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Abstract. As part of the GEOTRACES Bonus-GoodHope 
(BGH) expedition (January-March 2008) in the Atlantic sec­
tor of the Southern Ocean, particulate organic carbon (POC) 
export was examined from the surface to the mesopelagic 
twilight zone using water column distributions of total 234Th 
and biogenic particulate Ba (Baxs). Surface POC export pro­
duction was estimated from steady state and non steady state 
modelling of 234Th fluxes, which were converted into POC 
fluxes, using the POC/234Th ratio of large, potentially sink­
ing particles (> 53 pm) collected via in situ pumps. Deficits 
in 234Th activities were observed at all stations from the 
surface to the bottom of the mixed layer, yielding 234Th ex­
port fluxes from the upper 100 m of 496 ±214 dpm m-2  d_1 
to 1195 ±  158dpmm_2d_1 for the steady state model and 
of 149 ±  517dpmm-2 d_1 to 1217 ±  231 dpmm -2  d_1 for 
the non steady state model. Using the POC/234Thp ratio of 
sinking particles (ratios varied from 1.7 ±  0.2 pmol dpm-1 
to 4.8 ±  1.9 pmol dpm-1 ) POC export production at 
100 m was calculated to range between 0.9 ± 0 .4  and
5.1 ±  2.1 mmolC m-2  d_1,assuming steady state and be­
tween 0.3 ±  0.9 m-2  d_1 and 4.9 ±  3.3 mmol C m-2  d-1 , 
assuming non steady state. From the comparison of both 
approaches, it appears that during late summer export de­
creased by 56 to 16 % for the area between the sub-Antarctic 
zone and the southern Antarctic Circumpolar Current Front 
(SACCF), whereas it remained rather constant over time in 
the HNLC area south of the SACCF. POC export represented

only 6 to 54 % of new production, indicating that export 
efficiency was, in general, low, except in the vicinity of the 
SACCF, where export represented 56 % of new production.

Attenuation of the POC sinking flux in the upper 
mesopelagic waters (100-600 m depth interval) was evi­
denced both, from excess 234Th activities and from par­
ticulate biogenic Ba (Baxs) accumulation. Excess 234Th 
activities, reflected by 234Th/238U ratios as large as 
1.21 ±  0.05, are attributed to remineralisation/disaggregation 
of 234Th-bearing particles. The accumulation of ex­
cess 234Th in the 100-600 m depth interval ranged 
from 458±633dpm m -2 d_1 to 3068± 897dpmm-2 d_1, 
assuming steady state. Using the POC/234Thp ratio 
of sinking particles (>53pm ), this 234Th accumula­
tion flux was converted into a POC remineralisation 
flux which ranged between 0.9 ±  1.2 mmol C m-2  d_1 and
9.2 ±  2.9 mmol C m-2  d_1. Mesopelagic particulate bio­
genic Ba has been reported to reflect bacterial degradation 
of organic matter and to be related to oxygen consump­
tion and bacterial carbon respiration. We observed that the 
highest Baxs contents (reaching up to > 1000 pM), in gen­
eral, occurred between 200 and 400 m. Depth-weighted av­
erage mesopelagic Baxs (meso-Baxs) values were converted 
into respired C fluxes, which ranged between 0.23 and
6.4 mmol C m-2  d_1, in good agreement with 234Th-based 
remineralisation fluxes. A major outcome from this study is 
the observed significant positive correlation between POC
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remineralisation as estimated from meso-Baxs contents and 
from 234Th excess (R2 = 0.73; excluding 2 outliers). Rem­
ineralisation of POC in the twilight zone was particularly ef­
ficient relative to POC export resulting in negligible bathy- 
pelagic (> 600 m) POC export fluxes in the sub-Antarctic 
zone, the Polar Front zone and the northern Weddell Gyre, 
while the subtropical zone as well as the vicinity of the 
SACCF had significant deep POC fluxes.

1 Introduction

The Southern Ocean (SO) is recognized for playing a cen­
tral role in the global regulation of atmospheric CO2, at 
time scales varying from intra-annual, decadal, and up to 
glacial/interglacial fluctuations (de Boer et al., 2010; Gruber 
et al., 2009; Sigman and Boyle, 2000; Takahashi et al., 2009). 
This results from its peculiar physical (low temperatures, 
occurrence of large upwelling and subduction areas) and 
biogeochemical properties since it represents a huge reser­
voir of unused macronutrients (e.g. Takahashi et al., 2009; 
Sarmiento et al., 2004). These properties impact the dis­
solved inorganic carbon (DIC) distribution (solubility pump) 
and the production of sinking particles by marine organisms 
(biological pump) (Takahashi et al., 2002). During the last 
two decades the SO has been intensively studied in order to 
better quantify spatial and temporal variabilities of the bio­
logical pump (Boyd and Trull, 2007; Boyd, 2002; Buesseler 
et al., 2001, 2003; Rutgers van der Loeff et al., 1997; Trull 
et al., 2001, 2008). Also, the sub-Antarctic zone where the 
biological pump dominates the seasonal carbon budget has 
recently attracted renewed attention (Bowie et al., 2011; Mc­
Neil and Tilbrook, 2009; Metzi et al., 1999).

Significant carbon export production based on 234Th activ­
ity, new production and seasonal nutrient budgets, has been 
reported, though SO primary production is relatively low 
(Buesseler et al., 2001, 2009; Coppola et al., 2005; Friedrich 
and Rutgers van der Loeff, 2002; Nelson et al., 2002; Pon- 
daven et al., 2000; Savoye et al., 2004b; Usbeck et al., 2002). 
High surface export production, which can account for up 
to 30-50% of the net primary production (NPP), could be 
partly related to seasonal blooms of diatoms (Rutgers van der 
Loeff et al., 1997, 2002). However, this C export is usually 
strongly attenuated at greater depth, as witnessed by obser­
vations of particulate biogenic barium accumulation (Cardi­
nal et al., 2005; Dehairs et al., 1997; Jacquet et al., 2008a) 
and excess 234Th activity (Savoye et al., 2004a; Usbeck et 
al., 2002) in mesopelagic waters. Despite these substantial 
progresses, the SO remains an oceanic region largely unre­
solved in terms of observations and experiments, and there­
fore, large discrepancies between model estimates persist 
(Gruber et al., 2009; McNeil et al., 2007). Better constraining 
the processes that favor long-term sequestration of carbon in 
the Austral Ocean still represents a major scientific issue.

Here, we report new estimates of late summer POC export 
flux for the Atlantic sector of the Southern Ocean, along a 
transect from the Cape Basin to the northern Weddell Gyre, 
as part of the Bonus-GoodHope (BGH) program during the 
International Polar Year, 2008. Our aims are to examine sur­
face POC export production and mesopelagic remineralisa­
tion, using water column distributions of total 234Th and bio­
genic particulate Ba (Baxs), and to deduce deep ocean C se­
questration fluxes. The observed trends are discussed for the 
different biogeochemical provinces crossed by the BGH sec­
tion between the subtropical zone and the northern branch of 
the Weddell Gyre.

The POC export fluxes were inferred from measurements 
of the short-lived radionuclide 234Th (t\ / 2 = 24.1 d), which 
is now recognized as a robust proxy of the short-term dy­
namics of biogenic particles (Cochran and Masqué, 2003; 
Waples et al., 2006). Naturally occurring 234Th is the de­
cay product of 238U, which is conservatively distributed in 
the open ocean, proportional to salinity (Chen et al., 1986; 
Owens et al., 2011; Pates and Muir, 2007). Unlike 238U, 
234Th has a strong affinity for particulate matter and its ac­
tivity distribution through the water column offers a means 
for quantifying export flux and aggregation/disaggregation 
of particles on regional and seasonal scales (Buesseler et al., 
1992). Fluxes of 234Th are combined with the measured ra­
tio of POC/234Th of sinking particles in order to quantify 
upper ocean and mesopelagic export of POC (Cochran and 
Masqué, 2003; Maiti et al., 2010; Savoye et al., 2004a). We 
also report mesopelagic carbon remineralisation fluxes es­
timated from excess Ba (Baxs; particulate Ba corrected for 
the lithogenic contribution). Baxs profiles in the open ocean 
are characterized by maximum concentrations in the upper 
mesopelagic (~ 150-500 m). This Baxs is mostly present un­
der the form of micro-crystralline barite (BaSCL) (Dehairs et 
al., 1980; Sternberg et al., 2008) and its formation is related 
to the decay of phytoplankton. Barite is precipitated in over­
saturated micro-environments, mostly aggregates of organic 
material where bacterial activity is intense (Ganeshram et al., 
2003). When micro-environments disintegrate and become 
remineralised in the mesopelagic zone, discrete barite crys­
tals are released and the Baxs content can be related to car­
bon remineralisation activity (van Beek et al., 2009; Jacquet 
et al., 2008a; 2011; Sternberg et al., 2008). The time scale 
involved in this process can represent a few days to a few 
weeks (Ganeshram et al., 2003; Cardinal et al., 2005; Jacquet 
et al., 2008b).

2 Materials and methods

2.1 Study area

The Bonus-GoodHope expedition (8 February-24 March, 
2008; R/V Marion Dufresnè) studied a section from the 
Cape Basin till the northern Weddell Gyre. Locations of the
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stations and position of major hydrographie fronts encoun­
tered are shown in Fig. 1. Starting from the subtropical do­
main, the cruise track crossed the southern Subtropical Front 
(S-STF), the sub-Antarctic Front (SAF), the Polar Front (PF), 
the southern Antarctic Circumpolar Current Front (SACCF), 
and finally the southern boundary of the ACC (Sbdy). Eleven 
stations were sampled for total 234Th activity. Among these, 
five stations were also sampled for particulate 234Th (SI to 
S5) in order to obtain POC/234Th ratios of sinking particulate 
matter. Eight stations were sampled for the Baxs proxy (SI to 
S5 and L3, L5 and L7).

