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Abstract. A tool for multidimensional variational analysis 
(d iv a n d )  is presented. It allows the interpolation and analy­
sis of observations on curvilinear orthogonal grids in an arbi­
trary high dimensional space by minimizing a cost function. 
This cost function penalizes the deviation from the observa­
tions, the deviation from a first guess and abruptly varying 
fields based on a given correlation length (potentially vary­
ing in space and time). Additional constraints can be added 
to this cost function such as an advection constraint which 
forces the analysed field to align with the ocean current. 
The method decouples naturally disconnected areas based 
on topography and topology. This is useful in oceanography 
where disconnected water masses often have different physi­
cal properties. Individual elements of the a priori and a poste­
riori error covariance matrix can also be computed, in partic­
ular expected error variances of the analysis. A multidimen­
sional approach (as opposed to stacking two-dimensional 
analysis) has the benefit of providing a smooth analysis in 
all dimensions, although the computational cost is increased.

Primal (problem solved in the grid space) and dual formu­
lations (problem solved in the observational space) are im­
plemented using either direct solvers (based on Cholesky fac­
torization) or iterative solvers (conjugate gradient method). 
In most applications the primal formulation with the direct 
solver is the fastest, especially if an a posteriori error esti­
mate is needed. However, for correlated observation errors 
the dual formulation with an iterative solver is more efficient.

The method is tested by using pseudo-observations from 
a global model. The distribution of the observations is based 
on the position of the Argo floats. The benefit of the three- 
dimensional analysis (longitude, latitude and time) compared 
to two-dimensional analysis (longitude and latitude) and the 
role of the advection constraint are highlighted. The tool 
d i v a n d  is free software, and is distributed under the terms 
of the General Public Licence (GPL) (http://modb.oce.ulg.ac. 
be/mediawiki/index.php/divand).

1 Introduction

Deriving a complete gridded field based on a set of observa­
tions is a common problem in oceanography. In situ observa­
tions are generally sparse and inhomogeneously distributed. 
While satellite observations have typically a better spatial 
and temporal coverage (but measure only surface data) than 
in situ data, they present also gaps due to, e.g. the presence 
of clouds (in the case of thermal sea-surface temperature and 
optical surface properties of the ocean). Since the problem is 
generally under-determined, if the gridded field is to be de­
rived from the observations alone, a first guess is introduced. 
The data analysis problem is also closely related to data as­
similation where the observations are used in combination 
with a first guess coming from a model.
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Several interpolation methods have been developed and 
presented in the scientific literature. Direct linear interpola­
tion of the observations is rarely an option for ocean obser­
vations which are affected by noise and are not necessarily 
representative (e.g. a measurement at a specific time might 
not be representative for a monthly average). Also the gra­
dient of the interpolated field is not necessarily continuous. 
Current interpolation methods take therefore, in one way or 
the other, the uncertainty of the observations into account. 
Most interpolation methods of uncertain observations can be 
classified as methods based on optimal interpolation (includ­
ing kriging) and variational analysis.

For optimal interpolation methods (Gandin, 1965; 
Bretherton et al., 1976), the error covariance of the first guess 
is generally directly specified by analytical functions (Robin­
son, 1996; Guinehut et al., 2002; Roberts-Jones et al., 2012). 
When satellite or model data are used, this error covariance 
can also be specified by its eigenvalues/eigenvectors (Kaplan 
et al., 1997; Rayner et al., 2003; Beckers et al., 2006) or by an 
ensemble (Evensen, 2007). Applications to multiple spatial 
and/or temporal dimensions are common (Hoyer and She, 
2007; Buongiorno Nardelli et al., 2010) to ensure a continu­
ity of the solution along those dimensions. Analytical func­
tions for the error covariance are based generally on the dis­
tance between two given points. However, decoupling water 
masses separated by land and maintaining at the same time 
a spatially smooth field over the ocean is difficult in optimal 
interpolation.

Auxiliary variables can be used as additional dimensions 
in order to improve the realism of the covariance function. 
Buongiorno Nardelli (2012) used for instance temperature 
(based on satellite sea surface temperature) as an additional 
dimension to generate a sea surface analysis of salinity using 
optimal interpolation. This innovative application shows that 
dimensions are not necessarily restricted to space and time 
and that other related variables can be used to extend the no­
tion of space and distance.

In variational analysis, a cost function is introduced which 
penalizes non-desirable properties of the analysed field, in 
particular the deviation from observations and from the back­
ground estimate and abrupt changes of the analysed fields. 
The variational approach is equivalent to the optimal interpo­
lation formulation, but instead of specifying directly the error 
covariance of the first guess, the inverse of this matrix is pa­
rameterized: rather than imposing that two adjacent grid cells 
are correlated to each other, it is required that gradients (and 
higher-order derivatives) are small (Brasseur et al., 1996; 
Brankart and Brasseur, 1996). Decoupling water masses sep­
arated by land is natural in variational analysis as it can be in­
cluded using boundary conditions on the spatial derivatives. 
Variational analysis in three or four dimensions is common in 
the context of data assimilation (Rabier et al., 2000; Dobricic 
and Pinardi, 2008; Moore et al., 2011b) where it is generally 
a multivariate analysis. In four-dimensional variational anal­
ysis, the analysed field has in general three dimensions (e.g.

longitude, latitude and depth for initial conditions or longi­
tude, latitude and time for forcing fields) but they involve 
the numerical model and its adjoint to derive the relationship 
between the initial condition (or forcing fields) and observa­
tions at different time instances. However most of the data 
analysis applications to grid observations using variational 
methods are limited to two dimensions: either two horizon­
tal dimensions (e.g. Troupin et al., 2010) or vertical tran­
sects (Yari et al., 2012). Three or four dimensional (space 
and time) fields are then obtained by assembling individual 
analyses. Inhomogeneous data distribution might then lead to 
spurious abrupt variations along the additional dimensions, 
which require ad hoc filtering of the assembled field. The 
presented tool implements a monovariate analysis. However 
the information from additional environmental variables can 
be incorporated as additional constraints.

The variational approach is also attractive for problems 
where it is easier to formulate physical properties of the un­
derlying field in terms of constraints than in terms of correla­
tion/covariance. For a two-dimensional surface current anal­
ysis for example, one can impose that the horizontal diver­
gence is small (Legier and Navon, 1991; Bennett et al., 1997; 
Yaremchuk and Sentchev, 2009) by adding a corresponding 
term to the cost function. This kind of constraint would be 
more difficult to implement in an interpolation method.

On the other hand, in optimal interpolation one can quite 
easily derive the error variance of the analysed fields, which 
is more difficult but feasible for variational methods (Troupin 
et al., 2012). Optimal interpolation in the local approxi­
mation can also be quite efficiently applied to distributed- 
memory parallel computing architectures.

