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Abstract. The Greenland Ice Sheet releases large amounts of

freshwater, which strongly influences the physical and chem-

ical properties of the adjacent fjord systems and continen-

tal shelves. Glacial meltwater input is predicted to strongly

increase in the future, but the impact of meltwater on the

carbonate dynamics of these productive coastal systems re-

mains largely unquantified. Here we present seasonal obser-

vations of the carbonate system over the year 2013 in the

surface waters of a west Greenland fjord (Godthåbsfjord) in-

fluenced by tidewater outlet glaciers. Our data reveal that

the surface layer of the entire fjord and adjacent continen-

tal shelf are undersaturated in CO2 throughout the year. The

average annual CO2 uptake within the fjord is estimated to be

65 g C m−2 yr−1, indicating that the fjord system is a strong

sink for CO2. The largest CO2 uptake occurs in the inner

fjord near to the Greenland Ice Sheet and high glacial melt-

water input during the summer months correlates strongly

with low pCO2 values. This strong CO2 uptake can be ex-

plained by the thermodynamic effect on the surface water

pCO2 resulting from the mixing of fresh glacial meltwater

and ambient saline fjord water, which results in a CO2 up-

take of 1.8 mg C kg−1 of glacial ice melted. We estimated

that 28 % of the CO2 uptake can be attributed to the input

of glacial meltwater, while the remaining part is due to high

primary production. Our findings imply that glacial meltwa-

ter is an important driver for undersaturation in CO2 in fjord

and coastal waters adjacent to large ice sheets.

1 Introduction

The Arctic Ocean plays an important role in the global car-

bon cycle and contributes 5–14 % to the global ocean CO2

uptake (Bates and Mathis, 2009). High biological productiv-

ity combined with high seasonality in freshwater input and

sea ice cover leads to strong dynamics in the carbonate sys-

tem (Kaltin and Anderson, 2005). Increasing water temper-

atures, freshwater input and decreasing ice cover will likely

have a profound effect on the carbon cycle of the coastal Arc-

tic Ocean and will likely amplify the large seasonal and spa-
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tial biogeochemical gradients that occur in this area (Bates

and Mathis, 2009; Mathis et al., 2011). While 25 % of the

global continental shelves (water depth < 200 m) are located

in the Arctic, we still have a limited understanding of the car-

bon dynamics in these high-latitude coastal systems due to

the scarcity of studies compared to low-latitude coastal en-

vironments (Bates and Mathis, 2009). As a result, there are

many open questions regarding how the carbon cycle in the

Arctic will be affected by future environmental changes.

Many of the coastal systems in the Arctic are affected by

glacial meltwater input, which leaves a unique biogeochem-

ical fingerprint upon their surface waters (Etherington et al.,

2007; Bamber et al., 2012; Raiswell, 2013). Up to now only

a few studies have investigated the CO2 uptake in Arctic fjord

systems impacted by glacial meltwater input (Evans et al.,

2014; Rysgaard et al., 2012; Sejr et al., 2011). All these stud-

ies report substantial CO2 undersaturation in the surface wa-

ter. Data from a seasonal study in the mouth of Godthåb-

sfjord (SW Greenland) revealed low CO2 partial pressure

(pCO2) in the surface water thus leading to high CO2 up-

take rates from the atmosphere (83 to 108 g C m−2 yr−1).

As yet considerable uncertainty remains regarding the drivers

of this high carbon sink (Rysgaard et al., 2012). On the one

hand, high primary production estimates in west Greenland

waters (67 to 500 gCm−2 yr−1; Jensen et al., 1999; Juul-

Pedersen et al., 2015; Rysgaard et al., 2012) indicate that

biological processes may have a strong effect on the carbon-

ate dynamics and CO2 uptake. On the other hand, Rysgaard

et al. (2012) put forth the hypothesis that glacial meltwater

may exert a strong impact on the CO2 dynamics of Arctic

fjord systems. However, the relative importance of biology

versus glacial meltwater input is presently uncertain, and the

mechanisms with regard to how glacial meltwater input can

stimulate CO2 uptake are unclear.

Accelerated mass loss from the Greenland Ice Sheet and

rapid climate change (Rignot et al., 2011) demand a concep-

tual understanding of how different drivers affect the carbon

cycle in high-latitude coastal areas. The main focus of this

study is to investigate the mechanisms controlling the CO2

uptake in fjord systems and shelf areas affected by glacial

meltwater by means of a case study in Godthåbsfjord (Green-

land). To this end, an extensive sampling program was set up

in 2013 involving monthly sampling at three dedicated sta-

tions in the fjord, in addition to seasonal transects across the

whole fjord and shelf system. Data covering the full annual

cycle of partial pressure of CO2, dissolved inorganic carbon

(DIC) and total alkalinity (TA) were collected alongside hy-

drographic and biological parameters. This approach allowed

us to resolve the seasonal importance of the different drivers

in CO2 uptake and the impact of glacial meltwater on the

carbonate dynamics in these high-latitude coastal systems.

Figure 1. Map of the Godthåbsfjord system with the sampling sta-

tions in the fjord system and at Fyllas Banke (SW Greenland). The

fjord system is divided into three zones, indicated by boxes. Mete-

orological data are available from a station in Nuuk.

2 Material and methods

2.1 Field site

This study was conducted in the Godthåbsfjord system

(Nuup Kangerlua, southwest Greenland), which covers an

area of 2013 km2 and has a volume of 525 km3 (Fig. 1). The

mean depth of the fjord is 260 m and there is a sill of 170 m

depth located at the entrance of the fjord (Mortensen et al.,

2011; Rysgaard et al., 2012). Six outlet glaciers drain into the

fjord system. Recent hydrological simulations estimate the

annual freshwater input to Godthåbsfjord (excluding solid

ice discharge as well as submarine melt from glaciers) to be

22.5±5.2 km3 yr−1 for the period 1991–2012 (Langen et al.,

2014). Ice sheet runoff accounts for 60 % of the freshwater

input, land runoff is responsible for 34 %, and net precip-

itation over the fjord surface represents the remaining 6 %

(Langen et al., 2014). Van As et al. (2014) project a sim-

ilar estimate of 10–20 km3 glacial ice loss per year (solid

ice discharge, surface ice melt and submarine melt) for the

Godthåbsfjord glaciers.

2.2 Data

Data were collected during four cruises in 2013 (February,

May, August and September/October) along a length transect

of 20 stations which covered the entire fjord as well as the

Fyllas Banke, the adjacent part of the west Greenland conti-

nental shelf (Fig. 1). The data set was further complemented

by monthly sampling at three selected stations – GF3, GF7

and GF10 – over the period May 2012 to December 2013.

These three sampling stations are representative of three dif-

ferent zones in the fjord (Fig. 1). Zone 1 (with GF3 as the

representative station) comprises the outer part of the fjord
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(referred to as outer sill region by Mortensen et al., 2011),

which is characterized by strong tidal currents, deep mix-

ing and a weak summer stratification. Zone 2 (represented

by GF7) covers the central part of the fjord, which is char-

acterized by a relatively deep mixed stratified layer. Finally,

zone 3 (represented by GF10) is the inner part close to the

freshwater sources, which is most strongly affected by glacial

meltwater and experiences strong stratification.

