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Progressive kidney fibrosis contributes greatly to end-stage renal failure, 

and no specific treatment is available to preserve organ function. During

renal fibrosis, myofibroblasts accumulate in the interstitium of the kidney 

leading to massive deposition of extracellular matrix and organ 

dysfunction. The origin of myofibroblasts is manifold and the contribution 

of an epithelial-to-mesenchymal transition (EMT) undergone by renal 

epithelial cells during kidney fibrosis is still debated. We show that the 

reactivation of Snai1 in renal epithelial cells is required for the 

development of fibrosis in the kidney. Damage-mediated Snail1 

reactivation induces a partial EMT in tubular cells that, without directly 

contributing to the myofibroblast population, relays signals to the 

interstitium to promote myofibroblast differentiation and fibrogenesis and 

to sustain inflammation. We also show that Snail1-induced fibrosis can be 

reversed in vivo and that obstructive nephropathy can be therapeutically 

ameliorated in mice by Snail1 inhibition. These results reconcile 

conflicting data on the role of EMT in renal fibrosis and provide avenues 

for the design of novel anti-fibrotic therapies.

Kidney fibrosis is a hallmark of chronic kidney disease (CKD), the progressive 

deterioration of kidney function, which leads to end-stage renal failure1. The 

only treatment available is the replacement of renal function by dialysis or 

kidney transplantation, which represented in 2009 a cost of over $40 billion in 

the United States2. CKD is characterized by glomerulosclerosis and tubulo-

interstitial fibrosis, regardless of the initial cause of the renal disease. The 

development of the renal system involves several rounds of epithelial-to-
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mesenchymal and mesenchymal-to-epithelial transitions (EMTs and METs,

respectively3). Snai1, which encodes the transcription factor Snail1, a potent 

EMT inducer during embryonic development and tumor progression4, is 

expressed in the precursors of the renal epithelial cells. But its expression is 

downregulated upon epithelial differentiation and maintained in a silent state

during adulthood5 as the suppression of epithelial plasticity is crucial to maintain 

normal tissue architecture and homeostasis. We previously showed that 

activation of Snail1 in renal epithelial cells leads to renal fibrosis and renal 

failure in an inducible transgenic mouse model (Snail1-ERT2)5. Snail1 is also 

reactivated in mice subjected to unilateral ureteral obstruction (UUO)6,7,8, a 

standard model for progressive renal fibrosis9 and in fibrotic lesions obtained 

from patients subjected to nephrectomy5. Thus, Snail1 reactivation in adult 

kidneys is sufficient to induce renal fibrosis and kidney fibrosis is associated

with Snail1 activation in animal models and in patients. However, those 

observations do not address the question of whether Snail1 reactivation, and in 

turn, an EMT-like program is required for renal fibrosis to develop. While initial 

cell fate tracing experiments described a significant contribution of renal 

epithelial cells to myofibroblasts10, subsequent studies could not find labeled 

epithelial cells within the interstitium in animal models of renal fibrosis11,12,13.

Here, we directly assessed the role of Snail1 and EMT and show that the 

reactivation of Snail1 is not only sufficient but also required for the development 

of kidney fibrosis. We show that Snail1 reactivation in renal epithelial cells 

triggers a partial EMT that, without directly generating interstitial myofibroblasts, 

relays crucial signals for the differentiation of myofibroblasts and markedly

contributes to the inflammatory response. The partial EMT program leads to 
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dedifferentiation of renal epithelial cells and promotes kidney fibrosis but 

preserves the integrity of the renal tubules.  Here we show that the fibrosis 

response can be reversed in vivo by inhibition of Snail1 expression in mouse 

models of kidney injury.

RESULTS

Snail1 depletion ameliorates UUO-induced fibrosis 

To directly assess the contribution of Snail1 reactivation in epithelial cells to 

renal fibrosis, we crossed Snai1fl/fl mice14 with a strain bearing the Ksp1.3-Cre

transgene15. Ksp cadherin (Cadherin-16) is a kidney-specific cadherin 

expressed in renal epithelial cells both in the cortex and in the medulla. The 

resulting strain Ksp1.3-Cre; Snai1fl/fl, referred to as SFKC hereafter 

(Supplementary Fig. 1), impedes Snail1 expression in Cadherin-16 positive 

cells. Snail1 expression is silent in the adult kidney but it is reactivated after 

UUO in the cortex and in the medulla (Supplementary Fig. 1c). During renal 

development, Snail1 is a strong Cadh16 repressor5, and it is only when Snai1 is 

downregulated that renal cells express Cadherin-16 and epithelialization 

occurs. As Snail1 is silenced in the adult, preventing Snail1 activation in 

Cadherin-16 positive cells in the kidney does not have any impact in healthy 

mice. As expected, while Snail1 was highly reactivated in the kidney upon UUO, 

this was not the case in recombined renal epithelial cells in SFKC mice (Fig. 1a-

c). We analyzed overall morphology, collagen deposition and expression of 

alpha smooth muscle actin ( -SMA) and vimentin 7 or 15 days after UUO and 

found that kidneys from SFKC mice were protected from the development of 

overt fibrosis, although signs of tubular distension resulting from the obstruction 
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were readily evident (Fig. 1d,e and Supplementary Fig. 2a,b). We confirmed 

the attenuation of fibrosis by analysis of the expression of epithelial and 

mesenchymal markers and this was particularly evident 2 weeks after UUO 

(Fig. 1f). Quantification of Sirius Red staining (Fig. 1g) showed a 35% reduction 

in fibrosis in the cortex of obstructed kidneys from SFKC mice when compared 

to obstructed kidneys from WT or control (Ksp1.3-Cre-only) mice (Fig. 1g and

Supplementary Fig. 3a,b). In our SFKC model, Snail1 reactivation was also 

prevented in the collecting ducts, and we observed a much better preserved 

morphology and lower collagen deposition in the medulla compared to WT 

animals (Supplementary Fig. 3c) indicating that the overall protection from 

fibrotic degeneration is higher than that reflected by the quantification of Sirius 

Red in the cortex. 

We next assessed the contribution of epithelial cells to the interstitium 

after UOO in our system. We generated a mouse model harboring Cre-loxP

mediated expression of the Tomato fluorescent protein driven by the Ksp 1.3

promoter (Ksp1.3-Cre; Rosa-LSL-TdTomato). These mice allow the 

visualization and fate mapping of renal epithelial cells. Notably, we could not 

detect tdTomato+ cells in the interstitium 7 days after obstruction 

(Supplementary Fig. 4a) and found less than 1% after 15 days (Fig.  2a). One

of those rare cells leaving the tubule is shown in Supplementary Fig. 4b. Thus, 

renal epithelial cells do not delaminate from the tubules to contribute to 

myofibroblasts or other interstitial cells, also in keeping with the observation that 

the total number of tubular cross sections did not differ between kidneys from 

WT or SFKC mice 15 days after UUO (Fig. 2b), indicative of tubular integrity. 
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Snail1 expression was reactivated after UUO in over 80% of tubular cells and 

also in activated interstitial cells as reported in cancer models16 (Fig. 2c). 