The aim of this manuscript is to implement and test a vari­
ational analysis program that can operate in an arbitrary high 
dimensional space and with a cost function that can be eas­
ily extended with additional constraints. The benefit of this 
method will be assessed in comparison to assembled two- 
dimensional analyses using an advection constraint forcing 
the gradients of an analysis to be aligned with a given vector 
field.

Different approaches can be used to model the back­
ground error covariance. In the smoothing norm splines 
approach (Wahba and Wendelberger, 1980; Wahba, 1990; 
McIntosh, 1990; Brasseur and Haus, 1991; Brasseur et al., 
1996; Troupin et al., 2012) a norm is defined using squares of 
derivatives up to a certain degree. The background error co- 
variance can also be specified by solving the diffusion equa­
tions iteratively over a pseudo-time dimension. The solution 
can be obtained using explicit (Bennett et al., 1996; Weaver 
et al., 2003; Lorenzo et al., 2007; Muccino et al., 2008; 
Moore et al., 2011b) or implicit stepping schemes (Bennett 
et al., 1997; Weaver and Courtier, 2001; Chua and Bennett, 
2001; Zaron et al., 2009; Carrier and Ngodock, 2010). An­
other commonly used technique is based on a recursive fil­
ter (Lorenc, 1992; Hayden, 1995; Purser et al., 2003a, b; 
Martin et al., 2007; Dobricic and Pinardi, 2008). Mirouze
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and Weaver (2010) have shown that this approach is actually 
equivalent to the method based on the implicit diffusion op­
erator. For variational data assimilation the approach based 
on diffusion operators (or recursive filter) is commonly used, 
as it allows to define the background error covariance (or its 
inverse) in terms of square root matrices which is often used 
for preconditioning (e.g. Lorenc, 1997; Haben et al., 2011). 
As DIVA (Data-Interpolating Variational Analysis), the «- 
dimensional tool d i v a n d  also uses norm splines to define 
the background error covariance in combination with a direct 
solver which does not require preconditioning. In the case of 
DIVA the skyline method (Dhatt and Touzot, 1984) is used, 
while d i v a n d  uses the supernodal sparse Cholesky factor­
ization (Chen et al., 2008; Davis and Hager, 2009). Other 
iterative methods (which require preconditioning) have also 
been implemented.

The variational inverse method (Brasseur and Haus, 1991) 
implemented in the tool DIVA computes the minimum of 
the cost function in two dimensions using a triangular finite- 
element mesh (Brasseur et al., 1996; Brankart and Brasseur, 
1996, 1998; Troupin et al., 2012). A web interface has also 
been developed for this tool (Barth et al., 2010). We present 
an extension to «-dimensions which is called d iv a n d .  To 
simplify the testing and implementation in an arbitrarily high 
dimensional space, a regular curvilinear mesh is used for the 
tool d iv a n d .

In Sect. 2, the formulation of the method in «-dimensional 
space and the derivation of the analytical kernel functions for 
an infinitely large domain are introduced. The relationship 
between the highest derivative needed in the formulation and 
the dimension of the domain is shown. Section 3 presents the 
different implemented algorithms. Simple numerical tests are 
performed in Sect. 4 to show the consistency of the numerical 
results with the analytical solutions of Sect. 2. Implementa­
tion details and capabilities of the tool are given in Sect. 5. 
The tool is also tested in a realistic configuration to recon­
struct global temperature in Sect. 6.

2 Formulation

Variational inverse methods aim to derive a continuous field 
which is close to the observations and satisfies a series of a 
priori constraints. In particular, the field should be “smooth”. 
It is therefore important to quantify the “smoothness” of a 
field. While the interpolated field should be close to observa­
tions, it should not necessarily pass through all observations 
because observations have errors and often do not represent 
the same information. A cost function is formulated which 
includes these constraints:

N d

J\(p\ = - c p { X j ) f  + \\cp -  cpb\\2 + J c ( ( p ) ,  (1)
;= i

where dj are the measurements at the location x  ¡ and fi j  is 
their weight, and (p\¡ is a background estimate of the field.

The term Jc((p) represents potentially additional constraints 
which will be specified later.

In order to define the norm || • ||, the length scale L; in 
every domain dimension is introduced. These length scales 
form the diagonal elements of the matrix L:

L =
( L i  0

0 l 2

\

\
(2)

Based on these length-scales, we define the following 
scaled differential operators for the gradient and Laplacian:

V =  LV, 

V2 =  V- (i2v).
(3)

(4)

A scalar product ( ƒ, g ) of two functions, ƒ  and g, is de­
fined using the scaled gradient and Laplacian.

( ƒ, g) = l j  «o f g  +  « i (v ƒ )  • (vg) +  a 2 ( v 2 ƒ )  (V 2^
D

+ a 3 ( v V 2/ ) - ( v V 2^ + . . .  dx (5)

This scalar product is closely related to the spline norm 
defined by Wahba and Wendelberger (1980) and McIntosh 
(1990) for two dimensions.

Equation (5) corresponds to the covariance inner product 
x r B~ l y  where the vectors x  and y  represent the fields ƒ  
and g and the matrix B is the background error covariance 
(Gaspari and Cohn, 1999).

We note m the highest derivative in this scalar product. The 
parameter c is a normalization coefficient that will be chosen 
later. The coefficients are generally considered positive so 
that the cost function has certainly a finite minimum.

The norm used in the background constraint of Eq. (1) is 
defined using this scalar product by

=  {<p, <P) ■ (6)

As the scalar product (5) is symmetric and as the norm 
is positive for all fields <p, the scalar product defines a co- 
variance function (Gaspari and Cohn, 1999). If the field <p is 
discretized on a grid and all elements are grouped into the 
vector x,  the cost function can be written as

J ( x )  = ( x —x b)r B Jtb)

+  (Ux -  y ° ) T R - 1 (Ux -  y°)  + Jc(x), (7)

where we also regrouped all observations into vector y° 
and the discretized background field in vector x b- H is a 
discretized local interpolation operator allowing to compare 
the gridded field with the observations at the data locations. 
Therefore the observation operator is linear and can be rep­
resented efficiently by a sparse matrix.
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This cost function is commonly used in optimal interpo­
lation where the matrices B and R are the error covariance 
of the background estimate and of the observations respec­
tively. The scalar product in Eq. (5) defines the matrix B and 
the diagonal matrix R is composed by the inverse of the data 
weight

2.1 Kernel

The so-called reproducing kernel K ( x , y )  associated with 
Eq. (5) is defined by (McIntosh, 1990)

</, K)  =  ƒ (8)

and will be helpful in understanding the covariance structure 
of B.