2.2 Determination of total 234Th activity

Total 234Th activities were obtained from small volume (4 L) 
seawater samples collected from 12 L Niskin bottles. As de­
tailed in Supplement 1, the samples for ’’Super” stations 
(SI to S5) were taken at 19-20 depths between the sur­
face and 1000m depth. For Large stations L2 (41.18° S), L4 
(46.02° S) and L6 (50.38° S), samples were collected at 5, 9 
and 8 depths between surface and 300, 200 and 250 m depth, 
respectively. For large stations L3, L5 and L7, 15-17 sam­
ples were collected between the surface and 1000 m depth. 
For calibration purposes, we considered eight samples taken 
at 1000 m depth at stations SI, L2, L3, S3, L5, S4, L7 and S5. 
In addition, deep samples were taken at 1500 m and 4400 m 
depth at station L2, at 1500m depths at station S2 (dupli­
cates), at 2000 m and 4100 m at L3.

Seawater samples were processed for total 234Th activ­
ity measurement following the procedure developed by Pike 
et al. (2005). Briefly, samples were acidified (pH 2), spiked 
with 230Th yield tracer, and left for 12 hours equilibration 
before co-precipitation with Mn (pH 8.5). Samples were fil­
tered on high-purity quartz microfiber filters (QMA, Sarto­
rius: nominal pore size =  lpm ; 0  25 mm), dried overnight 
and mounted on nylon filter holders. On board samples were 
counted twice using a low level beta counter (RIS0, Den­
mark) . Beta counting was continued till counting uncertainty 
was below 2 % RSD (relative standard deviation). Residual 
beta activity was counted for each sample after a delay of six 
234Th half-lives (~ 6 months) and was subtracted from the 
gross counts recorded on-board.

For Th recovery, filters were dismounted and MnÜ2 pre­
cipitates dissolved in 10 mL 8M HNO3/IO 96 H2O2 solution 
and spiked with 229Th as a second yield tracer. Dissolved 
samples were sonicated for 1 h, heated overnight (60 °C), 
filtered using Acrodisc 0.2 pm syringe filters, and stored in 
clean 30 mL HDPE (high-density polyethylene) bottles, be­
fore analysis. Prior to analysis samples were diluted 10 to 
20 times using 1 0% nitric acid 1 0 % without any further 
purification. Determination of 230Th/229Th ratios was car­
ried out by HR-ICP-MS (high resolution-inductively coupled 
plasma-mass spectrometry) (Element2, Thermo Electron) 
with low mass resolution settings (M /AM  300) and hot 
plasma conditions (RF power: 1300W). Samples were intro­

duced in the plasma using a Peltier cooled (5 °C) cyclonic 
spray chamber fitted with a 400 pL min-1  glass micro nebu­
lizer. Mass calibration and sensitivity tuning were carried out 
daily. Preliminary tests performed with standard solutions, 
which had a matrix similar to those of the samples in terms 
of Mn levels, were spiked with 230Th and 229Th and digested 
using 8M HNÜ3/ 1 0 % H2O2, showed that ICP-MS perfor­
mances were unaffected by any matrix effect. Measurement 
uncertainty in terms of relative standard deviation (RSD) 
of the 230Th/229Th ratios ranged from 0.1 to 1.6% (n = 3 
replicates) with dilution factors of 5 to 20. Estimated repro­
ducibility of the method, evaluated with 9 standard solutions 
prepared separately and determined over different analytical 
sessions, was also particularly good and ranged from 0.5 to
1.3 %. The precision obtained with this simplified procedure 
meets the requirements defined by Pike et al. (2005), who 
emphasize the need to achieve 229Th/230Th ratio errors of 
< 2 % in order to reach accurate 234Th activities. Th recover­
ies were estimated for every sample processed (« =  175) and 
measurement precision as obtained from triplicate analyses 
were all below 2 % RSD. Average Th recovery was 87 ±  2 % 
(n = 175). Uncertainties on total 234Th activity are reported 
in Supplement 1 and represent on average 0.10 dpm L_1.

30°S

40° S

50°S

20°W  10°W  0° 10°E 20°E 30°E

Fig. 1. Station location along the Bonus-GoodHope section (black 
dots): red dots are sites sampled for 234Th during the ANTXXIV/3 
expedition (see text). Also shown are the different frontal zones 
crossed during the BGH cruise: the southern Subtropical Front 
(S-STF). the sub-Antarctic Front (SAF), the Polar Front (PF), the 
southern ACC Front (SACCF) and the southern boundary (Sbdy). 
Schützer, 2003: Ocean Data View: http://www.awi-bremerhaven. 
de/GEO/ODV.
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The parent 238 U activity was estimated with salinity mea­
surements using the relationship of Pates and Muir (2007): 
238U (dpm L_1) = (0.0713 ±  0.0012) x Salinity. Overall ac­
curacy of the method was evaluated from the deep water 
samples taken along the section between 1000 and 4400 m 
depth, and for which secular equilibrium between 234Th 
and 238U can reasonably be expected. Standard deviation 
of the mean 234Th/238U ratio obtained for deep waters was 
0.031 dpm L“ 1 (« =  14).

2.3 234Th flux and models

234Th flux was estimated from total 234Th and 238U activities 
using a one-box model. The one-box model accounts for to­
tal 234Th activity balance (Savoye et al., 2006), and changes 
over time can be described using the following equation:

dA-rii , .
— - = X ( A l ] - A Th) - P  (1)

di

Where X is the 234Th decay constant (0.0288d-1 ); Au and 
Ath represent total 238U and 234Th activities, respectively: P  
is the net loss of 234Th on sinking particles (i.e. vertical 234Th 
flux) expressed in dpmm -2  d_1. In this equation, advective 
and diffusive fluxes are neglected (Savoye et al., 2006) and 
the vertical flux of 234Th (P) can be estimated using the 
steady state (SS) approach. A first calculation was made us­
ing the SS assumption. Detailed equation can be found else­
where (Savoye et al., 2006).

High resolution profiles of 234Th activity in the upper 
1000 m allow the export flux to be estimated from the upper 
ocean (surface export) as well as from the mesopelagic zone 
at 600 m depth (mesopelagic export). Integration of 234Th ac­
tivity along the water column was performed using a mid­
point integration method. 234Th surface export flux was also 
estimated using the non steady state (NSS) model.

This was possible because another cruise (ANTXXIV/3, 
R/V Polarstern) preceded the BGH cruise by 14 to 22 days 
and followed exactly the same section (Zero Meridian, 
see Fig. 1). Sites with 234Th activities measured during 
the ANTXXIV/3 cruise matched with 6 out of the 11 
sites sampled during BGH (Rutgers van der Loeff et al., 
2011). ANTXXIV/3 results for these sites were consid­
ered initial 234Th activities for the NSS approach. Equa­
tion used for NSS export flux estimates can be found 
elsewhere (Savoye et al., 2006).

2.4 Measurements of particulate 234Th and POC

For particulate 234Th and POC, suspended particulate mat­
ter was collected at five stations (SI, S2, S3, S4 and S5) 
via in situ large-volume filtration (150-2000 L) systems 
(Challenger Oceanics and McLane WTS6-1-142LV pumps) 
equipped with 142 mm diameter filter holders. Two parti­
cle size classes (> 53 pm and 1-53 pm) were collected via 
sequential filtration through a 53 pm mesh nylon screen

(SEFAR-PETEX® ; polyester) and a 1 pm pore size quartz 
fiber filter (QMA, Pali Life). Because suspended particles 
were also intended for analysis of 14Cpoc and 210Pb/210Po 
and biomarkers by other participants, the filters were pre­
conditioned prior to sampling. The PETEX screens were 
soaked in HC1 5%, rinsed with Milli-Q grade water, dried 
at ambient temperature in a laminar flow hood and stored in 
clean plastic bags. QMA filters were precombusted at 450 °C 
during 4 h and filters were stored in clean plastic bags before 
use.

After collection, filters were subsampled for the different 
end-users using sterile scalpels, a custom-build inox steel 
support for 53 pm PETEX screens and a plexiglas punch 
of 25 mm diameter for QMA filters. For large size parti­
cles (> 53 pm), particles on the PETEX screen parts dedi­
cated to 234Th were re-suspended in filtered seawater in a 
laminar flow hood, and collected on 25 mm diameter silver 
filters (1.0pm porosity). Silver and QMA filters were dried 
overnight, and once mounted on nylon holders and covered 
with Mylar and aluminum foil, were ready for beta counting. 
As for total 234Th activity, particulate samples were counted 
twice on board until relative standard deviation was below 
2 %. Residual beta activity was measured in the home-based 
laboratory after six 234Th half-lives (~ 6 months).