Although tubular cells did not significantly contribute to myofibroblasts, 

UUO provoked the downregulation of the epithelial markers Cadh1 and Cadh16

(Fig. 1f) together with the loss of polarity/differentiation as seen by the 

disappearance of lectin expression17 in renal epithelial cells that have 

reactivated Snail1 (Fig. 2a,d). Fifteen days after UUO, some epithelial cells 

(around 30%) also activated the expression of -SMA (Fig. 2a) and the 

Collagen I gene (Supplementary 4c), the latter a downstream target of Snail1

in the kidney5.

Our data indicate that after renal injury the tubular epithelial cells, in spite 

of Snail1 reactivation, continue to display integration into the tubular tissue. 

Therefore, it seems that UUO-induced Snail reactivation triggers only a partial 

EMT in both cortical and medullar renal epithelial cells which do not acquire an 

invasive phenotype but that leads to damaged tubules and collecting ducts. As 

all of this is highly attenuated in the kidneys from SFKC mice in which epithelial 

cells cannot reactivate Snail1 expression (Fig. 1, Fig. 2d and Supplementary 

Figs. 2b, 4, 5d), we conclude that Snail1 reactivation in renal epithelial cells has 

an important impact on the development of fibrosis. 

Snail1 reactivation promotes fibrogenesis and inflammation

Our results indicate that damaged Snail1-expressing renal epithelial 

cells, while being integrated in the tubules, can send signals to the interstitium, 

as the -SMA+ myofibroblast population is very much reduced in obstructed 

kidneys from SFKC mice (Fig. 1e). Injured epithelial cells produce TGF- -
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containing exosomes that promote the proliferation and activation of interstitial 

fibroblasts18 and TGF- signaling is also important for the differentiation of 

myofibroblasts from bone marrow-derived mesenchymal stem cells18. In relation 

to this, we found that both Tgfb1 expression and the activation of TGF-

signaling in the obstructed kidney, measured by phospho-Smad2 staining, were 

dependent on Snail1 reactivation in renal epithelial cells (Fig. 1h and

Supplementary Fig. 5a), compatible with the role of Snail1 as an activator of 

the TGF- pathway in cancer cells19.  Thus, the lower TGF- signaling in 

obstructed kidneys from SFKC mice can explain the decrease in the -SMA+ 

population (Fig. 1e and Supplementary Fig. 2b). 

As TGF- is also involved in the recruitment of macrophages20 we 

examined F4/80 expression and observed that macrophage colonization in 

obstructed kidneys from SFKC mice was highly attenuated, as was the overall 

inflammatory response as indicated by the lower levels of nuclear phospho-NF-

B (pNF- B) in tubular cells when compared to WT mice (Fig. 3a). Taking 

advantage of the LacZ reporter allele in our SFKC mice, we confirmed that pNF-

B labeling was absent in tubules that had recombined (X-gal-positive tubules) 

and therefore, are not competent to reactivate Snail1 (Supplementary Fig. 5b).

We next analyzed the F4/80 macrophage population and identified 

polarized M2 macrophages in obstructed kidneys from WT mice (CD163+; Fig. 

3a), the macrophage type enriched in the tumor microenvironment21. As UUO 

induces a robust inflammatory response and Snail1 can induce the expression 

of some inflammatory cytokines22, we compared the levels of cytokines present 

in obstructed kidneys. We found that the levels of a number of pro-inflammatory 

cytokines were lower in kidneys from SFKC mice compared to WT mice,
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indicating that Snail1 reactivation in tubular cells impinges on the inflammatory 

response. These cytokines included TNF- and several chemokines associated 

with macrophage recruitment (Fig. 3b). Snail1 has been shown to enhance the 

recruitment of M2 macrophages to the tumor site by directly activating the 

transcription of the Tnfa Ccl2 and Ccl5 genes in tumor cells23. As all three are 

included among the cytokines present in a lower amount in the obstructed 

kidneys from SFKC mice, we checked their expression after UUO. Tnfa Ccl2 

and Ccl5 levels were higher in the obstructed kidney with respect to the control 

contralateral kidneys 7 days after UUO, but Tnfa expression was already 

higher 3 days after surgery (Fig. 3c).  When we compared WT to SFKC mice 

we found differences in Ccl5 levels from 7 days after UUO and these 

differences were apparent for all three cytokines after 15 days (Fig. 3c). Thus,

Snail1 reactivation is required to sustain inflammation, although the early 

inflammatory response seems to be Snail1-independent at least for some of the 

cytokines (Fig. 3b,c). Nevertheless, some of the early inflammatory responses 

also require Snail1 reactivation, as seen by the higher level of nuclear pNF- B

in tubular cells and the higher Tgfb1 expression in obstructed kidneys from WT 

versus SFKC mice 3 days after surgery (Fig. 3d,e). Altogether these data 

indicate that UUO-induced fibrosis concurs with a partial EMT of renal epithelial 

cells mediated by the reactivation of Snail1. Tubular cells do not engage into 

the delamination/invasion program and therefore, do not directly contribute to 

interstitial fibroblasts. However, this Snail1-induced partial EMT impinges on the

TGF- and NF- B pathways together with cytokine production to promote 

myofibroblast differentiation, fibrogenesis, macrophage recruitment and 
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sustained inflammation, all required for the development and progression of 

organ fibrosis. 

Snail1 depletion attenuates folic acid-induced fibrosis

We extended our studies to an additional model of renal fibrosis, folic acid (FA)-

induced nephropathy24. As expected, a single intraperitoneal injection of FA 

induced a patchy interstitial fibrosis from 4 weeks after injection. We detected all 

signs of overt fibrosis, including altered tubular morphology, loss of epithelial 

differentiation, a numerous myofibroblast population, excessive collagen 

deposition and macrophage colonization in WT mice (Fig. 4a and

Supplementary Fig. 6a). Quantitative analysis of epithelial and mesenchymal 

markers transcripts confirmed the increase in Snai1, Col1a1, Vim and Acta2

levels, and the decrease in Cadh1 and Cadh16 levels in the kidneys of FA-

treated WT mice (Fig. 4b). 

The expression of the main fibrogenic (that is, Tgfb1) and inflammatory 

signals (that is, Tnfa) was also increased (Fig. 4b). Notably, all of these 

changes were highly reduced in SFKC mice (Fig. 4 and Supplementary Fig. 

6). The analysis of cytokines also confirmed a robust reduction in the levels of 

pro-inflammatory cytokines, including TNF- , CCL2 and CCL5 in FA-treated 

SFKC mice vs FA-treated WT mice (Fig. 4c). We observed a 62% reduction in 

fibrosis in the cortex of these mice (Fig. 4d) and the medulla was also protected 

(Fig. 4a and Supplementary Fig. 6b) indicating that, even more pronounced 

than after UUO, the reactivation of Snail1 in renal epithelial cells is crucial for 

the development of FA-induced fibrosis. 
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Established fibrosis can be ameliorated in vivo

Embryonic and cancer cells present a high degree of epithelial plasticity in 

terms of EMT and its reverse process MET25. To examine whether some 

plasticity exists in fibrotic tissues, we used the renal epithelial cell-specific 

Snail1-ERT2 fibrosis model that we generated previously5. In this model, Snail1

is activated by tamoxifen-induced nuclear translocation of the protein and

deactivated upon tamoxifen withdrawal (Supplementary Fig. 7). We first 

confirmed that in MDCK-Snail1-ERT2 cells treated with tamoxifen Snail1 

translocated to the nucleus and that the cells underwent EMT. After tamoxifen 

removal and concomitant with the absence of nuclear Snail1, the cells reverted 

to an epithelial phenotype (Supplementary Fig. 7).  