If the domain is infinitely large (Z) =  IRn) and the cor­
relation lengths Li  are constant in all dimensions, we can 
analytically derive the function K.  First we assume that the 
correlation lengths L; are all equal to one, and later the 
more general case with arbitrary (but constant) values of 
L í will be derived. The derivation follows the PhD thesis 
of Brasseur (1994), where the kernel is derived for two- 
dimensional problems. Substituting the definition of scalar 
product from Eq. (5) in Eq. (8) and by integrating by parts 
one obtains

( ƒ, K)  = l f  a 0f ( x ) K ( x ,  y)  +  <*i ( v  ƒ  (* )) • (v K (x , y ))
IR n

+ a 2 (V 2 ƒ  (* )) ( v 2K ( x , y ) )

;ƒ■

+  .. .  dx

= -  I / ( * )
IR ’

H;

a0K( x ,  y)  - a i V  K ( x , y )

dx+ a 2V ‘lK ( x , y )  + ...

=  f ( y ) -

As this last equation must be true for any function f ( x ) ,  
the expression in brackets must be equal to the Dirac function 
(times c) :

at)K(x,  y )  — aí V 2K ( x ,  y)  +  a  2V ^ K ( x ,  y)  +  • • • =  cS(x  — y).

Since the kernel is translation invariant, we can set y  =  0 
without loss of generality. By applying the Fourier transform, 
we obtain

K(k)  = ------------ 5---------- 5 - ,
ao + a \k 2 + a 2 £4 +  . . .  +  amk 2m 

where K( k )  is the Fourier transform of kernel K(x):

K ( k ) =  i  K ( x ) e ~ i x k dx.

IR n

The kernel K( x )  can thus be found by using the inverse 
Fourier transform:

£(.*•) =  _ L -  ƒ  K( k ) e ix k dk.

In particular, the value of the kernel at x  =  0 corresponds 
to the integral:

K(  0) =
2lt 2 C I

f.n-1

r ( f  ) (2tt)" J a  o +  a \k 2 + a2&4 +  . . .  +  amk 2r 
0

-dk,

where integration variables were transformed to n- 
dimensional polar coordinates and integration was performed 
over all angles. The kernel is in fact nothing else than the 
correlation function one would use to create B yielding the 
same result in optimal interpolation as with the variational 
approach (Wahba and Wendelberger, 1980). We naturally 
choose the value of c such that K  (0) =  1 :

1 2tt2 1 ƒ;
L.n-1

c ) (2tt)” J ao + a \k 2 +  c ^ 4 ■
o

k 2r
-dk.

Assuming all a¡ > 0 , the integral at the right-hand side is 
defined if m > | .  This condition links thus the number of 
dimensions n and the order of the highest derivative needed 
in the formulation. The Fourier transform of the kernel K  is 
a radial function depending on the norm of the wave num­
ber k.  The inverse Fourier transform of a radial function is 
also a radial function which can be derived with the Hankel 
transform (Appendix A) :

K(r)  =  (2tt)

CX.

ƒ J n - z  (k r ) k  
2

K( k) kdk , 0)

where Jv (r) is the Bessel function of first kind of order v. To 
continue the analytical derivations we must make assump­
tions about the coefficients a¡. We assume that the coeffi­
cients a¡ are chosen as binomial coefficients.

m !
1 < i < m.

i\(m — i ) !

In this case, the norm can also be expressed as the inverse 
of an implicit diffusion operator (Weaver and Mirouze, 2013) 
which is commonly used in variational data analysis in one 
dimension (Bennett et al., 1997; Chua and Bennett, 2001) or 
two or three dimensions (Weaver and Courtier, 2001; Chua 
and Bennett, 2001; Zaron et al., 2009; Carrier and Ngodock, 
2010 ).

The Fourier transform of the kernel (Kn’m(k)) for the 
highest derivative m and dimension n can be written as

K n’m(k) = --------------.
(1 + k 2)m

Using this expression in Eq. (9), the radial
nel K n'm(r) becomes

K n,m(r)  =  cn’m (2jt)
n 2—n' 2 r 2

IR n

f  T ü=2
I ]n=2 (kr )k  2

( i + £ 2y

part of the ker-

: d£. (10)
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Table 1. Kernel as a function of non-dimensional radius p =
|L 1 je I > 0 for different values of the dimension n and the high­
est derivative m.

m =  1 m = 2 m = 3

S II Où
1 (1 +p)e~P (1 + p(l + p / 3))e P

n =  2 pKRp) 2(p)
n =  3 e~P (1 +p)e~P
n =  4 - pKi(p)
n =  5 - e~P

The normalization coefficient is now noted cn’m as it de­
pends on the dimension n and the order of the highest deriva­
tive m. By integrating by parts, we can derive a recursion re­
lationship relating the kernels with different values of n and 
m.

K n'm(r) = cn

CC

/
M (2?r) 1 k ?  

2(1 — m)

n— 2 d
J n — 2 (kr )k 2 —

dk \ ( 1  + k 2)m 1
dk

„n,m (2*) 7

(X

ƒ
2 (m — 1)

J n—4 (kr )k 2

1

(1 + k 2)m~ l
dk

Í 7 t (m  — 1) c" 2’m 1
K (r),

( I D

(12)

where in step (11), we used the following equation relating 
Bessel functions of first kind of different order:

d  (xp]p {x)) = x p Jp- i(x)

or

d
dk

^ A -2 (kr)k 2 ^ j =r ] n- i ( k r ) k
n—2

2

Since K n’m(x)  is one for x  =  0, the normalization coeffi­
cients are thus related by

cn'm = i n ( m  -  l)cn—2,m — \ (13)

The recurrence relationship therefore shows that it is suf­
ficient to calculate the kernel (Kn’m) and the normalization 
coefficients for n =  1 and n =  2. For n =  1, we find the fol­
lowing solution for the integral in Eq. (10):

K x'm(r) =
r  \  (m —1/2)

r(m —1/2) (0 Km- \ ß ( r )

C1 , m  = 2V ^ r  (rn)
r (m  — 1/2)

Table 2. Normalization coefficient c",m for different values of the 
dimension n and the highest derivative m.

m =  1 m = 2 m = 3

n = 1 2 4 16
3

n = 2 4tt 8tt
n = 3 8tt 32tt
n = 4 - 32tt2
n = 5 - 64tt2

where K v(r) is the modified Bessel function of second kind 
of order v. For n =  2, the solution of Eq. (10) is:

2 / r \ ( m - 1)(-J Km- X{r)

2 ,m

K 2'm(r) =
T{m -  1) 

=  Ajr(m — 1).

