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Finding the needles in the haystack: efficient
intelligence processing
Nedialko B Dimitrov1*, Moshe Kress2 and Yuval Nevo2
1The University of Texas at Austin, Austin, TX, USA; and 2Naval Postgraduate School, Monterey, CA, USA

As a result of communication technologies, the main intelligence challenge has shifted from collecting data to
efficiently processing it so that relevant, and only relevant, information is passed on to intelligence analysts.
We consider intelligence data intercepted on a social communication network. The social network includes both
adversaries (eg terrorists) and benign participants. We propose a methodology for efficiently searching for relevant
messages among the intercepted communications. Besides addressing a real and urgent problem that has attracted
little attention in the open literature thus far, the main contributions of this paper are two-fold. First, we develop a
novel knowledge accumulation model for intelligence processors, which addresses both the nodes of the
social network (the participants) and its edges (the communications). Second, we propose efficient prioritization
algorithms that utilize the processor’s accumulated knowledge. Our approach is based on methods from graphical
models, social networks, random fields, Bayesian learning, and exploration/exploitation algorithms.
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1. Introduction

Effective military and law-enforcement operations depend on
reliable, relevant and timely intelligence. It has been postulated
that many terrorist events could be avoided, or at least
mitigated, if available intelligence was better processed, ana-
lyzed and disseminated on time (Gorman, 2002; Radack, 2011).
The advent of sensing technologies—from electro-optical
devices to cyber interceptors—has resulted in a plethora of
sensors that collect and transmit an unprecedented glut of data.
These data need to be processed and analysed in a timely
manner in order to produce useful information for operations.
Intelligence operations are typically depicted as a cycle

(Kaplan, 2012) comprising five stages, as shown in Figure 1.
In the Planning and Direction stage the intelligence product
consumer determines the required information and specifies the
queries for which concrete answers are sought. Intelligence data
are collected by various sensors—human, visual, electronic,
communication, geospatial—in the Collection stage. During
Processing, the raw data obtained from the sensors, which
range from observations, to verbal and noisy messages, need to
be processed and filtered in order to create an effective analysis.
In particular, data are screened such that relevant, and only
relevant, intelligence items are passed on to the Analysis and
Production stage. The objective of the Analysis and Production
stage is to gain insights from the processed data, and to confirm

or reject certain hypotheses. The final stage, Dissemination,
generates reports, presentations and other communications
that deliver the final product of the intelligence analysis to its
consumers.
Stage three, Processing, is critical. Many intelligence queries

are time-sensitive; relevant information needs to be passed on
for analysis as quickly as possible to respond to eminent threats
and contingencies. The main challenge is to quickly screen the
data and provide analysts with a set of relevant, and only
relevant, items within a given time window. In this paper, we
focus on that stage—Processing—and propose efficient screen-
ing policies for processing raw intelligence data collected from
a social network.
The operations research literature on intelligence opera-

tions is quite limited (Kaplan, 2012). The first model
addressing situational awareness is Deitchman’s Guerrilla
model (Deitchman, 1962), which was followed by Schaffer
(Schaffer, 1968). These models capture information asym-
metry between a regular, exposed, force and a guerrilla unit
that blends in the environment. In the early 1960s the CIA
utilized Bayes’ Rule for assessing the situation during the
Cuba missile crisis (Zlotnik, 1967). That research had been
classified as SECRET until 1994. More recent related
papers analyse the management of secrets (Steele, 1989),
model the development of secret projects (Harney et al,
2006; Godfrey et al, 2007), and estimate the number of
secret terror plots in progress (Kaplan, 2010).
In this paper we consider an adversarial (eg terrorist) social

communication network (eg phone calls, e-mails) that is subject
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to interception by a friendly intelligence agency. The nodes of
the network correspond to communicators, and the edges
represent communications between pair of nodes. Both adver-
saries and benign nodes may be captured in the interception of
communications. We propose a methodology for efficiently
answering the following question: Given a set of intercepted
communications how should an intelligence processor prior-
itize the screening of these communications such that the
expected number of relevant intelligence items that are passed
on to the analysts is maximized?
To the best of our knowledge, this question has not been

addressed in the open literature. Moreover, our approach for
answering this question—addressing both the communications
(edges) and the communicators (nodes) in a unified way is
novel, and can be extended in many ways. Utilizing methods
from graphical models, social networks, random fields,
Bayesian learning, and exploration/exploitation algorithms, we
develop a model for the processor’s accumulated knowledge
regarding the value of the nodes as information providers, and
the relevance potential of communications on the edges. We
formulate an optimization problem for selecting most poten-
tially relevant communications, and describe an exact method
for solving it. We also develop and test several heuristic
methods and obtain some interesting insights regarding the
screening process.
The rest of the paper is organized as follows. Section 2

describes the basic setting and background information for the
problem addressed in the paper. Section 3 introduces notation
and specifies the assumptions of the model. Section 4 describes
the knowledge updating process when new information is
obtained from screening. Section 5 defines the screening
prioritization problem, describes an exact solution method, and
proposes several heuristics. Section 6 evaluates and compares
screening heuristics. We provide insights and concluding
remarks in Section 7.