At each station and sampling time, conductivity and tem-

perature depth profiles were recorded by a CTD instrument

(Sea-Bird SBE19plus), which was equipped with a fluo-

rescence (Seapoint chlorophyll fluorometer) and photosyn-

thetically active radiation (PAR) sensor (LI-COR 190SA

quantum Q PAR sensor). Partial pressure of carbon diox-

ide (pCO2) was measured in situ using the HydroC™ carbon

dioxide sensor (Contros, Germany) at seven water depths (1,

5, 10, 20, 30, 40 and 50 m). At each depth, the HydroC sen-

sor was equilibrated for 2–5 min until a stable reading was

obtained. The HydroC sensor was serviced and calibrated

yearly by Contros. The relative standard deviation (RSD) of

the pCO2 measurement has been estimated to be 1 % (Fiet-

zek et al., 2014).

Water samples were collected at eight water depths (1,

5, 10, 20, 30, 40, 100 and 400 m) using 5 L Niskin bottles

(KC Denmark Research Equipment). Unfiltered water was

transferred by gastight Tygon tubing to 12.5 mL Exetainers

(Labco, UK) for dissolved inorganic carbon (DIC) and total

alkalinity (TA) analysis. Exetainers were left to overflow and

samples were preserved by adding 0.02 % saturated HgCl2
solution (Dickson and Goyet, 1994). Samples were stored in

darkness at 4 ◦C until further analysis. DIC was measured us-

ing an infrared DIC analyzer (Apollo SciTech), which con-

sists of an acidification and purging unit in combination with

a LI-COR-7000 CO2 /H2O gas analyzer. The RSDs for DIC

were ±0.1 % (n= 10). TA was determined using the stan-

dard operating procedure for open cell potentiometric titra-

tion (Dickson et al., 2007, SOP 3b) using an automatic titra-

tor (Metrohm 888 Titrando), a high-accuracy burette (1±

0.001 mL), a thermostated reaction vessel (T = 25 ◦C) and a

combination pH glass electrode (Metrohm 6.0259.100). TA

values were calculated by a nonlinear least-squares fit to the

titration data (Dickson et al., 2007, SOP 3b) in a custom-

made script in the open source programming framework

R (R Core Team, 2013). The RSD of the procedure was

±0.2 % (n= 10). Quality assurance of TA and DIC analy-

sis involved regular analysis of certified reference materials

(CRM Batch 126 provided by A. G. Dickson, Scripps Insti-

tution of Oceanography). As noted by Bates et al. (2014),

no CRMs are presently available for samples at low salinities

and low alkalinities, and so the assumption is made that qual-

ity assurance based on CRMs remains robust at low salini-

ties.

Water samples for chlorophyll analysis were filtered

through 25 mm GF/F filters (Whatman, nominal pore size of

0.7 µm). Filters were placed in 10 mL of 96 % ethanol for 18

to 24 h and chlorophyll fluorescence in the filtrate was ana-

lyzed using a fluorometer (TD-700, Turner Designs) before

and after addition of 200 µL of a 1 M HCl solution.

Primary production was measured using the 14C incuba-

tion method (Nielsen, 1952). Incubation bottles were filled

with 55 mL unfiltered seawater and spiked with 175 µL

NaH14CO3 (20 µ Ci mL−1) and incubated for 2 h in an ICES

incubator (Hydro-Bios, Germany). The samples were filtered

onto 25 mm GF/F filters (Whatman) and 100 µL of 1 M HCl

was added to remove excess NaH14CO3, and then the fil-

ters were left open for 24 h in the fume hood. Subsequently,

10 mL of scintillation cocktail (Ultima Gold, PerkinElmer)

was added to the samples before counting them on the

scintillation counter (liquid scintillation analyzer, Tri-Carb

2800TR, PerkinElmer). After subtracting fixation rates ob-

tained from the dark incubations, gross primary production

rates were calculated based on measured DIC concentrations.

Photosynthesis–irradiance (P –I ) curves were obtained for

11 sampling dates at 2 separate depths (5 and 20 m). The

light extinction coefficient was calculated from the measured

PAR profile. Solar irradiance values were obtained from the

meteorological survey in Nuuk (meteorological station 522,

Asiaq Greenland Survey). Using the solar irradiance at each

day, the light extinction coefficient and the P –I curves at

the monthly sampling dates, the daily productivity was cal-

culated over the entire year. This approach assumes that light

extinction and P –I curves remain the same in the 2-week

period before and after the sampling dates.

Bacterial production was measured using the 3H–

thymidine method (Fuhrman and Azam, 1982). Triplicate

samples (10 mL) were incubated at in situ temperature in the

dark. After an incubation of 6 to 8 h, bacterial activity incuba-

tions were stopped by adding 500 µL of 100 % trichloroacetic

acid (TCA). The samples were subsequently filtered through

25 mm cellulose ester filters (pore size 0.2 µm, Advantec

MSF). The equations from Søgaard et al. (2010) were used to

calculate bacterial production. For the calculation of the bac-

terial carbon demand from the bacterial production, a bac-

terial growth efficiency of 0.5 was used according to Rivkin

and Legendre (2001).

The difference in pCO2 between surface water and atmo-

sphere drives the air–sea exchange (ASE) of CO2, which was

calculated using the relation

ASE=Kavα1pCO2, (1)

where1pCO2 is the difference in pCO2 of the surface water

(here at 1 m water depth) and the atmospheric pCO2. Nega-

tive values of ASE imply an uptake by the surface seawater

and positive values an efflux to the atmosphere. The atmo-

spheric pCO2 was measured monthly at GF3 using an in-

frared CO2 monitor (EGM-4 PP systems). The mean atmo-

spheric pCO2 was 400 µatm for 2013. The quantity α is the

solubility of CO2 in seawater (molm−3 atm−1). Kav (ms−1)

is the gas transfer coefficient calculated using the formula-

tions of both Nightingale et al. (2000) and Wanninkhof and
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McGillis (1999). These formulations depend on the wind

speed data (ms−1) at 10 ma.s.l., obtained from a weather sta-

tion located in the fjord system (meteorological station 522,

Asiaq Greenland Survey). The monthly mean wind speed

varied from 5 to 9 m s−1 for 2012 and 2013, but during storms

peak wind speeds up to 30 ms−1 were recorded.

Processing of data was done in R (R Core Team, 2013).

The R package CRAN: AquaEnv (Hofmann et al., 2010)

was used for acid–base speciation and CO2 system calcula-

tions. We used the carbonate equilibrium constants by Roy et

al. (1993) with the adaptation by Millero et al. (1995) for low

salinities. Consequently the dissociation constants are valid

over a salinity range of 0–45 and temperature range from 0 to

45 ◦C. To test the sensitivity of our calculations we also im-

plemented the equilibrium constants by Millero et al. (2006),

which had a negligible impact, thus showing that our thermo-

dynamic calculations of the CO2 system are robust against

the choice of the carbonate equilibrium constants. Interpola-

tion of the data and contour plots were produced using the R

package CRAN: Akima (Akima et al., 2006).

2.3 Biogeochemical model

To analyze the impact of the glacial meltwater input on the

seasonal carbon dynamics of the fjord system, a simplified

biogeochemical model was constructed. The model describes

how the pCO2 dynamics in the surface water is influenced

by the circulation in the fjord, the input of glacial meltwa-

ter, ASE of CO2 and net ecosystem production. This biogeo-

chemical model is constrained by an inverse modeling proce-

dure using the monthly data from the three reference stations

as well as the data from the four seasonal transects across the

fjord system.

