
ABSTRACT: Monitoring the modal parameters of civil and mechanical system received plenty of interest the last decades. 
Several approaches have been proposed and successfully applied in civil engineering for structural health monitoring of bridges 
(mainly based on the monitoring of the resonant frequencies and mode shapes).  In applications such as the monitoring of 
offshore wind turbines and flight flutter testing the monitoring of the damping ratios are essential.  For offshore wind turbine 
monitoring the presence of time-varying harmonic components, close to the modes of interest, can complicate the identification 
process. The difficulty related to flight flutter testing is that, in general, only short data records are available. 
The aim of this contribution is to introduce system identification methods and monitoring strategies that result in more reliable 
decisions and that can cope with complex monitoring applications. Basic concepts of system identification will be recapitulated 
with attention for monitoring aspects. The proposed monitoring methodology is based on the recently introduced 
Transmissibility-based Operational Modal Analysis (TOMA) approach. 

KEY WORDS: System Identification; Experimental Modal Analysis; Operational Modal Analysis; Transmissibility-based 
Operational Modal Analysis; Monitoring. 

!
1. INTRODUCTION 
The application of system identification [1,2] to vibrating 
structures resulted some 40 years ago in a new research 
discipline in mechanical engineering known as "Experimental 
Modal Analysis" (EMA) [3-5]. EMA identification methods 
and procedures are limited to forced excitation laboratory tests 
where the applied forces can be measured together with the 
response of the structure (e.g., accelerations).  

Today, EMA has become a widespread means of finding the 
modes of vibration of a machine or structure (e.g., modal 
analysis of a body-in-white of a car, Ground-Vibration-Testing 
of an airplane). 

In many applications, however, the vibration measurements 
have to be performed in “operational” conditions where the 
structure is excited by the natural (ambient) excitation 
sources.  In such a case, it is practically impossible to measure 
the input forces, and consequently, only output signals 
(accelerations, strains, …) can be measured. These output 
measurements are often very noisy (e.g., modal analysis of an 
airplane during flight, which is also known as flight flutter 
analysis). Moreover, the modal parameter estimates (i.e, the 
resonance frequency, the damping ratios and the mode shape 
vector of every mode of interest) will depend on the 
operational conditions. This makes the modelling process 
more complex, but the results are more realistic (i.e., closer to 
reality) than the ones obtained in laboratory conditions (e.g., 
during GVT of an airplane the aero-elastic coupling, which is 
present in flight conditions, is neglected).  This field of 
research is called “Operational Modal Analysis” (OMA) [6,7].  

Operational Modal Analysis has many advantages. During 
in-operation tests, the real loading conditions are present. As 
all real-world systems are to a certain extent non-linear, the 
models obtained under real loading will be linearised for more 
representative working points. Additionally, they will properly 

take into account the environmental influences on the system 
behaviour (pre-stress of suspensions, load-induced stiffening, 
aero-elastic interaction, …).  
Furthermore, the availability of in-operation established 
models opens the way for in situ model-based diagnosis and 
damage detection (“Structural Health Monitoring”). Hence, a 
considerable interest exists for techniques able to extract valid 
models directly from operational data. 

In this contribution an overview will be given of the basic 
concepts of different system identification approaches that can 
be used for monitoring applications.  This overview will be 
restricted to frequency-domain estimators.  Most of the results 
can be implemented in the time domain too [8]. Next, the 
Transmissibility-based Operational Modal Analysis will be 
revisited and new results will be illustrated with attention to 
monitoring applications. 

2. EMA: EXPERIMENTAL MODAL ANALYSIS 

2.1. Frequency response data driven approach 
Traditionally, EMA starts with the nonparametric 
identification of the frequency respons matrix (FRM) between 
the applied forces (inputs) and the resulting vibrations 
(outputs).  The H1 or more advanced nonparametric estimators 
can be used to obtain the frequency respons matrix estimate 
! at the angular frequencies! with ! . 

Frequency-domain parametric modal estimators, such as the 
LSCF and the PolyMAX estimators, use rational transfer 
function models [9-11]. The parameters to be estimated are 
thus the numerator and denominator polynomial coefficients. 
For simplicity of explanation, a common-denominator transfer 
function model will be used, !