2. Setting

A processor of intelligence data has to screen a given set of
intelligence items, henceforth called simply items for brevity.
Each item is the content of an intercepted communication, such
as e-mail or telephone conversation, between two participants.
The items induce an intercepted network in the following
manner. The participants are nodes of the intercepted network,
and an edge is present between two nodes when there is at least
one item associated with the corresponding participants. Given
an intelligence query—a concrete question posed by an intelli-
gence analyst or a decision maker—each item is either relevant
to the query or irrelevant. While in general there could be
multiple levels of relevance, we consider, for simplicity, a
binary setting—an item is either relevant or irrelevant for the
query. The processor’s task is to identify as many relevant items
as possible during a limited time period, which is insufficient
for screening all the items in the set. The screening times of the
different items may not be the same. However, these times are
usually unknown a priori and therefore not considered in
determining the screening sequence of items. Thus, the objec-
tive is to determine the screening sequence of a given length
that maximizes the expected number of identified relevant
items. The screening sequence may be adaptive, in the sense
that the choice of the ith item to be screened depends on the
revealed relevance of the previously screened i− 1 items.
In addition to the relevance of an item, we also consider the

value of a participant as a source of relevant information. This
value indicates the likelihood or the propensity in which the
participant is involved in a relevant communication. Unlike the
binary nature of the relevance of an item, we assume that a
participant’s value can have multiple values ranging from 0 (no
value as an information source) to 1 (top value). The value
measures of two participants affect the probability that an item
between them is relevant. This relation is formally defined in
Section 4.
Before beginning the screening, the processor is provided

with some partial information, originated by other intelligence
sources, regarding the participants’ identities, occupations and
past records as information providers. This information gener-
ates a prior probability distribution for the value of each
participant. These distributions may range from uniform, when
there is no information, to complete certainty regarding
the value of a participant, when the processor is certain of the
participant’s identity and value as information provider for the
query. In this latter case, the participant is said to be identified.
Otherwise the participant is said to be unidentified and his value
is only known in probability.
The screening process proceeds in rounds. At each round, the

processor selects an unscreened item and screens it. The result
of the screening is a clear identification of the item as relevant or
irrelevant. Although false positive and false negative identifica-
tions are possible, we assume here no such errors. The general-
ization to error-prone screenings will be treated in future work.
In addition to revealing the relevance of the screened item,

Figure 1 The intelligence cycle. The cycle consists of the five
stages listed in the figure. In the Processing stage, collected data is
sorted into relevant and irrelevant data. Only the relevant data
should be passed to the Analysis and Production stage to maximize
effectiveness of the analysts. We focus on this critical Processing
stage, where a glut of data that could overwhelm processors.
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screening could also reveal the value of one or both participants
associated with the item, even if the item is irrelevant. For
example, in a conversation that has nothing to do with the query
(ie, irrelevant item), one of the participants may mention
something (name, date, place, etc) that will immediately reveal
the identity and value of one or both of the participants, who
thus become identified. We call such an identification, caused
by a crucial piece of information unexpectedly present in a
screened item, a sudden revelation. As items are screened and
knowledge is gained by the processor, the probability distribu-
tion of the value of a participant is updated in a Bayesian
manner, as described in Section 4.
Assuming independence, the relevance of items associated

with a certain pair of participants form a random sample from a
Binomial distribution. If the parameter (probability) of that
distribution is known to the processor in advance, for each pair
of participants, then the optimal screening decision is a greedy
one—always select an item that has a maximum probability of
being relevant. However, this parameter is initially unknown to
the processor and therefore is treated as a random variable
whose probability distribution is updated as knowledge is
gained during screening.
Finally, we note the difference between items and partici-

pants regarding information gathering: the relevance of an item
is always revealed after it is screened, while the value of a
participant is either revealed through sudden revelation or is
updated in a Bayesian manner. As the screening progresses and
information is gained, the processor can make better screening
decisions based on all information gathered thus far.

3. Notation and assumptions

Let G= (V, E) denote the graph of the intercepted network. The
nodes of the graph, V, represent participants and an edge
(u, v)∈E exists if and only if participants u and v generate at
least one item. With each edge (u, v)∈E, we associate a set
containing all the items in which u and v are the two
participants. Let q(e) be the subset of items associated with
edge e∈E.
Let du∈ [0, 1] be the value of participant u and let pe be the

probability an item in the subset q(e) is relevant. Although it is
quite natural to assume that du takes a finite number of values
(eg, very valuable, valuable, moderately valuable, etc) it is clear
that pe can take, in principle, any value in [0, 1]. However, to
simplify the exposition of the model, we assume that pe also
takes a finite (possibly, very large) number of values. As
mentioned above, we assume that, given pe, the items in q(e)
form a random sample from a Binomial distribution with
probability parameter pe. The values of the parameters du,
u∈V, and pe, e∈E, together with the topology of G and the
subsets q(e), e∈E, represent the ground truth associated with
the set of participants and items. As mentioned earlier, if the
values of pe are known to the processor for each e∈E then the
optimal screening process is a greedy one—always screen an

item from an edge e such that pe is maximal—and therefore the
knowledge regarding the du values is redundant. However, the
values of pe and du are not known with certainty—the processor
only has a perception of this ground truth manifested in
probability distributions—and therefore the screening
process is not trivial. While the probability of sudden revelation
by screening an item in q((u, v)) may depend on the true
values du and dv, for simplicity we assume that such events
occur independently for the two nodes, each with a fixed
probability c.
Let Pe be an unobserved random variable whose distribu-

tion represents the processor’s belief regarding the value of
pe. Similarly, let Du be a random variable representing the
belief regarding the value of du. The random variable Du

may only be observed by sudden revelation, otherwise it is
also unobserved. In addition to knowing the graph topology
and the number of items associated with each edge, the
processor has some prior information manifested in the joint
distribution of the random vectors P ¼ ðP1; :::;P Ej jÞ and D ¼
ðD1; :::;D Vj jÞ: We assume that this prior information, which
is based on past experience and exogeneous intelligence
input, includes the following:

1. Conditional probability distribution of relevance of an item,
given the values of the item’s participants. Formally,
Pr½Puv jDu;Dv�¼: Pr½Puv ¼ p jDu ¼ du;Dv ¼ dv�; u; v 2 V .