The biogeochemical model of the fjord system is com-

posed of three separate, connected boxes, representing the

outer, central and inner part of the fjord system and one large

“open sea” box, representing the outer shelf; the latter was

added to obtain full mass balance closure. Each box repre-

sents the upper 40 m of the water column since this depth

range is most strongly affected by primary production (due

to light availability) and the glacial meltwater imprint (via

stratification). The model includes a water mass balance in

addition to the mass balances of three state variables (salin-

ity, DIC and TA) for each box (Table 1). Once DIC and TA

are known, all relevant parameters of the carbonate system

(including pCO2) can be calculated.

2.3.1 Water mass balance

Figure 2 shows a simplified circulation model for the fjord

system. Intrusion of coastal water into the fjord leads to deep

water upwelling and an input of saline water (Fi) in each of

the three zones. The inner zone of the fjord experiences an in-

put of glacial meltwater (Qg). The combination of saline sea-

water intrusion and freshwater from the glacier results in a re-

Figure 2. Conceptual model of the fjord system from glacier (right)

to open sea (left). The fjord is divided into three zones (according

to the zones indicated on the overview map).

turn flow (Qi) in the surface water which is eventually dis-

charged onto the Greenland shelf. The resulting water mass

balance equations are shown in Table 1 (Eqs. 1–3, Table 1).

Based on these water balance equations, a subsequent mass

balance for salinity can be constructed in the three different

zones (Table 1).

The magnitude of the different water flows in the fjord

system is unknown and these flows are expected to vary

strongly throughout the year due to the strong seasonality

in the glacial meltwater input as well as seasonal inflows of

coastal water (Mortensen et al., 2011). The water mass bal-

ance provides three independent equations, which allows for

the three return flows,Qi(t), to be constrained when the sea-

water inputs, Fi(t), and glacial meltwater input, Qg(t), are

known.

The variation in the glacial meltwater input with time,

Qg(t), was estimated from salinity observations at station

GF10 close to the outlet glaciers. The total annual meltwater

input into Godthåbsfjord was constrained to be 20 km3 yr−1

as derived from regional climate model simulations for

Godthåbsfjord (Langen et al., 2014; Van As et al., 2014).

The relative contribution of freshwater (x) at station GF10

was estimated from a two-end-member mixing model (S =

x ·SFW+ (1−x) ·SSW; Sect. 2.3.3.). The contribution x was

calculated at each month and fitted with a smoothing spline.

Assuming that x scales with Qg(t), the temporal variation in

x was used to predict the temporal variation in Qg, ensur-

ing that the integrated annual meltwater input was equal to

20 km3 yr−1.

The values of the three remaining seawater inputs (Fi(t))

in the different zones were obtained by an inverse model-

ing approach using the monthly salinity data obtained at the

three representative stations (GF3, GF7 and GF10). To this

end, we estimated the salinity changes dSi/dt in the different

zones by fitting a cubic smoothing spline (Hastie and Tib-

shirani, 1990) through the monthly salinity data and subse-

quently taking the derivative. If we implement both the ob-

served salinities and the salinity changes, we obtain a linear

set of three equations (Eqs. 4–6, Table 1), which allows for

estimation of the seawater inputs (Fi(t)).
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Table 1. Mass balance equations of the biogeochemical model. Vi and Ai are respectively the volumes and areas of the different zones.

1pCO2 is the difference in pCO2 of the water (modeled) and the atmospheric pCO2 (400 µatm), with negative values implying an uptake by

the sea. α is the CO2 solubility (mol m−3 atm−1). Kav (m s−1) is the gas transfer coefficient calculated using the formulation of Nightingale

et al. (2000). NCP is the net community production. The glacial meltwater input into the fjord Qg(t) is imposed as a forcing function upon

the model – see material and methods for details how Qg(t) is parameterized as a function of time.

Water mass balance

Zone 1: Q1(t)=Q2(t)+F1(t) 1

Zone 2: Q2(t)=Q3(t)+F2(t) 2

Zone 3: Q3(t)=Qg(t)+F3(t) 3

Salinity balance

Zone 1:
dS1
dt
=

1
V1
(Q2(t)S2+F1(t)SSW−Q1(t)S1) 4

Zone 2:
dS2
dt
=

1
V2
(Q3(t)S3+F2(t)SSW−Q2(t)S2) 5

Zone 3:
dS3
dt
=

1
V3
(Qg(t)SFW+F3(t)SSW−Q3(t)S3) 6

Total alkalinity (TA) mass balance

Zone 1:
dTA1

dt
=

1
V1
(Q2(t)TA2+F1(t)TASW−Q1(t)TA1) 7

Zone 2:
dTA2

dt
=

1
V2
(Q3(t)TA3+F2(t)TASW−Q2(t)TA2) 8

Zone 3:
dTA3

dt
=

1
V3
(Qg(t)TAFW+F3(t)TASW−Q3(t)TA3) 9

Dissolved inorganic carbon (DIC) balance

Zone 1:
dDIC1

dt
=

1
V1
(Q2(t)DIC2+F1(t)DICSW−Q1(t)DIC1)−

A1
V1
Kavα1pCO2(t)−NCP1(t) 10

Zone 2:
dDIC2

dt
=

1
V2
(Q3(t)DIC3+F2(t)DICSW−Q2(t)DIC2)−

A2
V2
Kavα1pCO2(t)−NCP2(t) 11

Zone 3:
dDIC3

dt
=

1
V3
(Qg(t)DICFW+F3(t)DICSW−Q3(t)DIC3)−

A3
V3
Kavα1pCO2(t)−NCP3(t) 12

2.3.2 Dissolved inorganic carbon balance

The different water flows as derived from the water and salin-

ity mass balances were used to parameterize the transport

terms in the mass balances for TA (Eqs. 7–9, Table 1) and

DIC (Eqs. 10–12, Table 1). Alkalinity was assumed to be-

have conservatively within the fjord and hence was only

influenced by transport (Thomas and Schneider, 1999). In

contrast, the DIC mass balance accounted for transport pro-

cesses, but also ASE of CO2 and net community produc-

tion (NCP; Table 1). Air–sea CO2 fluxes were calculated

according to Eq. (1) using the formulation by Nightingale

et al. (2000) for the gas transfer coefficient. The pCO2 con-

centration of the surface water was calculated from salin-

ity, temperature, TA and DIC using the R package CRAN:

AquaEnv (Hofmann et al., 2010). The net community pro-

duction (NCP) was calculated as the difference between

the primary production (PP) and bacterial carbon demand

(BCD), and values for the rate of these processes were de-

termined based on monthly rate measurements. Accordingly,

NCP was imposed as a forcing function upon the model.

2.3.3 End-member composition

The model uses two end-member types of water as input:

freshwater (FW) from glacial meltwater and saline water

(SW) intruding across the sill and upwelling from the deeper

fjord to the surface layer. The composition (S, DIC, TA) of

both end-member types of water was determined based on

collected data. As detailed above, the largest fraction of the

freshwater input (60 %) is from glacial origin, and so we

used the properties of glacial meltwater for the freshwater

end member. To this end, 20 samples were collected from

icebergs in the fjord. Salinity, DIC and TA were measured af-

ter thawing the ice in the laboratory in gas-tight bags (SFW =

0, DICFW = 80±17 µmolkg−1, TAFW = 50±20 µmolkg−1).