Following beta counting, particulate samples (QMA and 
Ag filters) were processed for POC measurement by elemen­
tal analyser -  isotope ratio mass spectrometer (EA-IRMS). 
Size-fractionated samples were dismounted from filter hold­
ers and fumed under HC1 vapor during 4 h inside a glass des­
iccator, to remove the carbonate phase. After overnight dry­
ing at 50°C, samples were packed in silver cups and anal­
ysed with a Carlo Erba NA 2100 elemental analyser config­
ured for C analysis and coupled on-line via a Con-Flo III 
interface to a Thermo-Finnigan Delta V isotope ratio mass 
spectrometer. Acetanilide standard was used for C concentra­
tion calibration and C blanks were 0.98 pmol and 0.54 pmol 
for QMA and silver filters, respectively. Results obtained for 
bulk POC and two size-segregated POC fractions (> 53 pm 
and 1-53 pm) are reported in Table 1 along with particulate 
234Th activity measured on the same samples.

2.5 Baxs sampling and measurements

Nineteen to twenty depths were sampled in the upper 1000 m 
using the CTD rosette equipped with 12 L Niskin bottles. 
5-10 L of seawater was filtered onto 0.4 pm polycarbonate 
membranes (0 90 mm for surface samples and 47 mm for 
the other depths) using large volume Perspex filtration units 
under slight overpressure supplied by filtered air (0.4 pm). 
Membranes were rinsed with a few mL of Milli-Q grade wa­
ter to remove most of the sea salt, dried overnight in the oven 
at ~ 6 0 °C  and then stored in plastic Petri dishes. Filtration 
blanks were prepared on-board by filtering 5 L of Milli-Q 
water and applying the same conditions as for the samples.
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Table 1. 234Th export fluxes (dpm m-2  d- 1 ) along the BGH section as calculated using steady state and non steady state models. Uncertainty 
associated with 234Th flux is at 95 % confidence interval (2cr). STZ: subtropical zone; STF: Subtropical Front; SAZ: sub-Antarctic zone; 
SAF: sub-Antarctic Front; PFZ: polar frontal zone; PF: Polar Front; SACCF: southern Antarctic Circumpolar Current Front; AZ: Antarctic 
zone; WG: Weddell Gyre.

Station Lat Lon Zone Sam pling date

Steady State M odel Non Steady State M odel

234T h export flux 1st Visit (Cruise ANTXXIV/3) 234T h export flux

ML depth* 
(m)

at 100 m 
(d p m m - 2  d -1

at ML depth 
) (d p m m - 2  d - 1 )

Station Lat Lon Sam pling
date

Time
elapsed

(day)

at 100 m 
(dpm m - 2  d - 1 )

SI 36.5° S 13.1° E STZ 2/21/2008 50 9 2 6 ±  137 731 ± 1 1 1
L2 41.2° S 9.0° E STF 2/26/2008 25 496 ± 2 1 4 388 ±  78
S2 42.5° S 8.9° E SAZ 2/27/2008 65 9 8 6 ± 138 958 ± 1 0 6 101 42.2° S 8.9° E 2/13/2008 14.9 149 ±  517
L3 44.9° S 6.9° E SAF 3/1/2008 70 9 8 7 ± 107 1118 ± 107 102 44.4° S 7.0° E 2/15/2008 15.7 530 ± 2 5 3
L4 46.0° S 5.9° E PFZ 3/3/2008 80 871 ± 1 1 6 839 ± 1 1 1
S3 47.5° S 4.4° E PFZ 3/5/2008 90 1086 ± 1 1 1 1 0 8 6 ± 108 104 47.4° S 4.3° E 2/16/2008 18.7 447 ± 151
L5 49.0° S 2.8° E PFZ 3/7/2008 120 1160 ± 104 1521 ± 1 1 6
L6 50.4° S 1.3° E PF 3/9/2008 100 1195 ± 158 1195 ± 158
S4 51.9° S 0.0° E SACCF 3/11/2008 120 1 0 7 3 ±  124 1422 ± 1 4 1 108 51.3° S 0.0° E 2/19/2008 21.1 365 ± 1 5 5
L7 55.2° S 0.0° E AZ 3/14/2008 105 1 0 7 2 ±  175 1128 ±  175 118 54.3° S 0.0° E 2/21/2008 22.3 1217 ±  231
S5 57.6° S 0.0° E W G 3/16/2008 90 8 0 0 ± 130 800 ± 1 0 3 125 57.0° S 0.0° E 2/23/2008 22.8 757 ± 165

* M ix ed -lay e r d ep th  d e te rm in ed  fro m  the  v ertica l p ro file  o f  tem p era tu re  fo r  n earb y  CT D  and  taken  fro m  C hever et al. (2010).

Particles were digested with a tri-acid mixture 
(1.5mLHCl 30%, 1.0 mL HNO3 65% and 0.5 mL HF 
40 %, all Suprapur grade) in closed teflon beakers overnight 
at 90 °C. After evaporation close to dryness samples were 
redissolved into ~  13 mL of HNO3 2 %. The solutions were 
analysed by ICP-MS X Series 2 (Thermo) equipped with 
a collision cell technology (CCT). Ba, Na and AÍ contents 
were analysed simultaneously (with CCT for AÍ and without 
for Ba and Na). To check whether internal standards ("Ru, 
115In, 187Re, 209Bi) adequately corrected possible matrix 
effects, we analysed several certified materials which also 
served to construct calibration curves. These standards solu­
tions consisted of dilute acid-digested rocks (BHVO-l, GA, 
SGR-1), natural water (SLRS-4) and multi element artificial 
solutions. Based on analyses of these standards, precision, 
accuracy and reproducibility are better than ±  5 %. For more 
details on sample processing and analysis we refer to Cardi­
nal et al. (2001). Detection limit in solution was calculated 
as three times the standard deviation of the on-board blanks 
and reaches 20 and 0.5 ppb for AÍ and Ba, respectively. BGH 
samples are largely exceeding this detection limit for Ba and 
on-board filtration blanks represented only 2 ±  0.8 % of the 
average sample Ba content. For AÍ, 23 over a total of 160 
samples are below detection limit, but concentrations are 
most of the time vety close to the detection limit. Indeed, AÍ 
for on-board blanks represents 28 ±  14 % of average sample 
AÍ content. However, this did not significantly affect the 
obtained values for Baxs concentration and remineralisation 
flux, as discussed later.

Values of on-board prepared blanks were subtracted from 
sample values and excess Ba calculated by correcting total 
Ba for the lithogenic Ba contribution, using sample AÍ con­
tent and a Ba:Al crustal molar ratio of 0.00135 (Taylor et 
McLennan, 1985). Na was also analysed to correct any sea-

salt contribution to Baxs- Remnant sea-salt was found to have 
but a negligible effect on Baxs.

2.6 Carbon flux calculations from Baxs depth profiles

Remineralisation carbon fluxes can be estimated using a re­
lationship observed in ACC waters between meso-Baxs con­
tents and the rate of oxygen consumption deduced from a 
1-D advection diffusion model (Dehairs et al., 1997, 2008; 
Shopova et al., 1995):

Jo2 = (mesoBaxs -  BareSiduai)/17 450, (2)

where Jq2 is the O2 consumption (pmolL-1  d-1 ), meso­
Baxs is the observed depth-weighted average Baxs value in 
the upper mesopelagic waters (125 to 600 m depth interval) 
and BareSidual is the residual Baxs signal at zero oxygen con­
sumption. For the BaSCL saturated water column of the ACC 
this residual Baxs was estimated to reach 180 pM (Monnin 
and Cividini, 2006; Monnin et al., 1999). Such a value is ex­
pected also to prevail in deep waters (> 600 m) where rem­
ineralisation is minimal compared to the upper mesopelagic. 
In the present study deep ocean Baxs values (800-1000 m) 
are generally close to 200 pM. This also holds for the deep 
SAZ and the STZ waters (stations SI, S2 and L3), known to 
be undersaturated for BaSCL (Monnin and Cividini, 2006; 
Monnin et al., 1999) and which therefore are expected to 
have smaller residual Baxs contents. Since that is not ob­
served here, we choose to apply a single value of 180 pM 
for BareSi,juai at all stations.

Calculated Jo2 was then converted into carbon respired 
(C respired) by:

C|(‘sp¡K‘(l Z X  Jq2 X  RR. (3)

Crespired is the organic carbon remineralisation rate (in 
mmol C m-2  d_1), Z is the thickness of the mesopelagic
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Fig. 2. Vertical distribution of 234Th/238U ratios and biogenic par­
ticulate Ba (Baxs; pM) between surface and 1000 m depth along the 
BGH section. Hatched and dotted areas stand for 234Th excess rel­
ative to 238U and biogenic particulate Ba (Baxs), respectively.

layer considered (i.e. 600-125 =  475 m), and RR is the Red- 
field C:02 molar ratio (125 : 175).

3 Results

3.1 234Th/238U ratio profiles

The full data set, including activities of total 234Th and 
238U, and corresponding 234Th/238U ratios can be found 
in Supplement 1. Figure 2 shows depth profiles of total 
234Th/238U ratios in the upper 1000 m. The latitudinal section 
of 234Th/238U ratios is shown in Fig. 3a. From the Cape Basin 
to the northern Weddell Sea the surface waters appear clearly 
depleted in total 234Th relative to its parent nuclide 238U. 
Lowest 234Th/238U ratios (average 0.77 ±0.04, n = 11) are 
found between the subtropical domain (station SI, 36.5° S) 
and the northern PFZ (station L3, 44.9° S). Southward in the 
PFZ, surface 234Th deficits show a decrease with a mean

Baxs pM

2 00

PF SACCF

Fig. 3. Latitudinal section of (a) total 234Th/238U activity ratios 
and (b) biogenic particulate Ba (Baxs) in the upper 1000 m. Major 
frontal systems are indicated by vertical lines. The red dotted line 
indicates the mixed—layer depth (MLD). Schlitzer, 2003; Ocean 
Data View; http://www.awi-bremerhaven.de/GEO/ODV.