2. The random variables D form a Markov random field. More
specifically, let DA ¼ ðDu; u 2 AÞ for some A⊂V. The
Markov random field property states that any two values Du

and Dv of nodes u and v, respectively, are independent given
that DA ¼ dA; for a cut-set A separating u from v in the
graph G. A cut-set A separates two nodes u and v if all paths
from u to v pass through at least one node in A. The
operational meaning of this assumption is that dependency
between two participants is only attributed to the partici-
pant’s observed connections in the topology of G.

3. Prior joint probability distribution of D is given. The
Hammersley-Clifford theorem Koller and Friedman (2009)
allows this distribution to be specified through potential
functions on the maximal cliques of G. In particular, this
means that for any clique of participants, the processor has a
potential function, which can be interpreted as the joint
probability distribution of the values of the clique’s partici-
pants if they were in a graph solely by themselves. Formally,
for any maximal clique C∈G the potential function
ΦCðDCÞ is given and therefore the distribution ofD is given.

The model comprises two parts. The first part addresses the
knowledge updating process following a screening of an item.
The result of such a screening is identifying the item as either
relevant or irrelevant, and perhaps observing some sudden
revelations. This information is used for updating the joint
probability distribution function (pdf) of ½P;D�; which we
denote as Pr½P;D�: The second part utilizes the updated joint
pdf to determine the next item to be screened. Figure 2 depicts
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the ground truth associated with the intercepted network and the
prior knowledge of the processor regarding that network.
From a modelling perspective, the last assumption above is

the strongest. When discussing this application area with
intelligence analysts, they are often worried about missing links
between people. In other words, they are worried about people
who communicate or are closely associated, but somehow the
intercepted data simply does not include those connections—
perhaps because they use an unknown physical intermediary, or
other non-technological means of communication. The Markov
assumption above assumes that people for whom we have no
observed connections are conditionally independent, given a
separating set of individuals in the social network. This may not
be true if there are unobserved connections. This modelling
detail can be expanded further. For example, in some sense,
people who communicate often—say we have 10 000 inter-
cepted communications—should be more dependent than those
who communicate less often—say where we have only 1
intercepted communication. Further improvement can be made
on the above model by incorporating either of these aspects:
(1) Unobserved connections that are missing from the inter-
cepted data and (2) a graceful fade in dependence between
individuals who communicate often, and those that do not.

4. Updating

From the three assumptions given in Section 3, and the
Hammersley-Clifford theorem we obtain that the joint prob-
ability distribution Pr½P;D� is given by

Pr P;D
� � ¼ 1

Z

Y
C2C

ΦC DC

� � Y
ðu;vÞ2E

Pr Puv j Du;Dv½ �;

where C denotes the set of maximal cliques in G, and Z is a
normalizing constant. Note that the marginal distribution of DC

obtained from Pr½P;D� need not be equal toΦC½DC�: This is the
reason for referring to ΦC½DC�; C 2 C; as clique potential

functions rather than pdfs. However, if C is the only maximal
clique in the graph, then a normalized ΦC½DC� gives the joint
probability distribution of DC:
Next we show how, in general, the joint probability distribu-

tion Pr½P;D� is updated as new items are screened. Later on we
adjust this general procedure to our specific setting. Let Sa= 1 if
item a on edge (u, v) is relevant and 0 otherwise, and let
S ¼ ðSa; a 2 qðu; vÞ; ðu; vÞ 2 EÞ: The joint distribution of
½P;D; S� is

Pr P;D; S
� � ¼ 1

Z

Y
C2C

ΦC DC

� � Y
ðu;vÞ2E

Pr Puv j Du;Dv½ �

Y
a2qðu;vÞ

Pr Sa j Puv½ �; ð1Þ

where Pr[Sa |Puv] is simply Puv if Sa= 1 and (1−Puv) if Sa= 0.
When the processor screens an item, say item â 2 qðu; vÞ; and
discovers that it is relevant, he updates his belief distribution to

Pr P;D; S j Sâ ¼ 1
� �

:

The update for identifying an irrelevant item is similar. In
addition to the relevance of screened items, the processor may
experience a sudden revelation that reveals the true value of a
participant. For simplicity, sudden revelations occur indepen-
dently for each participant involved in the screened conversa-
tion with a fixed probability c, though this can be easily
extended to depend on the values of the participants and to
participants not involved in the screened conversation. An
update for sudden revelations take a similar form, that is,
Pr½P;D; S j Du ¼ d�, if participant u is revealed to have a
value of d.
Computationally, a naive implementation of the updating

process is intractable for large networks. For example, ifDu and
Puv are discrete with only two values, a naive method to store
the joint distribution Pr½P;D; S� would require storage of
2|V|+ |E|+ |I| values, where |I| is the number of items. Even with

