatidylinositol 3-kinase (PI3K) signaling 

(Metlakunta et al., 2008) play a critical role in the hypothalamic regulation of energy 

homeostasis and peripheral glucose and lipid metabolism during diet-induced obesity 

(DIO). Previous studies have shown that hypothalamic leptin mediates peripheral 

glucose and lipid metabolism by regulating the gene transcription of key enzymes 

involved in its metabolism (Pocai et al., 2005, Hidaka et al., 2002, Toyoshima et al., 

2005, Shimomura et al., 1999, Prieur et al., 2008). For instance, icv leptin has been 

shown to inhibit glucose output, hepatic gluconeogenesis (e.g. glucose 6-phosphatase, 

G6Pase, and phosphoenolpyruvate carboxykinase, PEPCK), glucose transportation (e.g. 

glucose transporter 2, GLUT2), and glycolysis (e.g. glucokinase, GK) in HFD rodents 
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(Pocai et al., 2005, Hidaka et al., 2002, Toyoshima et al., 2005, Shimomura et al., 

1999). In addition, other reports have demonstrated that leptin administration can inhibit 

hepatic lipogenesis, while promoting fatty acid oxidation and cholesterol transportation 

(Minokoshi et al., 2002, Rossetti et al., 1997). In particular, Prieur and colleagues have 

demonstrated that icv administration of leptin not only suppresses lipogenesis by 

decreasing acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and stearoyl-

coenzyme A desaturase 1 (SCD1) mRNA expression, but also activates β-oxidation by 

increasing acyl-CoA oxidase (ACOX) and carnitine palmitoyl transferase 1 (CPT1) 

mRNA expression in the liver of ob/ob mice (Prieur et al., 2008). Finally, it has been 

suggested that leptin regulates peripheral energy metabolism through its action on 

autonomic nerves, particularly via the sympathetic nerve system, which transmits leptin 

signals to the liver and other tissues (Shi et al., 2013).  

 

Taken together, this may support the hypothesis that n-3 PUFA and derivatives regulate 

hepatic glucose and lipid metabolism by regulating central leptin sensitivity and action. 

In the present study, we examined the effect of icv administration of DHA and DHA 

derivative on energy homeostasis, central leptin-regulated hepatic glucose and lipid 

metabolism, and hypothalamic sympathetic nervous system activity. 

 

Materials and Methods:  

Animals 

80 Male C57BL/6J mice (10 weeks old, body weight: 25.35 ± 1.83 g) were obtained 

from the Animal Resource Centre (Perth, WA, Australia) and housed in 

environmentally controlled conditions (temperature 22 °C, 12 hour light/dark cycle). All 
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experimental procedures were approved by the Animal Ethics Committee, University of 

Wollongong, Australia, and complied with the Australian Code of Practice for the Care 

and Use of Animals for Scientific Purposes. 

Experiment Protocols 

After 1 week of acclimatization, mice were randomized into one of the eight groups: 

Lab chow +saline (LS), lab chow + leptin (LL), high fat diet + saline (HS), high fat 

diet + leptin (HL), high fat diet +DHA +saline (HDS), high fat diet + DHA +leptin 

(HDL), high fat diet +DHA derivative + saline (HDdS), high fat diet + DHA 

derivative +leptin (HDdL) (n=10/group). All mice were anesthetized by isoflurane 

inhalation and placed in a stereotactic device. An icv cannula was implanted into the 

right lateral brain ventricle (0.25 mm posterior and 1.0 mm lateral relative to Bregma 

and 2.5 mm below the surface of the skull) as described in our previous study (Wu et 

al., 2014). The accuracy of cannula implantation into the lateral ventricle was confirmed 

by examining the needle track in the brain sections of each animal (Supplementary Fig. 

1). 

Energy intake and body weight gain test 

Seven days after the cannula implantation, the mice in the LS and LL group were fed 

lab chow (5%, 3.21 kcal/g) (LC, Vella Stock feeds, Doonside, NSW, Australia), and the 

other mice were fed HFD (60%, 4.58 kcal/g). The mice in the HFD groups were treated 

with icv injection of DHA, DHA derivative, or saline (1.5nmol/time/mouse, 

twice/day/mouse) at the same time for two days (Abizaid and Horvath, 2008, Yu et al., 

2013). Energy intake and body weight were measured 48 hours after the beginning of 

HFD feeding. As described previously (Ross et al., 2010), DHA (D2534, Sigma-

Aldrich) and DHA derivative (α-ethyl DHA ethyl ester) were dissolved in 96% ethanol, 
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dried using nitrogen gas, dissolved in 40% hydroxypropyl-b-cyclodextrin (HPB, H107, 

Sigma-Aldrich), and stored at -20 °C.  

Tissue collection 

After 2 days treatment, the mice were fasted overnight. On the third day, the mice were 

conducted with an icv injection of leptin/saline (0.5 μg in 2 μl saline). The blood 

glucose level was examined 1hour after injection using a glucometer (Alameda, 

CA). After the blood glucose level test, the mice were sacrificed by CO2 asphyxiation. 

The brains and livers were immediately collected, snaps frozen in liquid nitrogen, and 

stored at -80°C for further processing and analysis. At a temperature of -18°C, 500 µm 

frozen brain sections were cut using a cryostat from Bregma-0.58 mm to -2.72 mm 

according to a standard mouse brain atlas (Paxinos and Franklin, 2002). The mediobasal 

(MBH) and the paraventricular nucleus (PVN) of the hypothalamus were dissected 

from frozen coronal sections using a Stoelting Brain Punch (#57401, 0.5 mm diameter, 

Wood Dale, Stoelting Co, USA) based on previously described coordinates  (Yu et al., 

2013). 

Western Blot analysis 

Western Blot was performed on protein extracts from frozen tissue as described in our 

previous study (Wu et al., 2014). The expression of hypothalamic t yrosine 

hydroxylase (TH) proteins was determined using the following antibodies: Anti-TH 

(AB9983) (EMD Millipore, USA). Bands corresponding to the proteins of interest were 

scanned and band density was analyzed using the Quantity One automatic imaging 

analysis system (Bio-Rad Laboratories, Hercules, CA, USA). All quantitative analyses 

were normalized to β-actin, based on our previous studies (du Bois et al., 2012). Due to 

the small amount of tissue in the MBH and PVN of the hypothalamus, we used a 
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previously-described modified multi-strip Western Blot, which allows the detection of 

multiple proteins with a smaller sample size than the standard Western Blot (Yu et al., 

2013). 

RNA isolation and RT-PCR 

Total RNA from the hypothalamus was extracted using the Aurum total RNA mini 

kit (Bio-Rad Laboratories, Hercules, CA, USA) and reverse-transcribed to first-strand 

complementary DNA using the high-capacity cDNA reverse transcription kit (AB 

Applied Biosystems, CA, USA) according to the manufacturer’s instructions. 