234Th/238U ratio of 0.84 ±  0.04 (n =  23) and stay relatively 
unchanged until the northern Weddell Gyre (N-WG, station 
S5, 57.5° S). This trend goes along with substantial deepen­
ing of the MLD which reaches 120 m at station L5 (49.0° S) 
(Table 1).

Below the export layer 234Th activity increases with depth 
and approaches equilibrium with 238U at the bottom of the 
ML. At station SI, in the subtropical domain, it is observed 
that after reaching equilibrium at the base of the ML (50 m 
depth) 234Th/238U ratio decreases again between 80 and 
100 m depth (Fig. 2). A depletion of 234Th indicates loss of 
234Th via particle scavenging and suggests a surface origin 
for this 30 m thick, less saline (salinity =  34.9), subsurface 
water tongue. This may be related to the peculiar hydrogra­
phy of this zone where cyclonic eddies can contribute to the 
subduction of surface waters of westward origin (Chever et 
al., 2010; Gladyshev et al., 2008). Deep total 234Th activi­
ties in the subtropical zone (SI and L2) are close to secular 
equilibrium with 238U. However, substantial deep 234Th ex­
cess is observed in the PFZ at 44.9° S (station L3), at 46.0° S 
(station L4) and at 47.5° S (station S3), and also to some 
extent at 42.5° S in the SAZ (station S2). 234Th/238U ac­
tivity ratios largely > 1.1 clearly indicate substantial accu­
mulation of 234Th (i.e. excess 234Th relative to 238U) in the 
mesopelagic zone, which can be attributed to particle rem­
ineralisation and/or disaggregation (Buesseler et al., 2008; 
Maiti et al., 2010; Savoye et al., 2004a). Between the PF at 
50.4° S (station L6) and the Sbdy at 55.2° S (station L7) deep

234Th/238U 
L3 L4 S3 L5 L6 S4
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234Th activity returns to secular equilibrium. However, fur­
ther south, in the northern part of the Weddell Gyre at 57.6° S 
(station S5) we again observe layers of excess 234Th activity 
(just below the ML and at 250 m depth: see Fig. 2).

3.2 Export flux of 234Th

3.2.1 Surface export flux

The fluxes of 234Th out of the surface layer (upper 100 m 
and at MLD) were calculated using steady state (SS) and non 
steady state (NSS) models (Table 1 and Fig. 4a). The steady 
state model calculations reveal that 234Th export at 100 m 
varies from 565dpmm- 2 d-1 at 41.2° S (station L2, STZ) 
to 1195 dpmm -2  d-1  at 50.4° S (station L6 , PF). When in­
tegrating the 234Th flux over the depth of the ML, the SS 
export flux of 234Th ranges from 388 to 1521 dpmm -2  d-1 
and compares relatively well with the fluxes at 100 m. Dif­
ferences arise for the stations located between 48° S and 
55.2° S (PFZ to SACCF) where an important thickening of 
the ML (> 100 m) is observed. At stations L5 (49.0° S) and 
S4 (51.9° S) the SS234Th export flux from the upper 100 m 
is about 30% smaller than the flux from the ML. The SS 
export flux exhibits a latitudinal gradient which follows the 
structure of the upper ML (Fig. 4a). The smallest SS fluxes 
are observed in the STZ (stations SI and L2), and also south 
of the ACC in the northern branch of the Weddell Gyre (sta­
tion S5) where the ML is relatively shallow. 234Th export is 
highest within the ACC, especially in its southern part be­
tween the PFZ to the AZ (stations S3 to L7) where the upper 
ML extends quite deep (80 to 120 m).

We also applied a non steady state (NSS) model to evalu­
ate the 234Th export flux by making use of total 234Th activ­
ity data that were obtained during cruise ANTXXIV/3, (R/V 
Polarstern), also along the Greenwich Meridian and which 
preceded the BHG cruise by 2 to 3 weeks (Rutgers van der 
Loeff et al., 2011). NSS 234Th fluxes from the upper 100m 
(Fig. 4a) range from 149 dpmm -2  d-1  at 41.2° S (station S2, 
STZ) to 1217 dpm m-2  d-1  at 55.2° S (station L7, AZ) and 
differ from the SS export fluxes (Table 2 and Fig. 4a). From 
the SAZ to the SACCF, the NSS 234Th flux is significantly 
lower than the SS flux and represents only between 15% 
(station S2, 42.5° S) and 54% (station L3, 44.9° S) of the 
latter. Such a difference indicates that surface export produc­
tion was not at steady state over the time period separating 
the site occupations (15 to 21 days), which may be due to 
variable total 234Th activity. In this case, lower NSS fluxes 
support an increase of the total 234Th activity in the surface 
ML due to larger contribution of 234Th in-growth from 238U. 
To the south, at 55.2° S (stations L7, AZ) and at 57.6° S (sta­
tion S5, WG), the situation is different and the 234Th fluxes 
evaluated using SS or NSS models show excellent agreement 
suggesting that surface 234Th export has remained relatively 
constant over the period separating the two cruises.

a)
2000 —♦ —at 100m, SS model

at MLD, SS model

■ at 100m, NSS model1500 100 Ü

1000

500

0
STZ STF SAZ SAF PFZ PFZ PFZ PF SACCF AZ
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Fig. 4. (a) 234 Th export (dpm m 2 d 4 ) at 100 m (black diamonds) 
and at the base of the mixed layer (grey diamonds), calculated us­
ing the steady state model: black squares indicate 234Th export at 
100 m calculated using the non steady state model: (thick black 
line =  bottom of the mixed layer), (b) 234Th fluxes (dpmm- 2 d- 4 ) 
at 100 m: between 100 and 600 m and at 600 m calculated using the 
steady state model.

3.2.2 Mesopelagic 234Th fluxes

Export fluxes of 234Th at 600 m (called mesopelagic ex­
port flux here) are estimated for 8 stations for which up­
per 1000 m profiles of total 234Th activities are available. 
These deep 234Th fluxes were calculated using the SS model 
since no initial 234Th values are available for the mesopelagic 
zone, and are reported as negative values in Fig. 4b. Neg­
ative fluxes of 234Th (i.e., 234Th excess over 238U) for 
the 100-600 m depth interval correspond to a net accu­
mulation of 234Th and probably reflect the remineralisa­
tion or disaggregation of 234Th-bearing particles within the 
mesopelagic layer. As illustrated in Fig. 4b the mesopelagic 
accumulation of 234Th varies largely with latitude, ranging 
from 458±  633 dpm m-2  d-1  at 36.5° S (station SI, STZ) 
to 3068 ± 8 9 7 dpmm-2 d-1  at 47.5° S (station S3, PFZ). 
It is strongest in the PFZ and the SAZ (1368 ±  759 to 
3068±  897 dpmm -2  d-1 ) and largely exceeds SS 234Th ex­
port from the upper 100 m resulting in negative total export 
fluxes from the upper 600 m. Smaller 234Th accumulation 
rates (554 ±705 to 921 ±  756 dpmm -2  d-1 ) are observed 
in the southern part of the BGH section. South of the PF, 
between 51.9° S (S4: SACCF) and 57.6° S (S5: WG), the
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Table 2. Summary of the power law parameters for the vertical POC and particulate 234Th activity profiles for > 53 pm particles at Super 
stations SI to S5. The used fitting function is y = a Z '0, where y =PO C concentrations in pmolL-1 and 234Thp activity in dpm L~b and 
Z =  depth. Also listed are fitted values of POC concentration and 234Thp activity at 100 m for > 53 pm particles and estimated POC/234Thp 
ratio (pmoldpm- 1 ). These are compared with POC/234Thp ratios obtained from averaging approach (see text for details).

Station Zone depth range 234 Thp POC Fitted234 Thp Fitted POC POC/234 Thp

(m) a b r 2 a b r 2 (at 100 m) (at 100 m) Fitted 
(at 100 m)

Averaged 
(100-300 m)

S i STZ 50-2750 0.32 0.66 0.834 1.93 0.88 0.868 0.015 0.034 2.2 1.9 ± 0 .2
S2 SAZ 30-1460 5.23 1.10 0.878 8.03 1.04 0.833 0.033 0.067 2.0 1.7 ± 0 .2
S3 PFZ 20-2040 0.90 0.81 0.869 1.95 0.77 0.835 0.021 0.056 2.6 3.0 ± 0 .2
S4 SACCF 80-2468 2.99 1.08 0.927 28.71 1.19 0.909 0.021 0.120 5.8 4.8 ± 1 .9
S5 WG 50-3894 3.75 1.08 0.775 27.56 1.19 0.824 0.026 0.115 4.4 4.1 ± 1 .7

mesopelagic accumulation of excess 234Th is of similar mag­
nitude, or smaller than the SS surface 234Th export flux, but it 
consistently decreases (S4, SACCF, and L7, AZ) or balances 
(S5) the total export flux of 234Th at 600 m.