As noted above, the Godthåbsfjord is also affected by other

freshwater sources: 34 % originates as surface runoff from

the surrounding watershed, while 6 % is attributed to direct

precipitation on the water surface of the fjord system (Langen

et al., 2014). Samples collected from snow indicate an aver-

age DIC concentration in snow of 74 µmolkg−1 (Søgaard,

unpublished data; TA was not measured). This value lies

close to the values measured in ice samples, and indicates

that surface runoff could be similar to the glacial meltwater.

Accordingly, we prefer the use the most parsimonious model,

which only considers one type of freshwater end member,

for which we used the measured properties of the glacial

meltwater. However, characteristics of freshwater are likely

characterized by similar properties (low DIC and low TA)

compared to the seawater end member. For the seawater end

member, we used the properties of deep fjord water (water

at 400 m depth), which is shown to be comparable to the

properties of the water on the shelf (SSW = 33.65, DICSW =

2150 µmolkg−1, TASW = 2220 µmolkg−1 and TSW = 2 ◦C).
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The properties of SW end member were assumed not to vary

through the year. The bottom-water DIC and TA in the deep

part of the fjord shows little seasonality, as the fjord is rel-

atively deep (up to 600 m), and this large volume buffers

against fluctuations induced by remineralization of organic

matter originating from plankton blooms.

2.3.4 Numerical solution

A numerical solution procedure for the resulting differen-

tial equations was implemented in R following Soetaert and

Meysman (2012). The set of differential equations was inte-

grated using the R package CRAN: deSolve (Soetaert et al.,

2010). The calculation of the carbonate system (and hence

pCO2) at each time step of the numerical simulation was

performed via the operator-splitting approach as detailed in

Hofmann et al. (2008). The resulting pCO2 concentration

can then be employed in the kinetic rate expression for the

air–sea CO2 exchange. The model was run over a full sea-

sonal cycle (representing the year 2013) and with a spin-up

period of 2 years. The goodness of fit (GOF) between model

simulation output and observational data was calculated as

the sum of squared residuals.

3 Results

3.1 Carbon dynamics in the Godthåbsfjord system

The hydrography of Godthåbsfjord is strongly affected by

the seasonal input of glacial meltwater. Figure 3 shows the

spatial distribution of salinity in the upper 40 m of the water

column during four cruises in 2013 (February, May, August

and October). The length transect ranges from the Green-

land continental shelf to the inner part of the fjord, where

six glaciers discharge. Low freshwater runoff during winter

and spring months coincides with high salinities ∼ 33 in the

upper 40 m of the water column throughout the fjord (Fig. 3a

and b). Increased input of glacial meltwater during summer

creates a strongly stratified system where the surface water

shows a distinct layer in the central and inner part of the

fjord (Fig. 3c). Due to distribution of freshwater sources, the

impact is most pronounced at the inner fjord stations (GF9

to GF13), where in August salinity drops to ∼ 8 in a shal-

low surface water layer of 10 m depth. In the central fjord

(GF5 to GF8), summer salinity decreases to 17 and the up-

per layer of low-salinity water layer extends deeper to 15–

20 m depth. In the outer part of the fjord (the outer sill re-

gion, GF1 to GF4), the salinity decrease with depth is less

pronounced as the freshwater is mixed deeper into the water

column by strong tidal mixing. Still, even at the shelf sta-

tions (FB1 to FB4), a weak imprint of glacial meltwater can

be observed. Decreased input of glacial meltwater during the

autumn months coincides with a gradual increase in salinity

in the surface layer and a less steep halocline (Fig. 3d).

Strong seasonality was also observed in the fluorescence

data (Fig. 4). Evidence of a spring bloom is indicated by

the high chlorophyll a concentrations on the shelf (FB4 to

FB1) and in the central fjord (GF5 to GF8) observed during

the May cruise (Fig. 4b). In contrast to the May situation,

where the chlorophyll a is evenly distributed in the upper

40 m of the water column, distinct chlorophyll maxima were

observed in August (Fig. 4c). During the August cruise, high

fluorescence values of∼ 6 µgL−1 were observed at the outer

shelf stations at approximately 30 m depth (FB4 and FB3.5).

Clear chlorophyll a maxima also occurred in the central and

inner part fjord, with values of ∼ 10 µgL−1 at 20 m depth at

GF8 and values of ∼ 15 µgL−1 at 10 m depth in the inner

fjord (GF9 to GF12). In February and October, low chloro-

phyll a concentrations were measured throughout the entire

fjord and shelf system (all values lower than 1 µgL−1; note

that values are missing for the shelf region in February).

Surface waters were permanently undersaturated in CO2

with respect to atmospheric equilibrium in the entire fjord

system throughout the whole year 2013 (note that only

surface pCO2 data are available for February). Maximum

pCO2 surface values of∼ 350 µatm were measured in Febru-

ary, and at this time, surface pCO2 did not vary through-

out the fjord (Fig. 5a). In May CO2 undersaturation be-

came more pronounced, and the lowest values were ob-

served over the shelf and in the surface layer at the inner

fjord stations (Fig. 5a). At the shelf stations, low pCO2 val-

ues (< 240 µatm) were observed throughout the water col-

umn and these coincided with DIC concentrations lower than

2000 µmolkg−1 that were also homogeneous throughout the

water column (Figs. 5b and 6a). Despite the occurrence of

low pCO2 values (∼ 200 µatm) coinciding with low DIC

(∼ 1950 µmolkg−1) in the surface layer of the inner fjord

stations, high pCO2 values (> 300 µatm) and high DIC con-

centrations (> 2000 µmolkg−1) were observed in the layer

below 20 m depth (Figs. 5b and 6a).

In August a further decrease in surface pCO2 was ob-

served in the central and inner part of the fjord (Fig. 5c). Un-

dersaturation was strongest at the stations closest to the tide-

water outlet glaciers where pCO2 values as low as 74 µatm

were measured (Fig. 5c). At this time, the DIC concentra-

tion also dropped below 800 µmolkg−1 in the upper me-

ters of the water column (Fig. 6b). Below this shallow layer

of low-salinity water, DIC concentrations and pCO2 val-

ues increased strongly with depth, reaching respectively ∼

2000 µmolkg−1 and ∼ 330 µatm at 40 m depth. The water

layer depleted in pCO2 and DIC extends to greater depth in

the central region of the fjord (GF5–GF8, Figs. 5c and 6d)

but the undersaturation in the surface is not as pronounced

compared to the stations close to the tidewater glaciers. For

the stations on the shelf, the pCO2 values in August were

similar to those observed in May (Fig. 5a), though a subsur-

face minimum with pCO2 values lower than 220 µatm was

observed at 30 m depth at one of the slope stations (FB3.5,

Fig. 5c).
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Figure 3. Transects of salinity from the shelf (left) to the glaciers (right) during February (a), May (b), August (c) and October (d) 2013.

The red line indicates the mouth of the Godthåbsfjord area.

Figure 4. Transects of fluorescence (calibrated vs. chlorophyll a in µg L−1) from the shelf area (left) to glaciers (right) during February (a),

May (b), August (c) and October (d) 2013. The red line indicates the mouth of the Godthåbsfjord area.
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Figure 5. Partial CO2 pressure data (pCO2 in µatm) at 1 m depth for the four cruises (a). The full line indicates the average atmospheric

concentration (400 µatm) measured during the year 2013. pCO2 data for the May (b), August (c) and October (d) cruise in the upper 40 m

water column from the shelf area (left) to glaciers (right). The red line indicates the mouth of the Godthåbsfjord area.