Quantitative real-time PCR (qRT-PCR) was performed in a 20 μl final reaction volume 

using a SYBR green I master on a Lightcycler 480 RT-PCR System (F. Hoffmann-La 

Roche Ltd, Switzerland). Amplification was carried out at 95°C for 10 seconds, 60°C 

for 30 seconds, and 72°C for 30 seconds. This was repeated for a total of 45 cycles. The 

mRNA expression levels of inflammatory molecules were normalized to 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which served as the internal 

control. Expression levels for each gene were calculated using the comparative 

threshold cycle value (Ct) method, using the formula 2–ΔΔCt (where ΔΔCt = ΔCt sample 

- ΔCt reference) as described previously (Livak and Schmittgen, 2001). 

Statistics 

Data were analyzed using the statistical package SPSS 19.0 (SPSS, Chicago, IL, USA). 

One-way analysis of variance (ANOVA) and the post hoc Tukey–Kramer honestly 

significant difference (HSD) test were used to analyze energy intake, body weight gain, 

blood glucose levels, and the mRNA expression of key enzymes involved in hepatic 

glucose and lipid metabolism. p<0.05 was regarded as statistically significant. Values 

are expressed as mean ± S. 

http://en.wikipedia.org/wiki/California
http://en.wikipedia.org/wiki/California
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Results: 

Icv DHA and DHA derivative show anorexigenic function  

Male C57BL/6J mice were fed lab chow (5%, 3.21 kcal/g) or high fat (60%, 4.58 

kcal/g) diets for two days. The HFD led to a significant increase in energy intake 

(+44.85%, p<0.001, Fig. 1A) and body weight gain (+149.90%, p<0.001, Fig. 1B) in 48 

hours in comparison to the lab chow group. To examine the direct effect of the central 

administration of n-3 PUFA and n-3 PUFA derivatives on energy regulation via the 

central nervous system, all mice in the HFD groups were treated with icv injection of 

DHA, DHA derivative (α-ethyl DHA ethyl ester), or vehicle (3nmol/day/mouse) for two 

days. Icv DHA reduced energy intake (15.22%, p<0.01, Fig. 1A) and body weight gain 

(51.85%, p<0.05, Fig. 1B). Similarly, icv injection of DHA derivative significantly 

reduced energy intake (-11.84%, p<0.05, Fig. 1A) but not body weight gain compared 

to the HF group. These results indicate that the central administration of DHA and DHA 

derivative have an anorexigenic effect in HFD mice. 

 

Icv DHA and DHA derivative do not affect blood glucose levels 

To determine the effect of central infusion of n-3 PUFA and n-3 PUFA derivatives on 

blood glucose level, a glucose level test was performed after the central administration 

of fatty acids. Compared with the lab chow diet mice, the blood glucose levels in all 

HFD feeding (for 2 days) groups were increased significantly (p<0.01, Fig. 2). 

However, there were no significant changes in blood glucose levels for the HFD groups 

that received icv administration of DHA or DHA derivative compared with vehicle 

injection. These results indicate that the blood glucose level was unaltered by central 
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DHA or DHA derivative administration, although it was enhanced by 2-days HFD 

feeding. 

 

Icv DHA and DHA derivative ameliorate the central leptin-regulated hepatic 

glucose metabolism  

To address whether the exposure of DHA and DHA derivative in central nervous 

system can regulate gene expression of enzymes involved in hepatic glucose 

metabolism, qRT-PCR assessment was conducted. Specifically, the genetic expression 

of the key enzymes of gluconeogenesis, glucose transportation, and glycolysis in the 

liver were examined. G6Pase and PEPCK are gluconeogenic enzymes. PEPCK is the 

rate-limiting enzyme that phosphorylates oxaloacetate to form phosphoenolpyruvate, 

G6Pase promotes the dephosphorylation of glucose-6-phosphate, and allows the release 

of newly synthesized glucose into the bloodstream. GLUT2 transports glucose from the 

liver to the bloodstream (Gould and Holman, 1993). GK is an enzyme that facilitates the 

phosphorylation of glucose to glucose-6-phosphate. In the present study, leptin unable 

to change the mRNA expression of G6Pase, PEPCK, GLUT2, and GK compared with 

the vehicle injection in the HFD groups (Fig. 3). After the fatty acids treatment, both 

DHA and DHA derivative increased the G6Pase mRNA expression (both p<0.05, Fig. 

3A), which is inconsistent with previous studies. In addition, DHA also decreased the 

GLUT2 (0.05<p<0.1, Fig. 3C) and GK (p<0.05, Fig. 3D) mRNA expression in response 

to leptin compared with the vehicle injection. At the same time, DHA derivative 

decreased the GLUT2 mRNA expression in response to leptin compared with the 

vehicle injection (p<0.05, Fig. 3C). The results indicate that the icv administration of 
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DHA and DHA derivative improves some aspects of hepatic glucose metabolism in the 

presence of central leptin. 

 

Icv DHA and DHA derivative improve the central leptin-regulated hepatic lipid 

metabolism 

To determine the action of icv DHA and DHA derivative on the regulation of hepatic 

lipid metabolism in response to central leptin, we used qRT-PCR to examine the mRNA 

expression of enzymes involved in hepatic lipogenesis, lipid β-oxidation, and 

cholesterol metabolism. ACCα and FAS are critical enzymes for lipogenesis. SCD1 is a 

lipogenic enzyme responsible for the formation of monounsaturated fatty acids, the 

main precursors of triglycerides (Horton et al., 1998). Sterol and regulatory element 

binding protein-1c (SREBP-1c) is a transcription factor that promotes the expression of 

a number of lipogenic genes (Horton, 2002). In the HF group, leptin administration did 

not change the gene expression of FAS, SCD1, ACCα, and SREBP-1c compared with 

the vehicle injection (Fig. 4). This suggests that the HFD feeding may resist the action 

of leptin on lipogenesis (Fig. 4). Interestingly, FAS, SCD1, and SREBP-1c mRNA 

expression were decreased by DHA central administration in response to the leptin 

injection (all p<0.05, Fig. 4A&B&D). SREBP-1c mRNA expression was significantly 

reduced by the DHA derivative (p<0.05, Fig. 4D). DHA and DHA derivative alone 

increased the SCD1 mRNA expression significantly in the liver (both 0.05<p<0.1, Fig. 

4B). These results suggest that the central administration of DHA and DHA derivative 

improves the central leptin effect on lipogenesis. 

ACOX and acetyl-CoA acetyltransferase 1 (ACAT1) are central enzymes involved in 

mitochondrial β-oxidation (Fournier et al., 1994). Peroxisome proliferator-activated 
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receptor alpha (PPARα) is a key regulator in the regulation of fatty acid β-oxidation and 

lipogenesis (Dreyer et al., 1993). In the HFD groups, the central leptin injection 

significantly increased the CPT1α mRNA expression (p<0.05, Fig. 5A). After the DHA 

pre-treatment, the mRNA expression of PPARα and ACAT1 was profoundly increased 

by leptin compared with the vehicle treatment (both p<0.05, Fig. 5C&5D). Similarly, 

DHA derivative increased the mRNA expression of ACOX (p<0.05, Fig. 5B) and 

ACAT1 (p<0.05, Fig. 5D) in response to the leptin injection in the HFD group. These 

results suggest that both DHA and DHA derivative ameliorate the central leptin 

modulation of β-oxidation in the liver.  