Next, we tested whether Snail1-induced fibrosis could be attenuated in 

vivo after the disease was established (Fig. 5a). In Snail1-ERT2 mice, as in 

cultured cells, Snail1 protein efficiently shuttled from the cytoplasm to the 

nucleus upon tamoxifen administration and was detected back in the cytoplasm 

after tamoxifen removal (Fig. 5b). Fibrosis developed after 8 weeks of 

tamoxifen exposure in the Snail1-ERT2 model when compared to WT mice 

(Fig. 5 and Supplementary Fig. 8) as seen by histology, Sirius red staining and 

the expression of mesenchymal and epithelial markers detected either by 

immunostaining or gene expression analyses (Fig. 5c,d and Supplementary 

Fig. 8a). Snail1-induced fibrosis also concurred with the activation of Tgfb1

expression and an increase in the inflammatory response (nuclear pNF- B) and 

macrophage recruitment (Fig. 5c,d). All these features were highly attenuated 

with the translocation of Snail1 back to the cytoplasm 8 weeks after tamoxifen 
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removal. Particularly, collagen deposition, mesenchymal markers, Tgfb1 levels

and inflammation almost returned to basal levels (Fig. 5c,d). Sirius Red staining 

in the renal cortex showed a reversion of 56% in overall fibrosis (Fig. 5e) and,

notably, glomerular filtration rate assessed by creatinine clearance also shifted 

back to normal after being decreased upon Snail1 reactivation (Supplementary 

Table 1). Plasma levels of creatinine were also compatible with this. Altogether, 

these data show that Snail1-induced fibrosis can be ameliorated in vivo.

However, this experimental design does not address whether renal 

fibrosis developed in response to natural stimuli including damage could also be 

ameliorated by inhibiting Snail1. Thus, we next therapeutically inhibited Snail1 

function in the UUO model. Seven days after UUO, when mice had already 

developed fibrosis as shown in Fig. 1b and Supplementary Fig. 2b, we 

systemically injected 2 different VIVO-morpholinos designed against a splicing 

site in the Snai1 mRNA (Snail1-MO1 and -MO2; Fig. 6a; Supplementary Fig. 9

and Online Methods). This allowed us to assess the efficacy of the Morpholino 

in blocking Snail1 expression in each individual mouse, and compare this with 

the progression of fibrosis after testing the levels of the correctly spliced isoform 

and those in which exon 2 was missing (Fig. 6 and Supplementary Figure 9).

In Fig. 6 we show a control mouse and mouse #5 in which the MO prevented 

Snail1 normal splicing (Supplementary Fig. 9a). In this experimental setting, 

Snail1 inhibition should not be restricted to the tubular cells. When we 

compared mice subjected to UUO for 7 days and then treated with either control 

morpholino (Control-MO) or Snail1-MOs, we observed that Snail1 inhibition 

blocked the progression of UUO-induced fibrosis. Kidneys from Snail1-MO–

treated mice presented a recovered morphology, lower collagen deposition and
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lower expression of vimentin and -SMA (Fig. 6b). Similarly, expression 

analysis indicated that Snai1, Snai2 and Vim levels were significantly lower and 

Cadh1 and Cadh16 levels higher in Snail1-MO treated mice when compared 

with those in obstructed kidneys from mice injected with Control-MO (Fig. 6c). 

Furthermore, as observed in our analyses of the SFKC mice, Snail1 had a 

marked impact on Tgfb1 expression, macrophage colonization and 

inflammation (Fig. 6b,c), as all these responses were highly attenuated upon 

Snail1 inhibition. Further, quantification of cortical fibrosis revealed a reduction 

of 57% after treatment with Snail1-MO versus Control-MO (Fig. 6d). This

attenuation is specific for Snail1 depletion as it did not occur after the injection 

of Snail1-MO1 in mice in which the MO did not efficiently blocked normal mRNA 

splicing (Supplementary Fig. 9). In summary, this data indicate that Snail1 

inhibition can significantly attenuate established UUO-induced fibrosis in mice.

DISCUSSION

CKD can result from urinary obstruction, autoimmune disorders, unresolved 

inflammation or deterioration of transplants1, progressing irreversibly to end-

stage renal disease that requires dialysis or kidney transplantation. No specific 

therapy is available to recover organ function and the cellular mechanisms that 

drive interstitial fibrosis are still under debate, as conflicting results have either 

assigned an important or a negligible role of tubular EMT in the progression of 

renal fibrosis10-13,26,27. In addition, inflammatory cytokines and cells are major 

effectors of the chronic disease20,28, but the mechanisms by which chronic 

inflammation impinges on fibrogenesis still remain unclear. Understanding this 
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link is key in the design of therapeutic strategies to halt the progression of 

CKD29. Using renal epithelial-specific mouse models, and in particular modifying 

Snail1 expression in medullar and cortical renal epithelial cells, we provide 

evidence of the contribution of EMT and the link between inflammation and 

fibrosis. 

With respect to the EMT, we show that (i) a partial EMT of renal epithelial 

cells is activated upon renal damage, (ii) these damaged cells remain integrated 

in the tubules while relaying fibrogenic and inflammatory signals that lead to the 

progression of the disease, and (iii) both fibrogenesis and inflammation require 

the activation and maintenance of the potent EMT inducer Snail1. Therefore, 

our results highlight the importance of an EMT-like program in renal epithelial 

cells for the development of fibrosis. They also reconcile previous conflicting 

results on the role of EMT10-12 in this process, confirming the very limited 

contribution of a full EMT program that delivers transformed epithelial cells to 

the interstitium13. Importantly, the partial EMT undergone by renal epithelial 

cells and the persistence of the damaged tubules explains the high degree of 

cell plasticity that we observed in vivo, as we show that Snail1 inactivation in a 

epithelial specific Snail1-induced fibrosis model leads to the recovery of renal 

morphology and function.  Furthermore, we also show that inhibition of Snail1 

once fibrosis has been established can also ameliorate the disease. In relation 

to this, it is worth noting that Snail1 protects from cell death and decreases 

proliferation30, suggesting that Snail1 reactivation in tubular cells would make 

cells survive and stay in the tubules although in an undifferentiated state. 

Subsequent Snail1 inhibition can help in the resolution of fibrosis by promoting 

the reversion of the damaged tubule cells to an epithelial phenotype and an 
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increase in proliferation. During TGF- -induced EMT in cancer cells the mutual 

antagonism between Snail1 and miR-34 (ref. 31,32) has been recently 

considered as a reversible switch, pointing to the possibility of reversion to the 

epithelial phenotype in cancer cells32 and miR-34c has been shown to attenuate 

UUO-induced fibrosis33. In cases of very advanced human renal fibrosis, where 

there is evidence of tubular atrophy, reversibility may be compromised. 