Using the recursion relationship from Eqs. (12) and (13) 
with the solution for n =  1 (n =  2) one can derive the kernel 
and cn’m for every odd (even) value of n. After simplifica­
tions, it follows that for any n (odd and even) and m, the 
normalized kernel K n’m and the corresponding normaliza­
tion factor cn’m can be written as

= r 4 (D"k”m
(47r)"/2r(m )

I »
with v = m — n/2.  Non-isotropic covariance functions are of­
ten introduced by using coordinate stretching (Derber and 
Rosati, 1989; Carton and Hackert, 1990). We can finally de­
rive the case for a correlation length different from one, using
the change of variables x  

2 / I T  —1 ^
K n'm(x) =

I »  v 2
(47r)"/2r (m ) |L

L - 1’

Ku |L ^ 1 )

r(v),
where |L| is the determinant of the diagonal matrix L:

n
iL i = n ¿ ,

i =  1

The kernels and normalization coefficients can be ex­
panded further for particular values of n and m leading to 
the lines of Tables 1 and 2. Our results agree with the so­
lution derived by Brasseur et al. (1996) for the case of two 
dimensions n =  2 and m =  2.

The correlation function is the class of the Matérn family 
of spatial correlations (Matérn, 1986; Guttorp and Gneiting, 
2006; Weaver and Mirouze, 2013). These functions have also 
been previously derived to define a smoothing operator (¡>{x) 
based on the Laplacian:

y„ { 1 - l 2v 2T 4 ) {x ) =  4) {x ), (14)
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where yn is a normalization constant, L  the smoothing 
length-scale and m = v + n/2  as before and v a smooth­
ness parameter. For v = \ / 2  and v =  5/2, one recovers 
the well-known second-order and third-order auto-regressive 
functions (Daley, 1991; Gaspari and Cohn, 1999; Gneiting, 
1999). A formulation based on the diffusion operator allows 
for a straight-forward square root decomposition if m is even 
(Weaver and Courtier, 2001):

(1 _  L 2V 2)m =  (1 -  L 2V 2)m/2( 1 -  L 2v 2)m/2.

This square root decomposition is mainly used in connec­
tion with a conjugate gradient solver as a preconditioner (e.g. 
Haben et al., 2011).

In the d iv a n d  tool a distinction is made between the ac­
tual dimension n and the effective dimension. The effective 
dimension is the number of dimensions with a non-zero cor­
relation length. Setting a correlation length to zero decouples 
the different dimensions: this is used to emulate the results 
that one obtains by “stacking” results of two-dimensional 
analyses as it has been done previously (e.g. Troupin et al., 
2010). The normalization coefficient used in this case is 
based on the effective dimension. This ensures that one ob­
tains exactly the same results of a stacked 2-D interpolation 
by analysing data in a 3-D domain with a zero correlation 
length in the third dimension.

2.2 Additional constraints

In addition to the observation constraint and smoothness con­
straint, an arbitrary number of other constraints can be in­
cluded in d iv a n d .  Those constraints are characterized by 
the symmetric positive-defined matrix Q¿, the matrix C; and 
the vectors Zi-

Jc(x) = Y ^  (C >x ~ Z i ) T Q r 1 (C * ~Zi ) -  
i

Those additional constraints can be re-absorbed in the def­
inition of the operator H, R and y°:

f y ° \  / H \  / R  0 \
Qiz i

Z2

V : /

Ci
c2

V : /

H Q2

0

R. (16)

■ /

With these definitions the cost function has again the fa­
miliar form:

J(x) = (x — Xb)r B~'(x — Xb) + (Hx — j° ) r R~' (Hx — y°). (17)

A common example for an additional constraint is the so- 
called advection constraint (Wahba and Wendelberger, 1980: 
Brasseur and Haus, 1991: Troupin et al., 2012). Anisotropic 
background error covariance can be achieved by requiring 
that the gradient of the analysis is aligned to a given vector 
field.

Ja(4>) = ƒ(„ V i p f d D , (18)

where v is a vector field with n components. Such a con­
straint is useful in a geophysical context to force a field to 
be close to a stationary (or time dependent) solution of the 
advection equation, in which case the vector field v is related 
to the ocean current. The diffusion term is not included as it 
is generally small for geophysical applications and since the 
background constraint acts similar to a diffusion.

(15) 3 Minimization and algorithms

As the cost function is quadratic, one can obtain its minimum 
analytically. The derivation of its minimum is well known 
(Courtier et al., 1998) and is included here for completeness. 
If x a is the minimum of the cost function J,  a small variation 
Sx of x a would not change the cost function in the first order 
of Sx.  Noting T a transposed matrix or vector,

SJ  = J ( x a + S x ) ~  J ( x a)
= 2SxTK ~ l (xa - x b) + 2SxTU TR ~ l ( Ux a - y ° )  =  0.

As Sx is arbitrary, the expression multiplying S x T must be 
zero. The optimal state x a is thus given by

x a = x b + V n r R - l ( y ° - H x b), (19)

where we have introduced the matrix P.

P 1 =  B 1 +  H r R 1H. (20)

The interpretation of this matrix becomes clear since we 
can rearrange the cost function as

J ( x )  = ( x —x a) T P 1 (x —x a) +  constant. (21)

The matrix P represents thus the error covariance of the 
analysis-»-0 (Rabier and Courtier, 1992: Courtier et al., 1994).

3.1 Primal formulation

The primal formulation of the algorithm follows directly 
from Eqs. (19) and (20). The matrices P and B are never 
formed explicitly and the tool works only with the inverse 
of these matrices noted Pinv and Binv respectively. In order 
to give the algorithm in a compact form close to the math­
ematical equations, we introduce the backslash operator by

X =  A \  B, (2 2 )

which is equivalent to solving the system AX =  B for the 
matrix (or vector) X. With this notation, the primal algorithm 
reads

(23)

(24)

D

Pinv — Binv +  H7” (R \  H ),

=  Pinv \  ( H r ( R \ y 0) ) .

Different approaches have been implemented here to solve 
the analysis equation in its primal formulation involving ei­
ther a direct solver, a factorization or the conjugate gradient 
method.
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3.1.1 Direct solver

The solver based on SuiteSparse (Chen et al., 2008; Davis 
and Hager, 2009) can be used directly if the matrix R \  H 
is sparse. This is in particular the case when R is diagonal. 
P ¡„v will then also be a sparse matrix which can be efficiently 
stored. This approach is useful when no error field needs to 
be computed. The direct solver can also be applied for a non­
diagonal R but this approach is prohibitive in terms of com­
putational cost and memory.

3.1.2 Factorization

The inverse of the a posteriori error covariance matrix Pinv is 
factorized in the following products:

R tp R p  =  Q ^PinvQ  p ,  (25)

where Rp is an upper triangular matrix and Qp  is a permuta­
tion matrix (chosen to preserve the sparse character of Rp). 
The factorization is performed by CHOLMOD (CHOlesky 
MODification) (Chen et al., 2008; Davis and Hager, 2009). 
Once the matrix P¡nv is factorized, the product between P and 
any vector x  can be computed efficiently by

Px =  Pinv \ x  = Q p ( R P \  (Rp \  (Qpx))).  (26)

This approach is useful if the error field is required, since 
a large number of products between P and a given vector 
must be computed. Determining all elements of P would be 
prohibitive, but individual elements (such as the diagonal el­
ements) are computed by

P? j ~~ ej (Pinv \  e j ), (27)

where e; is the ith basis vector. The tool d iv a n d  returns 
a matrix-like object allowing to compute any element of P 
or the product of P with a given vector. This latter product 
is useful if one wants to derive the expected error of an in­
tegrated quantity such as a transport along a section or any 
other weighted sum.