In October pCO2 and DIC values in the surface waters

gradually increased again compared to the previous cam-

paigns (Figs. 5a and 6c). The lowest values were still found

in the inner part of the fjord (Figs. 5d and 6c). Gradients with

depth were not as strong, most likely due to reduced stratifi-

cation (Fig. 3d).

3.2 CO2 dynamics close to the glaciers

Time series from the station GF10, located in the inner

fjord system (Fig. 1), show the seasonal evolution in the

depth-averaged values (0–40 m) for salinity and temperature

(Fig. 7a), the parameters of the carbonate system (Fig. 7b),

chlorophyll a (Fig. 7c), and primary production and bacte-

rial carbon demand (Fig. 7d). The mean salinity in the upper

water column was ∼ 33 during late winter and spring, when

freshwater runoff to the fjord is at its minimum (Fig. 7a).

Around early June, salinity started to decrease rapidly and

attained its annual minimum (∼ 27 in 2013) in August, cor-

responding to the period of highest freshwater input due to

glacial melt. From August onwards to late winter, salinity

showed a gradual increase, after which values remained con-

stant from March to June. Temperature ranged from 0.5 to

3.5 ◦C and showed a more irregular seasonal pattern. Low-

est temperature was observed in February whereas the high-

est value was recorded in October. During the period from

March to August 2013, the depth-averaged temperature fluc-

tuated around 1.5 ◦C (Fig. 7a).

The seasonal cycle of the carbonate system tracked

the temporal evolution of salinity. Values of pCO2,

DIC and TA showed a gradual increase during the

winter months in the upper 40 m. Maximum values

were obtained in March with depth-averaged val-

ues of pCO2∼ 350 µatm, DIC∼ 2040 µmolkg−1 and

TA∼ 2200 µmolkg−1. In April 2013, the pCO2 dropped

rapidly and reached∼ 250 µatm by the middle of May,

while the average DIC concentration in the upper 40 m

simultaneously decreased to∼ 1950 µmolkg−1 (Fig. 7b).

Coinciding with this spring decrease in DIC and pCO2, high

chlorophyll a concentrations were observed (Fig. 7c). High

primary production rates match the high chlorophyll a con-

centrations, and bacterial carbon demand also increased

(Fig. 7d). During the subsequent summer months, DIC in

the upper 40 m decreased to an average concentration of

1850 µmolkg−1 in 2013 (and ∼1700 µmolkg−1 in 2012),

coinciding with the strong salinity decrease due to glacial

meltwater runoff. The alkalinity shows a similar decrease

in response to the increase in freshwater input. Despite the
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Figure 6. Dissolved inorganic carbon (DIC in µmolkg−1) data for

May (a), August (b) and October (c) 2013 along a transect from the

shelf (left) to the glaciers (right). The red line indicates the mouth

of the Godthåbsfjord area.

strong pCO2 decrease in the upper 20 m, with concentrations

down to 100 µatm in the surface water of the inner fjord

(Fig. 5c), the summer decrease in pCO2 at GF10 (Fig. 7b)

was less pronounced (minimum at ∼ 200 µatm) due to depth

averaging (mean over 0–40 m layer). Continued primary

production and bacterial carbon demand was observed

after the spring bloom, although rates are lower and depth-

averaged chlorophyll a values were around 2–3 µgL−1

(Fig. 7c and d). From October onwards, the pCO2, TA and

DIC concentrations started to increase slowly to reach the

maximal winter values, while chlorophyll a values were

negligible.

Measurements of primary production and bacterial carbon

demand allowed for estimation of net community production

at station GF10, giving a value of 85 gCm−2 yr−1 for 2013.

3.3 Air–sea exchange of CO2 in the fjord system

Using the monthly surface pCO2 data collected at three sta-

tions (GF3, GF7 and GF10) over 2013, the air–sea CO2 flux

can be quantified using wind speed data from the meteo-

rological station at Nuuk (Fig. 8a). pCO2 in surface wa-

ters was permanently below atmospheric pCO2, leading to

a CO2 uptake during the entire year (Fig. 8b). Depending

on the formulation of the gas transfer coefficient (Nightin-

gale et al., 2000; Wanninkhof and McGillis, 1999), the mean

annual CO2 uptake at the inner fjord station GF10 is 70 to

82 gCm−2 yr−1. The GF7 station in the central fjord showed

an average uptake of 60 to 66 gCm−2 yr−1, while the uptake

was 37 to 39 gCm−2 yr−1 at GF3 in the outer part of the

fjord. Based on these estimates data from the three stations,

the area-averaged annual CO2 uptake in the entire fjord sys-

tem was calculated to be ∼ 65 gCm−2 yr−1.

The mean CO2 uptake was also calculated for the seasonal

transects in May, August and October based on the measured

pCO2 surface data and using the daily wind speed values

during the month that spans the sampling date (i.e., 14-day

period before and after). Confirming the pattern observed at

the three monitoring stations, the uptake is higher close to

the glaciers and lower at stations downstream the fjord but

rises slightly again over the shelf (Fig. 8c). Lower surface

pCO2 in the central and inner fjord led to almost a doubling

of the CO2 uptake in the inner part of the fjord compared

to the outer part. The wind, however, also plays an important

role: despite higher surface pCO2 values in May, higher wind

speeds (Fig. 8a) led to a higher CO2 uptake. ANOVA anal-

ysis indicates that uptake is significantly different between

stations and between months (P < 0.001).

3.4 Model results: driving factors of the carbon

dynamics

To resolve the importance of the different driving forces of

CO2 uptake in the fjord, a simplified biogeochemical model

was used to simulate the DIC and pCO2 in the region clos-

est to the glacier (GF10, zone 3; Fig. 2). This zone is most

strongly affected by glacial meltwater input and primary pro-

duction and hence shows the highest excursions in the pa-

rameters of the carbonate system. Figure 9 shows the simu-

lated annual cycle of DIC and pCO2 at GF10 compared with

the measured data. Simulations were performed (1) with and

without the effect of net community production on carbon

dynamics and (2) with a constant temperature throughout the

year (the average mean winter temperature in upper 40 m,

which was 0.5 ◦C) or with a variable temperature based on

the observations. Simulations that included NCP managed to

reproduce the DIC and pCO2 evolution better as quantified

by goodness of fit. The NCP has especially a strong effect on

the evolution of the pCO2. The inclusion of seasonal temper-

ature variation had an overall moderate effect on the simula-

tion output. Higher temperatures during summer and autumn

(1.5 to 3 ◦C, Fig. 7a) led to a reduction of the undersaturation

in CO2 compared to the simulation with variable tempera-

ture.

Figure 10 summarizes how transport processes (includ-

ing the input of glacial meltwater), ASE and biological pro-

cesses affected the change in DIC concentration in GF10.

The DIC dynamics show three distinct periods. From Jan-

uary to March, the net change in DIC is positive and DIC

increased slowly to maximum values (Period I). DIC sub-
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Figure 7. Time series of (a) average (0–40 m) salinity and temperature (◦C) ; (b) DIC, TA (µmolkg−1) and CO2 partial pressure (pCO2,

µatm); (c) chlorophyll a concentration (µg L−1); (d) and primary production and bacterial carbon demand (gCm−2 d−1) from June 2012 to

December 2013 for station GF10.

