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Abstract

The global demand for biomass for food, feed, biofuels, and chemical production
is expected to increase in the coming decades. Microalgae are a promising
new source of biomass that may complement agricultural crops. Production of
microalgae has so far however been limited to high-value applications. In order
to realize large-scale production of microalgae biomass for low-value applications,
new low-cost technologies are needed to produce and process microalgae. A
major challenge lies in the harvesting of the microalgae, which requires the
separation of a low amount of biomass consisting of small individual cells from
a large volume of culture medium. Flocculation is seen as a promising low-cost
harvesting method for primary concentration. In this study, we overview the
challenges and possible solutions for flocculating microalgae focussing on three
flocculation modes: flocculation using cationic starch, electro-coagulation and
flocculation induced by high pH. Secondly, those modes were compared to two
reference modes (flocculation using aluminum sulphate and chitosan) in function
of their interaction with algal organic matter and floc properties.

We evaluated the potential of cationic starch as a flocculant for harvesting
microalgae using jar test experiments. Cationic starch was an efficient flocculant
for freshwater (Parachlorella, Scenedesmus) but not for marine microalgae
(Phaeodactylum, Nannochloropsis). At high cationic starch doses, dispersion
restabilization was observed. The required cationic starch dose to induce
flocculation increased linearly with the initial algal biomass concentration. Of
the two commercial cationic starch flocculants tested, Greenfloc 120 (used in
wastewater treatment) was more efficient than Cargill C*Bond HR 35.849 (used
in paper manufacturing). For flocculation of Parachlorella using Greenfloc
120, the cationic starch to algal biomass ratio required to flocculate 80% of
algal biomass was 0.1. For Scenedesmus, a lower dose was required (ratio 0.03).
Flocculation of Parachlorella using Greenfloc 120 was independent of pH in
the pH range of 5 to 10. Measurements of the maximum quantum yield of
PSIT suggest that Greenfloc 120 cationic starch was not toxic to Parachlorella.
It could thus be concluded that cationic starch may be used as an efficient,
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nontoxic, cost-effective, and widely available flocculant for harvesting microalgal
biomass.

Secondly, the use of electro-coagulation flocculation (ECF) as a method for
harvesting a freshwater (Chlorella vulgaris) and a marine (Phaeodactylum
tricornutum) microalgal species is evaluated. ECF was shown to be more
efficient using an aluminum anode than using an iron anode. Furthermore, it
could be concluded that the efficiency of the ECF process can be substantially
improved by reducing the initial pH and by increasing the turbulence in the
microalgal suspension. Although higher current densities resulted in a more
rapid flocculation of the microalgal suspension, power consumption, expressed
per kg of microalgae harvested, and release of aluminum were lower when a lower
current density was used. The aluminum content of the harvested microalgal
biomass was less than 1% while the aluminum concentration in the process
water was below 2 mg L~!. Under optimal conditions, power consumption of
the ECF process was around 2 kWh kg~! of microalgal biomass harvested for
Chlorella vulgaris and 0.3 kWh kg~! for Phaeodactylum tricornutum. Compared
to centrifugation, ECF is thus more energy efficient. Because of the lower power
consumption of ECF in seawater, it is a particularly attractive method for
harvesting marine microalgae.

We explored the potential of flocculation induced by high pH for harvesting
Chlorella vulgaris. Our results demonstrated that flocculation can be induced
by increasing medium pH to 11. Although both calcium and magnesium
precipitated when pH was increased, only magnesium (0.15 mM) by the
formation of magnesium hydroxide proved to be essential to induce flocculation.
The costs of four different bases (sodium hydroxide, potassium hydroxide,
calcium hydroxide, magnesium hydroxide) were calculated and evaluated and
the use of calcium hydroxide appeared to be the most cost-efficient. Flocculation
induced by high pH was thus shown to be a potentially useful method to
preconcentrate freshwater microalgal biomass during harvesting.