!  (1)                           

[Ĥ (ω k )] ω k k = 1,…,nF

[H ({α},{β},ω k )] =
[N({β},ω k )]
d({α},ω k )
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with !  the denominator 
polynomial and !

!  (2)           !
the numerator polynomial corresponding with the r-th entry of 
the numerator vector ! , defines as, !

!  (3)                          !
The vec-operator transforms a matrix into a vector by stacking 
the columns of the matrix.  The parameter vector! in (1) is 
defend as  !

!  (4)                                          !
and! as !

!  (4)                                                     !!
with !  and ! the length of the 
vector ! , i.e., the number of outputs times the 
number of inputs.  The commonly-used basis functions 
!  are defined as !!

!  (4)               !!
for, respectively, a discrite-time model and a continuous-time 
model. The variable !  stands for the sampling period, i.e., 
one over the sampling frequency.  Other choices are possible 
that could result in better numerical-conditioned equations or  
improved (so-called ‘crystal clear’) stabilisation diagrams 
[12,13]. !

The least-squares estimates of !  and !  are obtained by 
minimising the following cost function !

!  (5)                                            
  

with ! .  !
The operator !  stands for the Frobenius norm while 
!  is the equation error (matrix).  Replacing 
!  in (1) by the measured frequency response 
matrix yields 
  

!  (6)                                              !
Equation (6) is not exactly satisfied.  The error in (6) is given 
by !

!  (7)                       !
Note that equation (6) can also be rewritten as !

!  (8)                                 !
resulting in a “linear-in-the-parameters” equation error !

!  (9)         

When the equation error is “linear-in-the-parameters” the cost 
function minimisation (5) reduces to a linear least-squares 
problem, which is much faster and easier to solve than a 
nonlinear least-squares problem.  

One possible drawback of using frequency response 
matrices as primary data for monitoring application is related 
to the need of using averaging schemes.  The averaging 
process requires several time records  (thus longer 
measurement periods). So, one has to assume that the system 
does not change (i.e., remains time invariant) within every 
(longer) time period. If this cannot be guaranteed then an 
input-output data driven approach could be considered. 

 2.2. Input-output data driven approach 
The input-output data relationship in the frequency domain is 
given by [14] !

!  (10)                              !
This equation is not exactly satisfied due to measurement 
errors (noise) in the input-output data.  After multiplying the 
left and right hand side of (10) with ! , a “linear-in-
the-parameters” equation error is obtained !
!  (11)  !

An additional advantage of using input-output Fourier-
coefficients as primary data is that leakage and transient 
effects can be compensated.  To do so, one additional 
“transient” polynomial vector, ! , has to be added in 
(11), yielding [15] !
 !  (12) !
For compactness of notation, the vector and matrix brackets 
have been omitted. Note that adding the “transient” 
polynomial vector, ! , in (12) is equivalent to adding 
an “one” in the force vector  !!

!  (13)                                          !!
This additional “1” input entry results in an additional column 
in the numerator matrix !

!  (14)           !
It is readily verified that !

!  (15)      !
is equal to (12).  This observations can be generalised to all 
existing input-output frequency-domain estimators (including, 
for instance, frequency-domain subspace estimators).  To sum 
up, leakage and transient effects can be dealt with in the 
frequency-domain by extending the input vector, ! , with 
an “1” (for all considered frequencies ! ) 

 2.3. Compact formulation of the least-squares solver 
Consider the column vector !  defined as !

!  (16)                          

d({α},ω k ) = a0Ω0 (ω k )+…+ anΩn (ω k )

N [r ]({β},ω k ) = b0
[r ]Ω0 (ω k )+…+ bn

[r ]Ωn (ω k )

{N({β},ω k )}

{N({β},ω k )} = vec([N({β},ω k )])

α

{α} = {vec([a0,…,an ])}

β

{β} =
{β1}
!