a b

Figure 2 A graphical depiction of a model for intelligence processing: Panel (a) represents ground truth and Panel (b) represents initial
processor knowledge. The available intelligence items induce a graph where the nodes are participants. With each edge in the graph, we
associate the intelligence items between the corresponding participants. For example, the top right edge is associated with 10 conversations.
In general, there are nij conversations on edge (i,j). Some participants have low value, presented here in blue, and some have high value,
presented here in red. In general, the value of a participant i is di. The probability that a conversation on edge (i, j) is relevant is pij. For
example, the edge on the top right has an 80% chance of producing a relevant conversation upon screening, while the edge on the bottom left
has a 90% chance. In general, the processor only knows (1) the graph topology; (2) the number of items on each edge and (3) a joint
probability distribution Pr½P;D� representing beliefs on the values of pij and di.
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efficient storage of the joint probability distribution, exact
computation of the marginal distributions is #P-complete
(Dechter, 1996). Even approximate computation of the mar-
ginal distributions is, in general, NP-hard (Dagum and Luby,
1993). A number of algorithms exist for computing the exact
marginal distributions of the unobserved variables, given the
values of the observed variables including variable elimi-
nation (Zhang and Poole, 1996), conditioning (Shachter et al,
1994), and clique trees (Shafer and Shenoy, 1990; Shenoy and
Shafer, 2008). These algorithms, called collectively inference
algorithms, have been shown to be computationally equivalent,
with some trade-offs (Shachter et al, 1994). In general, the
running time of inference algorithms is exponential in the tree-
width of an appropriate graphical representation of the depen-
dencies in the probability distribution (Koller and Friedman,
2009, pp 308–311). Algorithms for computing the marginal
distributions approximately, based on sampling estimation, also
exist, and are provably sub-exponential if the conditional
probabilities in the model are bounded away from zero
(Dagum and Luby, 1997). A good overview of algorithms and
their associated complexity is provided by Koller and Friedman
(2009).
The efficiency of the inference algorithm used to compute the

updated marginal distributions does play a role in the scalability
of the intelligence processing model we develop, and it has
been shown that inference algorithms work well in large
networks—with sizes greater than 4500 nodes (Murphy et al,
1999). However, the details of efficient inference implementa-
tions are beyond the scope of this work. Our focus is on
developing an efficient intelligence processing scheme, and
thus assume that there exists an efficient inference algorithm,
relative to the time scale of the processing stage, for computing
marginal distributions. We demonstrate computational results
for our model in Section 6.
Utilizing the structure and assumptions of our problem, we

observe that an inference algorithm only needs to deal with the
random variables D because, according to Assumption 1 in
Section 3, the probability distribution of P is derived from D.
Following an observation on edge (u, v), Suv, the sequence of
operations is much trimmer than the general mathematics
described above. Specifically, the process comprises four
stages:

1. Update Pr[Puv]:

PrU Puv ¼ p½ � ¼ Pr Puv ¼ p j Suv ¼ s½ �

¼
pPr Puv¼p½ �

E Puv½ � if s ¼ 1

1 - pð ÞPr Puv¼p½ �
1 -E Puv½ � if s ¼ 0

8><
>:

where Pr[⋅] and PrU[⋅] are prior and posterior (updated)
probability distributions, respectively.

2. Update Pr[Du, Dv]:

PrU Du ¼ du;Dv ¼ dv½ � ¼

¼
X
p

Pr Du ¼ du;Dv ¼ dv j Puv ¼ p½ �PrU Puv ¼ p½ �

¼
X
p

Pr Puv ¼ p j Du ¼ du;Dv ¼ dv½ �Pr Du ¼ du;Dv ¼ dv½ �
Pr Puv ¼ p½ �

´PrU Puv ¼ p½ �

3. Use an inference algorithm along with the updated distribu-
tion PrU[Du,Dv] to derive updated marginal distributions of
the other pairs of nodes (k, l), PrU[Dk,Dℓ].

4. The updated marginals PrU[Dk,Dℓ] give updated distribu-
tions PrU[Pkℓ] for (k, ℓ)≠(u, v):

PrU Pk‘ ¼ p½ �

¼
X
dk ;d‘

Pr Pk‘ ¼ p j Dk ¼ dk;D‘ ¼ d‘½ �

PrU Dk ¼ dk;D‘ ¼ d‘½ � ð2Þ

The above steps show that an inference algorithm is only
required for updating the distribution of the variables D,
allowing for faster computation.

5. Screening

The decision problem faced by the processor is how to
sequence screening in a given number rounds, T, so as to
maximize the expected number of identified relevant items. In
this section, we formalize the processor’s screening prioritiza-
tion problem and propose several heuristics for generating
effective screening sequences.
For simplicity of exposition, we assume that the value du of

each participant—that is, node in the social network—is either
0 or 1. It is straight-forward to extend this binary setting to
multiple discrete quantities. The formal statement of the screen-
ing prioritization problem is as follows. Let the processor’s
initial belief distribution π0 ¼ Pr½D� be given. The distribution
π0 along with the conditional distribution assumptions is
sufficient to obtain the joint distribution of all random variables
as in Equation (1). Let δi specify the item to be screened at
round i. Formally, δi is a function outputting an item to be
screened with inputs π0, the initial belief distribution, and hi− 1,
the history of items screened thus far. This history describes
the relevance values and sudden revelations of screened items
in rounds previous to round i. The screening optimization
problem is:

max
δi

E
XT
i¼1

Sδi π0;hi- 1ð Þ

" #
; (3)
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where Sδiðπ0;hi- 1Þ is the relevance value of the item screened on
round i.
The screening prioritization problem, (3), is a finite state,

finite action space, finite horizon partially observable Markov
decision process (POMDP) (Monahan, 1982). While problem
(3) is stated generally, in practice the processor only needs to
select an edge rather than an item, because the relevance of all
items in q(e), e∈E, is assumed to be equally likely. Following
the POMDP definition of Monohan (Monahan, 1982), the
POMDP to be solved by the processor is defined by:

1. A core process with states ð‘; p; dÞ, where ‘ ¼ ð‘e; e 2 EÞ is
a vector of non-negative integers representing the number of
unscreened items remaining on each edge, p represents the
probabilities that an item on each edge is relevant, and d
represents the values of the participants. The core process’s
state is not entirely observed by the processor, he only knows
‘. The values of p and d are only known in probability.