3.3 Particulate 234Th and POC

Particulate 234Th activities (234Thp) and POC concentrations 
for total suspended material (SPM) and for the two particle 
size classes (>53 pm and 1-53 pm) at Super stations can be 
found in Supplement 2. High POC concentrations and 234Thp 
activities are observed in the upper mixed layer but decrease 
rapidly in the subsurface waters and remain essentially con­
stant below 200 m. Surface POC and 234Thp activity of to­
tal SPM range from 0.46 to 3.60 (pmol L-1 ) and from 0.28 
to 0.99 (dpmL-1), respectively. Highest total POC concen­
trations and 234Thp activities are observed in the SAZ (S2; 
42.5° S) and in the PFZ (S3; 47.5° S). Lowest total POC and 
234Thp values are encountered in the surface waters of the 
STZ (SI; 36.5° S) and the northern WG (S5; 57.6° S). From 
STZ (SI) to SACCF (S4), the 1-53 pm size fraction repre­
sents between 85 to 93 % of total POC and from 84 to 96 % 
of total 234Thp. This situation changes south of the Sbdy (S5, 
57.6° S) where 26 % of total POC and 37 % of total 234Thp 
activity appears associated with large (> 53 pm) particles.

3.4 POC to 234Th ratios on particles

Profiles of POC/234Thp ratios for the two particle size- 
fractions are plotted in Fig. 5. Measured POC/234Thp ra­
tios vaty from 0.7 to 6.8 pmol dpm-1  and from 0.8 to
16.3 pmol dpm-1  in small (1-53 pm) and large (>53 pm) 
particles, respectively. For most stations the mixed layer 
POC/234Th ratios of the particles sizing 1-53 pm are larger 
(S2, S3, S5) or similar (SI) compared with those for large 
(>53pm) particles. This is not the case at S4 (51.9° S; 
SACCF) where surface POC/234Thp ratios for > 53 pm par­
ticles are about twice as large as for the 1-53 pm particles. 
Below the upper ML, POC/234Thp ratios of small (1-53 pm) 
particles in all cases decrease with depth to reach relatively

constant values in the mesopelagic zone. For large (> 53 pm) 
particles, POC/234Thp ratios are much more variable (Fig. 5), 
decreasing at SI and S4 but remaining unchanged at S3 and 
increasing at S2. At S3 between 400 and 500 m the very large 
values (14.1 to 16.3 pmol dpm-1) for the > 53 pm particles 
are likely due to Zooplankton collected on the filter (revealed 
from visual inspection). Zooplankton should have been re­
moved prior to 234Th and POC analysis since they are not 
part of the sinking particle flux.

For estimating POC export fluxes, the POC/234Thp ra­
tio of sinking particles at the export depth has to be deter­
mined (Buesseler et al., 1992). As recommended by Bues­
seler et al. (2006), we consider that the POC/234Thp ratios 
of large (>53 pm) particles are representative of sinking 
material leaving the upper ML. We considered the average 
POC/234Thp ratio between the basis of the ML and 300 m. 
POC/234Thp ratios are smallest in the STZ and the SAZ and 
gradually increase southward from SAF to N-WG (Fig. 6). 
A southward increase of sinking particle POC/234Thp ratios 
was also observed for particles sizing > 70 pm in the Pacific 
sector between the SAZ and the Ross Sea (Buesseler et al.,
2001), as well as across Drake Passage for > 50 pm particles 
(Rutgers van der Loeff et al., 2011). To check the robustness 
of our averaging approach for evaluating POC/234Th ratios 
of sinking particles we also fitted power law functions (Mar­
tin et al., 1987) to the vertical profiles of POC and 234Thp 
of the > 53 pm particle size fraction (Table 2) as also done 
by Jacquet et al. (2011). The vertical profiles of POC and 
234Thp fit rather well to a power law function (R2ranging 
from 0.83 to 0.92 for both > 0.53 pm POC and 234Thp). Fit­
ted values for POC and 234Thp at 100 m depth are then used 
to deduce the POC/234Thp ratio at 100m (Table 2). Fitted 
POC/234Th ratios at 100 m are very similar to the averages 
of POC/234Thp ratios of between ML and 300 m (Fig. 6 and 
Table 2).

Overall, our POC/234Thp ratios of sinking particles (Fig. 6) 
are of similar magnitude as those reported by others 
for the ACC, but regional differences exist. For instance, 
POC/234Thp ratios of > 53 pm particles in the PFZ (S3)
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Fig. 5. Vertical profiles of POC/234Thp ratio (pmol dpm 1 ) for the 
1-53 pm and > 53 pm size fractions at Super stations SI to S5. ISP 
refers to In Situ Pump sampling.

Fig. 6. Comparison of the POC/234Thp ratio (pmol dpm-1  ) of sink­
ing particles (> 53 pm) at the five Super stations (SI to S5) calcu­
lated using (i) average values of POC/234Thp ratios between MLD 
and 300 m depth, and (ii) separate power law fits of the POC and 
234Thp profiles (see text for details). Also shown are POC/234Thp 
ratios (pmol dpm- 1 ) reported for the ANTXXIV/3 cruise (Rutgers 
van der Loeff et ah. 2011); the AESOPS cruise in the SW Pacific 
sector (Buesseler et ah. 2001) and the ANTARES IV cruise in the 
Indian sector (Coppola et ah. 2005).

We could not deploy large volume in situ pumps at all “L” 
stations. For L stations where no pumps were deployed and 
which were located close to a biogeochemical boundary (L2- 
STF, L3-SAF, L6-PF, and L7-Sbdy), POC/234Thp ratios were 
calculated by averaging the POC/234Thp ratios measured in 
adjacent northern and southern zones (Table 3). For stations 
L4 and L5, located in the PFZ, we used the POC/234Thp ratio 
obtained for S3 in the PFZ to calculate the POC flux.

3.5 234 Th-derived carbon flux

and the WG (S5) are 1.5 to 1.8 times larger than those re­
ported for the same locations 18 to 22 days earlier (Rutgers 
van der Loeff et al., 2011). Our range of POC/234Thp ratios 
for the >53 pm fraction (1.7 ±  0.2 to 4.8 ±  1.9 pmol dpm-1 ) 
is larger than the one reported by Coppola et al. (2005) 
for the Indian sector of the ACC (0.8-1.4pmoldpm-1 ), 
but smaller than the range observed during bloom condi­
tions, in natural iron-fertilized settings, close to Crozet Is­
land (5.5-10.8 pmol dpm-1 ; Morris et al., 2007) and Ker­
guelen Island (5.9-11 pmol dpm-1 ; Savoye et al., 2008). 
Our POC/234Thp ratios for >53pm  particles in the SAZ 
(1.74 ±  0.21 pmol dpm-1 ) are similar to values reported by 
Jacquet et al. (2011) for the eastern SAZ south of Tasma­
nia (2.06 ±  0.30 pmol dpm-1  at 100 m), but smaller than for 
the western SAZ (3.93 ±  0.77 pmol dpm-1  at 100 m). For the 
PFZ our POC/234Thp ratios (3.01 ±0.21 pmol dpm-1 ) are 
smaller than the one reported by Jacquet et al. (2011) for the 
PFZ south of Tasmania (5.13 ±  0.83 pmol dpm-1  at 100 m).

3.5.1 Surface export production

The carbon export fluxes at 100 m (EPioo) and at the MLD 
(EPm l) were estimated by multiplying the NSS or SS ex­
port fluxes of 234Th (P2 3 4TI1. ) at 100 m and at MLD with 
the POC/234Thp ratio of sinking particles. Overall, EP100 
ranges from 0.9 ±0 .4  to 5.1 ±  2.1 mmol m-2  d-1  and from 
0.3 ± 0 .9  to 4.9 ±  3.3 mmol m-2  d-1  based on the SS and 
NSS model, respectively (Fig. 7a; Table 3). The SS EP100 
increases progressively from north to south. It remains low 
in the STZ and the SAZ but increases gradually from the 
PFZ to the N-WG. NSS EP100 fluxes integrating the 15 to 
22 day period preceding the BGH cruise, also exhibit a lati­
tudinal gradient but the variability is larger compared to the 
SS approach (Fig. 7a). The highest NSS EP100 fluxes are ob­
served in the AZ, south of the ACC and in the WG with val­
ues now in close agreement with SS estimates. Within the 
ACC, from the SAZ to the SACCF, NSS EP100 fluxes range 
from 0.3 ±  0.9 to 1.7 ±  1.0 mmol m-2  d-1  and represent only 
15 to 53 % of the SS export flux.
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Table 3. POC export production at 100 m (EPioo) ín mmolm2 d-1 along the BGH section, as based on steady state (SS) and non steady 
state (NSS) models.

Station Lat Zone POC/234Th C flux at 100 m
(pmoldpm- 1 ) (mmolm-2  d- 1 )

° S SS model NSS model

SI 36.5 STZ 1.9 ±  0.2 1.8 ±  0.3
L2 41.2 STF 1.8 ±  0.3a 0.9 ±0.4
S2 42.5 SAZ 1.7 ±  0.2 1.7 ±  0.3 0.3 ±0.9
L3 44.9 SAF 2.4 ±  0.7b 2.3 ±0.7 1.3 ±  0.7
L4 46.0 PFZ - 2.6 ±  0.4e
S3 47.5 PFZ 3.0 ±0.2 3.3 ±0.4 1.3 ±  0.5
L5 49.0 PFZ - 3.5 ±  0.4e
L6 50.4 PF 3.9 ±  2.Ie 4.7 ±2.6
S4 51.9 SACCF 4.8 ±1.9 5.1 ±2.1 1.7 ±1.0
L7 55.2 AZ 4.0 ±  2.6d 4.3 ±2.8 4.9 ±3.3
S5 57.6 WG 4.1 ±1.7 3.3 ±1.5 3.1 ±1.5

a M ean  o f  S T Z  (S I) and SA Z  (S2) values; ^ m ean  o f  S A Z  (S2) and  P F Z  (S3) va lu es; c m ean  o f 
P F Z  (S3) and SA C C F  (S4) values; ( m ean  o f  SA C C F (S4) and  W G  (S5) values; e ca lcu lated  
u s in g  P F Z  (S3) P O C /T h  ratio .