{βnH
}

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

{βr} = {vec([b0
[r ],…,bn

[r ] ])} nH
{N({β},ω k )}

Ωr (ω k )

Ωr (ω k ) =
zk
−r with zk = exp(iω kTS )

sk
r with sk = iω k

⎧
⎨
⎪

⎩⎪

TS

α β

(α̂ , β̂ ) = arg
(α ,β )

minℓ(α ,β )

ℓ(α ,β ) = [E(α ,β,ω k )] F

2 = Eo,i (α ,β,ω k )o,i,k∑ 2

|| ⋅ ||F
[E(α ,β,ω k )]
[H (α ,β,ω k )]

[Ĥ (ω k )] ≈
[N(β,ω k )]
d(α ,ω k )

[E(α ,β,ω k )] = [Ĥ (ω k )]−
[N(β,ω k )]
d(α ,ω k )

d(α ,ω k )[Ĥ (ω k )] ≈ [N(β,ω k )]

[E(α ,β,ω k )] = d(α ,ω k )[Ĥ (ω k )]− [N(β,ω k )]

{X̂(ω k )} ≈
[N(β,ω k )]
d(α ,ω k )

{F̂(ω k )}

d(α ,ω k )

{E(ω k ,α ,β )} = d(α ,ω k ){X̂(ω k )}− [N(β,ω k )]{F̂(ω k )}

{T (γ ,ω k )}

E(ω k ,α ,β ) = d(α ,ω k )X̂(ω k )− N(β,ω k )F̂(ω k )−T (γ ,ω k )

{T (γ ,ω k )}

F̂T (ω k ) =
{F̂(ω k )}

1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

NT (β,γ ,ω k ) = [N(β,ω k )] {T (γ ,ω k )}⎡
⎣

⎤
⎦

E(ω k ,α ,β ) = d(α ,ω k )X̂(ω k )− NT (β,γ ,ω k )F̂T (ω k )

F̂(ω k )
ω k

ε [r ](α ,β,ω k )

ε [r ](α ,β,ω k ) = vec(E
[r ](α ,β,ω k ))
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where !  stands for the r-th row of ! , 
and, the column vector !  !!!

!  (17)                               !!!
obtained by stacking (16) for all considered angular 
frequencies ! with ! .  Equation (17) can be 
rewritten as a linear function of the parameter vectors !

!  (18)                   !
with  

!  (19)                                             !!
!  (20)                                             !

resulting in !! !!!!
!  (21)             !!!!

with !  full parameter vector and !  a structured Jacobian 
matrix.  This structure can be exploited to reduce computation 
time and memory requirements. 

2.3.1. Compact normal matrix formulation 
Note that the least-squares cost function (5) can be written as  !!!

!  (22)            !!
with 

 ! ,  ! ,  !  (23)          !
In the solution, the stationary point conditions are satisfied !

!  (24)                                                        !!
!  (25)                                                        !

for ! . From (25) one can derive that !
!  (26)                                                          !

Substitution of (26) in (22) yields a cost function that only 
depends on !  !

!  (27)                                                     

with !
 !  (28)                                        !

Remark 1: This derivation is valid for generalised transfer 
function models with complex-valued coefficients.  The 
derivation for real-valued coefficients can readily be 
implemented by redefining ! , ! , and !  as !
 ! ,! ,!  (29)   !

Remark 2: When the conditioning of the equations is an 
issue (e.g., for rational transfer functions in the Laplace 
domain), it is advised to solve the least-squares equations 
directly from the Jacobian matrices ! and !  instead of 
(23) (or (29)).   

2.3.2. Compact Jacobian matrix formulation 
It can be verified that (28) can be rewritten as [16] !!!

!  (30) !!!
with !  an orthogonal projection 
matrix.    
Note that !  and ! . 
Thus, (27) can be rewritten as !

!  (31)                                                
with !!

 !  (32)                                              !!!
2.3.3. Compact generalised total least-squares formulation 
To find a unique least-squares solution a parameter constraint 
needs to be imposed.  The parameter constraint can be applied 
on the parameter vector ! .  Usually one entry of the 
parameter vector !  is set equal to one.  The parameter 
constraint can, in general, be formulated as ! .  The 
least-squares solution depends on the imposed constraint.  
This parameter constraint can be included in the  cost function 
by using a Lagrange multiplier !  !