In addition, the gene expression of key enzymes in cholesterol metabolism was 

examined. Apo lipoprotein A1 (ApoA1) is the main component of high-density 

lipoprotein and transports cholesterol and phospholipids from the body's tissues to the 

liver (Breslow et al., 1982). 3-hydroxy-3-methylglutaryl-coenzyme reductase (HMG-

CoA reductase) is the key enzyme involved in the de novo synthesis of cholesterol. In 

the HFD group, the expression of HMG-CoA reductase was down-regulated by the 

central injection of DHA and DHA derivative compared with the vehicle injection in 

response to leptin (DHA: p<0.01, Fig. 5F; DHA derivative: p<0.05, Fig. 5F). There was 

no significant difference in the mRNA expression of ApoA1 between the groups (Fig. 

5E).  

 

Icv DHA and DHA derivative enhance hypothalamic TH expression 

Hypothalamic TH has been suggested to connect central leptin action on sympathetic 

activity to peripheral energy homeostasis (Shi et al., 2013). To determine whether DHA 

and DHA derivative act on the hypothalamus and regulate leptin-mediated hepatic 
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metabolism through the sympathetic nervous system, the protein level of hypothalamic 

TH was examined. Central leptin significantly stimulated the TH activation compare 

with the vehicle group in the PVN of the hypothalamus (p<0.01, Fig. 6B). In the HFD 

group, DHA (p<0.05, Fig. 6A) increased the TH protein expression in MBH of the 

hypothalamus significantly while the DHA derivative unable to increase TH in the 

hypothalamus. 

 

Discussion: 

It is well-known that defective leptin signaling and dysfunction in the regulation of 

hepatic energy homeostasis induced by HFD contribute to the development of obesity, 

which appears to largely originate from the hypothalamic sensitization of leptin 

(Ghilardi et al., 1996, Warne et al., 2011). Dietary n-3 PUFA and n-3 PUFA derivatives 

exert beneficial effects in preventing central leptin resistance, obesity, and peripheral 

metabolic disturbances (Cintra et al., 2012, Rossmeisl et al., 2009). Our previous study 

has demonstrated that DHA and DHA derivative can prevent central leptin resistance 

and improve hypothalamic leptin signaling in HFD mice (data not shown). In the 

present study, we further explored the role and mechanism of DHA and DHA derivative 

on hypothalamic leptin’s action in regulating hepatic glucose and lipid metabolism in 

HFD mice. The role of the hypothalamic sympathetic nervous system activity in the 

regulation of hepatic energy metabolism by DHA and DHA derivative was also 

investigated. 

 

Several recent animal studies have suggested that n-3 PUFA have neuroprotective 

effects against HFD-induced insulin and leptin resistance and obesity (Flachs et al., 
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2006, Cintra et al., 2012). Most of these studies focus on the dietary n-3 PUFA effects 

in preventing obesity. Only a few studies examine neuronal control of energy 

homeostasis and peripheral metabolism after acute injection of n-3 PUFA in central 

nervous system. The present study demonstrates that the central administration of DHA 

and DHA derivative exhibits anorexigenic function, and prevents the liposity induced 

by short-term exposure to HFD by reducing energy intake and body weight gain. Our 

results are consistent with previous findings showing that the central administration of 

DHA and ALA significantly enhanced the anorexigenic effect of leptin in both normal 

and obese rats (Cintra et al., 2012, Schwinkendorf et al., 2011). DHA derivative (α-ethyl 

DHA ethyl ester) has also been shown to  exhibit a similar beneficial effect on obesity 

and associated metabolic traits as naturally occurring n-3 PUFA in C57BL/6 mice in 

reducing leptin secretion (Rossmeisl et al., 2009). In addition, the effects of n-3 PUFA 

on energy homeostasis through its regulation of hypothalamic neuropeptide expression 

may further support the findings from our study. Dietary n-3 PUFA implementation and 

substitution increase anorexigenic pro-opiomelanocortin (POMC) expression and 

decrease neuropeptide Y  expression in the arcuate nucleus of the hypothalamus 

compared to a high-SFA diet in rodents (Dziedzic et al., 2007, Huang et al., 2004). 

Specifically, the central administration of DHA has been reported to have an 

anorexigenic effect by up-regulating the hypothalamic POMC gene expression in male 

Sprague-Dawley rats (Schwinkendorf et al., 2011). However, the role and mechanism of 

DHA and DHA derivative on anorexigenic effect via the regulation of hypothalamic 

neuropeptides requires further study. 
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In addition to the well characterized anorexigenic properties, hypothalamic leptin also 

plays an important role in the regulation of hepatic glucose metabolism by altering its 

key metabolic enzymes (Sivitz et al., 1997, Morton and Schwartz, 2011). Leptin has 

recently been reported to have inhibitory effects on hepatic gluconeogenesis (via 

G6Pase and PEPCK) (German et al., 2011), glycolysis (via GK) (Tang and Chen, 

2010), and glucose transportation (via GLUT2) (Toyoshima et al., 2005). In the present 

study, the normal preventive effect of leptin on this glucose metabolism was impaired in 

HFD mice, which may attribute to attenuated hypothalamic leptin signaling in DIO (El-

Haschimi et al., 2000, Metlakunta et al., 2008). Importantly, we found for the first time 

that icv injection of DHA decreased GLUT2 and GK mRNA expression in response to 

central leptin in HFD mice, suggesting that central DHA administration improves 

central leptin’s action on hepatic glucose transportation and glycolysis. Thus DHA 

derivative shows a preventive effect on hepatic transportation in the present study. Our 

findings suggest that DHA and DHA derivative improve hepatic glucose metabolism 

and have anorexigenic effects via central leptin regulation way. Consistent with our 

finding, a previous study has shown that the central administration of n-9 PUFA oleic 

acid inhibited hepatic glucose metabolism partly via a neuronal control mechanism 

(Obici et al., 2002). However, another possible mechanism suggests that dietary lipids 

may act directly on central nervous system to regulate hepatic glucose metabolism via a 

nutrient metabolic mechanism that is independent of central leptin (Levin et al., 1999). 