Table 4. Remineralisation fluxes in mesopelagic waters, based on BaXs contents and Eq. (2). Also listed are mesopelagic layer thickness, 
depth-weighted average mesopelagic Baxs contents; calculated average O2 consumption rates (gmolF- 1 ) and column integrated respired C 
in mmol C m -2  d - 1 .

Station Fat Zone Cast

#

Mesopelagic layer meso-Ba®s o2
consumption 
rate J(O2 )

C respiration 
rate 

(respired Cb)

upper depth lower depth 
m m

thickness
m

pmol F -1 pmol
F- 1 d-1

mmol C 
m-2  d-1

SI 36.5° S STZ 23 125 600 475 168 -0.0010 -0 .23
S2 42.5° S SAZ 24 125 600 475 284 0.0040 2.09
F3 44.9° S SAF 44 123 600 477 497 0.0175 6.39
S3 47.5° S PFZ 66 124 600 476 305 0.0075 2.50
F5 49.0° S PFZ 72 125 600 475 388 0.0041 4.16
S4 51.9° S SACCF 87 120 600 480 235 0.0049 1.11
F7 55.2° S AZ 99 125 600 475 277 0.0049 1.95
S5 57.6° S WG 110 123 600 477 271 0.0014 1.83

a M eso -B ax s refers to  the  dep th  w e ig h ted  average  o f  B axs co n ten t fo r the  co n sid ered  dep th  in terval; ^ R esp ired  C is es tim ated  from  Eq. (2) (D ehairs et al., 1997).

Overall, the magnitude of the POC export flux from 100 m 
compares well with values obtained for the same transect a 
few weeks earlier (Rutgers van der Loeff et al., 2011). The 
best agreement is found when fluxes based on POC/234Thp 
ratios for similar size fractions (> 53 pm) are compared (see 
PFZ, SACCF and WG locations in Fig. 7a). The matching 
between POC export fluxes based on total SPM POC/234Th 
ratios (see SAZ, PFZ, SACCF, AZ and WG in Fig. 7a) is less 
clear though the latitudinal trend is similar. This discrepancy, 
apparently, mainly results from the fact that POC/234Thp ra­
tios for total SPM in the Rutgers van der Loeff et al. (2011) 
study exceed their ratios for large particles (> 53 pm) by a 
factor 1.4 to 1.9.

3.5.2 Mesopelagic carbon export flux

In order to estimate the POC flux attenuation between 100 
600 m depth, we multiplied the accumulation fluxes of ex­
cess 234Th in mesopelagic waters (steady state assumed) 
with the POC/234Thp ratios of sinking particles. Atten­
uation of the POC flux is plotted as negative flux val­
ues in Fig. 7b. These range from 0.9 ±  1.2 mmol m-2  d-1 
(SI, STZ) to 9.2 ±  2.9 mmolm -2  d-1  (S3, PFZ) and vary 
quite widely with latitude. Mesopelagic attenuation is low­
est in the STZ, increases to 2.5 ±  0.9 mmol m-2  d-1  to 
2.8 ± 2 .2  mmolm- 2 d-1  in the SAZ and reaches its maxi­
mum value in the central PFZ at 47.5° S (S3). Southward, 
values decrease progressively to 4.1 ±  2.3 mmolm -2  d-1  in
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Fig. 7. (a) 100 m-POC export fluxes (mmol m d ) estimated us­
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for the ANTXXIV cruise (Rutgers van der Loeff et ah. 2011). (b) 
Comparison of the POC export flux from the upper 100 m; the POC 
flux between 100-600m (deduced from the 234Th excess activity), 
and the total integrated POC export from the upper 600 m depth 
using the SS model.

the southern PFZ, to 2.6 ±  3.6 mmol m-2  d-1  at the SACCF, 
and to 3.8 ±  3.5 mmol m-2  d-1  in the northern WG.

This attenuation of the POC flux in mesopelagic waters 
leads to a significant decrease of the export from the upper 
600 m (EPßoo)- As illustrated in Fig. 7b, EPßoo remains pos­
itive only for stations SI (STZ), S4 (southern ACC) and L7 
(AZ), where it represents between 20 % (L7) and ~  50 % (SI 
and S4) of EPjoo- At stations S2 (SAZ; 42.5° S), L3 (SAF; 
44.9° S), L5 (PFZ; 49.0° S) and S5 (WG; 57.6° S), surface 
export and mesopelagic attenuation of POC can be consid­
ered in balance within analytical uncertainties, thus indicat­
ing no deep POC export there. Fiowever, at S3 (PFZ; 47.5° S) 
mesopelagic attenuation significantly exceeds surface POC 
export (2.8 times). Such imbalance suggests that the SS as­
sumption can be invalid for modelling 234Th activity. Since at 
S3 NSS POC export is < SS POC export, the excess of EPßoo 
relative to EPioo would be even larger (Fig. 7a). A discrep­
ancy between surface export and subsurface remineralisation 
is also reported by Savoye et al. (2004a) for the AZ and in 
the seasonal ice zone (SIZ) of the Australian sector. A possi­
ble explanation for such imbalance may be the decoupling of 
surface and mesopelagic processes due, for instance, to lat­

eral advection of surface waters. The strong eastward surface 
current in the central ACC may have advected surface waters 
with lower 234Th deficit and lower particle export relative to 
the signal captured at mesopelagic depth.

3.6 Baxs profiles

While surface waters are depleted in Baxs, concentrations 
start to increase at the base of the MLD where the density 
gradient gets steeper (Figs. 2 and 3b, the full dataset can be 
found in Supplement 3). In the STZ and SAZ, the subsurface 
buildup of Baxs starts at about 50 m but this depth progres­
sively increases in the ACC (~100 m) to shoal again slightly 
southward. This is consistent with previous observations and 
supports the view that aggregates formed at the basis of the 
mixed layer are loci where barite precipitates (Cardinal et al.,
2005). The Baxs contents are usually maximal in the 200- 
400 m layer but high values exceeding 300 pM can be found 
down to 600-800 m (L3, SAF; L5, PFZ; S5, WG). The high­
est value for the whole transect is reached at station L3 (SAF) 
at 250 m (> 1000 pM). Such high values have already been 
reported on the SAF and SAZ (Jacquet et al., 2005). This 
Baxs maximum is surrounded by values which remain high 
(> 400 pM) over the 125-475 m depth range.

Baxs contents are the lowest for the northernmost (STZ- 
SAZ) and the southernmost (SACCF-AZ-WG) parts of the 
BGH section. This spatial variability is also clearly expressed 
in the depth weighted average mesopelagic Baxs (meso-Baxs) 
contents (125-600 m; Table 4). Meso-Baxs is minimal at SI 
(STZ; 168 pM) and maximal at L3 (SAF; 497 pM). The two 
PFZ stations have meso-Baxs contents exceeding 300 pM 
while all other stations have moderate meso-Baxs contents 
(235-277pM). Such a trend with maximum meso-Baxs val­
ues around the PFZ and lower values northward and south­
ward has been observed earlier (Cardinal et al., 2005; Jacquet 
et al., 2011).

4 Discussion 

4.1 From 234Th activity to POC export fluxes

4.1.1 Neglecting the physics

We have assumed when applying the SS and NSS models 
that supply and loss of 234Th via physical transport was neg­
ligible relative to production and decay of 234Th and loss via 
settling particles. This assumption is often justified in open 
ocean settings because of minimal advection and diffusion 
and small gradients in 234Th activities (Savoye et al., 2006). 
As the oceanic domain south of South Africa is a region of 
intense mesoscale activity (Arhan et al, 2011), horizontal ad­
vection and diffusion may be significant there. Gladyshev 
et al. (2008) and Chever et al. (2010) indeed report the oc­
currence of eddies detached from the Agulhas retroflection, 
adverting and subducting colder surface waters of westward
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origin. In case such waters would advect a larger 234Th 
deficit, the observed 234Th deficit between 80 and 100 m 
depth at STZ station SI, if taken to be of genuine local ori­
gin, would result in an overestimation of the true 234Th and 
POC fluxes. Therefore the flux values for site SI need to 
be considered with caution. The Antarctic Zone is a region 
of net upwelling where vertical advection and diffusion sup­
ply deep waters, with their 234Th in secular equilibrium with 
238U, to the surface. With an entrainment rate of the order 
of 50 m yr-1  (Rutgers van der Loeff et al., 2011), the 234Th 
deficit in a 100 m SML is flushed once every two years, yield­
ing a ventilation rate that is an order of magnitude smaller 
than the 234Th ingrowth rate of 10.5 yr-1  (Rutgers van der 
Loeff et al., 2011). Therefore, such upwelling can reasonably 
be neglected when modelling the 234Th activity balance.

4.1.2 Steady state vs. non steady state surface export 
production

POC flux estimates based on SS and NSS models (Fig. 7a) 
may differ, depending on the considered biogeochemical 
province. From the SAZ to the SACCF the POC flux based 
on the NSS model is smaller than the SS fluxes, represent­
ing only between 17 % (42.5° S, station S2) to 56 % (44.9° S, 
station L3) of the latter. Based on the results of a high reso­
lution model, Resplandy et al. (2012) conclude that the NSS 
approach can be biased in case spatial variability is misin­
terpreted as temporal variability. Flux results for high ki­
netic areas, in particular, would be prone to such bias. The 
question thus rises whether this mismatch between SS and 
NSS fluxes possibly results from the fact that different wa­
ter masses were sampled during the two cruises. A careful 
comparison of sea surface height patterns (from altimetry) 
between the BGH and the ANTXXIV/3 cruises, however, re­
vealed no significant change in eddy patterns for the partic­
ularly kinetic northern part of the studied area, over the time 
span of two weeks separating the 2 cruises (S. Speich, per­
sonal communication, 2012). This observation taken together 
with the fact that T-S diagrams for the station pairs consid­
ered in the NSS approach are similar, warrants the outcome 
of our NSS flux calculations.