!  (33)                     !
In the solution, the stationary point conditions are satisfied !

!  (34)                                                      !!
!  (35)                                                         !

Using equation (34), the Lagrange multiplier !  can be written 
as a function of ! .  Elimination of !  in (33) gives !

!  (36)                                                     

E[r ](α ,β,ω k ) [E(α ,β,ω k )]
ε [r ](α ,β )

ε [r ](α ,β ) =

ε [r ](α ,β,ω1)

ε [r ](α ,β,ω 2 )

ε [r ](α ,β,ω nF
)

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

ω k k = 1,2,…,nF
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[r ] ]{βr}

[Jα
[r ] ] = ∂{ε [r ](α ,βr )}

∂{α}

[Jβr
[r ] ] = ∂{ε [l ](α ,βr )}

∂{βr}
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!

ε [nH ](α ,βnH
)

⎧

⎨
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⎩
⎪
⎪

⎫

⎬
⎪⎪
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⎬
⎪
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2
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nH

∑

=
α
βr

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪r=1

nH

∑
H

Tr Sr
H
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⎡

⎣
⎢
⎢

⎤

⎦
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⎥

α
βr

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Rr = Jβr
[r ]H Jβr

[r ] Sr = Jβr
[r ]H Jα

[r ] Tr = Jα
[r ]H Jα

[r ]

∂ℓ(α ,β )
∂α

= {0}

∂ℓ(α ,β )
∂βr

= {0}

r = 1,…,nH

βr = −Rr
−1Srα

α

ℓ(α ) =α H [M ]α

[M ] = Tr − Sr
HRr

−1Srr=1

nH∑

Rr Sr Tr

Rr = Re[Jβr
[r ]H Jβr

[r ] ] Sr = Re[Jβr
[r ]H Jα

[r ] ] Tr = Re[Jα
[r ]H Jα

[r ] ]

Jα
[r ] Jβr

[r ]

[M ] = Jα
[r ]H Jα

[r ] − Jα
[r ]H Jβr

[r ][Jβr
[r ]H Jβr

[r ] ]−1Jβr
[r ]H Jα

[r ]
r=1

nH∑
= Jα

[r ]H I − Jβr
[r ][Jβr

[r ]H Jβr
[r ] ]−1Jβr

[r ]H⎡⎣ ⎤⎦ Jα
[r ]

r=1

nH∑
= Jα

[r ]H Jβr
[r ]⊥⎡⎣ ⎤⎦ Jα

[r ]
r=1

nH∑
Jβr
[r ]⊥ = I − Jβr

[r ][Jβr
[r ]H Jβr

[r ] ]−1Jβr
[r ]H

Jβr
[r ]⊥Jβr

[r ] = [0], [Jβr
[r ]⊥ ]H = Jβr

[r ]⊥ [Jβr
[r ]⊥ ]2 = Jβr

[r ]⊥

ℓ(α ) =α H [JM
H JM ]α

JM =

Jβ1
[1]⊥Jα
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!
JβnH
[nH ]⊥Jα

[nH ]

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

α
α

α H [C]α = 1

l

ℓ({α},l) =α H [M ]α + l(α H [C]α −1)

∂ℓ({α},l)
∂{α}

= {0}
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∂l
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α l
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So, basically, this means that a least-squares (LS) estimator 
can be reformulated as a generalised total least-squares 
(GTLS) estimator [17-20].  For instance,  !  is 
equivalent with constraining the 2-norm of !  to one 
( ! ). Solving the LS problem with the first 
coefficient of !  constrained to one is equivalent to solving 
the GTLS problem (36) with ! .  

3. OMA: OPERATIONAL MODAL ANALYSIS 
During operational modal analysis, the structure remains in its 
real in-operation conditions. These conditions can differ 
significantly from the ones obtained during an laboratory-
condition forced excitation test. An example is given by high-
speed ships where the mass loading of water adjacent to the 
hull varies with the speed of the ship through the water. Since 
changes in mass loading induce changes in modal parameters, 
the dynamic behaviour of the ship will depend upon its speed. 
Other vehicles and structures (bridges open for traffic, cars, 
agricultural crop sprayer, . . . ) show a similar behaviour to 
changes in working condition. Moreover, since all real-world 
systems are to a certain extent non-linear, the models obtained 
under real loading will be linearised in much more 
representative working points during an in-operation modal 
analysis.  