Further studies are warranted to elucidate whether n-3 PUFA and n-3 PUFA derivatives 

modulate hepatic glucose and lipid metabolism via a direct nutrient metabolic 

mechanism or a neuroendocrine mechanism.  
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Central administration of leptin has been demonstrated to improve hepatic lipid 

metabolism through up-regulating fatty acid oxidation and down-regulating lipogenesis 

(Gallardo et al., 2007, Toyoshima et al., 2005). The effects of n-3 PUFA and n-3 PUFA 

derivatives on improving hepatic fatty acid β-oxidation have also been reported 

(Rossmeisl et al., 2009, Dobrzyn and Dobrzyn, 2006, Neschen et al., 2007). However, 

the effects of n-3 PUFA and n-3 UPFA derivatives on hepatic lipid metabolism in 

regulating central leptin’s action are still unclear. In the present study, we showed that 

the gene expression of FAS, SCD1, and SREBP-1c were down-regulated by DHA, and 

SREBP-1c was down-regulated by DHA derivative respectively at the presence of 

leptin. This suggests that DHA and DHA derivative improve the effect of leptin on 

hepatic lipogenesis. In addition, the effect of leptin on fatty acid β-oxidation was also 

improved by icv injection of DHA and DHA derivative, as evidenced by the up-

regulation of PPARα and ACAT1 mRNA expression by DHA as well as the increase of 

ACOX and ACAT1 gene expression by DHA derivative in the liver. Thus, our results 

showed for the first time that DHA and DHA derivative play a significant role in 

regulating leptin’s action on hepatic lipid metabolism, particularly lipogenesis and fatty 

acid β-oxidation. The suppressive effect of leptin on cholesterol synthesis via HMG-

CoA reductase in obesity has already been evidenced (Prieur et al., 2008). In the present 

study, the central administration of DHA and DHA derivative down-regulated the 

mRNA expression of HMG-CoA reductase in the liver, suggesting the central 

administration of DHA and DHA derivative improves central leptin’s regulation on 

hepatic cholesterol synthesis. Taken together, our findings suggest that DHA and DHA 

derivative inhibit hepatic lipogenesis and cholesterol synthesis and improve hepatic 
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lipid oxidation. This may reduce lipid deposition in the liver, thereby alleviating the 

lipotoxicity and obesity induced by HFD. 

 

Hypothalamic leptin Janus kinase 2 (JAK2)-STAT3 and PI3K-Akt signaling pathways 

play an important role in energy homeostasis (Plum et al., 2006, Myers, 2004). It has 

been suggested that hypothalamic JAK2-STAT3 signaling contributes to the 

dysregulation of energy intake and energy expenditure (El-Haschimi et al., 2000, 

Munzberg et al., 2004), while the PI3K-Akt signaling pathway significantly regulates 

the hepatic glucose and lipid metabolism in DIO (Metlakunta et al., 2008). It remains 

unknown whether n-3 PUFA modulate hepatic glucose and lipid metabolism via the 

hypothalamic leptin signaling pathway. Our recent study has demonstrated that the 

central administration of DHA and DHA derivative improved both JAK2-STAT3 and 

PI3K-Akt signaling in the hypothalamus. Given the effects of DHA and DHA derivative 

in improving leptin’s action on hepatic glucose and lipid metabolism as shown in the 

present study, we speculate that DHA and DHA derivative exert beneficial effects on 

regulating hepatic glucose and lipid metabolism by improving leptin STAT3 and PI3K 

signaling in the hypothalamus.  

 

The mechanism by which leptin signal from the hypothalamus modulates peripheral 

glucose and lipid metabolism is an area of current research (Shi et al., 2013). It has been 

suggested that the sympathetic nervous system plays a key role in connecting central 

leptin signals from the hypothalamus to the liver and other peripheral tissues (Morton, 

2007). For instance, it has been reported that leptin acts in the hypothalamus to suppress 

lipogenesis via activating sympathetic nervous system in both liver and white adipose 
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tissues (Buettner et al., 2008, Warne et al., 2011). The expression of TH (a rate-limiting 

enzyme for the synthesis of catecholamines) in the hypothalamus has been identified as 

a major candidate and indicator for the regulation of sympathetic outflow in normal or 

obese rodents (Li et al., 2009, Shi et al., 2013). In the present study, we showed for the 

first time that DHA increased leptin-induced activation of TH in MBH of the 

hypothalamus, suggesting that DHA improves the function of leptin-activated 

sympathetic outflow. This finding may connect the effects of n-3 PUFA in regulating 

hepatic glucose and lipid metabolism with hypothalamic sympathetic nervous system. 

However, further valid evidence is needed to prove this mechanism.  

 

In conclusion, the present study demonstrates that central administration of DHA and 

DHA derivative reduces energy intake and body weight gain and improves central 

leptin’s action in regulating hepatic glucose and lipid metabolism. Our findings raise the 

possibility that fatty acids-induced regulation of hepatic energy homeostasis attribute to 

the leptin sensitivity alteration within the hypothalamus. It also provides a valid animal 

model for the effect of central administration of fatty acids on peripheral glucose and 

lipid metabolism. The fact that the central administration of DHA and DHA derivative 

improves central leptin’s effect on energy homeostasis and hepatic glucose and lipid 

metabolism sheds a light on the possibility of nutritional intervention with DHA and 

DHA derivative as novel therapeutic targets for the prevention and treatment of obesity 

and associated metabolic disturbances. 
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Figure legends: 

Fig. 1 Effects of icv DHA and DHA derivative on energy intake and body weight 

gain 

Energy intake (A) and body weight gain (B) for 48 hours were examined  in mice after 

treated with the icv injection of DHA, DHA derivative, or vehicle, together with lab 

chow or high fat diet feeding for two days.  **p<0.01 vs LC, #p<0.05, # #p<0.01 vs HF; 

LC: lab chow feeding; HF: high fat diet feeding; HD: high fat diet feeding + DHA; 

HDd: high fat diet feeding + DHA derivative. 

 

Fig. 2 Effects of icv DHA and DHA derivative on blood glucose level 

After overnight fasting, the mice were conducted with icv injection of leptin or saline. 

The blood glucose level was examined 1 hour after leptin/saline injection in mice 

treated with an icv injection of DHA, DHA derivative, or vehicle for two days. 

**p<0.01 vs LC. LC: lab chow feeding; HF: high fat diet feeding; HD: high fat diet 

feeding + DHA; HDd: high fat diet feeding + DHA derivative. 

 

Fig. 3 Effects of icv DHA and DHA derivative on mRNA expression of genes 

involved in hepatic glucose metabolism 

The mRNA levels of G6Pase (A), PEPCK (B), GLUT2(C), and GK (D) in the liver 

were measured by quantitative real-time PCR in HFD-fed mice treated with an icv 

injection of leptin or saline after the icv injection of DHA, DHA derivative, or vehicle 

for 2 days.  *p<0.05 vs saline injection, +0.05<p<0.1 vs saline injection. 

 



 

Licai Cheng 116 

 

Fig. 4 Effects of icv DHA and DHA derivative on mRNA expression of genes 

involved in hepatic lipogenesis 

The mRNA levels of FAS (A), SCD1(B), ACCα (C), SREBP-1c(D) in the liver were 

measured by quantitative real-time PCR in HFD-fed mice treated with an icv injection 

of leptin or saline after the icv injection of DHA, DHA derivative, or vehicle  for 2 days. 

*p<0.05 vs saline injection, +0.05<p<0.1 vs HS. 