3.1.3 Conjugate gradient method

The conjugate gradient method (Golub and Van Loan, 1996) 
is commonly used in variational data assimilation (Moore 
et al., 2011a). This method provides an iterative solution to 
linear equations:

A x a = b, (28)

where the vector b and the symmetric and positive-defined 
matrix A are given here by

6 =  Hr ( R \ y 0) (29)

A x a = Binvx a + H r ( R \  (Hxfl)). (30)

The conjugate gradient algorithm is applied to solve for 
x a. For large domain sizes, the matrix A tends to be ill- 
conditioned (e.g. Haben et al., 2011) and the use of a pre­
conditioner is necessary. In variational data assimilation it 
is common to define the covariance matrix implicitly by 
B =  VVr where V is a sequence of operators requiring phys­
ical consistency, e.g. using balance relationships and empir­
ical orthogonal functions, and spatial smoothness, e.g. using 
a projection in spectral space (Dobricic and Pinardi, 2008; 
Bannister, 2008). A preconditioning using V -1 amounts to 
transforming the background error covariance matrix into the 
identity matrix (Lorenc et al., 2000; Cullen, 2003; Haben 
et al., 2011). The matrix V is not necessarily square be­
cause some modes of variability might be excluded (Lorenc 
et al., 2000). In this case the inverse of V is interpreted as the 
pseudo-inverse. Theoretical bounds for the condition num­
ber in idealized conditions have been derived for this type of 
preconditioning (Haben et al., 2011).

A similar preconditioner is also implemented in d iv a n d  
using a Cholesky decomposition of the matrix B¡nv into the 
square root matrix B-1/ 2:

Binv =  B - 1/2B ~ 1/ zT. (31)

The matrix B-1/ 2 is an upper triangular matrix and the 
inverse of this matrix times a vector can be efficiently com­
puted efficiently by back substitution. If the observation error 
covariance matrix R is diagonal and if the observation oper­
ator H is a sparse matrix, then the inverse of the analysis 
error covariance matrix Pinv is also sparse. In this case, the 
matrix P¡nv can also be decomposed using a modified incom­
plete Cholesky decomposition (Jones and Plassmann, 1995; 
Benzi, 2002).

These two preconditioner have been tested for a unit 
square domain in two dimensions discretized on a regular 
N  x  N  grid. Observations are evenly distributed on a 10 x  10 
grid. The signal-to-noise ratio is set to 1 and the correlation 
length-scale it set to 0.1.

Figure 3 shows the number of iterations needed to reach a 
residual lower than IO-6 for different domain sizes N  (rang­
ing from 10 to 100) using either no preconditioner, or a pre­
conditioning based on the square root decomposition of B¡nv, 
or the modified incomplete Cholesky decomposition with a 
drop tolerance of zero (MIC(0)). Even for the largest domain, 
the computation of the preconditioner matrices themselves 
takes less than 0.15 s and its contribution to the total CPU 
time is negligible.

The increased convergence using the preconditioner based 
on B-1/ 2 compared to no-preconditioner is well expected 
(Lorenc, 1997; Gauthier et al., 1999; Haben et al., 2011). 
The preconditioning using the modified incomplete Cholesky 
decomposition leads to the smallest number of iterations in 
this test case. This is attributed to the fact that the MIC(0) 
preconditioner takes also the error reduction due to the ob­
servations into account (the term Hr R-1 H in the Hessian
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Fig. 1. Solid lines show the analytical kernels for different values of v and the dots show the numerical kernel (left) and analytical kernels 
with scaled í'/j (right).

matrix of the cost function) while this is not the case by us­
ing the square root matrix B-1/ 2 as preconditioner. It should 
be noted that these results depend thus also on the data dis­
tribution and the signal-to-noise ratio of the observations. In 
particular, the fewer observations are available or the higher 
the error variance of the observation is, the better becomes 
the conditioning based on B-1/ 2 (Haben et al., 2011). The 
tool d iv a n d  has been written such that the user can provide 
a custom preconditioner based on the background error co- 
variance B, observation error covariance R and observation 
operator H.

3.2 Dual formulation

Using the Sherman-Morrison-Woodbury formula (Golub 
and Van Loan, 1996), the solution can also be written in the 
dual formulation, also called Physical-Space Statistical Anal­
ysis System (Courtier, 1997; Cohn et al., 1998; Stajner et al., 
2001; Dee and da Silva, 2003):

xfl =  BHr (HBHr +  R ) ” 1 y°,  (32)

P =  B - B H r (HBHr +  R ) _1HB. (33)

In this formulation, all implemented methods in d iv a n d  
are based on the conjugate gradient method, to solve itera­
tively the following equation for y'\

C y  =  y 0, (34)

where C represents a symmetric and positively defined ma­
trix specified in operator form:

C ƒ  =  H ( P i nv\ ( H V ) )  +  R / .  (35)

Once the vector y'  is known, the analysis x a is obtained
by

* f l = P i nv\ ( H V ) .  (36)

If R is a non-diagonal matrix, one can use a preconditioner 
based on the diagonal elements of R noted R'.

M =  H(Pinv\ H r ) +  R/ (37)

The matrix M can be efficiently factorized in sparse matri­
ces:

=  Q m^ ¡ h\Q m • (38)

where Rm is an upper triangular matrix and Q m  is a permu­
tation matrix.

3.2.1 Factorization

If the conjugate algorithm requires a large number of iter­
ations, it is useful to factorize the matrix Pi„v to accelerate 
the product of P and a vector, which requires solving a linear 
system.

R pR p =  Q p PinvQp. (39)

where, as before, Rp is an upper triangular matrix and Qp is 
a permutation matrix. All products of P times a vector x  are 
computed efficiently by

p*  =  Pinv \ X  =  Q p(R p  \  (Rp \  (Q p*))). (40)

4 Numerical tests

4.1 Numerical kernel

It has been verified in numerical tests that the code re­
produces well the analytical kernels. The domain is one­
dimensional for v =  1/2, 3/2 and 5/2 and two-dimensional 
for v =  1 and 2. Every direction ranges from —10 to 10 and is 
discretized with 201 grid points. A hypothetical observation 
located at the centre of the domain is analysed with a signal- 
to-noise ratio of 1 and with a correlation length scale of 1. 
Theoretically the value of the analysed field should be 1/2 at 
the centre. The radial solution multiplied by two is compared 
to the analytical solution of an infinite domain (Fig. 1). In all 
tests, the scaling and structure of the numerical kernels cor­
respond well to the analytical solutions. To obtain this cor­
respondence, it is necessary that the grid resolution resolves 
well the correlation length. Qualitative tests have shown that 
the numerical kernels match well the analytical functions as
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Table 4. Run time in seconds for different domain sizes for MAT­
LAB (R2012b) and Octave version 3.6.4 (using GotoBLAS2 or 
MKL) for the primal algorithm with Cholesky factorization.