2. A probability distribution, π0, known to the processor,
specifying an initial distribution on core states.

3. An action space of the processor, E. In each round he selects
an edge from which to screen an item.

4. Transition probabilities from one core state to another, given
a selected action e∈E. For this POMDP, the transition
probabilities are simple. Most coordinates of the core state
ð‘; p; dÞ do not change, with the exception of ℓe, which
decreases by one deterministically, for the selected edge e.

5. Observations on the core process state, defined by the
relevance of the screened conversation, and any sudden
revelations that occur.

6. A likelihood of seeing observation y, given the core process
is in state x. This is given by pe, the probability of observing
a relevant conversation on edge e, and c, the probability of a
sudden revelation for either of the participants.

7. Finally, a reward function, which is 1 if a relevant conversa-
tion is observed and 0 otherwise.

It is well known that a POMDP can be converted into an
equivalent Markov decision process (MDP) (Monahan, 1982),
where the state space of the MDP is the space of probability
distributions on the core states of the POMDP. Specifically, the
state in round i of the equivalent MDP is a probability
distribution on ð‘; p; dÞ—given by the certain knowledge on
the number of unscreened conversations, ‘, and a belief
distribution on p; d given by π0 updated with knowledge in hi− 1.
With this equivalence, dynamic programming gives an exact,

though inefficient, algorithm for maximizing the expected
reward—the expected number of identified relevant items over
T rounds. Though exact, the prohibitive running time of
dynamic programming, O(|E|T ⋅ Infer) where Infer is the
inference algorithm run time, leads us to seek heuristic
optimization methods for the processor’s screening problem.
In a nutshell, the basic tension in the screening prioritization

problem is one between exploitation and exploration. Exploita-
tion screens edges known to have a relatively high probability

of yielding relevant conversations—that is, high E[Pij].
Exploration seeks information about relatively unknown areas
of the social network—that is, provides more precise estimates of
E[Pij] for the graph’s edges. The exploration versus exploitation
tension is similar to the tension encountered in multiarmed bandit
problems, which date back to the 1950s and continue to engender
scientific study today (Robbins, 1952; Jones and Gittins, 1972;
Auer et al, 2002a,b; Dar et al, 2002; Mannor and Tsitsiklis,
2004), with two key exceptions. First, in the screening prioritiza-
tion problem, edges, which correspond to bandits, are correlated.
Information about one bandit provides information on others.
Second, bandits have a limited number of pulls. In particular, we
can only select edge e for screening as many times as the number
of items in q(e). Nevertheless, the multiarmed bandit literature
provides a rich set of heuristics that may be naturally applied to
the screening prioritization problem.
The screening prioritization problem is related to two research

areas: contextual bandit models and sequential exploration
problems. Contextual bandit models are often used for suggest-
ing articles and other content to internet users. In a contextual
bandit model, the reward of an action—the match to a user’s
interest—depends on a context presented to the algorithm. The
context can be thought of as a description of the user’s interests,
which allows for computation of some kind of a matching index.
However, contextual bandit approaches neither contain any
underlying social network structure, nor they address the infor-
mational value of pairs of nodes. Furthermore, some of the most
advanced algorithms for contextual bandits depend on a linear
relationship between the context and the expected payoff of the
actions (Wang et al, 2005; Li et al, 2010; May et al, 2012). Our
approach is starkly different, in that it concerns an explicit social
network structure that results in non-linear relations between the
arms (edges). Sequential exploration problems have been applied
in the search for oil and gas reserves (Brown and Smith, 2012;
Martinelli et al, 2012). These problems are similar to ours in that
there is a complex Bayesian graphical model in the background
that captures the knowledge state of the decision maker, as more
information is collected through executing actions. Our problem
differs from typical sequential exploration in its underlying
network structure and in the specific way knowledge is accumu-
lated and updated. In our model, the arms of the bandit (edges in
the social network) are correlated in a unique way that depends
on the topology of the network and the values of the nodes,
which are updated dynamically. Because of this unique setting,
even the most basic heuristic discussed below, Pure Exploitation,
requires, in our case, a complex inference process. Other studies,
that assume a specific correlation structure among the bandits,
also exist (Frazier et al, 2009; Rusmevichientong and Tsitsiklis,
2010).

5.1. Heuristic algorithms for the screening optimization
problem

We first explore two simple and efficient heuristics: Pure
Exploitation (PE) and Softmax (Daw et al, 2006). Then we
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investigate two additional, more complex, heuristics: Value-
Difference-Based-Exploration (VDBE) (Tokic, 2010) and a
Finite Horizon MDP (FHM) policy. We describe these four
heuristics in turn.
Pure Exploitation (PE) is a greedy algorithm that always

chooses an item from the edge with the highest expected
probability of being relevant, that is, an edge (u, v) with the
highest value of E[Puv]. This algorithm ignores exploration
altogether, and always chooses an item according to the
exploitation criterion. This naive approach can serve as a
baseline for comparison with other algorithms as it is exactly
optimal when Var[Puv]= 0 for all (i, j)∈E. Though PE’s
selection criterion for an edge is simple, it still depends on
updating the knowledge state of the processor after each round.
Softmax implements a mixture of exploration and exploita-

