GPU Accelerated Spectral Element Methods: 3D Euler equations

Giraldo, Francis

GPU Accelerated Spectral Element Methods: 3D Euler equations
American Geophysical Union (AGU) Fall Meeting, 16 December 2015
http://hdl.handle.net/10945/48821
The Euler equations are
\[
\begin{align*}
\frac{\partial u}{\partial t} + \nabla \cdot (u u) &= -\nabla p + \frac{\partial \tau}{\partial x} + f, \\
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) &= 0, \\
\frac{\partial E}{\partial t} + \nabla \cdot (E u) &= -\nabla \cdot (\rho f),
\end{align*}
\]

where \(u \) is the velocity vector, \(p \) is the pressure, \(\tau \) is the viscous stress tensor, \(f \) is the external force, \(\rho \) is the density, and \(E \) is the internal energy. These equations can be solved using various discretization methods, such as continuous Galerkin (CG) and discontinuous Galerkin (DG).