Microalgae excrete relatively large amounts of algal organic matter (AOM)
that may interfere with flocculation. The influence of AOM on flocculation
of Chlorella vulgaris was studied using five different flocculation methods:
aluminum sulfate and chitosan as reference modes in comparison with cationic
starch, electro-coagulation—flocculation (ECF) and pH-induced flocculation. The
presence of AOM was found to inhibit flocculation for all flocculation methods
resulting in an increase of dosage demand. For pH-induced flocculation, the
dosage required to achieve 85% flocculation increased only 2-fold when AOM
was present, while for chitosan, this dosage increased 9-fold. For alum, ECF and
cationic starch flocculation, the dosage increased 5 to 6-fold. Interference by
AOM is an important parameter to consider in the assessment of flocculation-
based harvesting of microalgae.
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Flocculation of microalgae should not only be effective in terms of flocculation
efficiency, but also in terms of settling rate and concentration of the biomass.
Floc characteristics such as settling velocity, concentration factor and floc size
were therefore studied for the five previously mentioned flocculation modes for
Chlorella vulgaris. These floc characteristics were influenced by the flocculation
mode, which depends on the coagulation mechanism: adsorption — charge
neutralization, sweeping or bridging. Secondly, the influence of the presence of
AOM was evaluated. This resulted in a decrease of the concentration factor. The
floc characteristics upon flocculation using cationic starch were least affected
by the presence of AOM, while flocculation using chitosan was most affected.
The impact on floc characteristics is an important parameter to consider next
to flocculation efficiency in the assessment of flocculation-based harvesting of
microalgae.






Samenvatting

In de nabije toekomst zal de vraag naar biomassa als basisgrondstof voor de
aanmaak van voedingsproducten, voeders of biobrandstoffen alsmaar toenemen.
Biomassa afkomstig van micro-algen is een veelbelovende nieuwe bron van
biomassa en kan een aanvulling kan zijn op traditionele biobrandstofgewassen.
Momenteel heeft de productie van microalgen enkel hoogwaardige toepassingen.
Om ook op grote schaal microalgen te kunnen gebruiken voor laagwaardige
producten, zijn er nieuwe en goedkopere technologieén nodig om microalgen te
produceren en te verwerken. In het bijzonder vormt het efficiént en goedkoop
oogsten van microalgen momenteel nog steeds een uitdaging. Het gebruik
van flocculatie is veelbelovend om de totale productiekost een grootteorde
te doen dalen. In deze studie worden de mogelijkheden van drie flocculatie
technieken van nabij bestudeerd: flocculatie via het biopolymeer kationisch
zetmeel, electrocoagulatie flocculatie en flocculatie bij hoge pH. Deze drie
technieken werden daarenboven vergeleken met twee referentietechnieken om de
interactie van organisch materiaal geproduceerd door microalgen met flocculatie
beter te begrijpen. Daarbij werd eveneens de invloed op de vlokeigenschappen
na flocculatie bestudeerd.

Kationisch zetmeel is een interessant biopolymeer dat geregeld gebruikt wordt
bij het zuiveren van afvalwater. Tijdens onze experimenten bleek dat dit
biopolymeer enkel een efficient flocculant was voor zoetwater maar niet voor
zoutwater micro-algen. Bij toevoeging van hoge hoeveelheden van het flocculant
trad herstabilitatie op waardoor de flocculatie efficiéntie daalde. De benodigde
dosis kationisch zetmeel bleek lineair toe te nemen met de initiéle biomassa
concentratie. Er werd een duidelijk verschil in flocculatie efficiéntie waargenomen
tussen de twee geteste kationische zetmelen. Greenfloc 120, gebruikt in
waterzuiveringstoepassingen, was beduidend efficiénter dan het zetmeeltype dat
gebruikt wordt tijdens papierproductie (Cargill C*Bond HR 35.849). Om de
zoetwatermicro-alg Parachlorella optimaal te doen flocculeren, was 0.1 g g+
biomassa noodzakelijk. Maar voor een andere zoetwatersoort (Scenedesmus)
was dit slechts 0.03 g g~! biomassa nodig. Er kon dus besloten worden dat
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kationisch zetmeel is dus een efficiént en mogelijk goedkoper alternatief is om
zoetwater microalgen te oogsten.