In practice, EMA estimators can be reused for OMA 
applications depending on the preprocessing of the output-
only data. Basically, nonparametric frequency respons 
functions are replaced by nonparametric estimates of the auto- 
and cross power spectra [21]. 

A lot of attention has been paid to the application of 
Operational Modal Analysis (OMA) to, for instance, in-flight 
flutter testing [22-26]. A limitation of this approach is that not 
all modes of vibration may be well excited by the operational 
forces (turbulences). Nevertheless it is desired to identify all 
critical flutter modes. When the aircraft is equipped with fly-
by-wire control, it is quite easy to apply an input signal. 
Although this input signal is not fully coherent with the 
applied forces (mainly due to non-linear effects), it should be 
used when available. In such cases, one typically uses 
classical Experimental Modal Analysis (EMA) identification 
techniques to estimate the modal parameters from the input-
output (or FRF) measurements. 

This standard approach is however not advisable for flight 
flutter testing. Indeed, by doing so, the operational forces due 
to the turbulences will be treated as disturbing “noise”. 
Traditional EMA techniques will remove this “noise” 
contribution by averaging the measurements. It has been 
shown that it is possible to identify modal parameters from 
this so-called noise contribution with an output-only approach 
(OMA), and so, useful information is lost with an EMA 
approach. On the other hand, the OMA identification 
techniques do not use the measured inputs (they use output-
only data) resulting again in a loss of information. To 
conclude, none of the EMA and OMA approaches exploit the 
available data in an optimal way. Clearly, to make an optimal 
use of the data, a new identification strategy is required that 
takes into account the contribution to the output of both 
measured and unmeasured forces. 

This concept has been called OMAX (Operational Modal 
Analysis in presence of eXogenous input signals), and its 
possible application to flight flutter testing as well as other 
applications, has been investigated [27,28]. 

Note that the input-output data driven approach (Sec. 2.2.) 
partially fits in the OMAX concept. Equation (11) can be 
reformulated as  !

!  (37)    !
where !  represents the known forces and !  
the unknown operational forces. The transfer function from  
!  to !  only takes into account the common-
denominator polynomial ! .   

A more general approach is obtained by adding the 
numerator !  !

!  (38)   !
Unknown transient excitation can readily be included too  !

!  (39)  !
resulting in the following equation error  !

!  (40)   !
with ! the parameter vector containing (! ). As (40) is 
a nonlinear function of ! , nonlinear optimisation tools are 
required to obtain the parameter vector estimate ! .     

4. TRANSMISSIBILITY-BASED OMA APPROACH 
It has been shown that transmissibility functions can be used 
to identify modal parameters using output-only data [29,30]. 
One important advantage of this approach is that the forces 
are eliminated from the equations, i.e. the unknown 
operational forces can be arbitrary (persistently exciting) 
signals. It can even be applied in presence of harmonic 
components [31,32].   !

Consider a multiple degree-of-freedom system described by 
  

!  (41)                             !
The eigenvalues !  (system poles) and eigenvectors !  
(mode shapes) satisfy the generalised eigenvalue equations !

!  (42)                                                  !
with ! .  This eigenvalue problem can 
be reformulated as an optimisation problem [33].  Consider 
the following cost function  !

!  (43)                                         !
The eigenvalues !  and corresponding eigenvectors !  
are the minima of this cost function (! ).  To 
avoid the trivial solution (! ), the 2-norm of !  is 
constraint to one.  

The cost function (43) is illustrated in Figure 1. Two 
minima can be clearly observed corresponding with the poles 
of the first and second mode. The cost function is plotted 
versus the real and imaginary part of ! . For every value of !  
the corresponding value of !  resulting in the lowest value 
of the cost function (43) is used to construct Figure 1  [33].   !