Although further investigation to assess the maximum degree of reversibility 

and the appropriate timing for intervention is warranted, our data encourage the 

design of anti-EMT/anti-Snail1 therapeutic strategies for the treatment of renal 

fibrosis. 

Our data also help to better distinguish type 2 EMT, previously ascribed 

to fibrosis and wound healing, from type 3 EMT34, associated with cancer cell 

delamination from the primary tumor. We see a partial EMT occurring in type 2, 

where damaged adult epithelial cells remain confined in their tissue of origin, 

without engaging into the delamination and invasion programs. A full EMT in 

cancer (type 3) endows cells with the ability to invade adjacent territories and to 

intravasate into blood vessels to later populate distant organs25.

With regard to the link between fibrosis and inflammation we find that it 

also relies on the reactivation and, particularly, the maintenance of Snail1 

expression in epithelial cells. UUO induces the activation of TGF- and NF- B

signaling pathways, key for fibrogenesis and inflammation, respectively, and 

crucial drivers of CKD and other fibrotic processes35,36. The initial inflammatory 

response after UUO leads to TNF- production, which induces the activation of 

NF- B34. In addition to inflammation, NF- B induces Snai1 transcription and the 
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stabilization of the Snail1 protein37. TGF- is first secreted to control the 

inflammatory response, but in the context of chronic injury as in fibrosis, it 

becomes fibrogenic and the most potent Snail inducer4.  Thus, both signaling 

pathways converge on the activation of Snail1 and Snail1 activation and 

maintenance of its expression are required for the progression of fibrogenesis 

and for sustained inflammation (Supplementary Fig. 10). Thus, Snail1 

establishes positive feedback loops reinforcing both the fibrogenic and 

inflammatory responses. As such, although we have not directly targeted TGF-

Tgfb1 expression and 

signaling. Compatible with the establishment of feedback loops, we show that 

Snail1 mediates the induction of inflammatory cytokines and of TGF-

as observed in cancer cells19,22,23,36. Interestingly, the inflammatory 

microenvironment in fibrosis appears to be similar to that in tumors. Altogether, 

this explains why in the absence of Snail1 reactivation in tubular cells, as in our 

SFKC model, both fibrogenesis and inflammation are highly attenuated, 

indicating that the partial EMT activated by Snail1 in renal epithelial cells is 

instrumental for the progression of renal disease.

Following the previous observations, Snail1 should behave as a 

promising therapeutic target. We find that after UUO, Snail1 inhibition by 

systemic injection of antisense oligonucleotides very significantly ameliorates 

fibrosis. Inhibiting EMT/inflammation by dowregulation of either TGF- 38,39 or 

NF- B40,41 signaling pathways have provided hope for anti-fibrotic treatments, 

but the pleiotropic roles of both pathways, particularly the associated beneficial 

effects, limit the potential use of their inhibitors in systemic administration 

protocols42,43. Given that Snail1 is maintained almost silently in healthy adult 
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tissues5, its inhibition should not cause undesirable side effects. Our data also 

provide a window of opportunity for the EMT inhibitors being developed for anti-

metastatic therapies and recently challenged by the demonstration that cancer 

cells need to revert to the epithelial phenotype for successful metastatic 

colonization44,45. As such, inhibiting EMT in cancer patients may be 

counterproductive25. By contrast, the mesenchymal phenotype is the end stage 

in organ fibrosis and the reversion to the epithelial state should be fully 

beneficial. We propose that Snail1 is located at the center of a “core” pathway 

in fibrosis, defining “core” as a pathway which targeting is sufficient to limit the 

progression of the disease42. In summary, inhibiting EMT and Snail1 in 

particular can be regarded as a safe strategy to ameliorate fibrosis, especially in 

fibrotic processes where inflammation plays an important role in the progression 

of the disease.  
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FIGURE LEGENDS

Figure 1 Snail reactivation is required for the development of UUO-induced 

fibrosis. (a) Scheme of the experimental approach. UUO was conducted in wild 

type (WT) or Ksp1.3-Cre;Snai1fl/fl (SFKC) mice, which were sacrificed 7 or 15 

days after obstruction. (b) Snai1 mRNA levels determined by qRT-PCR in 

obstructed (L) and in contralateral non-obstructed kidneys (NL) from WT and 

SFKC mice 7 or 15 days after UUO. (c) Representative images of kidney 

sections stained by in situ hybridization for Snai1 from sham-operated (control) 

and obstructed kidneys (UUO) of WT and SFKC mice 15 days after surgery. (d)
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Representative images of similar sections showing hematoxylin-eosin (H&E) 

and Sirius red stainings, and in (e) alpha smooth muscle actin ( -SMA) or 

vimentin immunohistochemistry. Tissue sections in c-e are representative of 8 

independent samples from 5 mice per group (f) Snai2, Cadh1, Cadh16, Vim,

Acta2 and Col1a1 mRNA levels detected by qRT-PCR. (g) Sirius red staining 

quantification as a measure of overall cortical fibrosis. Data are shown for 

obstructed kidneys from WT (n = 4) and SFKC (n = 3) mice relative to kidneys 

from sham-operated mice. ****P< 0.0001; Mann-Whitney test; Error bars show 

means ± SEM. (h) Tgfb1 mRNA levels in obstructed (L) and contralateral non-

obstructed (NL) kidneys from WT and SFKC mice. For all qRT-PCR 

experiments, data are normalized to levels in sham-operated mice and 

represent mean ± SEM for groups of 7 mice. **P < 0.01, ***P < 0.001, ****P <

0.0001; Two-way ANOVA followed by Tukey’s multiple comparison test. Scale 

bars, 50 m.

Figure 2 Renal epithelial cells undergo a partial EMT after UUO. (a) Ksp1.3-

Cre;tdTomatofl/fl mice were subjected to UUO and kidneys were collected 15 

days after surgery. Representative images (n = 20) of sections of kidneys from 

Ksp1.3-Cre;tdTomatofl/fl mice (KCT) 15 d after being subjected to UUO. Images 

are for obstructed (KCT+UUO) and contralateral non-obstructed kidneys 

(Control) from KCT mice stained for LTA (Lotus tetragonolobus agglutinin) 

+PNA (Peanut agglutinin) markers of proximal and distal tubules17), -SMA and 

DAPI. tdTomato fluorescent protein expression was directly visualized. 

Asterisks indicate -SMA expression in tubular cells that have lost lectin 

expression 15 days after UUO. (b) Number of dilated and total tubules in 
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kidneys from WT and SFKC mice 15 days after UUO. 10 different fields were 

counted in 12 mice per group. Data represent mean ± SEM. *P < 0.05, NS, non-

significant; Mann-Whitney test. (c) Representative images (n = 5) of double 

Snail1 and -SMA immunolabeling in sections from obstructed kidneys of WT 

mice sacrificed 15 days after surgery. Red asterisks indicate Snail1 positive 

nuclei. Green asterisks indicate double positive Snail1 and -SMA tubular cells. 

dt, dilated tubule, g, glomerulus, t, tubule. (d) Representative images (n = 5) of 

lectin (LTA) and Snail1 immunofluorescence in sections from the same kidneys 

used in b. Scale bars, 50 m.