Electrocoagulatie flocculatie werd geévalueerd voor zowel zoetwater (Chlorella
vulgaris) als zoutwater (Phaeodactylum tricornutum) micro-algen. Een eerste
reeks experimenten toonde aan dat het gebruik van aluminium als kathode
materiaal efficiénter was dan ijzer. Daarenboven werd duidelijk dat lagere
initi€le pH waarden en het creéren van turbulentie in het medium de flocculatie
efficiéntie ten goede kwamen. In het algemeen leidde een hogere stroomsterkte
tot een hogere aluminium vrijgave aan de kathode. In optimale omstandigheden
was het aluminium gehalte in de biomassa onder 1% en in het medium onder
2 mg L~! na flocculatie. De benodigde elektrische energie was 2 kWh kg~!
biomassa voor het oogsten van Chlorella terwijl dit slechts 0.3 kWh kg™! was
voor Phaeodactylum. Juist omwille van het lage energieverbruik in zoutwater,
is deze techniek dus uitermate interessant voor het oogsten van zoutwater
micro-algen.

Flocculatie via verhoogde pH werd bestudeerd voor Chlorella vulgaris en we
toonden aan dat flocculatie geinduceerd kon worden vanaf een pH van 11.
Niettegenstaande het feit dat zowel calcium als magnesium zouten precipiteerden,
werd aangetoond dat magnesium door middel van magnesium hydroxide vorming
een belangrijke rol speelde tijdens het coagulatie proces. De kost van vier
verschillende basen (natrium hydroxide, kalium hydroxide, calcium hydroxide
en magnesium hydroxide) werd berekend, waarbij calcium hydroxide het meest
potentieel had. Er kon besloten worden dat flocculatie via verhoogde pH een
interessante methode vormt om micro-algen op te concentreren.

Micro-algen staan bekend om het feit dat ze in bepaalde omstandigheden grote
hoeveelheden organisch materiaal afscheiden, wat voor mogelijke interferentie
tijdens het flocculeren kan zorgen. De invloed van de aanwezigheid van organisch
materiaal op flocculatie werd onderzocht voor Chlorella vulgaris. De drie
eerder vermelde flocculatie methoden werden geévalueerd in vergelijking met
2 referentie methoden: flocculatie via aluminium sulfaat en via chitosan. De
aanwezigheid van organisch materiaal had een inhiberend effect op de flocculatie
en dit voor alle geteste methoden. Om een flocculatie efficientie van 85% te
verkrijgen, was de dosering bij flocculatie via verhoogde pH in aanwezigheid
van organisch materiaal dubbel zo hoog. Maar voor chitosan verhoogde de
dosis negen maal in aanwezigheid van organisch materiaal. Voor aluminium
sulfaat en electrocoagulatie flocculatie verhoogde de dosis vijf tot zes keer. Deze
studie toonde aan dat mogelijke interferentie door aanwezigheid van organisch
materiaal een belangrijke bijkomende parameter is tijdens de evaluatie van
flocculatie van micro-algen.
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Naast flocculatie efficientie werden ook vlokeigenschappen zoals sedimentatie
snelheid, concentratiefactor en vlokgrootte geévalueerd voor Chlorella vulgaris en
dit voor de vijf eerder vernoemde flocculatie methoden. Deze vlokeigenschappen
werden beinvloed door de flocculatie methoden, en meer bepaald door het
coagulatie mechanisme van deze methoden. Bijkomend werd de invloed van
de aanwezigheid van organisch materiaal getest. Daarbij werd het duidelijk
dit vooral de concentratie factor beinvloedde. Aanwezigheid van organisch
materiaal zorgde vooral voor een afname van de vlokcompactheid, en dit in
het bijzonder voor flocculatie via chitosan. De vlokeigenschappen bekomen na
toevoeging van kationisch zetmeel werden daarentegen het minst beinvloed door
de aanwezigheid van organisch materiaal. De impact op vlokeigenschappen is
naast flocculatie efficientie een belangrijke parameter om te gebruiken tijdens
de evaluatie van flocculatie gebaseerde oogstmethoden voor micro-algen.
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Context and aim