tion (Thrun, 1992). The algorithm assigns a weight to each
edge, and selects an edge randomly proportional to those
weights. The weight on edge (u,v) is wuv ¼ eE½Puv�=K , where K
is a positive constant often called temperature (Daw et al,
2006). For small values of K, the weight of edges with high
E[Puv] is large and they will almost always be chosen, favouring
exploitation over exploration. For large values of K, all
variables have approximately the same weight and random
exploration is dominant.
Value-Difference-Based-Exploration (VDBE) (Tokic, 2010)

is a modification of a classical ϵ-greedy algorithm that mixes
exploitation and exploration probabilistically. The value of ε
specifies the probability that exploration is chosen and may be a
constant parameter or a function of the remaining available
screening time (Tokic, 2010). VDBE explores when there is a
low certainty regarding the expected reward of alternative
actions, and exploits otherwise. The expected reward of screen-
ing edge (u, v) is E[Puv]. The algorithm updates the likelihood
of exploration according to the formula:

ϵk + 1 ¼ δ
1 - e

-U
σ

1 + e -U
σ

+ 1 - δð Þϵk;

whereU is the maximum difference in expectations between the
(k− 1)st screening and the kth screening, U=maxuv|E

k[Puv]−
Ek− 1[Puv]| with expectations taken with respect to the updated
probability distributions in the respective rounds. The para-
meters δ and σ vary the long-term behaviour of the algorithm.
The value of ϵ0 is set to 1.
Finite Horizon MDP (FHM) can be thought of as a type of a

Knowledge-Gradient policy (Frazier et al, 2009). The prohibi-
tive run time of the exact dynamic programming algorithm,
O(|E|T⋅Infer), comes from the fact that the only state values
known are those at the final time horizon, T. Because of this, the
exact algorithm must look T rounds into the future to compute
the optimal actions. The efficient but inexact FHM algorithm
works by employing an estimate of the state value at a certain
depth of the dynamic programming algorithm. Consider a state
of the dynamic program defined by (π0, hi), with T− i rounds of
screening remaining. One reasonable estimate of the state’s
value comes from assuming that belief distribution updates are

no longer performed, giving a state value estimate ofP
a2A E½Pea �, where A is the set of T− i most likely relevant

items under Pr½P;D j π0; hi� and ea is the edge of item a. Such
an estimate function, combined with a finite horizon dynamic
program gives a family of optimization algorithms, based on the
look-ahead depth, that trade off optimality and efficiency.
Another way to look at these algorithms is to consider them as
a type of rolling, fixed-exploration period algorithm. The
algorithm has a certain period which it can explore—the look-
ahead depth—and after that it must exploit based on the
knowledge it gained. This bears resemblance to the budgeted
learning problems that appear in the literature (Guha and
Munagala, 2007). For simplicity, we fix the look-ahead depth
to one.
In the next section we study these heuristics and compare

their performance. We select these heuristics in particular for
the following reasons. Pure Exploitation is the natural, most
simple algorithm to try. Softmax and ϵ-Greedy are two
commonly used ad-hoc methods for multiarmed bandit pro-
blems that mix exploration and exploitation, unlike Pure
Exploitation (Vermorel and Mohri, 2005). Some recent results
show that VDBE has more robust performance on multiarmed
bandit problems than Softmax and classical ϵ-Greedy (Tokic,
2010). Finally, the FHM heuristic is included because it
provides a theoretically optimal solution, as long as the number
of items to be screened is smaller than the heuristic’s horizon.

6. Analysis

Our computational example, in which we test the aforemen-
tioned screening heuristics, is based on a real-world social
network of 17 terrorists who were behind the 1998 United
States embassy bombing in Tanzania (Computational Analysis
of Social and Organizational Systems (CASOS), 2012). The
terrorist social network is depicted in Figure 3. We augment the
graph of the social network with 17 benign nodes, along with

Figure 3 The nodes in the graph are 17 terrorists behind the 1998
US embassy bombing in Tanzania. The links in the graph represent
known associations. The data for this network is from the Carnegie
Mellon Computational Analysis of Social and Organizational
Systems laboratory (Computational Analysis of Social and
Organizational Systems (CASOS), 2012).

Nedialko B Dimitrov et al—Finding the needles in the haystack 807



randomly generated adjacent edges, reflecting possible commu-
nications among the 17 non-terrorist nodes and between them
and the terrorists.
The ground truth is such that the value of a node du is fixed at

1 for each one of the 17 terrorists nodes and at 0 for all 17
benign nodes. The probabilities of relevant items, puv, are
selected randomly from a Beta distribution on Puv, depending
on the values of du and dv. We choose to use the Beta
distribution because its support is bounded by 0 and 1, as
needed for Puv, and more importantly, it is the conjugate prior
for the Bernoulli observations. This guarantees that Bayesian
updates keep Puv as a Beta distributed random variable, which
makes the analysis tractable. The complete details of the
computational implementation are given by Nevo (Nevo,
2011). Figure 4 depicts the parameterized network.
Some of the heuristics contain parameters, such as the scaling

parameter K in Softmax, that require tuning. We tune each
algorithm, by testing it several times with different parameter
combinations, and select the parameter combination that yields
the best performance. However, in a practical application, a
processor does not have the benefit of trying the algorithm
many times on the screening prioritization problem instance of
interest to select the best parameters. In a realistic situation,
either careful a priori reasoning is required for algorithm
parameter tuning, or algorithms with small numbers of para-
meters, such as PE, Softmax, or FHM, are to be used. PE, for
example, has no parameters and thus does not even require a
priori reasoning for effective use. Softmax has one parameter,
called temperature, that represents a relatively unintuitive way