Figure 3 Snail1 reactivation in renal epithelial cells is required for sustained 

inflammation in the injured kidney. The experimental design is the same as in 

Fig. 1. (a) Representative images (n = 5) of immunolabeling for phospho-NF- B

(pNF- B); F4/80 (pan-macrophage marker) and CD163 (M2-macrophage 

marker) in obstructed (L) and contralateral control (NL) kidneys from WT and 

SFKC mice collected 15 days after surgery. Tissue sections are representative 

of 5 mice per group. (b) Cytokines levels detected in 15 days-obstructed SFKC

kidneys relative to those in 15 days-obstructed WT lysates. Error bars represent 

mean ± SEM. (c) Tnfa, Ccl2 and Ccl5 mRNA levels determined by qRT-PCR in 

obstructed (L) and in contralateral non-obstructed kidneys (NL) from both WT 

and SFKC mice, 3, 7 or 15 days after UUO. (d) Representative images (n = 5) 

of kidney sections stained for H&E (top) and phospho-NF B (pNF- B) (bottom) 

from sham-operated (control) and obstructed kidneys (UUO) of WT and SFKC 

mice 3 days after surgery. Tissue sections are representative of 3 mice per 

group. (e) Snai1 and Tgfb1 mRNA levels in the kidneys shown in d. All qRT-
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PCR data are normalized to sham-operated wild type levels and represent 

mean ± SEM for groups of 3 mice. *P < 0.5, **P < 0.1, **P < 0.01, ****P <

0.0001; Two-way ANOVA followed by Tukey’s Multiple comparison test. Scale 

bars, 50 m.

Figure 4 Snail reactivation is required for the development of folic acid-induced 

fibrosis. Folic acid (FA) was administered to WT or SFKC mice, which were 

sacrificed 34 d after FA administration. (a) Representative images (n = 5) of 

H&E and Sirius red stainings and LTA, PNA, -SMA, F4/80 and CD163 

immunohistochemistry on sections from WT and SFKC mice treated with 

vehicle or folic acid (FA). Tissue sections are representative of 5 mice per 

group. (b) Snai1, Col1a1, Cadh1, Cadh16, Vim, Acta2, Tgfb1, Tnfa, Ccl2 and 

Ccl5 mRNA levels determined by qRT-PCR in vehicle (Control) or FA treated 

WT and SFKC mice. Data are normalized to vehicle-treated WT levels and 

represent mean ± SEM for groups of 4 mice. **P < 0.01, ***P < 0.001, ****P <

0.0001; One-way ANOVA followed by Tukey’s multiple comparison test. (c)

Kidney lysates from WT or SFKC mice treated with FA were incubated with a 

cytokine array. Data represent the signals detected for specific cytokines in 

SFKC lysates relative to those in WT lysates. Error bars represent mean ±

SEM. (d) Sirius red staining was quantified and represented relative to vehicle-

treated mice in 3 mice per group. ****P < 0.0001; Mann-Whitney test. Error bars 

show means ± SEM. Scale bars, 50 m.

Figure 5 Snail1-induced fibrosis can be reversed in vivo. (a) Scheme of the 

experimental approach. Mice were treated with (1) vehicle (corn oil, –TAM); (2) 
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tamoxifen for 8 weeks (+TAM); (3) tamoxifen for 8 weeks followed by vehicle 

treatment for another 8 weeks (+TAM–TAM). (b) Anti-human estrogen receptor 

(hER) immunohistochemistry showing exogenous Snail1 protein expression and 

activation upon tamoxifen treatment. (c) Representative images (n = 6 samples 

from 6 mice per group) of H&E and Sirius Red staining, and alpha smooth 

-SMA), vimentin, phospho-NF- B (pNF- B), F4/80 and CD163 

immunohistochemistry from kidney sections from mice in a. (d) mRNA levels 

detected by qRT-PCR in kidneys from Snail1-ERT2 mice showing Snai2, Vim,

Tgfb1 Cadh1 and Cadh16 abundance upon Snail1 activation (2:+TAM) and 

deactivation after 8 weeks of tamoxifen removal (3:+TAM–TAM). Data are 

normalized to vehicle treated kidney levels (1; –TAM) and represent mean ± 

SEM for groups of 4 mice. *P< 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001;

One-way ANOVA followed by Tukey’s multiple comparison test. (e)

Morphometric analysis of cortical interstitial fibrosis by quantification of Sirius 

Red staining. Data are shown relative to vehicle treated controls (4 mice per 

group). **P < 0.01, ***P < 0.001, **** P< 0.0001; One-way ANOVA followed by

Tukey’s multiple comparison test. Error bars show means ± SEM. Scale bars,

50 m

Figure 6 Snail1 inactivation reverts UUO-induced fibrosis in mice. (a) Scheme 

of the experimental approach. Seven days after UUO, mice were injected with 

vivo-morpholino control (Control-MO) or Snail1-MOs (Snail1-MO1 or Snail-

MO2; Supplementary Fig. 11) every other day. Shown are the results obtained 

in mouse #5, representative of those in which the VIVO morpholino efficiently 

prevented Snail1 normal splicing. (b) Representative images (n = 5) of H&E and 
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Sirius Red staining and immunohistochemistry of mesenchymal (vimentin and 

alpha smooth muscle actin ( -SMA)) and inflammatory response markers 

(F4/80 and phospho-NFkB (pNF B)) in kidney sections from mice in a. (c)

Snai1, Snai2, Vim, Tgfb1, Cadh1 and Cadh16 mRNA levels detected by qRT-

PCR in obstructed kidneys from WT mice treated with Snail1-MO. Data are 

normalized to contralateral non-obstructed kidney levels (NL) and represent 

mean ± SEM for triplicates of data from a representative mouse in which Snail1-

MO efficiently induced exon-skipping and Snai1 downregulation. *P < 0.05, **P

< 0.01, ***P < 0.001, ****P < 0.0001; Two-way ANOVA followed by Tukey’s

multiple comparison test. (d) Sirius red quantification in the renal cortex of mice 

injected with Control-MO (average values from 4 mice) or Snail1-MO (mouse 

#5). ****P< 0.0001; Mann-Whitney test. Error bars show means ± SEM. Scale 

bars, 50 m.