[C] = [I ]
α

α H α = α 2

2 = 1
α

[C] = diag(1,0,…,0)

X̂(ω k ) =
N(β,ω k )
d(α ,ω k )

F̂(ω k )+
1

d(α ,ω k )
E(ω k ,α ,β )

F̂(ω k ) E(ω k ,α ,β )

E(ω k ,α ,β ) X̂(ω k )
d(α ,ω k )

M (χ,ω k )

X̂(ω k ) =
N(β,ω k )
d(α ,ω k )

F̂(ω k )+
M (χ,ω k )
d(α ,ω k )

E(ω k ,α ,β )

X̂(ω k ) =
NT (β,γ ,ω k )
d(α ,ω k )

F̂T (ω k )+
M (χ,ω k )
d(α ,ω k )

E(ω k ,α ,β )

E(ω k ,θ ) =
d(α ,ω k )X̂(ω k )− NT (β,γ ,ω k )F̂T (ω k )

M (χ,ω k )
θ α ,β,γ ,χ

χ
θ̂

[Ms2 +Cs + K ]{X(s)} = {F(s)}

λm {φm}

[Z(λm )]{φm} = {0}

[Z(λ)] = [Mλ 2 +Cλ + K ]

ℓ(λ,{φ}) = [Z(λ)]{φ} 2

λm {φm}
ℓ(λm ,{φm}) = 0

{φ} = {0} {φ}

λ λ
{φ}
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!  

Figure 1. Minimum value of cost function (43) versus ! . 

!  

Figure 2. Minimum value of cost function (50) versus ! . 

!  

Figure 3. Minimum value of cost function (53) versus ! . 

!

!  

Figure 4. Minimum value of (54) versus !  with !  . 

!  

Figure 5. Minimum value of (54) versus ! with !  . 

!  

Figure 6. Minimum value of (54) versus !  with !  for an 
increase (doubling) of the damping matrix C. !

λ

λ

λ

λ φ = φ1

λ φ = φ2

λ φ = φ1
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Consider the case where the system is excited with, say, one 
force !!

!  (44)   !!!
This can be reformulated as !

! ,     !  (45)      !!!
Left multiplication with the orthogonal projection matrix 

!  gives !
 !   (46)                                  !

with !
 !  (47)       !!

Thus (46) reduces to !
 !   (48)                                       !

with !
!  (49)             !!

The resulting cost function !
!  (50)                                      !

is plotted in Figure 2.   One notices that the correct poles are 
missing.  To find a unique solution the matrix !  in (43) 
has to be a full column rank matrix.  This is not the case for 
!  as the first row of !  is missing. With other 
words, there are not enough equations to find the unknown 
parameters. 

One possible approach consists in increasing the amount of 
equations.  This can be done by considering a second loading 
condition. The force will now be applied in, say, location 2.  
This will result in the following matrix (where the second row 
of !  is now missing)         !!!

!  (51)            !!!
Combining the equations of both loading conditions gives !!

!  (52)                                !!
All rows of !  are now again included resulting in the 
correct cost function given in Figure 1.  

Another possible approach consists is reducing the amount of 
unknowns.   For instance, for normal modes, one can impose 
the eigenvectors to be real-valued instead of complex-valued.  
Doing so for one loading condition (e.g., L1) results in the 
following cost function !!

 !  (53)                        !!
The amount of equations (rows) doubled but they are now 
real-valued instead of complex-valued.  Only the poles remain 
complex-valued.  The corresponding cost function is plotted 
in Figure 3.  One observes that there is an infinite number of 
possible solutions.  Indeed, all poles lying on the (yellow-
green) curve are possible solutions.  Note that this curve 
passes through the correct poles. 

In many monitoring applications the poles are subjected to 
larger changes that the mode shapes.  If the mode shapes of 
the modes of interests are a-priori known, the corresponding 
poles can be obtain by minimising  !

!  (54)                                           !
The solution for the first and second mode are given in Figure 
4 and Figure 5, respectively.  Note that only one loading 
condition is sufficient to estimate the resonant frequency and 
damping ratio of every mode of interest (for normal as well as 
complex mode shapes). 
       

The polynomial matrix !  can be derived from 
output-only measurements.  Indeed, !!