of specifying what fraction of iterations the algorithm uses for
exploration as opposed to exploitation. Tuning Softmax’s
temperature, K, requires estimating the ratio of ðemaxijpij=KÞ=
ðeAvgij½pij�KÞ, an unintuitive and possibly instance-dependent
task. In contrast, FHM has a very intuitive single parameter—
the number of look-ahead steps. Further, experimentation on
several instances shows that a look-ahead of one step is about as
good as larger look-aheads. Thus, the single parameter could
potentially be just fixed at one-step look-ahead for all instances.
Based on our experimentation, in terms of parameterization, the
clear winners are PE and FHM for their ease of interpretation
and parameterization. For further details about parameter tun-
ing, see Nevo (2011).
Figure 5 illustrates the behaviour of the heuristics. Each

figure presents a single run of T= 300 screenings and a mean of
100 items per edge in the network shown in Figure 4. Recall
that pe denotes the true (simulated) probability that an item on
edge e is relevant. We define the distance of an edge selected
for screening, w, to be pe* - pw, where e*= arg maxe{pe, q(e) is
not empty}. In other words, e* is an edge with unscreened items
that has the highest probability of yielding a relevant item.
Edges with distance zero are optimal when it comes to yielding
relevant conversations. Edges with a higher distance values are
farther away from the optimal selection. The vertical axis of the
figure represents the distance of the edges selected by the
algorithm; in other words, the plots indicate how close each
screening selection is to an optimal one. The horizontal axis
represents the 300 screenings in the single run.
Pure Exploitation always selects the edge with highest E[Pij].

An update in the distribution of P may result in selecting a
different edge in the following screening round, as seen in the
first two screenings in the graph in 5(a) where the distances
change. From approximately the 20th round and on, the same
edge is repeatedly selected until all items on that edge are
exhausted, which explains the flat line at that range. Observa-
tions from this edge do not sufficiently change the belief
distribution to change Pure Exploitation’s selection.
The behaviour of Softmax, shown in Figure 5(b), is different

than that of Pure Exploitation. Softmax selects edges probabil-
istically, so that there is always some chance for selecting an
edge that does not have the maximum value of E[Pij]; choosing
exploration over exploitation. Softmax’s exploration identifies
optimal or near-optimal edges for screening, as indicated by the
long sequence of distance zero selections. Even though the
algorithm finds a near-optimal edge, the algorithm always
spends some time exploring, as indicated by the positive
distance edges selected throughout the run. In these single runs,
Softmax’s exploration allows it to generally select better edges
—edges with a better relevance probability pe, than Pure
Exploitation.
The behaviours of the two remaining heuristics are less

intuitively simple, but consistent with the literature. For exam-
ple, VDBE enters a series of exploration steps whenever it
encounters an edge that performs worse than the algorithm
expected—because the value difference as defined by the

Figure 4 The parameterized network used in the computational
example. The network includes benign nodes, pictured in blue, and
terrorists, pictured in red. The network also includes a specific
likelihood of relevant items on each edge. The edges are grouped in
ranges, based on their likelihood, pictured here by a different edge
thickness for each range. The number of items on each edge is
varied according to a Poisson distribution with a specified mean.
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algorithm is great. FHM tends to explore early, because its finite
horizon makes the algorithm behave as though it is not possible
to explore later in the screening process.
Figure 6 compares the performance of the four heuristics to

the performance of a greedy algorithm in the ideal situation
when all the pe values are known. As mentioned earlier, the
latter is the best possible screening situation one could expect
and therefore it represents an upper bound for the performance
of any screening procedure. Each bar represents 150 simulation
runs, each for T= 300 screenings. Blue, red, and green bars
represent the means of 50, 100, and 350 items per edge,
respectively. The figure shows several surprising results. First,
even though a complex algorithm like FHM has the best
performance among the suggested heuristics, simple algorithms
like Pure Exploitation and Softmax perform surprisingly well.
Second, when there is a small number of items per edge—a
situation represented in the blue bars—all algorithms perform
essentially the same. Third, the best performing algorithms—
Softmax and FHM—show surprisingly little variance in
performance.
The run times of the algorithms depend on two parameters:

The run time to select an edge and the run time to perform
inference. The only algorithm that has significant run time in
selecting an edge is FHM because during its look-ahead phase it
must perform several inferences. Ultimately, the bottleneck in
all the run times is the inference on the graphical model. The
inference run times themselves are highly dependent on
the structure of the graph. We have constructed instances where
the inference from a single screening takes as much as 2min on
a modern Intel Xeon processor! On the other hand, if the graph

is almost a tree, the inference can take less than half a second for
large graphs, with a hundred nodes. This difference in inference
run time is due to the fact that exact inference on a graphical
model is exponential in the tree-width of the graph. It also
suggests a promising line of research in using approxi-
mate inference to speed up these times on graphs that have
large tree-width.

Figure 5 Example behaviours of the heuristic algorithms. (a) Pure Exploitation Behavior; (b) Softmax Behavior; (c) VDBE Behavior;
(d) FHM Behavior. The vertical axis, labelled distance, is the difference pe* - pw, where e* is the edge with the greatest likelihood of yielding
a relevant conversation and w is the edge selected by the algorithm. In other words, if the distance is 0, the algorithm is selecting the
best possible edge to screen, and larger values indicate that the algorithm is selecting poorer edges. The plot represents a single run with
300 screenings, as indicated by the horizontal axis. The remaining figures represent example behaviour of the other heuristics.