ONLINE METHODS

Mice. All animal procedures were conducted in strict compliance with the 

European Community Council Directive (89/609/EEC) and the Spanish 

legislation. Ethical protocols were approved by the CSIC Ethical Committee and 

the Animal Welfare Committee of the Institute of Neurosciences. Animals for 

experiments were selected by genotype, no randomization or blinding was 

performed. Animals were housed under SPF conditions at the RMG animal 

House (ES-119-002001 SEARMG). Work with GMO was under the A1ES/13/1-

25 license. To specifically inactivate Snail1 in renal epithelial cells, we 

generated a mouse line with kidney-specific inactivation of Snail1 by crossing 

females from the Snail1-floxed line (Snai1fl/fl)14 with the Ksp-Cre transgenic 
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strain obtained from Peter Igarashi´s lab15. R26R mice (Gtrosa26tm1Sor) were 

obtained from Jackson Laboratories. To examine the efficiency of 

recombination, heterozygous female Snail1 floxed mice (Snail1fl/+) were crossed 

with heterozygous male mice that express Ksp1.3-Cre transgene. From the filial 

(F) 1 progeny, mice (male or female), litters with heterozygous deletion of Snai1

gene that harbored the Ksp1.3/Cre transgene (Snail1fl/+; Ksp1.3-Cre) were 

selected and they were further crossed with the opposite sex of Snail1 floxed 

mice (Snai1fl/+) to obtain mice expressing complete deletion of Snail1 in the F2 

progeny (Snai1fl/fl;Ksp1.3-Cre), referred to as SFKC. Compared to control 

(Snail1fl/fl) littermates, SFKC mice are viable, display no overt defects, and 

survive to 6 months and beyond with no ill effects. The generation of the 

tamoxifen-inducible Snail1 transgenic mouse has been described previously5

where the transgenic Snail1-ERT2 protein was specifically expressed in renal 

epithelial cells (Supplementary Fig. 7). In this model, constitutively expressed 

exogenous Snail1 protein only becomes active on nuclear translocation. For 

tamoxifen inductions, the tamoxifen was dissolved in corn oil 30 mg/ml and 

mice (8 weeks-old) were intraperitoneally injected with 200 mg of tamoxifen per 

gram of body weight or a similar volume of corn oil every 3 days for 8 or 16 

weeks. For lineage tracing experiments Ksp1.3-Cre mice were crossed with 

Rosa-LSL-TdTomato mice (Stock number: 007905 from Jackson Laboratories). 

In these mice, fluorescent tdTomato is expressed following Cre-mediated 

recombination. Animals were killed by cervical dislocation and their kidneys 

processed for mRNA extraction, ISH, immunohistochemistry or cytokines 

extraction. 8 weeks-old male mice were used for the experiments.  
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UUO model. Male mice (8 weeks-old) were anesthetized with an intraperitoneal 

injection of ketamine (100 mg/kg) and xylazine (10 mg/kg). The abdomen was 

opened, and the left ureter was ligated with 5-0 silk. The abdomen was then 

closed with running sutures and the skin was closed with interrupted sutures. 

After surgery, the mice were maintained in a temperature-controlled room with a 

12 hours light/dark cycle, and were reared on standard chow and water ad 

libitum. Unilateral ureteral obstruction (UUO) was maintained for 3, 7 or 15 

days.

In situ hybridization. In situ hybridization was performed as previously 

described3. Briefly, mouse kidneys were fixed overnight in 4% PFA in PBS and 

processed directly for paraffin embedding. 12 m sections were de-paraffinized 

and rehydrated, treated with proteinase K and fixed with 4% paraformaldehyde. 

Digoxigenin-labeled RNA probes were detected by alkaline-phosphatase-

coupled anti-digoxigenin antibody (Roche Diagnostics, Mannheim, Germany) 

and NBT/BCIP was used as a chromogenic substrate to detect the digoxigenin-

labeled probes (Boehringer, Mannheim, Germany). Sections were mounted in 

50% glycerol in PBS and slices were photographed with a Leica DMR 

microscope under Nomarski optics.

Histological analysis. Kidney tissues were fixed in 4% PFA in PBS for 24 

hours and embedded in paraffin. 8-

microtome with stainless steel knives. The sections were mounted on glass 

slides, deparaffinized with xylene, dehydrated through graded series of ethanol, 

and stained with hematoxylin-eosin. To evaluate collagen deposition, sections 
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were stained with Sirius Red (saturated aqueous solution of picric acid 

containing 0.1% Direct Red 80) (Sigma-Aldrich, St Louis, MO).

Immunohistochemical studies. Paraffin sections were deparaffinized and 

hydrated in graded ethanol series before staining with the peroxidase–

antiperoxidase method. Antigens were retrieved by boiling for 20 min in 10mM 

citric acid solution (pH=6) or 10 mM Tris- 1 mM EDTA (pH=9). Endogenous 

peroxidase was blocked by incubation in 4% hydrogen peroxide. The sections 

were incubated overnight at 4ºC with the following primary antibodies: 

Biotinylated Lotus Tetragonolobus agglutinin, LTA (B-1325, Vector 

Laboratories, Burlingame, CA); Biotinylated Peanut agglutinin, PNA (B-1075, 

Vector Laboratories, Burlingame, CA); alpha- -SMA 

(Sigma-Aldrich, St Louis, MO); Vimentin (sc-7557, Santa Cruz Biotechnology, 

Santa Cruz, CA); Snail1 (Ab1773; Abcam PLC, Cambridge, MA); Phospho-NF-

Phospho-Smad2 (Ser465/467) (3101S, Cell Signaling Technology, Inc., 

Danvers, MA); F4/80 (MCA497GA, Serotec, Oxford,UK); Estrogen receptor 

-543, Santa Cruz Biotechnology, Santa Cruz, CA); CD163 (sc-

18796 Santa Cruz Biotechnology, Santa Cruz, CA). The sections were 

incubated with the corresponding biotinylated secondary antibodies, and 

sequentially incubated in ABC-Peroxidase Solution (Thermo Scientific, 

Rockford, IL) and 3,3'-Diaminobenzidine (DAB) (Sigma-Aldrich, St Louis, MO) 

was used as chromogen. Sections were lightly counterstained with hematoxylin 

and were dehydrated and coverslipped. 
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X-Gal Staining. Kidneys were fixed in 4% paraformaldehyde in PBS for 2 hours 

-galactosidase activity by incubation in PBS containing 2 

mM MgCl2, 5 mM K4Fe(CN)6, 5 mM K3Fe(CN)6, and 0.4 mg/ml X-gal 

overnight at 37°C. After staining, the kidneys were washed in PBS and further 

fixed in 4% paraformaldehyde in PBS at 4°C. Kidneys were embedded in 

paraffin and 5 μm sections were cut, mounted and photographed with a Leica 

DMR microscope. In some experiments tissue sections were sequentially 

stained with antibodies or lectins as described above.

Quantitative RT-PCR (qRT-PCR). Total RNA was extracted using the Illustra 

RNAspin Mini RNA isolation kit (GE Healthcare, Little Chal

RNA was reverse transcribed using random hexamer primers according to the 

manufacturer’s instructions (SuperScript II, Invitrogen). qRT-PCR was carried 

out on an ABI PRISM 7000 sequence detection system using the SYBR Green 

method (Applied Biosystems). RNA expression was calculated using the 

comparative Ct method normalized to Eif3. Data were expressed relative to a 

calibrator using the 2-

Immunofluorescence. Paraformaldehyde-fixed kidneys were immersed in 30% 

sucrose overnight and embedded in OCT for freezing. Slides were washed with 

PBS and blocked in PBS–Tween 0.1% + 1% BSA for 15 min. Sections were 

incubated at 4ºC overnight with the following primary antibodies: LTA (B-1325, 

Vector Laboratories, Burlingame, CA), PNA (B-1075, Vector Laboratories, 

Burlingame, CA); alpha- -SMA (Sigma-Aldrich, St Louis, 

MO) Snail (ab 1773; Abcam PLC, Cambridge, MA). Antibody detection was 
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performed with Alexa Fluor–conjugated secondary antibodies (Invitrogen). 