Figure 8. (a) Mean daily wind speed (ms−1) at the meteorological station in Nuuk. (b) Time series of mean monthly air–sea CO2 flux (ASE,

g Cm−2 d−1) at three stations (GF3, GF7 and GF10) in the fjord. (c) Mean ASE (gCm−2 d−1) from three cruises in the fjord system from

the shelf (Fyllas Banke, left) to inner fjord glaciers (right).
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Figure 9. Seasonal evolution of DIC (in µmolkg−1) (a) and pCO2 (in µatm) (b and c) calculated by the biogeochemical model together with

data from 2013 at station GF10 (blue points indicate measured data averaged over a 40 m box). Simulations of the model are shown with and

without net community production (NCP). Simulations of the evolution of pCO2 are shown without (b) and with (c) NCP and for a variable

temperature and constant temperature (0.5 ◦C, the average winter temperature).

Figure 10. Overview of how different processes (transport, air–sea

exchange and net community production) contribute to the temporal

observed change in DIC (µmolkg−1 d−1) for the station close to the

ice sheet (GF10). Uptake of CO2 by the sea from the atmosphere is

shown as a positive value.

sequently decreased strongly in April coinciding with high

NCP (Period II). In July and August, a second decrease in

DIC was observed (Period III) coinciding with strong input

of glacial meltwater. From September onwards the DIC con-

centration started to increase again to its maximum winter

values (Period I).

4 Discussion

4.1 Air–sea CO2 exchange in fjord and coastal waters

adjacent to the Greenland Ice Sheet

Our observations of low pCO2 in the Godthåbsfjord system

in south Greenland complement the existing observations of

subarctic nearshore and offshore areas showing a marked

CO2 undersaturation. The surface waters of the shelf area

(Fyllas Banke) and Godthåbsfjord were strongly undersat-

urated in CO2 relative to the atmosphere during the entire

year (Fig. 5), and this strong undersaturation led to a high

uptake of CO2. Based on our data from monthly measure-

ments during 2012–2013 at three stations in the fjord, we cal-

culated a mean annual CO2 uptake of 65 gCm−2 yr−1. This

estimate is lower than the uptake of 83 to 108 gCm−2 yr−1

estimated earlier for the outer sill region of Godthåbsfjord

(Rysgaard et al., 2012). The difference between both es-

timates is possibly explained by strong interannual vari-

ability in the flux (Rysgaard et al., 2012). Our estimate

for the CO2 uptake in Godthåbsfjord is higher than val-

ues previously reported from other sites in Greenland, such

as 52 gCm−2 yr−1 offshore in the Greenland Sea (Nakaoka

et al., 2006) and 32 gCm−2 yr−1 in Young Sound, a fjord

in northeast Greenland (Sejr et al., 2011), indicating that

Godthåbsfjord is a strong sink of CO2. Our estimates for

the CO2 uptake at the Fyllas Banke shelf area (0.15 to

0.6 gCm−2 d−1) are also substantially higher than the aver-

age uptake of 0.04 gCm−2 d−1 reported by Chen et al. (2013)

for shelf areas located higher than 50◦ N. This underscores

that the coast off southwest Greenland is an important sink

for CO2, and further corroborates the idea that high-latitude

shelves in general are important CO2 sinks.
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4.2 Effect of glacial melt on the carbon dynamics

Our data show the strongest undersaturation in CO2 (Fig. 5a

and c) and the highest CO2 uptake in the inner part of the

Godthåbsfjord system (Fig. 8). High CO2 uptake has been re-

ported before in fjord systems affected by glacial meltwater

(Rysgaard et al., 2012; Sejr et al., 2011; Torres et al., 2011),

indicating that glacial melt could affect the carbonate dynam-

ics and drive CO2 uptake. However, the actual mechanism

by which glacial melt induces such strong undersaturation in

CO2 has not yet been elucidated.

Glacial meltwater can affect undersaturation in different

ways. First of all, the meltwater itself can be undersaturated

in CO2. Iceberg samples collected in the Godthåbsfjord area

showed an average DIC concentration of 80± 17 µmolkg−1

and TA of 50± 20 µmolkg−1, yielding a pCO2 value of

∼ 380 µatm. Accordingly, the meltwater is slightly under-

saturated compared to the measured atmospheric CO2 val-

ues of ∼ 400 µatm. Measurements by Sejr et al. (2011) in a

meltwater river in east Greenland also indicated that meltwa-

ter is undersaturated in CO2 (a pCO2 around 39–58 µatm).

However, Ryu and Jacobson (2012) found CO2 oversatu-

ration in rivers between the Greenland Ice Sheet and the

Kangerlussuaq fjord that were fed by meltwater of land-

terminating glaciers. However, by the time the water reached

the actual fjord, the excess CO2 had evaded and the river

water was in equilibrium with the atmosphere. The low

end-member values of glacial meltwater are further con-

firmed by linear regression of TA and DIC versus salinity of

all our carbonate system observations (TA= 159+ 63× S;

R2
= 0.95 and DIC= 61+ 59× S; R2

= 0.92). These rela-

tions are similar to those obtained by Rysgaard et al. (2012;

TA= 161+ 61× S and DIC= 169+ 55× S), apart from the

DIC value of the freshwater end member. However, it should

be noted that the freshwater end-member values derived from

these relations should be interpreted with caution, as confi-

dence intervals widen near the end points of the range cov-

ered by linear regression, which is aggravated by the scarcity

of data points at low salinities. As a result, a large uncer-

tainty propagates into the estimated DIC and TA values of

the freshwater end member. Therefore, in further calcula-

tions here we use the DIC and TA values based on our

measurements of meltwater from iceberg samples. Input of

glacial ice and subsequent melting will consequently cre-

ate a CO2 sink in Godthåbsfjord. With an undersaturation

in CO2 of ∼ 380 µatm and a glacial freshwater discharge

of 20 km−3 yr−1 to the fjord system (Langen et al., 2014;

Van As et al., 2014), this directly translates into an uptake

of 0.5–2.0 gCm−2 yr−1 in Godthåbsfjord. This direct effect

of glacial meltwater on undersaturation of CO2 hence only

accounts for a minor fraction of CO2 uptake in the fjord sys-

tem (i.e., 1–3 % of the annual CO2 uptake, estimated to be

65 gCm−2 yr−1).

A second mechanism by which glacial meltwater can in-

duce undersaturation in CO2 is the nonconservative behav-

ior of pCO2 during the mixing of fresh and saline water.