About 12% of the world’s ice-free land area is currently being used to produce
biomass from agricultural crops. This corresponds to more than 1.5 billion
hectares. This biomass is mainly used for food (65%) and animal feed (35%).
Due to an increase in the world’s population and improving living standards
in developing and transitional economies, global demand for biomass for food
or feed production is expected to increase with more than 50% in the next
two decades [61]. On the other hand, to reduce emissions of carbon dioxide
threatening to disrupt the climate, developed economies are taking initiatives
to move from a fossil fuel economy to a biobased economy. In such an economy,
biomass replaces petroleum as a source of transport fuel and as a feedstock for
the chemical industry [84]. As a result, in developed economies, an increasing
proportion of agricultural crops is converted to biofuels or chemicals [130].
This growing demand for biomass for food, feed, fuel and chemicals is already
resulting in a rise in food prices, with dramatic consequences for the world’s
poorest people [101]. Therefore, there is a need for additional sources of biomass
that can complement agricultural biomass production.

Microalgae are currently considered to be the most promising new source of
biomass [41]. They do not require arable land and thus do not compete for land
with agricultural crops. Many microalgae can be cultivated in seawater and thus
do not depend on the world’s limited freshwater supplies. But even for microalgae
that grow in freshwater, water demand is lower than for terrestrial crops because
microalgae do not actively transpire water [145]. Furthermore, microalgae
can produce more biomass per unit land area than agricultural crops. They
are capable of producing between 40 and 90 tonnes dry biomass ha=! year—1!,
depending on the technology used and the local climate [194]. Therefore,
microalgae are attractive for biomass production in a crowded world. Because
they do not require roots and shoots for water uptake or support, microalgal
biomass contains less structural compounds such as lignin and cellulose and
therefore produces less waste products and more useful products such as lipids
and proteins than agricultural crops.



2 CONTEXT AND AIM

However, for microalgal biomass to become a commodity like most agricultural
crops, the cost of production has to be reduced. The past years have seen an
explosion in research and development on microalgal biomass production, both
in academia and industry [42]. Much progress has been made in increasing
the yield through photobioreactor design [125], selection of strains [102] and
genetic engineering of metabolic pathways [67]. Much less progress has been
made on research and innovation in downstream processing, although this is
essential to reduce the cost of the production process [38, 72]. Today, microalgal
production is rapidly moving from lab- and pilot scale to full-scale installations
[67], prompting the need for cost- and energy efficient downstream processing
technologies.

A major challenge in downstream processing of microalgae lies in separating
the microalgae from their growth medium, i.e. the harvesting process. Because
a high biomass concentration leads to mutual shading of the microalgal cells
and thus a reduction in productivity, biomass concentrations in microalgal
cultures are usually low: from 0.5 g L™! in open pond reactors to about
5 g L~! in photobioreactors. This means that a large volume of water has to
be removed to harvest the biomass. Due to the small size of the microalgal cells
(2 — 20 pum), harvesting by means of sedimentation or simple screening is not
feasible, except perhaps for larger species such as Arthrospira. Centrifugation
is a proven technology for fast and effective harvesting of most microalgae,
but is currently not feasible as single step harvesting method for low-value
applications of microalgae because of its high capital and operational costs [23].
If the microalgae could be primary concentrated by coagulation-flocculation
and gravity sedimentation prior to further dewatering steps, the energy demand
for harvesting could be strongly reduced.