 

Fig. 5 Effects of icv DHA and DHA derivative on mRNA expression of genes 

involved in hepatic fatty acid β-oxidation and cholesterol metabolism 

The mRNA levels of CPT1α (A), ACOX (B), PPARα (C), ACAT1 (D), ApoA1 (E), and 

HMG-CoA reductase (F) in the liver were measured by quantitative real-time PCR in 

HFD-fed mice treated with an icv injection of leptin or saline after the icv injection of 

DHA, DHA derivative, or vehicle for 2 days. *p<0.05, **p<0.01 vs saline injection. 

 

Fig. 6 Effects of icv DHA and DHA derivative on TH protein level in the 

hypothalamus  

The level of TH protein expression in the MBH (A) and PVN (B) of the hypothalamus 

was detected by Western Blot in HFD-fed mice treated with an icv injection of leptin or 

saline after the icv injection of DHA, DHA derivative, or vehicle for 2 days. *p<0.05, 

**p<0.01 vs saline injection. MBH: mediobasal hypothalamus, PVN: paraventricular 

nucleus. 
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Chapter Six 

6.1 Overall Discussion 

The present series of studies demonstrate that exposure of distinct fatty acids in the 

central nervous system leads to different effects on central leptin sensitivity, 

hypothalamic leptin signalling pathway, and central leptin regulated hepatic metabolism. 

Moreover, these studies indicate that the influences of distinct fatty acids on central 

leptin sensitivity and action are associated with hypothalamic inflammation. The 

knowledge obtained from these studies may lead to practical dietary interventions with 

the proper use of leptin sensitising or insensitising fatty acids to control type II diabetes 

and obesity. This chapter will provide a general discussion of the key findings of the 

present PhD project, and the potential mechanism of central leptin sensitivity alteration 

induced by fatty acids. A detailed discussion of each study has been included in the end 

of chapters 2 - 5. The main findings of this thesis are summarised in Table. 2. 

Table 2. Summary of the main findings of chapter 2-5 
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Function Parameter PA ARA DHA DHA de
Central leptin sensitivity FI or EI ‒ 1,4,16h ‒4,16,24h ↓ ↓

BWG ~ ~ ~ ↓
pJAK2 ‒ ‒ † ~
pSTAT3 ‒ ‒ † ~
SOCS3 ~ ‒ NA NA
pAkt ‒ ‒ † ~
pFOXO1 ‒ ‒ ~ ~
pJAK2 ‒ ‒ *† †
pSTAT3 ‒ ‒ † †
SOCS3 ‒ ‒ NA NA
pAkt ‒ ‒ † †
pFOXO1 ‒ ‒ † ~

Hepatic glucose metabolism G6Pase ‒ ‒ ‒ ‒
PEPCK ‒ ‒ ~ ~

Glucose transportion GLUT2 ‒ ‒ *† †
Glycolysis GK ~ ‒ † ~

Hepatic lipid metabolism FAS ‒ ‒ † ~
SCD1 ‒ ‒ † ~
ACCa ‒ ~ ~ ~
SREBP-1c NA NA † †
CPT1α NA NA ~ ~
PPARα NA NA † ~
ACOX ‒ ~ ~ †
ACAT1 ‒ ~ † †
ApoA1 ~ ~ ~ ~
HMG-CoA reductase ‒ ‒ † †

Hypothalamic infalmmation TNF-α ↑ ↑ ~ ↓
IL-1β ~ ~ ↓ ↓
IL-6 ~ ~ ↓ ↓
pIkBα ↑ ~ NA NA
pJNK NA NA ↓ ↓
TLR4 NA NA ~ ~
SOCS3 ~ ~ ↓ ↓
TNF-α ↑ ↑ ↓ ↓
IL-1β ↑ ↑ *↓ ↓
IL-6 ~ ↑ ↓ ↓
pIkBα ~ ↑ NA NA
pJNK NA NA ~ ~
TLR4 NA NA ~ ↓
SOCS3 ↑ ↑ ~ ↓

MBH TH ~ ‒ † ~
PVN TH ‒ ‒ ~ ~

Energy homeostasis

Sympathetic nervous system

MBH

PVN

Gluconeogenesis

Lipogenesis

Fatty acid-oxidation

Cholesterol metab

MBH

PVN

 

†, the function in response to leptin is improved; ─, the function in response to leptin is 

inhibited; ~, no significant change; ↑, the level is increased; ↓, the level is decreased; 

*, the significance is 0.05<p<0.1; NA: data not available. 
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 The effects of distinct fatty acids on central leptin sensitivity 

In Study 1 and Study 2, it was reported that the central administration of PA and ARA 

decreased central leptin sensitivity by preventing central leptin action in decreasing food 

intake and body weight gain. In line with previous reports, the findings confirm that 

centrally administration of SFA, in particular PA, induce central leptin resistance in 

rodents (Lin et al., 2000, Benoit et al., 2009, Posey et al., 2009). The studies 

demonstrate for the first time that central administration of ARA is sufficient to trigger 

cellular responses and induce central leptin resistance. Additionally, in Study 3 and 

Study 4, we provide evidence to indicate that central administration of DHA and DHA 

derivative show anorexigenic effect by decreasing energy intake and body weight gain 

under short-term HFD feeding. Although the body weight changes in these series of 

studies are less significant than those of energy intake, they still show a trend of 

changes between the vehicle groups and the fatty acids treatment groups in relation to 

the percentage change. The findings suggest that diet-induced leptin sensitivity changes 

can interfere with the catabolic effects of leptin on energy intake and body weight gain. 

Although one previous peripheral study demonstrated that HFD of DHA derivative (α-

ethyl DHA ethyl ester) exhibited a higher efficacy on obesity and associated metabolic 

traits as natural n-3 PUFA (Rossmeisl et al., 2009). Unexpectedly, compared to DHA, 

DHA derivative did not exert a greater effect on reducing energy intake and body 

weight in our study. Our results show the direct central effect of n-3 PUFA on energy 

intake and body weight gain in mice. Potential future studies will allow for further 

exploration of the precise mechanism of action for natural n-3 PUFA and n-3 PUFA 

derivative. 
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In addition to the effect on energy homeostasis, the central leptin sensitivity alteration 

induced by distinct fatty acids was further reinforced by the changes in the 

hypothalamic leptin signalling mediator molecules in the present thesis. Study 1 and 

Study 2 found that the icv PA and ARA led to impaired hypothalamic leptin STAT3 and 

PI3K signalling, evidenced by the down-regulation of the phosphorylation of JAK2, 

STAT3, Akt, and FOXO1, and the up-regulation of SOCS3. In contrast, in Study 3, the 

central administration of DHA and DHA derivative improved leptin JAK2 and PI3K 

signalling in the hypothalamus. This effect is accompanied by enhanced pJAK2, 

pSTAT3, and pAkt, and decreased SOCS3 in HFD mice. The findings are in accordance 

with previous studies, and confirm the inhibitory effects of SFA (Howard et al., 2004, 

Munzberg et al., 2004, Zhang et al., 2008b) and the improved effects of n-3 PUFA 

(Cintra et al., 2012) on these two leptin signalling pathways. The current findings also 

show novel evidence for the first time about the effects of n-6 PUFA and n-3 PUFA 

derivatives on leptin STAT3 and PI3K signalling pathways in the hypothalamus. These 

findings may provide new therapeutic candidates for the prevention of central leptin 

resistance and obesity. 