This mixing effect potentially explains a large part of the low

pCO2 (and consequent CO2 sink) that we observed in the

Greenland fjord systems. The mechanism can be understood

by considering the mixing of two water parcels with different

composition. When mixing is conservative, the concentration

of a chemical compound obeys the relation

[E]Mix(M1+M2)= [E]1M1+ [E]2M2, (2)

where [E] is the concentration of the compound E and

M represents the masses of the water parcels. Salinity, TA

and DIC are conservative quantities with respect to mixing

(Wolf-Gladrow et al., 2007). However, the fact that TA and

DIC mix conservatively does not imply that pCO2 will be-

have conservatively upon mixing. In other words, if two wa-

ter parcels mix that are initially in equilibrium with the at-

mosphere, this does not imply that the resulting mixture will

also be in equilibrium with the atmosphere. In fact, mixing

of fresh and saline water induces a strong undersaturation

in CO2. Figure 11a shows the undersaturation created when

two water masses at equilibrium are mixed – one with low

salinity, low TA and low DIC (representative of meltwater

from glacial origin) and one with high salinity, high TA and

high DIC (representative of saline fjord water). The mixture

of these two parcels will be undersaturated in CO2 due to

the thermodynamic effect of salinity on pCO2. Consequently

this water parcel will take up CO2 when in contact with the

atmosphere (Fig. 11a). Note that the strongest undersatura-

tion is obtained when the resulting mixture has a salinity of

∼ 8 and that undersaturation in CO2 can exceed 200 µatm

below the atmospheric level (Fig. 11a). This salinity effect

on pH and pCO2 dynamics has been described previously

for estuarine systems (Mook and Koene, 1975; Whitfield and

Turner, 1986) and sea ice (Delille et al., 2007), but as yet the

mechanism has not been invoked to explain the low pCO2

in high-latitude fjords and shelves. In fjord systems affected

by glacial melt, meltwater (with low TA, DIC and salinity)

mixes with ambient fjord waters (with high TA, DIC and

salinity). This mechanism could hence constitute an impor-

tant driver for undersaturation in CO2 when large amounts of

meltwater are discharged into the fjord, so that salinity lev-

els are sufficiently reduced. The undersaturation in CO2 that

has been previously observed in other high-latitude systems

(Evans et al., 2014; Sejr et al., 2011; Torres et al., 2011) could

possibly be explained by this same mechanism, since these

systems also show the signature of a large input of glacial

meltwater, leading to a strong reduction in salinity.

In Godthåbsfjord, undersaturation in CO2 is strongest dur-

ing the summer months, when large volumes of meltwater

are mixed with fjord water and salinity in surface layer drops

to ∼ 8 (which coincides with the maximum undersaturation

observed in Fig. 11a). The correlation in the timing of the un-

dersaturation and meltwater discharge suggests that the salin-

ity effect described above could be an important driver of the

observed undersaturation in CO2. To verify this hypothesis,
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Figure 11. Panel (a) shows undersaturation created as 1DIC (in µmolkg−1) and 1pCO2 (in µatm) as a function of salinity of the mixture

(and mixing ratio, x, indicating the fraction freshwater) when two water masses in equilibrium with atmosphere are mixed: a first water

parcel in equilibrium with the atmosphere with TA of 50 µmolkg−1, DIC of 81.2 µmolkg−1, salinity of 0 and temperature of 0 ◦C (glacial

origin), and a second parcel in equilibrium with the atmosphere with TA of 2220 µmolkg−1, DIC of 2118 µmolkg−1, salinity of 33.65 and

temperature of 0 ◦C (fjord/sea water). Panel (b) shows the estimated pCO2 profile calculated from the salinity profiles of August in the three

different zones in the fjord system.

we used the salinity depth profiles recorded in August 2013

at the three monitoring stations. We calculated the associated

pCO2 depth profile, assuming that only the salinity effect

is in effect and that no other processes (such as ASE and

biological processes) are affecting the pCO2 depth profile

(Fig. 11b). In the upper meters of the water column close to

the glacier, where large volumes of freshwater are discharged

(zone 2 and 3), a strong undersaturation effect is observed

where pCO2 values drop below 200 µatm (Fig. 11b). This

indicates that glacial meltwater input is indeed an important

driver for the strong undersaturation in CO2 and high CO2

uptake as observed in summer in the inner part of Godthåbs-

fjord.

When freshwater is transported downstream, this water

will gradually mix with larger quantities of saline seawater,

and so its salinity will increase. Along this trajectory, a water

parcel can accumulate more and more carbon due to air–sea

CO2 exchange. When using the freshwater and saline end

members introduced above (Fig. 11), and employing stan-

dard thermodynamic calculations of the carbonate system,

we calculated that, for every kilogram of ice melted, a to-

tal of 1.8 mg C can be sequestered as CO2 from the atmo-

sphere before the water exits the fjord at a salinity of 32. If

we combine this with the estimated glacial meltwater input of

20± 5 km3 yr−1 (Van As et al., 2014), this mechanism could

be responsible for an uptake of 18± 5 gCm−2 yr−1 in the

Godthåbsfjord system, which constitutes 28± 7 % of the to-

tal CO2 uptake by the fjord system. Our detailed model sim-

ulations using the hydrological model for the fjord system

(Table 1), which explicitly accounts for spatial and temporal

variability in the CO2 uptake from the atmosphere, provide

estimates in the range of 10–20 gCm−2 yr−1. Note, however,

that the biogeochemical model assumes homogenized con-

ditions over the 40 m water depth, and so it may underes-

timate the undersaturation in CO2 in the upper water layer

(Fig. 11b), thus explaining the lower estimates as obtained

by the thermodynamic calculations.

4.3 A seasonal cycle in a glacial-meltwater-affected

fjord

In addition to the input of glacial meltwater, other driving

forces are affecting the annual cycle of the carbonate system

in Godthåbsfjord. The relative importance of driving forces

differs across the seasonal cycle. Our data suggest three dis-

tinct phases in the annual cycle, which is represented by the

scheme in Fig. 10.

4.3.1 Phase 1: autumn and winter period

During autumn, glacial meltwater input and freshwater

runoff to the fjord slowly diminishes (Figs. 3 and 7). Com-

bined with dense coastal inflows to the fjord, this leads to

a gradual salinity increase in the upper water layer and flush-

ing of accumulated freshwater out of the Godthåbsfjord sys-

tem (Fig. 7; Mortensen et al., 2011, 2013). Weakening of

the surface stratification combined with strong winter storms

leads to a stronger mixing of the upper water layers. DIC and

pCO2 concentrations increase slowly due to advection of wa-

ter masses with high DIC and pCO2 (upwelling of fjord deep

water) and continued ASE to reach an average surface water

pCO2 of ∼350 µatm (Figs. 7, 8 and 10). The largest part of

Godthåbsfjord is free from sea ice throughout the year. Only

in some of the inner stretches is sea ice present during win-

ter in some years. In the stations and transects sampled in

this study, no sea ice was present during the winter of 2012

and 2013. It has been shown previously that calcium carbon-
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ate precipitation takes place in the sea ice in Godthåbsfjord

(Søgaard et al., 2013). However, due to the limited extent of

sea ice in the fjord, the influence of the sea ice melt on the

Godthåbsfjord system is very low, and therefore the effect

of sea ice on the carbonate dynamics and biogeochemistry is

not accounted for here.

4.3.2 Phase 2: spring bloom

At the start of April, a strong spring bloom is observed in

the inner part of the fjord, leading to high chlorophyll a con-

centrations, high net primary production and strong CO2 up-

take (Fig. 7). This high biological carbon uptake decreases

the DIC and lowers the pCO2 to 250 µatm in the surface wa-

ters of the inner fjord (GF10) by the middle of May (Figs. 7

and 10). The strong effect of primary production on the

pCO2 is observed in the entire fjord system in May (Figs. 4

and 5). Low surface water pCO2 concentrations occur in al-

most the entire fjord system and on the shelf. During this

period, the impact of the glacial meltwater on the fjord sys-

tem is not pronounced, and the upper water column is still

well mixed (Mortensen et al., 2011, 2013). Consequently,

low pCO2 occurs at nearly constant salinity and the under-

saturation is almost homogenous in the water column. This

matches with the even distribution of the fluorescence in the

upper 40 m (Figs. 3–5). Only in the inner part of the fjord

can a clear gradient be observed in pCO2 with water depth.