The aim of the present study was to investigate and evaluate several flocculation
based harvesting processes as primary concentration step for microalgae biomass
production. Our research was focussed on defining the variables that influence
flocculation, understanding the coagulation mechanism and specifying the
implications involved in the integration of flocculation into microalgal processing.

In this study, Chlorella vulgaris was selected as model species. Chlorella vulgaris,
a freshwater green algae belonging to the phylum Chlorophyta, is one of the
most studied microalgae and it is known for its high productivity under various
cultivation conditions [102, 140]. To evaluate the effect of medium salinity,
Phaeodactylum tricornutum was used. This microalgae species is a well-studied
marine diatom, belonging to the phylum Heterokontophyta, that can be rich in
long chain omega-3 polyunsaturated fatty acids (PUFAs, Section 1.1.3) [202].
Additionally, other species were also tested in particular parts of this study for
comparison (Parachlorella kessleri, Scenedesmus obliquus. and Nannochloropsis
salina).
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Chapter 1 gives a brief overview of current literature on some general aspects
of microalgae biotechnology concerning applications, production process and
the challenges of harvesting microalgae. Additionally, the recent evolutions of
several approaches for microalgae flocculation are discussed. In Chapter 2 to
4, we evaluate novel approaches for flocculation, including flocculation using
cationic starch (Chapter 2), electrocoagulation (Chapter 3) and pH induced
flocculation (Chapter 4). Especially for the latter approach a lot of attention
is paid to the coagulation mechanism. Furthermore, we compare different
flocculation modes in function of their interaction with algal organic matter
and floc properties. In Chapter 5, the influence of organic matter generated
by Chlorella vulgaris on the flocculation efficiency is investigated for the three
flocculation modes presented in Chapter 2-4 in comparison with two reference
modes: flocculation using aluminum sulphate (alum) and chitosan. Additionally,
the link between floc properties, coagulation mechanism and presence of organic
matter is investigated in Chapter 6. Finally, the outcomes are integrated in a
last Chapter 7, where conclusions are drawn and future research avenues are
explored.






Chapter 1

Harvesting as a key challenge
for sustainable microalgae
production

Adapted from: Vandamme D, Foubert I, Muylaert K. 2013. Flocculation as a low-cost
method for harvesting microalgae for bulk biomass production. Trends in Biotechnology,
31(4), 233-239.
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1.1 Microalgae: from biology to biotechnology

1.1.1 What are microalgae?

Any organism with chlorophyll a and a thallus which is not differentiated
into roots, stem and leaves is regarded by phycologists to be an alga [105].
Therefore, the term microalgae refers to the microscopic algae sensu stricto
and the oxygenic photosynthetic bacteria, i.e. the cyanobacteria. Microalgae
are mostly unicellular and can be found in marine, brackish or freshwater
environments. They are found all over the world, mainly distributed in the
waters, but also on the surface of all type of soils. Besides water, they need
COs, phosphate, nitrate and specific trace elements such as zinc and copper.
Due to their simple structures, microalgae are able to achieve high growth rates
and photosynthetic efficiencies. The photosynthetic mechanisms of microalgae
are similar to that of land plants, but microalgae are able to capture nutrients
very efficiently out of their aquatic environment. In addition to this, microalgae
are able to grow exponentially when the conditions are optimal. Because of
these unique characteristics, microalgae have the potential to become one of
the world’s most efficient organisms to transform light into biomass.

The industrial value of microalgae lies primarily in their potential utilization
for food, feed and fine chemicals, using solar energy (Section 1.1.3). Ounly
recently, they gained additional interest as feedstock for biofuels [40]. The
origins of applied phycology most probably date back to the establishment of a
culture of Chlorella by Beijerinck in 1890 [9]. Even today, Chlorella takes up
an important place in the commercial use of these micro-organisms mainly for
human nutrition.