Higher EPioo values obtained with the SS model 
(1.7 ±  0.3 to 3.9 ±2.1 mmol m-  d-1 ) may indicate that a sig­
nificant fraction of the export occurred earlier in the growth 
season. This finding is supported further by the 234Th export 
fluxes (at 100 m) from the ANTXXIV cruise (Rutgers van 
der Loeff et al., 2011). In the latter study, 100 m 234Th ex­
port fluxes between 42° S and 53° S range from 1006 ±  94 to 
1670 ±  103 dpmm-  d-1 , and are similar (42.5° S, S2) or as 
much as 69 % higher (44.9° S, L3) than our estimates. This 
may be related to the diatom spring bloom (December) re­
vealed by monthly means of remotely sensed Chi a distri­
bution between 42° S to 50° S (Rutgers van der Loeff et al., 
2011), in line with the silicate drawdown observed in the PFZ 
(Le Moigne et al, 2013).

For the southernmost stations L7 and S5, NSS and SS 
EPioo closely agree (NSS EPioo/SS EPioo =  1-14 and 
0.95 at L7 and S5, respectively) suggesting that POC 
export did occur under close to steady state condi­
tions. This is confirmed by the good agreement be­
tween our SS 234Th fluxes (1072 ±  175 dpm m-2  d-1 
at 55.2° S, L7 and 800±  130dpmm-2 d-1  at 57.6° S, 
S5, WG) and the fluxes reported for the same sites 
22 days earlier (1058 ±  97 dpm m-2  d-1  at 54.3° S and 
848 ±106 dpm m-2  d-1  at 57.0° S; Rutgers van der Loeff et 
al., 2011). This condition of significant phytoplankton pro­
duction sustaining carbon export during late summer is cor­
roborated by the observations of relatively high new produc­
tion in the AZ and WG areas (Joubert et al., 2011). Sig­
nificant phytoplankton activity also fits with a rapid draw­
down of surface dissolved Fe (DFe) over 21 days, with DFe 
decreasing from 0.33 nM at 55.0° S and 0.34 nM at 56.0° S 
(ANTXXIV cruise: Klunder et al., 2011) to <0.1nM  at 
55.2° S (L7) and 0.14 nM at 57.6° S (S5) (the present BGH 
cruise: Chever et al., 2010).

4.1.3 POC/234Thp ratio of sinking particles

The POC/234Thp ratios of sinking particles (>53 pm) in­
crease with latitude (Fig. 6). Higher POC/234Thp ratios may 
result from the presence of larger particles due to increasing 
particle volume to surface area ratios (V : S A) (Buesseler et 
al., 2006). The occurrence of high POC/234Thp ratios in the 
SO has been reported to be related to diatom blooms (Bues­
seler et al., 2001, 2003, 2007: Friedrich and Rutgers van der 
Loeff, 2002: Rutgers van der Loeff et al., 1997, 2002: Savoye 
et al., 2008). The higher values of POC/234Thp ratios in the 
present study also coincide with the progressive increase of 
diatom abundance in silicate-rich (> lOpM) surface waters 
south of the PF (Le Moigne et al., 2012). Lower POC/234Thp 
ratios of sinking particles observed in the STZ (station SI), 
the SAZ (S2), and the northern PFZ (S3) (Fig. 6) on the con­
trary, appear associated with conditions of low silicate levels 
limiting diatom growth and presence of a mixed phytoplank­
ton community of small sized cells (Bown et al., 2011: Frip- 
iat et al., 2011).

A change in the V : SA  ratio is not the only factor that 
can alter the POC/234Thp ratio of particles (Buesseler et al.,
2006). As shown in Fig. 5, the surface water POC/234Thp ra­
tios of large and small particles exhibit large differences be­
tween sites. Higher POC/234Thp ratios in the > 53 pm size 
fraction are in fact observed only for station S4, while at 
other stations, surface ratios of large particles are similar 
to those of small particles (1-53 pm) (see SI) or are even 
smaller (S2, S3, and S 5), suggesting other controlling factors. 
Similar POC/234Thp ratios for both particle size classes may 
be consistent with rapid aggregation of small particles into 
larger sinking ones, possibly reflecting the impact of TEP- 
producing phytoplankton species (Buesseler et al., 2006). On 
the other hand decreasing POC/234Thp ratios with particle
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Fig. 8. Latitudinal variation of SS and NSS POC export flux at 
100 m as a % of new production (NP; Joubert et al., 2011).

size may reflect preferential C loss relative to 234Th during 
large particle generation. This may include C degradation 
and recycling in the surface as well as variable C assimi­
lation rates between trophic levels, including production of 
fecal material by Zooplankton (Buesseler et al., 2006).

4.2 Surface fluxes

Chlorophyll a, POC and PON measurements reveal that phy­
toplankton abundance was highest in the STZ (L2) and in the 
SAZ (S2), while southward algal biomass decreased progres­
sively in the PFZ and reached minimum values between the 
SACCF and the Sbdy (Joubert et al., 2011). At “Super” sta­
tions the regression of surface POC and particulate 234Th ac­
tivity of total SPM (from in situ pump sampling) yields a cor­
relation coefficient ( R2) of 0.911 (n = 7). This relationship is 
preserved ( R2 = 0.808, n = 48) when considering full water 
column data. While particulate 234Th thus appears to mir­
ror plankton biomass, surface export production (EPioo and 
EPm l) does not display any such relationship. In the STZ 
and in the SAZ, POC export fluxes are minimal, whereas in 
the low Chi a and POC area at S4 in the AZ, EPioo is highest 
(Fig. 7a).

Nitrogen uptake and new production (NP) estimates ob­
tained during BGH (Joubert et al., 2011) might provide fur­
ther insight into the processes controlling surface POC ex­
port. From Joubert et al. (2011) it appears that the late sum­
mer oligotrophic conditions in the STZ supported a phy- 
toplanktonic community based on regenerated production, 
as evidenced by low f-ratios (0 .2), and dominance of urea 
uptake (70% of total N uptake). This regenerated-nutrient 
based community appeared dominated by small sized phy­
toplankton (51 % of the Chi a content was associated with 
picophytoplankton sizing < 2 pm; Joubert et al., 2011), what 
is consistent with the small POC export flux deduced from 
234Th (0.9-1.8 mmolm -2  d-1 ). Further south, the decrease

of regenerated production (Joubert et al., 2011) concurrent 
with a decreasing contribution of the smaller sized phyto­
plankton, parallels the trend of increasing EPioo (Fig- 7a). 
This is indirect further evidence that enhanced nutrient cy­
cling by the microbial loop appears to lower surface POC ex­
port in the northern part of the section. Comparison between 
EPioo fluxes and urea uptake using a linear fitting function 
indicate a negative relationship (slope of —0.17), though the 
correlation is poor (R2 =  0.22, p = 0.143, n =  11), indicat­
ing other controlling factors are operating as well.

We note that POC export fluxes represent between 6 and 
56 % of new production (NP values from Joubert et al., 2011) 
for SS EPioo and between 1 and 19 % of NP for NSS EPioo 
(Fig. 8). For stations L5 (49.0° S) and S4 (51.9° S), where 
the MLD extends deeper (to 120 m), the SS EPml exceeds 
the EPioo and amounts to 24 and 68 % of NP at L5 and S4, 
respectively. As discussed by Henson et al. (2011) and Jou­
bert et al. (2011), reasons for such discrepancy between NP 
and EP include a possible overestimation of f-ratio because 
of nitrification in the euphotic layer, the export of dissolved 
organic carbon and the fact that uptake of other reduced N 
species, such amino acids, is usually not considered in the 
f-ratio approach. Also, differences in time and space scales 
covered by the NP and the 234Th approaches can partly ex­
plain the observed discrepancies. Bearing in mind that NP 
represents the potential export of both dissolved and particu­
late material, the ratio of POC export from 234Th over NP il­
lustrates the POC export efficiency. Export efficiency appears 
particularly low for the SAZ (6 %), the PFZ (13 to 21 %), the 
AZ (7 %) and the N-WG (18 %), while it is larger at the PF 
(29 %) and at the SACCF (56 %). When considering the sur­
vey period covered by the NSS model (15 to 21 days), POC 
export efficiency is even lower and represents only between 
1 % (SAZ) to 19% (SACCF) of NP. Note that POC export, 
in principle, has to be gauged against net primary produc­
tion (NPP) to obtain the true export ratio or the ratio defined 
by Buesseler (1998). Although C uptake rates were not mea­
sured during BGH (Joubert et al., 2011), the discrepancies 
between EPioo and NP do reflect that the biological C pump 
was rather inefficient in exporting C out of the euphotic zone 
during this late summer condition.