Furthermore, as a negative regulator of leptin signalling, the role of SOCS3 in the 

hypothalamus in regulating central leptin sensitivity has been demonstrated in the 

present studies. Previous studies confirmed that neuronal deletion of SOCS3 improved 

leptin sensitivity and conferred resistance to DIO. Therefore, SOCS3 could be a 

promising target of leptin-sensitizing therapies. The role of SOCS3 in regulating 

hypothalamic leptin signalling in response to fatty acids is important to determine the 

mechanism of leptin resistance under HFD condition. It was found that the 

hypothalamic SOCS3 level was increased by icv injection of PA and ARA in normal 
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mice (in Study 1 and Study 2), while it was decreased by DHA and DHA derivative 

treatment in HFD mice (Study 3) in the absence of leptin. Previous studies have 

demonstrated that the over-expression of SOCS3 in the hypothalamus induced by a 

HFD contributes to central leptin resistance and obesity (Enriori et al., 2007, Munzberg 

et al., 2004). On the other hand, the inhibition of SOCS3 in neurons increases 

hypothalamic pSTAT3 and the anorexigenic effect of leptin, and protects from the 

development of DIO (Zhang et al., 2008a). Therefore, the combination of previous 

studies and my findings suggests that the increase of hypothalamic SOCS3 level 

induced by PA and ARA may contributes to the impaired leptin STAT3 signalling, and 

the decrease in the hypothalamic SOCS3 level induced by DHA and DHA derivative 

contributes to improved leptin STAT3 signalling in the hypothalamus. Taken together, 

it is speculated that PA and ARA decrease central leptin sensitivity, and DHA and DHA 

derivative increase central leptin sensitivity, in part via negative feedback from SOCS3 

to the JAK2-STAT3 signalling mechanism in the hypothalamus. However, since 

SOCS3 is multi-functional, its level in the hypothalamus does not only reflect changes 

in leptin sensitivity, and the role of SOCS3 in the regulation of leptin sensitivity after 

DHA and DHA derivative treatment deserves further investigation.  

In addition, my results suggest that central administration of fatty acids mediates central 

leptin sensitivity and action by regulating two leptin key signalling pathways. These 

findings reveal the important role of leptin STAT3 and PI3K signalling in regulating 

central leptin sensitivity in response to the injection of fatty acids. However, we cannot 

exclude the possibility that other leptin signalling pathways are also involved in this 

process. Previous studies have demonstrated that hypothalamic leptin AMP kinase 

signalling is impaired under HFD, which was associated with the development of DIO 
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(Martin et al., 2006). Therefore, more studies are warranted to explore the role of other 

leptin signalling pathways in the hypothalamus (such as AMPK signalling) in regulating 

central leptin sensitivity and action in response to the distinct fatty acids. 

One study in humans showed that daily ingestion of fish oil (DHA) over a 12-week 

period reduced energy intake but not body weight in overweight and obese women, 

compared with supplementation with oleic acid (OA) rich oil (Harden et al., 2014). 

Despite their importance, long-term studies of such effects are relatively scarce. It 

would therefore be of benefit to further examine the long-term effects of n-3 PUFA on 

obesity related disorders in animals and humans.  

Importantly, we provide clear evidence to show the effects of distinct fatty acids on 

leptin signalling pathways in specific MBH and PVN regions of the hypothalamus. 

According to the changes of leptin signalling parameters in the MBH and PVN, it was 

found that both MBH and PVN nucleus are responsive to central PA, ARA, and DHA 

administration, and the PVN but not the MBH is responsive to central DHA derivative 

administration. This finding suggests that distinct biological actions of leptin in 

response to distinct fatty acids are mediated by different brain nuclei. 

 The effects of distinct fatty acids on central leptin in the regulation of 

hepatic glucose and lipid metabolism 

Since the central leptin sensitivity alteration induced by different fatty acids has already 

been shown, we further demonstrated whether the deficient or improved leptin 

sensitivity will cause consequent suppressive or improved effect on hepatic energy 

metabolism. The results from Study 1 and Study 2 showed that central administration of 

PA and ARA may impair the regulation of hepatic glucose and lipid metabolism by 



 

Licai Cheng 123 

 

leptin. Further, in Study 4, we demonstrated that DHA and DHA derivative may 

improve central leptin’s action in mediating hepatic glucose and lipid metabolism. 

Previous study has provided well-established evidence showing that leptin plays an 

important role in hepatic glucose and lipid metabolism (Hidaka et al., 2002). My 

findings suggest that attenuation of hepatic glucose and lipid metabolism induced by 

PA/ARA or improvement by DHA/DHA derivative may be partly attributed to the 

deficient or improved central leptin sensitivity. Although further evidence is still 

needed, my findings provide novel evidence towards the critical role of distinct fatty 

acids in regulating hepatic metabolism via central leptin regulation. 

To determine how fatty acids regulate energy metabolism from central nervous system 

to the liver, the expression of TH (as the sympathetic nerve system activity indicator) in 

the hypothalamus was investigated. The results showed that the leptin-regulated 

activation of TH in the hypothalamus was decreased by PA and ARA, while that was 

increased by DHA. These findings indicate that PA and ARA have an inhibitory effect, 

while DHA show an improved effect on central leptin action in regulating hypothalamic 

sympathetic activity. Combine with the inhibitory effect of central leptin on hepatic 

glucose and lipid metabolism by PA and ARA, or improved effect from DHA and DHA 

derivative in our findings, it suggests that fatty acids differentially regulate hepatic 

energy metabolism via sympathetic nervous system tone. The findings are in accordance 

with a previous study which showed that the sympathetic activity was reduced by HFD, 

which was attributed to the attenuated hypothalamic leptin PI3K signalling, and induced 

hepatic metabolic dysfunction in the obese mice (Warne et al., 2011). 

Blood lipid levels (eg. cholesterol, triglycerides, and free fatty acids) are important 

constituents of the lipid fraction of the human body, and reflect the functional changes 
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of hepatic lipid metabolism. A number of studies have reported the blood lipid 

metabolism in obese rodents is markedly impaired, and that leptin treatment can 

improve the dyslipidemic profile and affect hepatic lipid metabolism (Prieur et al., 

2008). The effect of central administration of fatty acids on lipid profile in blood should 

be examined in further studies to confirm functional improvement. 