MATLAB-R2012b Octave-GotoBLAS2 Octave-MKL

100 0.304 0.415 0.451
200 1.694 1.808 1.692
300 5.235 5.155 5.088
400 7.527 8.104 8.388
500 15.501 13.905 14.115
600 31.457 24.906 25.156

Observation
 Analysis (m=1,v=1/2)
—  Analysis (m=2,v=3/2) 

Analysis (m=3,v=5/2)

Fig. 2. Impact o f higher-order derivatives.

Table 3. Radial distance where the kernel is 1/2 for different values
of V.

V rh

1 / 2 0.69315
1 1.25715

3/2 1.67835
2 2.02700

5/2 2.33026

long as the grid spacing is one fourth (or less) of the correla­
tion length.

The kernels differ by the rate at which they decrease to 
zero. It is important to consider this aspect when comparing 
the correlation length from analyses using a different number 
of derivatives. Table 3 shows the value of r for which the an­
alytical kernels are 1/2. They can be used as proportionality 
coefficients to make the kernels more comparable (Fig. 1).

The kernel for v =  1/2 has a discontinuous derivative for 
r =  0 which makes this function unfit for practical use. A 
simple one-dimensional analysis with m =  1 (i.e. v =  1/2) 
illustrates the problem (Fig. 2). As there is no penalty on the 
second derivative, the analysis has a discontinuous derivative 
at every observation location (black dots). Using higher order 
derivatives solves this problem. This example shows also that 
the analyses with higher order kernels (v> =  3/2 and v =  5/2) 
are very similar. In these numerical experiments, the correla­
tion length L  is the inverse of the values in Table 3. This 
problem appears in all configurations where v =  1/2. In par­
ticular also in three-dimensional analyses when the highest 
derivative in the cost function is a Laplacian. This is surpris­
ing because the first derivative is discontinuous despite the 
fact that the cost function penalizes the second derivative. By 
default the cost function in d iv a n d  therefore includes the 
derivatives up to 1 + n / 2  (rounded upwards) to ensure that 
the analysis has a continuous derivative.

4.2 Benchmark

The tool d iv a n d  is written such that it can run on MATLAB 
and GNU Octave. In general, interpreted language tends to be 
slow on explicit loops. Interpreters like MATLAB can reduce 
this performance penalty by using just-in-time compilation 
(which is currently not available in Octave). Therefore MAT­
LAB tends to be faster on performance benchmarks (e.g. 
Chaves et al., 2006; Leros et al., 2010) than GNU Octave. 
Explicit loops are avoided in the tool d i v a n d  except for the 
number of dimensions which is a quite short loop (typically
1-4 dimensions).

The run-time performance of d i v a n d  for MATLAB (ver­
sion R2012b) and GNU Octave (version 3.6.4) with two im­
plementations of the BLAS library (either GotoBLAS2 ver­
sion 1.13 or Intel ’s Math Kernel Library (MKL) version 10.1) 
were tested. The benchmark was performed on an Intel Xeon 
L5420 CPU (using a single core) with 16 GB memory. The 
domain is a square and the used correlation length is in­
versely proportional to the number of grid points in one di­
mension.

Observations come from an analytical function and are lo­
cated at every fifth grid point (in the two dimensions). In 
all cases the correctness of the analysed field was verified 
by comparing the interpolated field to the original analyt­
ical function. The benchmark was repeated five times and 
the median value is shown in Table 4 for the primal algo­
rithm with Cholesky factorization and for the dual algorithm 
with conjugate gradient minimization (Table 5). For the pri­
mal algorithm, all tested versions perform equally well with 
a slight advantage of Octave for domain sizes of 500 x  500 
and 600 x  600. Profiling of the code shows that for the primal 
algorithm most of the time is spent in the Cholesky factoriza­
tion using the library CHOLMOD included in SuiteSparse in 
both MATLAB and Octave which explains the similar re­
sults.

In general, the dual algorithm is much slower than the 
primal algorithm with Cholesky factorization. However, it 
should be reminded that the latter would be unpractical in 
some cases (in particular with spatially correlated observa­
tion errors). The difference between the different interpreters 
is more pronounced for the dual case. The benchmarks show
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that MATLAB is faster for small domain sizes (30 x  30 and 
50 x  50), while GNU Octave (with GotoBLAS2 and MKL) 
outperforms MATLAB for larger domain sizes. For small do­
main sizes, the preparation of the matrices to invert repre­
sents a significant fraction of the total run time where GNU 
Octave tends to be slower due to the lack of a just-in-time 
compiler. For larger domains, the cost is dominated by ma­
trix operations which are faster in Octave for our case. In 
our benchmark, the Math Kernel Library is slightly faster in 
Octave than the GotoBLAS2 library.

5 Implementation

The d iv a n d  tool is implemented such that it allows analysis 
in an arbitrary high dimensional space. The grid must be an 
orthogonal curvilinear grid and some dimensions might be 
cyclic. Internally the «-dimensional arrays, e.g. for the anal­
ysed field, are represented as a “flat” vector. To implement 
the background constraint, the following basic operations are 
implemented as sparse matrices:

-  differentiation along a given dimension;

-  grid staggering along a given dimension;

-  trimming the first and last elements of a given dimen­
sion.

All other differential operators are derived as a product and 
sum of these basic operations. For instance, the advection 
constraint is implemented by performing successively the 
following operations: differentiation along the ¿th dimension 
for i =  1, . . . , «  (operator D¡), staggering the result back to 
the centre of the grid cell (operator S, ), removing land points 
(operator P) and multiplying with a diagonal matrix formed 
by the ¿th velocity component (grid points corresponding to 
land are removed; operator diag(v¡) ). All of these operations 
are represented as a sparse matrix and the resulting matrix A 
is thus also sparse:

n

A =  ^ d ia g (i> ¡)P S ¡ D¡.
i = 1

The additional constraint corresponding to the advection 
constraint has thus the following form:

Jc(x) = (x — x b)T A T A( x  — x b).

This example illustrates that once the basic operators have 
been implemented, more complex operations can be derived 
on a relatively high level.

Consistent error calculations are also possible with the tool 
d i v a n d  to estimate the error variance of the analysed field. 
This error variance reflects among others the distribution of 
the observations, the correlation length and the background 
variance error. However, the accuracy of the error estimate

of the analysed field depends crucially on the validity of the 
background and observation error covariance.