Slides were counterstained with DAPI. Samples were analyzed, and pictures 

were taken using a Leica DMR fluorescence or a Leica SP2 confocal scanning 

microscope (Leica Microsystems).

Cytokine array. A panel of cytokines in kidney lysates were detected using the

mouse cytokine Array Kit, Panel A (#ARY006, R&D Systems, Minneapolis, MN, 

USA), following the manufacturer’s instructions.

Folic acid-induced fibrosis model. Male mice (8 weeks-old) were 

intraperitoneally injected with a single dose of vehicle (300 mM NaHCO3) or 

folic acid (250 g/g BW). Kidneys were collected 34 days after injection.

Renal function. Twenty-four-hour urine was collected from tamoxifen-inducible 

Snail1 transgenic mice, at baseline and after 8 or 16 weeks of tamoxifen or 

vehicle administration. Animals were housed in a metabolic cage for collection 

of urine to determine creatinine concentration and urine volume. Blood was 

obtained from the saphenous vein. Creatinine concentration in plasma and 

urine was measured using the Reflotron Creatinine kit (Roche Diagnostics, 

Mannheim, Germany) following the manufacturer’s instructions. Creatinine 

clearance, an estimate of glomerular filtration rate, was calculated from plasma 

and urine creatinine concentration and urinary flow using standard formulae.

Morpholino oligomer and in vivo treatment. The oligonucleotides sequences 

-TGAACTCTGCGGGAAGAGAAGAGAC-
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sequences of the intron 1 and exon 2 and 5´-

GCTATGCACACTCACTCACCAGTGT-3´ VM2 against the boundary 

sequences of the exon and intron 2 of Snail1 gene were synthesized as 

Morpholinos by (Gene Tools). Vivo-Morpholinos were made by conjugation of 

an unmodified Morpholino with a synthetic scaffold featuring eight guanidinium 

head groups. A control antisense that targets a human -globin intron mutation 

-CCTCTTACCTCATTACAATTTATA- -morpholino standard 

control, VMC. C57/Bl6J male mice aged 8 weeks were subjected to UUO and 7 

days after obstruction they were injected every other day until day 15. A 

solution of containing vivo-Morpholinos in saline (100 μL; 6mg MO/kg) was 

injected in the tail vein of the corresponding mice.

Quantification.

Sirius Red

the area occupied by collagen fibrils. From each kidney, a total of 10 interstitial 

random cortical fields were captured at 20-fold magnification using a green 

optical filter (IF 550) and a high-resolution video camera (SONY CCD-iris) 

connected to a light microscope (LEITZ Laborlux S). The area occupied by 

collagen was measured using a computerized image analysis system (Fibrosis 

HRR, Master Diagnostica) as previously described46. The values obtained for 

tubulointerstitial fibrotic tissue were expressed in square micrometers and are 

represented in the figures relative to control kidneys.

Immunofluorescence. For quantification of fluorescence images 20 random 

fields were visualized and the number of tdTomato or SMA positive cells was 

counted. Fields were observed at 400x magnification in a Leica DMR 
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fluorescence microscope. In addition, five random fields were photographed 

with a Leica SP2 confocal scanning microscope (Leica Microsystems) and cells 

counted. 

Data analysis. Statistical analysis was performed using the GraphPad Prism 

software package. Results were expressed as mean ± SEM (standard error of 

mean). Data was normally distributed and the variance between groups was not 

significantly different. Differences among different groups were tested by One-

Way ANOVA or Two-Way ANOVA followed up by Tukey's test as appropriate. 

Differences between two groups were tested using Mann-Whitney test. Sample 

size was selected following the recommendations from the "Organo Evaluador 

de Proyectos" (Committee for pre-evaluation of projects, University Miguel 

Hernandez) to calculate the size of the cohorts and following the requirements 

for the principles of the "3Rs" (reduction, refinement and replacement). No 

randomization, blinding or exclusion criteria were performed. 
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Supplementary Figure 1

Supplementary Figure 1. Epithelial recombination mediated by Ksp1.3-Cre as assessed by
crossing the mice with the Rosa26R (R26R) reporter strain. (a) Whole-mounted X-gal stained
kidneys from Ksp1.3Cre;R26R newborn and adult mice (2-month-old) to detect -galactosidase
activity as an indication of Cre recombination. Recombination is detected in both kidney cortex
and medulla. No staining is detected in kidneys from a transgenic mouse carrying only the lacZ
reporter gene. Scale bars: 0.5 mm (top panel); 1 mm (middle panel and lower panel) (b) X-gal
staining in sections obtained from SFKC;R26R kidneys and co-staining with different lectins,
markers of proximal tubules (LTA) or distal tubules (PNA). Red arrows indicate examples of
double positive tubules in the latter. Anti-Tam-Horsfall protein antibodies mark the thick
ascending limb of Henle (TH), also stained for X-gal ( -galactosidase). X-gal staining is also
prominent in the collecting ducts of the medulla. g indicates glomeruli. In summary, Ksp1.3Cre
mediates recombination in collecting ducts, loop of Henle, the majority of proximal tubules and
in some distal tubules. Scale bar: 20 m (c) Snai1 transcription is reactivated after UUO in both
the cortex and the medulla. Control; sham-operated kidney. Scale bar: 1 mm.
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Supplementary Figure 2. (a) Low (LP) and high power (HP) images of H&E stainings in kidney
sections similar to those shown in shown in Figure 1. (b) Kidney sections equivalent to those
shown in Figure 1 but taken from sham-operated (control) and obstructed kidneys (UUO) of WT
and SFKC mice 7 days after surgery. Tissue sections are representative of 8 independent
samples examined from each of 6 mice per group. Scale bars: 50 m.
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Supplementary Figure 3