 The effects of distinct fatty acids on hypothalamic inflammation 

It has been suggested that hypothalamic inflammation is the predominant potential 

mechanism of central leptin resistance and obesity underlying DIO (De Souza et al., 

2005, Milanski et al., 2009, Zhang et al., 2008b). More specifically, SFA and n-6 PUFA 

show potent pro-inflammatory properties, while n-3 PUFA and their derivatives have 

well-known anti-inflammatory effects (Cintra et al., 2012, Pimentel et al., 2013, Morin 

et al., 2011). To determine the mechanism of central leptin sensitivity and hepatic 

metabolism changes, the hypothalamic inflammation in response to different fatty acids 

was investigated. Our results (Study 1 and Study 2) show that central PA and ARA 

administration exhibit potent pro-inflammatory effects in the hypothalamus. DHA and 

DHA derivative were found to inhibit HFD-induced hypothalamic inflammation by 

decreasing the genetic expression of the pro-inflammatory cytokines and inflammatory 

signalling molecules (study 3). Consistent with previous studies, our findings confirm 

the effects of SFA and n-3 PUFA on hypothalamic inflammation (Milanski et al., 2009, 

Cintra et al., 2012). The findings also provide new evidence for the pro-inflammatory 

effects of n-6 PUFA and the anti-inflammatory effects of n-3 PUFA derivatives in the 

hypothalamus. Previous studies have demonstrated that the activation of the 

inflammatory IKK-β/NF-κB pathway and increase of hypothalamic cytokines can affect 

central leptin sensitivity and signalling via mediating the leptin signalling mediators (e.g. 
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pJAK2, pSTAT3, IR etc.) (Zhang et al., 2008b). Together with the changes of hepatic 

metabolism induced by fatty acids via regulating leptin sensitivity, both previous 

research and our present findings suggest that the activation and attenuation of central 

inflammation via IKK-β/NF-κB signalling contribute to impaired or improved leptin 

sensitivity and the corresponding alteration of peripheral metabolism. 

In addition, the hypothalamic inflammatory signalling pathways, including IKK-β/NF-

κB, TLR4, and JNK signalling in response to distinct fatty acids contribute novel data 

towards the understanding of central leptin sensitivity and action meditation. I 

demonstrated for the first time that icv injection of DHA derivative down-regulated the 

expression of TLR4, accompanied by reduced levels of cytokines (e.g. TNF-α, IL-1β, 

and IL-6) in the hypothalamus. This finding suggests that the role of DHA derivative in 

regulating central inflammation is associated with hypothalamic TLR4/NF-κB 

signalling. This finding is consistent with previous evidence that has demonstrated the 

anti-inflammatory effect of DHA derivative (Morin et al., 2011). However, the specific 

mechanism of DHA derivative on central inflammation, especially via the TLR4/NF-κB 

signalling pathway, needs to be further explored in the future. 

More intriguingly, this thesis demonstrated for the first time that both DHA and DHA 

derivative decreased the activation of pJNK in the hypothalamus (Study 3), which 

suggests that the JNK signalling pathway may be involved in the hypothalamic 

inflammation induced by DHA and DHA derivative. This may provide a new potential 

mechanism for central n-3 PUFA and n-3 PUFA derivatives to influence hypothalamic 

inflammation. Since previous studies have shown that the JNK inflammatory pathway is 

implicated in the activation of NF-κB signalling, TLR4 activation, and SOCS3 gene 

expression (De Souza et al., 2005, Milanski et al., 2009). Further studies are warranted 
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to explore the role and mechanism of JNK signalling in the development of central 

inflammation, central leptin resistance, and obesity induced by DHA and DHA 

derivative as well as other types of fatty acids. 

 

Figure 7. Effects of PA and ARA on central leptin resistance 

The proposed mechanisms of central leptin resistance induced by PA/ARA: ① 

Increased levels of PA/ARA induce intracellular signalling cascades, in part via TLR4, 

which activates TLR4 signalling. This stimulates IKK-β/NF-κB inflammatory signalling, 

and ② induce a series of inflammatory responses, including an increase of pro-

inflammatory cytokines. ③ The activation of IKK-β/NF-κB and increased levels of 

cytokines in the hypothalamus may inhibit the activation of STAT3 ④ and 

phosphorylation of IRS, and induce central leptin resistance. Alternatively, PA/ARA 

activates the transcription factor NF-κB, ⑤ which induces the over-expression of the 

leptin signalling negative regulator SOCS3. SOCS3 prevents leptin signalling via ⑥ 

interferes with phosphorylation of the IR ⑦ and activation of pJAk2. 
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Figure 8. Effects of DHA and DHA derivative on central leptin resistance 

The proposed mechanisms of increased central leptin sensitivity induced by DHA/DHA 

derivative: ①DHA/DHA derivative may bind to their receptors in the membrane, and 

block the phosphorylation and activation of JNK, and ② further inhibit the activation 

of IKK-β/NF-κB signalling and the increase of inflammatory cytokines. DHA/DHA 

derivative may improve central leptin sensitivity and action by ③ increasing activation 

of STAT3 ④ and the phosphorylation of IRS. Alternatively, DHA/ DHA derivative may 

improve the central leptin sensitivity and action by ⑤ preventing the expression of 

SOCS3, and subsequently inhibiting the suppressive effect of SOCS3 on ⑥ 

phosphorylation of IR ⑦ and activation of pJAk2. 
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Figure 9. Effects of fatty acids on central leptin-regulated hepatic glucose and lipid 

metabolism 

Exposure of fatty acids in the central nervous system may increase or decrease central 

leptin sensitivity, which changes the leptin regulation of hypothalamic sympathetic 

activity by regulating the activity of TH. The signals from TH-positive neurons directly 

project to the brainstem autonomic regions, and send efferent signals to the spinal 

cord and exert autonomic control in the liver to regulate hepatic glucose and lipid 

metabolism. 

 

6.2 Recommendations for Future Research 

Based on the findings in the present thesis, recommendations for future research are 

listed below. 

 Hypothalamic leptin signalling - Target 

The present study unveils the critical role of leptin-induced STAT3 signalling and PI3K 

signalling in the hypothalamus in regulating energy homeostasis and hepatic 
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metabolism. The deficient and resistant leptin signalling in response to distinct fatty 

acids has been proven to be an important contributor to obesity, diabetes, and associated 

metabolic disturbance. Our findings suggest that the restoration or improvement of 

hypothalamic leptin STAT3 and PI3K signalling are important objectives of the therapy 

for these conditions. 

In addition, the present study has proven the negative regulatory effect of SOCS3 in 

hypothalamus. However, the specific role and mechanism of SOCS3 in regulating leptin 

STAT3 signalling and action in response to distinct fatty acids exposure in the central 

nervous system has still not been thoroughly elucidated. Further studies are warranted to 

investigate the direct effect of fatty acids on the JAK2-STAT3-SOCS3 signalling 

pathway by using pharmacological inhibition or the genetic ablation of SOCS3, as well 

as other possible targets of upstream of the JAK2-STAT3 signalling pathway. 

 Hypothalamic inflammation signalling pathway-Target 

Our findings suggest that dietary fatty acid-induced inflammatory response in the 

hypothalamus plays a critical role in mediating central leptin resistance and obesity. 