The tool introduces new matrix objects which implement 
several matrix operations (such as multiplication, multiplica­
tion by its inverse, extraction of diagonal elements). These 
new matrix objects include:

-  a matrix specified by its inverse and potentially factor­
ized (for B and P) ;

-  a matrix specified by an analytical function (for R and
c ¡ ) ;

-  a matrix of the form C +  BBr , which can be inverted 
using the Sherman-Morrison-Woodbury formula (for
R ) ;

-  a matrix composed by block matrices (for additional 
constraints).

By adding these new matrix objects one can code the algo­
rithm in a compact way which is close to the original mathe­
matical formulation. For instance, the product of the analysis 
error covariance matrix P and vector x  can just be coded as 
P*x  and the matrix multiplication method of matrix object 
P implements the multiplication using the factorized form of 
Eq. (26).

6 Realistic test case

The interpolation was tested using pseudo-observations of 
temperature coming from a global ocean model. The results 
of the year 2007 from the ORCA2 model (Mathiot et al., 
2011) with a spatial varying resolution (generally close to 
2° resolution) are used. Making a reconstruction with model 
data allows one to compare the analysed field to the origi­
nal model data and to assess the quality of the analysis. The 
position of the pseudo-observations are the real positions of 
the Argo observations from year 2007. Observations are ex­
tracted from the daily model results and the analysis targets 
monthly means. This mimics the common setup with real ob­
servations where measurements are instantaneous while the 
analyses represent a mean over a given time period. Only sur­
face data are reconstructed for every month separately (2-D 
analysis) or all 12 months are considered together (3-D anal­
ysis). The analysis is compared to a monthly model clima­
tology for the year 2007 and the RMS (root mean squared) 
difference is calculated. This approach is similar to twin ex­
periments used to test data assimilation schemes (e.g. Nerger 
et al., 2012). This procedure has also been used before in the 
context of data analysis, e.g. by Guinehut et al. (2002) and 
Buongiorno Nardelli (2012). In the following test cases, the 
solver based on Cholesky factorization is used (Chen et al., 
2008; Davis and Hager, 2009). The accuracy of the result is 
tested by verifying that gradient of the cost function at the 
analysis is close to the floating point precision.
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Fig. 3. Number o f iteration as a function of domain size (in one 
dimension). The number of grid points if the domain size is squared.

Table 5. Run time in seconds for different domain sizes for MAT­
LAB (R2012b) and Octave version 3.6.4 (using GotoBLAS2 or 
MKL) for the dual algorithm.

MATLAB-R2012b Octave-GotoBLAS2 Octave-MKL

30 0.039 0.111 0.145
50 0.122 0.161 0.203

100 3.021 2.194 1.879
200 60.685 42.194 35.367
300 443.830 275.641 230.988

The central question of this test case is to assess the ben­
efit of a 3-D analysis (longitude, latitude and time) com­
pared to a 2-D analysis (longitude and latitude). Afterward 
different variants of the analysis are also tested, in particular 
the advection constraint. Parameters in the analysis (signal- 
to-noise ratio, spatial and temporal correlation length and 
strength of the advection constraint) are optimized to ensure 
the comparison of every approach in its best possible con­
figuration. Analyses are compared to a model climatology 
obtained by averaging the daily model output.

The following experiments use the direct solver with a 
sparse Cholesky factorization.

6.1 2-D analysis

All observations from the same month are considered as data 
from the same time instance. The correlation length is chosen 
here to be identical in both horizontal dimensions. Signal-to- 
noise ratio and correlation length are optimized by an “ex­
haustive search’’ of those parameters. This search is imple­
mented by varying the signal-to-noise ratio between 1 and 30 
(60 values equally distributed) and correlation length of 100- 
3000km (also 60 values equally distributed). In total, 3600 
analyses have thus been carried out for this case. The RMS 
difference (space and time average) between the analysis and 
the reference model climatology is minimum for a signal-to- 
noise ratio of 14 and a correlation length of 1072 km (Fig. 4). 
The global RMS error of this analysis is 1.1501 °C (Table 6). 
This experiment serves as the baseline for other experiments

5 10 15 20 25 30
signal-to-noise ratio

Fig. 4. RMS difference between the reference climatology and the 
analysis for different values of signal-to-noise ratio and correlation 
length. A non-linear colour-map is used to enhance detail near the 
minimum.

and improvements which will be expressed as using the mean 
square skill score using this experiment as a reference.

Figure 5 (top left panel) shows the RMS error averaged 
over time for every spatial grid point. This RMS field reflects 
essentially the data coverage and areas with poor coverage 
that can have RMS errors of 3 °C and more. Due to the spar­
sity of Argo data in the coastal area (relative to the near-shore 
scales of variability), the RMS error is generally highest near 
the coast.

As a variant of the 2-D analysis, the stationary advection 
is added to the cost function.

J a [(p] =  ƒ  ( v - V c p ) 2 d D  = a 2 ƒ  +  â D ' ( 4 1 )

D  D

where v  = (asu , a sv). The vector (u,v)  represents the 
monthly-averaged model currents. The coefficient as deter­
mines how strong the advection constraint should be en­
forced. It is instructive to visualize the impact of a point ob­
servation without and with advection constraint. The correc­
tion by a point observation is in fact directly related to the 
background error covariance. Figure 6 shows the impact of 
an observation located at 72° W, 36.9° N (white cross). With­
out advection constraint, the covariance is mostly isotropic. 
The slight deviation from isotropy is due to the proximity of 
the coastline. The location with the largest impact is marked 
by a white circle. One could expect that the location with the 
largest impact coincides with the location of the observation. 
This is actually the case for an observation far away from the 
coastline. However, the background error variance is not spa­
tially uniform. In the interior of the domain, every grid point 
is constrained by the four direct neighbours (or more if higher 
derivatives than the Laplacian are used). This is not the case
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Table 6. Summary of all experiments with the optimal parameter values.

Experiment X L x
(km)

Lt
(month)

Advection RMS
(°C)

Skill score 
(%)

2-D 14.0 1072 - - 1.1501 0
2-D, advection 71.2 1171 - 7.22 0.9696 29
3-D 27.0 1397 4.9 - 0.9822 27
3-D, fractional time 29.5 1373 4.7 - 0.9820 27
3-D, fractional time, 53.8 1477 4.6 1.19 0.8589 44
advection

Fig. 5. Top left: RMS difference (averaged over time) between the 2-D analysis and the model reference climatology. Top right: idem for 
3-D. Bottom: difference of RMS error of the 2-D analysis minus the RMS error of the 3-D analysis.

RMS 2d-analysis

RMS(2D) - RMS(3D)

RMS 3d-analysis

at the boundary of the domain and boundary points are thus 
less constrained. Therefore the background error variance is 
higher near the coast.