Supplementary Figure 3. (a) Kidney sections taken from sham-operated (control) and
obstructed kidneys (UUO) of WT and Ksp1.3-Cre (KC) control mice 15 days after surgery.
Tissue sections are representative of 3 independent samples examined from 3 mice per group.
Scale bars: 50 m. (b) Sirius Red quantification from obstructed kidney sections from WT and
Ksp-Cre mice 15 days after surgery. Data represent the mean ± SEM of the % of the area
occupied by collagen in 10 interstitial random cortical fields normalized to the area occupied by
collagen in sham-operated controls from 3 mice per group. NS: non significant; Mann-Whitney
test. (c) Sirius Red staining of sections taken from kidneys shown in Fig. 1. Upper panel, low
magnification images. Lower panel, images of the medullar region of the same kidneys. Scale
bars: upper panel 0.5 mm, lower panel 50 m.
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Supplementary Figure 4. (a) Ksp1.3-Cre; Tomatofl/fl mice (KCT) were subjected to UUO and
kidneys were collected 7 days after surgery. Representative images (n = 10) from kidney sections
from obstructed (KCT+ UUO) and contralateral non-obstructed kidneys (Control) stained for LTA
and PNA (markers of proximal and distal tubules, respectively), -SMA and counterstained for
Dapi to visualize nuclei. Tomato fluorescent protein expression was directly visualized. dt, dilated
tubule, g, glomerulus, t, tubule. (b) The field is selected to illustrate one of the rare tdTomato+
cells delaminating from the tubule (red asterisk), that has lost lectin expression. These cells
represent less than 1% of tdTomato+ population. (c) Col1a1 gene expression (blue, determined
by in situ hybridization) and LTA (brown; immunohistochemistry) in kidneys from 8-week old wild
type (WT) mice 7 days after UUO. Col1a1 is transcribed after UUO in wild type mice in epithelial
(blue arrows) and interstitial renal cells (black arrow). Tissue sections are representative of 6
independent samples examined. (d) PNA (brown, immunohistochemistry) and Snai1 expression
(blue, in situ hybridization). Snail1 is not induced in SFKC kidneys after UUO. Arrows indicate
Snai1 expression in the tubules (blue) and in the interstitial cells (black). Scale bars: 50 m.
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Supplementary Figure 5. (a) Phospho-Smad2 (pSmad2) stainings in representative sections
(n = 5) from sham-operated (control) and obstructed kidneys (UUO) from WT or SFKC mice
collected 15 days after surgery. (b) X-gal and pNF- B (pNFkB) staining in obstructed kidneys
from SFKC mice. Tissue sections are representative of 6 independent samples examined per
mouse (n=6). Scale bars: 50 m.
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Supplementary Figure 6. (a) Low power magnification images of representative sections (n = 5)
taken from kidneys shown in Fig. 4. Sections were taken from vehicle-treated WT (Control) and
from FA-treated WT and SFKC mice (FA). Asterisks indicate fibrotic areas, patches where lectin
expression (PNA and LTA, brown) is highly reduced and inflammation is high, as observed by the
expression of F4/80 (macrophage marker) and CD163 (specific for M2 macrophages). Patches of
healthy tissue observed as “crests” and fibrotic areas as “valleys”. SFKC kidneys maintain lectin
expression and show very much reduced macrophage colonization. Scale bars: 200 m. (b)
Representative images (n = 5) from Sirius Red staining of the medullar region from kidneys
shown in Fig. 4. Scale bar: 50 m.
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Supplementary Fig. 7. (a) Immunohistochemistry for the estrogen receptor showing
exogenous Snail1 protein expression and activation upon tamoxifen treatment.
Glomerular (g) and endothelial cells (arrows) are devoid of the transgenic protein. (b)
MDCK cells (dog renal cells) were transfected with the Snail1 tamoxifen-inducible
construct used to generate the Snail1-ERT2 transgenic mouse line. Middle panel: Cells
were treated with 4-Hydroxytamoxifen (4’OH–TAM) for 72 hours and subjected to
estrogen receptor and E-cadherin immunofluorescence analysis; arrows indicate Snail1
expression in the nucleus in cells that have adopted a mesenchymal phenotype. Bottom
panel: cells were washed after 4’OH-TAM treatment and left in culture for an additional
72 hours period; arrows indicate Snail1-negative nuclei in cells with a epithelial
morphology; Asterisks indicate recovery in E-cadherin expression.
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Supplementary Figure 8. (a) Expression of lectins (PNA and LTA) in kidneys from Snail-
ERT2 mice subjected to the treatments shown in Figure 5. Scale bar: 50 m. (b) WT mice
were treated with tamoxifen or corn oil (vehicle) in parallel to the treatments performed in
Snail1-ERT2 mice shown in Fig. 5. (c) H&E and Sirius red stainings in 5 μm paraffin sections
from kidneys from WT mice treated with corn oil (4), tamoxifen for 8 weeks (5), or tamoxifen
for 8 weeks followed by oil treatment for another 8 weeks (6). Tissue sections are
representative of 6 independent samples examined per mouse (n=4 per condition) Scale bar:
50 m. (d) Snai2, Cadh1, Cadh-16, Vim and Tgfb1 mRNA levels detected by qRT-PCR in
kidneys from WT animals in b. Data are normalized to vehicle injected kidney levels (4) and
represent the mean ± SEM of groups of 3 mice; ns: non significant; One-way ANOVA
followed by Tukey’s multiple comparison test.
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Supplementary Figure 9. (a) RT-PCR analysis of Snai1 transcripts expressed in obstructed
kidneys from WT mice after treatment with Vivo-morpholinos designed to induce exon skipping in
Snai1 mRNA. The full-length product amplified from the normal transcript is 770 base pairs (bp),
and the product missing exon 2 is 242 bp. Two VIVO-morpholinos (MO) were designed as
described in Online methods. MO1 efficiently induced exon skipping in 80% of injected mice (4/5),
while MO2 only partly worked in 2/4 injected mice. (b and c) Panels show data from mouse #6 in
which MO1 did not work as assessed by its failure in inducing exon skipping (MO1#6, in a).
Samples were treated as those from the mice in which MO1 effectively led to exon skipping
(mouse #5; MO1#5 in a, and the corresponding data are shown in Fig. 6). (b) Representative
images (n = 5) from hematoxylin-eosin (H&E) and Sirius red stainings, immunohistochemistry for
mesenchymal markers (vimentin and alpha smooth muscle myosin; SMA) and inflammation
markers (F4/80 and phospho-NFkB (pNFkB)). (c) Snai2, Cadh1, Cadh16, Vim and Tgfb1 mRNA
levels detected by qRT-PCR in mouse #6. Data are normalized to contralateral non-obstructed
kidneys (NL) and represent the mean ± SEM of triplicates (n = 5). P < 0.05, P < 0.01, P <
0.001. Two-way ANOVA followed by Tukey’s multiple comparison test. Scale bars: 50 m.



Supplementary Figure 10

Supplementary Figure 10. Schematic representation of events downstream of Snail1
reactivation following unilateral ureteral obstruccion (UUO) or folic acid treatment (FA). Snail1
drives a partial EMT in kidney epithelial cells. Snail1–driven partial EMT promotes the
dedifferentiation of tubular cells with the decrease in epithelial and polarity markers and the
increase in mesenchymal markers. Importantly, epithelial cells remain integrated into the tubules
while relaying fibrogenic and inflammatory signals to the interstitium which promote myofibroblast
activation and the recruitment of immune cells.



Supplementary Table 1

Supplementary Table 1. Creatinine clearance levels in ml/min per 100 g of body weight and
plasma creatinine levels in mg/l from Snail1-ERT mice treated with vehicle (corn oil, –TAM (1));
tamoxifen for 8 weeks (+TAM (2)); tamoxifen for 16 weeks (+TAM 16w) and tamoxifen for 8
weeks followed by vehicle treatment for another 8 weeks (+TAM-TAM (3)). *p< 0.05; Mann-
Whitney test.

TAM (1) +TAM (2) + TAM (16 w) + TAM – TAM (3)

Creatinine
clearance

1,25 ± 0,2 1,09 ± 0,56 0,9 ± 0,3 * 1,30 ± 0,2

(ml/min/100 g
body weight)

Plasma
creatinine 2,66 ± 0,5 3,26 ± 0,2 5,4 ± 0,7 * 2,48 ± 0,1
(mg/l)
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