Previous evidence has also indicated that the pharmacological inhibition of TLR4 could 

reduce hypothalamic inflammation and result in prevention on food intake and 

improvement in central leptin sensitivity and associated peripheral metabolism in DIO 

rats. Based upon current understandings, several inflammatory mediators, especially 

TLR4, pro-inflammatory cytokines, and IKK-β/NF-κB signalling, are proposed to be 

promising therapeutic targets for the treatment of DIO. Our results also provide 

potential therapeutic methods to use nutrients as a treatment to prevent central 

inflammation in DIO. 
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In addition, although the activation of hypothalamic inflammation by distinct fatty acids 

has been proved in vitro, solid evidence for the effects of fatty acids in activating 

neuronal inflammation in vivo is scarce. Therefore, in vivo studies are needed to detect 

whether microglia are indeed the primary responders to dietary fatty acids, and 

determine if they can be triggered as an inflammatory response upon HFD feeding. The 

roles of TLR4-dependent intracellular signalling mechanisms in regulating the 

inflammation of microglia and astrocytes in response to distinct fatty acids also remain 

unknown. 

 Fatty acid sensing in more brain regions 

It was found in this present thesis that leptin signalling in both the MBH and PVN of the 

hypothalamus have been impaired by central injection of PA and ARA, and been 

improved by DHA. DHA derivative shows similar beneficial effects as DHA, but they 

only exist in PVN region. This suggests that different brain regions show different 

response to dietary fats, and exhibit different functional effects in regulating central 

leptin action. In further studies, some unsolved questions, such as the effects of dietary 

fatty acids on the leptin signalling pathway in other brain regions (e.g. hippocampus, 

brain stem), need further exploration. 

In addition, to better understanding the mechanism of hypothalamic response and action 

to different fatty acids, more experiments of long-term fatty acids treatment as well as 

established obesity after long-term HFD consumption in animals should be built into 

further studies. 

 Sympathetic nervous system 
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The findings in the present study indicate that central PA and ARA suppress leptin-

mediated hypothalamic TH activation, while DHA is able to improve leptin-regulated 

TH activation. This may connect the regulations of different fatty acids hepatic glucose 

and lipid metabolism with hypothalamic sympathetic nervous system. However, further 

valid evidence is needed to prove this mechanism. Therefore, the role and mechanism of 

the hypothalamus autonomic way, especially the sympathetic nervous system, in 

regulating peripheral metabolism underlying distinct fatty acids warrants further 

exploration. 

 

6.3 Significance 

I demonstrate that the exposure of fatty acids in the central nervous system induces 

central leptin sensitivity changes that diminish or improve the ability of leptin to 

negatively influence food intake, body weight gain, and hepatic energy metabolism. The 

findings raise the possibility that fatty acid-induced changes of central leptin sensitivity 

contribute to body energy homeostasis and hepatic glucose and lipid metabolic 

regulation. With the high worldwide prevalence of obesity, identification of the 

molecular basis for these effects will provide new insight into the mechanisms of central 

leptin resistance, obesity and associated metabolic disturbances. 

Typical Western diets are currently characterized by high levels of SFA and n-6 PUFA, 

and low levels of n-3 PUFA. In particular, n-6 PUFA are present at high levels in many 

common cooking oils and processed foods. Nutrient treatment is a new intervention 

used to regulate body energy homeostasis and prevent obesity. Identification of the 

influence of dietary fat on central leptin sensitivity and hepatic metabolism may yield 
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novel approaches to the improvement of the pharmacological and dietary management 

(e.g. regulate the n-3 PUFA to n-6 PUFA ratio) for preventing obesity and associated 

metabolic disturbances. 

Moreover, in the present thesis, I demonstrate that distinct fatty acids modulate central 

leptin sensitivity by impairing or improving specific STAT3 and PI3K signalling 

pathways in the hypothalamus. This effect is accompanied by transcription changes of 

key molecular mediators in the hypothalamus, such as pJAK2, pSTAT3, SOCS3, pAkt, 

and pFOXO1. A better understanding of the mechanisms by which distinct fatty acids 

influence specific leptin signalling in the hypothalamus might lead to the identification 

of novel therapeutic targets for the prevention and treatment of obesity. 

My findings revealed that the central administration of SFA and n-6 PUFA stimulates 

pro-inflammatory effects in normal mice, while n-3 PUFA and their derivatives exert 

anti-inflammatory properties in the hypothalamus under HFD feeding. The findings 

support a valid animal model in which cellular exposure to excess nutrients, particularly 

dietary fatty acids, trigger cellular inflammation and leptin resistance in the central 

nervous system. Furthermore, the findings suggest that, in addition to pharmacological 

and genetic approaches, nutrients can be attractive candidates for controlling 

hypothalamic inflammation, which in turn contributes to the prevention and treatment 

of obesity. 

 

6.4 Conclusions 

In conclusion, the present study demonstrates that the acute central administration of PA 

and ARA plays a causal role in central leptin resistance, and prevents the anorexigenic 
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effect of leptin by decreasing central leptin sensitivity. This decrease of central leptin 

sensitivity is concomitant with impaired hypothalamic leptin JAK2-STAT3 and PI3K-

Akt signalling, and the pronounced attenuation of leptin-regulated hepatic glucose and 

lipid metabolism. The potent pro-inflammatory effects in the hypothalamus activated by 

PA and ARA may contribute to central leptin resistance, adiposity, and hepatic 

metabolic disturbances. In contrast, DHA and DHA derivative exhibit beneficial effects 

on energy homeostasis and associated hepatic metabolic disorders by increasing central 

leptin sensitivity in HFD mice. Central exposure of DHA and DHA derivative show an 

anorexigenic effect, accompanied by ameliorated leptin JAK2-STAT3 and PI3K-Akt 

signalling pathways in the hypothalamus in HFD mice. The anti-inflammatory effects in 

the hypothalamus are induced by DHA and DHA derivative, which may be one of the 

mechanisms to account for the ameliorated central leptin sensitivity, leptin signalling, 

and hepatic energy metabolism. Therefore, PA, ARA, DHA and DHA derivative all 

play a significant role in the regulation of central leptin on energy homeostasis and 

peripheral energy metabolism. 

The reports showed above indicate that the specific type of dietary fat is capable of 

inducing or preventing central leptin resistance by affecting central leptin sensitivity at 

both food intake and hypothalamic leptin signalling molecule level. The different 

inflammatory signalling pathways, including IKK-β/NK-κB, TLR4/NK-κB, and JNK 

pathway, in response to central dietary fatty acids are involved in the development of 

leptin resistance. This helps to identify the potential biological mechanism of central 

leptin resistance, obesity, and associated metabolic disturbances. Therefore, these 

compounds could be attractive therapeutic targets for the prevention and treatment of 

obesity, diabetes, and dyslipidaemia. Moving forward, greater consideration should be 
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given to designing nutritional interventions that target multiple leptin signalling and 

inflammation signalling pathways. 
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