Continued inflow of dense water into the fjord system leads

to upwelling in the inner part of the fjord, bringing up the

deep water masses rich in DIC and pCO2 (Figs. 3 and 5;

Mortensen et al., 2011).

The strong effect of biological processes on pCO2 is illus-

trated in Fig. 9. In a model simulation without NCP, the large

drop in pCO2 concentrations observed in the spring and sum-

mer data is not reproduced. The high undersaturation in CO2

in the spring is consequently linked to high biological activ-

ity (Bates and Mathis, 2009; Shadwick et al., 2011; Thomas

and Schneider, 1999). Combined with the high primary pro-

duction rates, high vertical fluxes of chlorophyll a from sed-

iment traps are observed in the fjord at this time, indicating

that a large fraction of the organic material produced in the

upper water layers sinks to deeper waters (Rysgaard et al.,

2012). Primary production is consequently able to counter-

act the large CO2 air–sea influxes and to maintain low pCO2

in surface water (Figs. 5 and 9b). This creates an efficient bi-

ological pump through the spatial separation of production

and mineralization (Sejr et al., 2014; Thomas et al., 2004).

4.3.3 Phase 3: summer glacial melt

After the initial decrease in spring, surface water DIC de-

creases further during summer, coinciding with the increased

input and mixing of glacial meltwater into the fjord. At

the start of summer (June), glacial meltwater runoff initi-

ates the lowering of the salinity in the upper water layers

(Figs. 3 and 7). This freshwater input induces stratification

in the upper part of the water column of the inner and cen-

tral fjord (Fig. 3). The high freshwater input (∼ 20 km3 yr−1)

has a strong effect on not only fjord hydrography (Mortensen

et al., 2011) but also the chemistry in the fjord system (Rys-

gaard et al., 2012) and biology (Arendt et al., 2013). Mix-

ing of glacial meltwater with fjord water strongly reduces the

salinity of the upper water layers (Figs. 3 and 7), while DIC

and TA are also diluted in the upper water layers (Fig. 7). Co-

incident with this dilution of DIC and TA, a notable strength-

ening of the undersaturation in CO2 in the upper water can be

observed, as pCO2 decreased further from 250 to 100 µatm in

the upper meter (Fig. 5). This leads to very low pCO2 in the

inner part of the fjord, close to the outlet glaciers, and conse-

quently a strong uptake of CO2 (Fig. 8). Our analysis shows

that the nonlinear thermodynamic effect of salinity on pCO2,

induced by the mixing of glacial meltwater with fjord water,

plays an important role in this observed summer reduction

of pCO2 (Sect. 5.2). In a simulation without biology, a drop

in pCO2 in the upper meters of the surface waters is pre-

dicted (Fig. 9b). The water column is, however, highly strati-

fied and despite the very low values in the upper water layer,

higher pCO2 values are observed at 40 m depth. Subglacial

melt plumes, discharging at the grounding line of the glacier

(or at other submarine levels), bring up deep water rich in

DIC and pCO2 close to the glacier. This creates a strongly

stratified layer with freshwater on top and subglacial melt-

water found below 10 m depth as described by Mortensen

et al. (2013). Subglacial freshwater discharge consequently

balances the strong decrease in the upper meters, leading to

no obvious changes in the mean (0–40 m) pCO2 during sum-

mer period (Fig. 7).

In addition to the large effect of glacial meltwater in-

put, primary production remains a strong driver on DIC and

pCO2 dynamics during summer. Continued high production

maintains low pCO2 on the continental shelf area. Also, in

the inner fjord, continued biological activity (with significant

blooms) can be observed (Figs. 4, 5, 7 and 10). The input of

glacial meltwater strongly reduces the alkalinity in the upper

water layers affecting the buffering of the system (Reisdorph

and Mathis, 2014; Torres et al., 2011). Consequently, the

system becomes particularly susceptible to pCO2 changes.

Due to the low buffering capacity, a similar production at

lower salinity (and TA values) in the upper water layers has

a much stronger effect on pCO2, and hence even the lower

level of primary production during summer can keep pCO2

at low levels. As a result, primary production keeps acting

as a driving force for creating undersaturation in the fjord

system even though mean chlorophyll is lower compared to

the spring months (Fig. 7). Measurements of net commu-

nity production estimate the strength of the biological car-

bon pump to be 85 gCm−2 yr−1, indicating that biological

processes are the most important driver for carbon dynamics

in the fjord responsible for 65–70 % of the total CO2 uptake

by the fjord system. However, part of the biological activity
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can potentially be associated with glacial processes due to the

subglacial freshwater discharge. In addition to the upwelling

of DIC-rich water, subglacial freshwater discharge leads to

a strong upwelling of nutrients fueling continuous productiv-

ity during the summer in the inner part of the fjord. Conse-

quently both glacial meltwater and primary production can

be considered as crucial drivers for the CO2 uptake in coastal

areas affected by glacial meltwater.

Part of the low pCO2 created by glacial meltwater and bio-

logical processes in the fjord is, however, compensated for by

higher temperatures in summer and autumn which reduce the

CO2 solubility in water, therefore counteracting the estab-

lished undersaturation (Fig. 9; Shadwick et al., 2011; Taka-

hashi et al., 2002). Higher temperatures reduce pCO2 by up

to 50 µatm (Fig. 9), reducing the CO2 uptake with 10–20 %

compared to the constant temperature simulation.

5 Summary and outlook

Our observations show that Godthåbsfjord is a strong sink

for CO2 due to high biological carbon uptake and under-

saturation induced by the input of glacial meltwater. During

winter, the absence of significant glacial meltwater and bio-

logical consumption brings the fjord waters into near equi-

librium with the atmosphere due to ASE. A strong bloom

during spring leads to a decrease in DIC and pCO2, indicat-

ing the importance of biological processes. During summer,

primary production continues to play a central role in the

carbon dynamics. However the input and mixing of glacial

meltwater also plays a crucial role. The nonlinear effect of

salinity on surface water pCO2 from the mixing of glacial

meltwater and saline fjord water creates a strong undersat-

uration in CO2 and CO2 uptake, a mechanism that was un-

described for glacial systems. The meltwater effect alone re-

sults in Godthåbsfjord in an uptake of 36 GgCyr−1, while

extrapolated to the Greenland Ice Sheet (using a ice dis-

charge rate of 1000 km3 yr−1 as cited in Bamber, 2012), this

increases to 1.8 Tg Cyr−1. The processes driving the DIC

and pCO2 dynamics in Godthåbsfjord most likely also ap-

ply for other fjord systems and coastal settings that are af-

fected by glacial meltwater. Consequently coastal areas of

Greenland and other glacier-influenced areas probably con-

stitute a much larger sink compared to other coastal areas

and play a more important role in the high-latitude carbon

cycle. Increased melting is anticipated as a result of climate

change and will likely accelerate processes affecting carbon

dynamics; it will increase the freshwater volume mixing in

fjord systems and consequently likely enhance the sink for

CO2 in fjord systems affected by glacial melt. However, in-

creased surface warming could mitigate part of the uptake.

Finally, if the entire ice volume of the Greenland Ice Sheet

were to melt, this would result in an overall oceanic uptake of

5.4 Pg of atmospheric CO2, hence representing a weak nega-

tive feedback to climate change.
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