!  (55)                     
                                                                                  !

can be transformed into a multivariable transmissibility 
function. Rewriting (55) as !!

!  (56)           !!
gives !!

!  (57)                   !!
Thus, an input-output estimator, with as input the (arbitrary) 
reference output !  and as output vector the remaining 
outputs, can be used to derive all necessary polynomial 
functions.  The number of required reference outputs equals 
on the number of independent (operational) forces.  It is 
readily verified that the number of rows of the matrix 
!  equals the number of outputs !  minus the number 
of (independent) input forces. 

If there are several independent (and unknown) forces 
active, the number of row of the matrix could be small. 
Assume that the number of (independent) forces equals 
! .  In that case the matrix !  will reduce to a row 

Z11(ω k ) Z12 (ω k ) ! Z1nX (ω k )

Z21(ω k ) Z22 (ω k ) ! Z2nX (ω k )

! ! !
ZnX1

(ω k ) ZnX 2
(ω k ) ! ZnXnX

(ω k )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

X1(ω k )
X2 (ω k )
!

XnX
(ω k )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

=

F1(ω k )
0
!
0

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

[Z(ω k )]{X(ω k )} = {Q}F1(ω k ) {Q} =

1
0
!
0

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

[Q⊥ ] = [I ]− {Q}[{Q}H {Q}]−1{Q}H

[Q⊥ ][Z(ω k )]{X(ω k )} = {0}

[Q⊥ ][Z(ω k )] =

0 0 ! 0
Z21(ω k ) Z22 (ω k ) ! Z2nX (ω k )

! ! !
ZnX1

(ω k ) ZnX 2
(ω k ) ! ZnXnX

(ω k )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

[ZL1(ω k )]{X(ω k )} = {0}

[ZL1(ω k )] =
Z21(ω k ) Z22 (ω k ) ! Z2nX (ω k )

! ! !
ZnX1

(ω k ) ZnX 2
(ω k ) ! ZnXnX

(ω k )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ℓ(λ,{φ}) = [ZL1(λ)]{φ} 2

[Z(λm )]

[ZL1(λm )] [Z(λm )]

[Z(λm )]

[ZL2 (ω k )] =

Z11(ω k ) Z12 (ω k ) ! Z1nX (ω k )

Z31(ω k ) Z32 (ω k ) ! Z3nX (ω k )

! ! !
ZnX1

(ω k ) ZnX 2
(ω k ) ! ZnXnX

(ω k )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ℓ(λ,{φ}) =
ZL1(λ)
ZL2 (λ)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
{φ}

2

[Z(λm )]

ℓ(λ,{φ}) =
Re(ZL1(λ))
Im(ZL1(λ))

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
{φ}

2

ℓ(λ) = [ZL1(λ)]{φm} 2

[ZL1(λ)]

Z21 Z22 ! Z2nX
" " "
ZnX1

ZnX 2
! ZnXnX

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

X1
X2
!
XnX

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

=
0
!
0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Z21
!
ZnX1

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
X1 +

Z22 ! Z2nX
" "

ZnX 2
! ZnXnX

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

X2
!
XnX

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
=

0
!
0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

X2
!
XnX

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
= −

Z22 ! Z2nX
" "

ZnX 2
! ZnXnX

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−1
Z21
!
ZnX1

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
X1

X1

[ZL1(λ)] nX

nX −1 [ZL1(λ)]
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vector of size ! .  Even then the minimum of the cost 
function (54) turns out to be reached in the correct pole.   

Figure 6 shows what happens when the damping increases. 
The minimum of the cost function tracks the correct value of 
the pole. It is assumed here that the mode shape does not 
change.  The validity of this assumption can be verified by 
means of the cost function.  Indeed, a violation of this 
assumption would result in an increase of the cost function 
value. 

5. CONCLUSIONS 
In this contribution an overview has been given of the basic 
concepts of different system identification approaches that are 
used for monitoring applications. This overview was restricted 
to frequency-domain estimators but most results can be 
extended to the time domain. Eventually, the Transmissibility-
based Operational Modal Analysis has been revisited with 
attention to monitoring applications and new results has been 
illustrated. 
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