4.3 Mesopelagic POC remineralisation

The vertical distribution of excess 234Th and Baxs in 
mesopelagic waters (Fig. 2) show that the depth range 
where particle remineralisation/disaggregation is most in­
tense strongly varies along the BGH section. In the STZ (SI) 
and the WG (S5), 234Th accumulation is relatively shallow 
and peaks in the subsurface between 120 and 250 m. Evi­
dence of shallow remineralisation has also been reported for 
the NW Pacific (Maiti et al., 2010), the Sargasso Sea, as as­
sociated with mesoscale eddies (Buesseler et al., 2008), and 
in the SO during the SOFEX experiment (Buesseler et al., 
2005). Between the SAZ (S2) and the SACCF (S4) the layer
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Fig. 9. (a) Depth-weighted average mesopelagic excess Ba (meso- 
Baxs: pM. 125-600 m) versus mesopelagic 234Th accumulation 
flux (100-600m): (b) C remineralisation flux deduced from Baxs 
(Cfespired ín mmol C m-2  d- 1 ) plotted versus C remineralisation 
flux (in mmol C m-2  d- 1 ) deduced from 234Th excess activity 
in the mesopelagic layer (100-600 m) and the POC/234Thp ratio 
(pmol dpm-1 ) of > 53 pm particles.

with excess 234Th and high Baxs is consistently broader. As 
shown in Fig. 2, 234Th enrichments extend from below the 
upper mixed layer to 400 m in the SAZ (S2) and 1000 m in 
the SAF (L3). Such a thick layer of excess 234Th has also 
been reported for the central Weddell Gyre (Usbeck et al.,
2002) and the SO Atlantic (Rutgers van der Loeff et al., 
1997), and Australian sectors (Savoye et al., 2004a). Average 
concentrations of meso-Baxs and excess Th flux are signifi­
cantly correlated (Fig. 9a; R 2 = 0.73; p = 0.015; one out­
lier, S3-PFZ excluded). This relationship is preserved (R2 = 
0.69) when excess 234Th fluxes at L5, S4 are computed tak­
ing the MLD rather than 100m as the upper boundary of the 
234Th excess layer. Likewise, C remineralisation fluxes based 
on Baxs contents correlate well with excess 234Th flux, ex­
cept for two outliers (Fig. 9b). The latter are station L3 (SAF) 
which had the highest Baxs based remineralisation flux and 
station S3 (PFZ) which had the highest excess 234Th based 
flux. Excluding these two sites yields a correlation coefficient 
R 2 =  0.73 (R2 = 0.56 in case the MLD is taken as the up­
per boundary of the 234Th excess layer). Note that reminer­
alisation fluxes calculated based on Baxs and excess 234Th
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Fig. 10. Remineralisation flux of POC (mmol m d ) in
mesopelagic waters from the 234Th and Baxs proxies.

are of similar magnitude (Figs. 9b and 10). A closer look 
at the data in Fig. 2 indicates that at some stations maxima 
of Baxs occur at different depths than 234Th excess. For in­
stance, at L3 (SAF) 234Th excess is highest around 150 m, 
whereas Baxs exhibits a sharp peak of 1079 pM at 250 m. 
In the central PFZ (S3) where remineralisation from 234Th 
is particularly large, high Baxs concentrations occur between 
250 and 500 m, below the maximum of 234Th excess between 
120 m to 400 m. Such differences indicate that the break-up 
of 234Th-bearing particles is not exactly overlapping with 
the release of Baxs particles from the aggregates and micro­
environments in which they originally formed. This likely 
reflects differences in carrier particle size and compositions. 
Furthermore the time scales integrated by both proxies may 
be different: 234Th deficits integrate processes that occurred 
over a 2 to 3 week period preceding sampling (Buesseler 
et al., 1992), while the Baxs proxy is much less-time con­
strained and integrates remineralisation over few days to few 
weeks (Dehairs et al., 1997; Jacquet et al., 2008b). It should 
also be kept in mind that both proxies have limitations inher­
ent to the conversion from Baxs or 234Th into carbon fluxes, 
and a significant part of the discrepancies between the two 
proxies probably come forth from the several assumptions 
made to calculate C fluxes. For Baxs this is mainly based on 
the use of an empiric algorithm, for 234Th, the main uncer­
tainty probably resides in the choice of the POC/234Thp ratio 
of remineralised material.

Remineralisation fluxes of carbon (Crespired) are of the 
same order of magnitude as the fluxes of POC exported from 
the surface, reflecting the fact that a large fraction of surface 
export production is mineralized in the mesopelagic zone. 
However, some differences exist between the two proxies. 
Close to the SAF (44.9° S), Crespired from Baxs data is ~  2 
times larger than excess 234Th-based estimates, possibly in­
dicating that some C remineralisation took place earlier in the 
season and was not integrated by the excess 234Th approach.
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By contrast, in the PFZ (47.5° S), POC remineralisation from 
excess 234Th is 5 times higher than CreSpired from Baxs. It is 
possible that in this case we see an effect due to a fragmen­
tation of sinking aggregates as well particle input associated 
with Zooplankton migration and fecal pellet excretion. These 
would affect the total 234Th distribution and would not nec­
essarily be paralleled by increased bacterial remineralisation 
of sinking POC, affecting the Baxs content. Overall, results 
highlight that the PFZ and the SAF are areas of vety efficient 
mesopelagic remineralisation.

Remineralisation rates often exceed export rates from the 
surface (see Fig. 7b), probably reflecting the fact that the 
study took place in late summer at a time where primary 
production is decreasing, i.e., when export was already rel­
atively low. It is possible that mesopelagic remineralisation 
proceeds on particles which were formed earlier in the season 
and were associated with larger export fluxes. Such a trend 
toward higher remineralisation rates during the progress of 
the growth season is a feature that has been reported before 
in the Southern Ocean (Cardinal et al., 2005; Jacquet et al., 
2011 ).

4.4 Bathypelagic POC fluxes

The fate of surface POC exported to the mesopelagic zone 
determines longer term sequestration of POC in the deep 
ocean. We explore the efficiency of POC transfer to depths 
> 600 m by calculating the fraction of exportable produc­
tion (EP) reaching depths >600 m (Fig. 11). Therefore we 
consider the ratio of POC export at 100 m over new produc­
tion (EPioo/NP; NP data from Joubert et al., 2011) versus the 
transfer efficiency through the mesopelagic, defined as the 
ratio of POC flux at 600 m (i.e., EP600 =  EPioo -  remineral­

isation flux) relative to the POC flux at 100 m (EPßoo/EPioo), 
following Jacquet et al. (2011). Deep-ocean sequestration 
efficiency appears negligible in the SAZ, PFZ and N-WG, 
mainly because of a very efficient mesopelagic reminerali­
sation. The AZ exhibits a slightly larger, but still very small 
sequestration efficiency (close to 1 %). The STZ and SACCF 
areas show the highest carbon sequestration efficiencies 
(close to 15 and 27%, respectively, Fig. 11). Note that for 
the SACCF area, carbon sequestration is similar (26 %) when 
fluxes are computed relative to MLD rather than the 100 m 
horizon, with EPml/NP =  0.68 and EPßoo/EPioo =  0.38.

5 Conclusions

In this Southern Ocean study the distribution of short-lived 
234Th and biogenic particulate Ba (Baxs) are combined to 
document late summer export of POC from the surface and 
its fate in the mesopelagic zone.

Steady state modelling of 234Th deficit predicts lowest ex­
port production in the STZ and the SAZ where highest levels 
of biomass are observed. To the south, across the PFZ into the 
Southern ACC, export production increases progressively, in 
line with substantial deepening of the surface mixed layer 
and increasing POC to 234Th ratios of sinking particles re­
lated with increasing diatom abundance. In the AZ and the 
northern branch of the Weddell Gyre we observed a slight 
decrease in POC export, though values still exceeded those 
for the STZ and the SAZ. This could partly result from a 
greater abundance of large diatoms in sinking material. Non 
steady state modelling of the 234Th flux allowed constraining 
export production over a period of 2 to 3 weeks preceding the 
BGH expedition. For the area between SAZ and SACCF non 
steady state model calculations revealed significantly lower 
POC export compared to steady state calculations, suggest­
ing that late summer conditions with low levels of silicate 
and iron combined with predominance of regenerated pro­
duction, could be factors limiting export. In contrast, further 
south in the AZ and the northern Weddell Gyre, both mod­
elling approaches (non steady state and steady state) yield 
similar POC export values, indicating export production in 
this low productivity and high nutrient area remained rela­
tively constant over the season. Although 234Th-based ex­
port flux and new production both increase southward, 234Th 
based fluxes are consistently lower. Considering that new 
production represents the “total potentially exportable frac­
tion’’ of organic C, the discrepancy observed between the two 
proxies may indicate that surface POC export efficiency is 
particularly low in late summer.

Below the export zone in the mesopelagic layer, excess 
234Th activities as well as accumulation of particulate bio­
genic Ba provide strong evidence for significant though vari­
able degrees of POC remineralisation. The attenuation of 
sinking particles appears particularly intense across the ACC, 
between the STF and the SACCF. While remineralisation in
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the SAZ, the AZ and the N-WG essentially occurs between 
subsurface and 400 m, it extends much deeper for the region 
bounded by SAF and PF leading to highest attenuations of 
export being located there. Although some differences ex­
ist between these two independent proxies, excess 234Th and 
meso-Baxs yield similar estimates of POC remineralisation. 
When compared to export production we find that reminer­
alisation of POC in the twilight zone is particularly efficient 
in the studied area thereby impacting on longer term bathy­
pelagic POC sequestration.

Supplementary material related to this article is 
available online at: http://www.biogeosciences.net/10/ 
803/2013/bg-10-803- 2013-supplement.pdf.
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