With the advection constraint, the covariance is elongated 
along the path of the Gulf Stream (downstream and up­
stream) . This is a desirable effect since tracers in the ocean 
tend to be uniform along ocean currents. The variance with 
advection constraint is relatively spatially uniform near the 
location of the observation and thus the location of maximum 
impact coincides with the position of the observation.

The 2-D analysis with advection constraint has thus in to­
tal three parameters: signal-to-noise ratio, spatial correlation 
and strength of the advection constraint. These parameters 
are optimized by the Nelder-Mead algorithm (Neider and 
Mead, 1965) by minimizing the RMS difference between the 
analysis and the reference climatology.

6.2 3-D analysis

In a first test, all observations from the same month are again 
considered coming from the same time instance. Although 
this is not necessary for a 3-D analysis, it simplifies the com­
parison with the previous 2-D case where the information of 
the actual day is not taken into account. Signal-to-noise ratio,

spatial correlation and temporal correlation are optimized us­
ing the non-linear Nelder-Mead minimization as before. The 
RMS is minimum with 0.9822, for a signal-to-noise ratio of 
27, spatial correlation length of 1373 km and a temporal cor­
relation length of 4.9 months. Extending the analysis from 
2-D to 3-D improves the skill (mean square skill score) by 
27%.

For every spatial grid point the time-average d RMS error 
is computed (Fig. 5). To facilitate the comparison with the 
2-D case, the difference of these RMS values is also shown 
(Fig. 5, bottom panel). Red shows areas where the 3-D anal­
ysis is better and in blue areas the 2-D analysis is more accu­
rate. The RMS error is generally reduced by the 3-D analysis 
in coastal areas where few observations are present. However 
also a small degradation is observed in the open ocean. This 
is attributed to the fact that signal-to-noise ratio and correla­
tion length are optimized globally. It is probable that space- 
dependent parameters (distinguishing for example between 
open ocean and near shore conditions) will improve the anal­
ysis even more.

In a second test, the actual days of the pseudo­
measurements are used in the analysis (noted fractional time 
in Table 6) which slightly improves the analysis. The small
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Fig. 6. 2 -D case: background error covariance (left panels) relative to the location marked by a cross, and surrounding grid points and 
background variance (right panels). The upper (lower) panels correspond to the case without (with) advection constraint. The circle indicates 
the grid point with the highest covariance.

increase of the signal-to-noise ratio is consistent with the fact 
that by providing the exact date (instead of the month), the 
observations are more coherent. The relative small improve­
ment is related to the fact that the optimal temporal correla­
tion is 4.9 months and larger than one month (the time reso­
lution of the original 3-D experiment).

The analysis is also performed using the advection con­
straint based on model currents. Since the time dimension is 
included, it is possible to use the non-stationary advection 
constraint:

JÄ< P\ = ƒ  (v-V<p)2dD =  a ¡  ƒ  + d D’ (42)
D D

where v = (asu, asv, as) and as determines the strength of the 
advection constraint. Figure 7 shows the impact of a point ob­
servation in the 3-D case. Without the advection constraint, 
the covariance is essentially uniform with a small modulation 
due to the proximity of the coastline. With a time-dependent 
advection constraint a distinction between upstream and 
downstream is made if two different time steps are consid­
ered. The location of the observation is more strongly con­
nected to the upstream area of previous time instances and 
more strongly related to the downstream area of the follow­
ing time instances. The time-dependent covariances with the 
advection constraint can thus relate different time instances 
taking the advection into account. As in the 2-D case, the 
advection constraint is introduced with a proportionality co­
efficient as allowing to tune the strength of this effect. The 
calibration of this parameter is related to, among others, the 
overall significance of advection compared to other processes 
and the accuracy of the current field. In this test case, the

advection parameter is determined, together with the spatial 
and temporal correlation scale and the signal-to-noise ratio, 
by minimizing the difference between the analysis and the 
reference climatology as in Sect. 6.1.

The optimal values of the analysis parameters are shown 
in Table 6. To compare the different variants, a skill score rel­
ative to the 2-D case (without advection) has been computed:

RMS2
skill score = 1 ----------=— . (43)

R M S iD

It follows that inclusion of the advection constraint in the
2-D analysis improves the skill by 29 %. It is surprising to 
see that this improvement is of similar amplitude as the im­
provement obtained by including the time dimension as the 
later requires the solution of a 12 times larger system (the 
number of months). Including the exact date of a measure­
ment instead of its month leads to only a small improvement. 
The best analysis is obtained when using a 3-D domain in 
combination with the advection constraint leading to an im­
provement of 44 %. Including the advection constraint has 
again the beneficial effect of increasing the optimal signal- 
to-noise ratio as the observations are more coherent along 
flow lines.

7 Conclusions

A variational analysis tool has been developed and tested 
with a realistic data distribution from Argo, but with pseudo­
observations extracted from a model. This allows to compare
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Fig. 7. 3-D case: background error covariance without (upper row) and with advection constraint (lower row) for a data point located at the 
cross and at month 6.

the analysis to model climatology data and to quantita­
tively compare different analyses. Parameters are optimized 
by minimizing the difference between the analysis and the 
model climatology. However in practice, a cross-validation 
data set is needed for such optimization, which ideally should 
be homogeneously distributed. An improvement with 3-D 
(longitude, latitude and time) versus 2-D analysis (horizon­
tal only) was shown. A relatively larger reduction of the RMS 
error was also observed by including the advection constraint 
(stationary in the 2-D case and time-dependent in the 3-D 
case). However, it should be noted that the current fields used 
here are dynamically coherent with the tracer fields as they 
come from the same model. In a realistic setup with real ob­
servations, an improvement similar to the one reported here 
will require quite accurate current fields.

The source code of the tool d i v a n d  is available at http: 
//modb.oce.ulg.ac.be/mediawiki/index.php/divand and dis­
tributed under the terms of the General Public License. The 
toolbox will also be made available through to the Octave 
extensions repository Octave-Forge.

Appendix A 

Hankel transform

We note f ( k )  the Fourier transform of a function f {x ) :

ƒ(* ) =  i  e - ikxf ( x ) d " x .  (AÍ)

IR ”

If the function f ( x )  is a radial function, f ( x )  = F(r),  
then its Fourier transform also depends only on the module 
of the wave-number vector, f ( k )  = F(k),  where r = \x \ and 
k =  |*|.

The Fourier transform of a radial function in IR" is given 
in terms of the Hankel transform by (Arfken, 1985)

OO

F{k) = (2tc) 2 J  J,j-2( k r ) r ^  F(r)r  dr, (A2)

0

where Jv(r) is the Bessel function of first kind of order v. The 
inverse Fourier transform is given by a similar relationship:

OO
r~^~F(r)  =  (27t)_ 7 j  J „_2( k r ) k ^ F (k)kdk.  (A3)

0
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