Figure 6 Algorithm performance. Perfect denotes a greedy
selection algorithm that a priori knows the pe values. Perfect
provides an upper bound on the performance of any other
algorithm. The other algorithms presented are: PE, Softmax, VBDE,
and FHM. Each colour bar comes from a 150 algorithm simulation
runs, each for 300 screenings. Blue, red, and green bars represent
the means of 50, 100, and 350 items per edge, respectively. The
error bars on top of each bar represent standard deviation in
algorithm performance.
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This computational analysis, and further analysis detailed in
Nevo (2011), leads to several key insights:

1. Simple algorithms perform surprisingly well. Even a simple
algorithm like Pure Exploitation performs reasonably well.
We remark that even though Pure Exploitation is in itself
simple algorithm, its performance depends on knowledge
updates, which themselves are a complex computational
process. Softmax, which is also a rather simple algorithm,
performs nearly as well as more complex algorithms. We
speculate that the dependencies among the alternative
actions, the edges available for screening, are the main
reason for this good performance.

2. Exploration is less valuable in an exploration-
exploitation setting where pulling one bandit gives infor-
mation on several others as well. One could think of the
screening prioritization problem as a multiarmed bandit
problem with correlated bandits—each edge corresponds
to a bandit—where pulling one bandit yields information
on many others. In this setting, exploration is less valu-
able than in an uncorrelated bandit setting, as demon-
strated by the similar performance of Pure Exploitation
and Softmax.

3. Exploration is less valuable in an exploration-exploitation
setting with a limited number of visits to each bandit. In the
screening optimization problem, a limit on the visits to each
bandit is presented by the number of items on each edge. If
the visits to a bandit are limited to a small number, it is not
worth finding a good bandit because once we find it we have
no opportunity to exploit indefinitely. This is demonstrated
by the similar performance of all algorithms when the mean
number of items per edge is small.

Finally, though computationally expensive, the best algorithm
is the FHM policy. This complex algorithm shows consistently
good performance, even under varied simulation parameters.
However, the simplicity and good performance of Softmax may
make it preferable for practical use.

7. Summary and conclusions

With ever growing sensing and intercepting capabilities that
produce a glut of intelligence data, the challenge faced by the
intelligence community is to efficiently sort these data, and
single out the relevant, and only relevant, data items for a given
query. In particular, intelligence data obtained from intercepting
communications in a social network, such as terrorists groups or
organized crime, may be time-sensitive or even time-critical, to
the point that some intelligence items may quickly become
obsolete if not processed in a timely manner. Therefore, it is of
utmost importance that the intercepted data is processed
effectively during the allotted time window. In this paper we
propose a method for efficiently screening the intelligence items
based on (1) exogenous partial prior information concerning the
social network, (2) observed relevance of screened items

(communications), and (3) continuously updated information
about the values of participants (nodes in the network) as
intelligence providers based on the observations of screened
items. Using techniques from graphical models, social networks
and Bayesian learning we developed a new method for
optimally sequencing the screening of items. While the exact
optimization scheme is, for all practical purposes, an intractable
MDP algorithm, we proposed several heuristics that have been
suggested in the literature and examine their effectiveness by
extensive simulations. The benchmark is an ideal situation
where the relevance probability of each edge in the social
network is known to the processor, in which case a simple
greedy algorithm is provably optimal. Using these simulations,
we show that the expected number of relevant items obtained
by simple heuristics is within 80 to 93% of a best-case scenario
where the processor has full knowledge about the likelihood of
relevant items.
Extensions of this work should address imperfect screen-

ing, that is, false negative and false positive screening errors,
variable screening time, and various levels of relevance.
Variable screening times would significantly alter the model,
especially if information on the expected screening time of
an item is available prior to screening the item. Intuitively,
variable screening times would change the problem from a
selection problem, to a stochastic job-shop scheduling
problem. On the other hand, if no prior information on the
variable screening times is known, the selection problem we
present is, in a sense, the best an intelligence analyst can do
because all items look the same at the time he selects an item
to screen.
Discounting of information in the model can come in two

forms: a time discount factor that values information gained
earlier in the screening process more than information gained
later; and an information discount, that values the first few
relevant intelligence items from a queue (an edge in the
network) more than subsequent relevant items from the same
queue. Time discounts are less relevant in this application
because typically the information has to be screened in a few
hours or a day, as opposed to months or years. On the other
hand, information discounts are quite relevant because subse-
quent relevant items from the same queue may contain
duplicate information—two people tend to talk about the same
topics. An information discount can be included in the model
by adding the number of relevant items screened from an edge
as part of the POMDP state. Then, subsequent items from the
same edge can be valued with exponentially decreasing
rewards. Intuitively, such a change would not allow us to
exploit edges with high probabilities of relevance and many
items because the expected marginal reward from such items
would decrease to zero quite quickly.
It is possible to adapt the model we present to multiple

simultaneous processors working on the same intelligence
collection task. As the multiple processors screen items, they
update a common knowledge base of the network. In that
sense, the model is similar to the one we present, except
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the processing is performed at a faster rate. The main
difference is that some processing tasks may not yet be
complete when selecting a new processing task. For example,
if there are five processors and processors one through four
are still screening their items at the time we have to select an
item for processor five. Thus, the knowledge updating
process may be lagged a bit and the algorithms we present
will need to be slightly modified to ignore items currently
being processed by others.
Finally, the setting described in this paper is static in the

sense that during screening no new items arrive. In a realistic
high-intensity environment this may not be the case and
intelligence items may arrive continuously over time. This
would dynamically change the network structure, and may
require a different updating and selecting processes.
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