Generally, the chemical composition of microalgae is comparable with soya.
They can contain high protein and lipid levels. Table 1 shows a comparison
of the global chemical composition of different microalgae versus traditional
human food sources. Variations in carbohydrates, lipids and soluble proteins
are species and even strain specific. Additionally, the cultivation conditions
(Section 1.1.2) can affect the chemical composition.

1.1.2 Biological principles of mass cultivation

Microalgae have a typical sigmoid growth response over time with a distinct
difference between the growth phases: lag, exponential, linear, stationary and
declining growth phase. In the lag phase, the microalgae population is adapting
to the environmental conditions. Depending on several conditions such as
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Table 1.1: Global chemical composition of different microalgal species
compared with human food sources (% of dry matter) [8, 180, 31, 150].

Commodity Protein Carbohydrates Lipids
Rice 8 7 1
Egg 47 4 41
Soya 37 30 20
Chlorella vulgaris 55 15 18
Phaeodactylum tricornutum 34 26 18
Nannochloropsis salina 17 23 26
Arthrospira platensis 65 18 8

nutrient availability, light intensity, temperature and contamination, the growth
can achieve its maximum rate during the exponential phase. When nutrients
are depleted or light is limited, a transition to linear and stationary growth
will occur. Under these conditions, competition with other organisms such
as different algae species, zooplankton, bacteria and fungi can lead to culture
contamination resulting in a declining growth rate.

One of the major studied factors influencing growth and productivity is light
[152, 77, 97, 4]. The conversion of light into chemical energy is covered by
the photosynthetic efficiency. Only a small fraction of the photon flux can be
absorbed and used by the photosynthetic complexes within the cells. Moreover,
light intensity decreases exponentially with depth in water surfaces, resulting in
light and dark zones. This is especially important for the design of microalgae
photobioreactors (Section 1.1.4). Depending on the light intensity and the
microalgae species, there is no increase in biomass yield beyond a certain
amount of solar radiation. In other words, light saturation will occur and
this will affect the photosynthetic rate. In addition, high light intensities can
lead to photoinhibition and causes damage to the photosynthetic complexes.
Additionally, increasing cell density causes a mutual shading effect and affects
the light penetration depth. The photosystems of those cells present in
the dark zones will adapt to the new light conditions, a process known as
photoacclimatisation. Studies have shown that the reintroduction of those
cells by for example mixing, will result in stronger photoinhibition [82]. All
these factors contribute to the fact that the photosynthetic efficiency in existing
cultivation systems is only around 1 %, while theoretically 4.5% is possible
[191].

Besides light, nutrient availability is a key factor for the growth of microalgae.
The availability of carbon, nitrogen and phosphorous is essential. Next to these
nutrients, a series of trace elements such as zinc, iron, magnesium, calcium,
potassium, cobalt, manganese and boron are necessary. The minimal amount
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and ratio of carbon, nitrogen and phosphorous is determined by the Redfield
ratio: 106C:16N:1P. This means that for each mole of C, 0.11 mole N and 0.01
mole P needs to be available. It must be noted that this ratio depends on
species and cultivation conditions [66]. Carbon is commonly supplied by COx
and HCOj3 . Contrary to land plants, atmospheric CO5 alone cannot satisfy the
C-requirements of high yielding autotrophic algal production systems. Diffusion
rates for CO4 from the atmosphere into open ponds can at most sustain algal
productivities around 10 g m~2 d=! [152]. As a consequence, it is not uncommon
to measure pH’s as high as 11 in high algal density production systems where
no additional CO45 has been supplied. Secondly, COs supply is important with
respect to respiration activity, which is determined by the ratio of dissolved
O and CO; concentrations. The transfer of these molecules is catalysed
by ribulose-1,5-bisphosphate carboxylase oxygenase, commonly known as the
enzyme Rubisco. Although Rubisco has a 60 times higher affinity for CO5 than
for O, high dissolved Oy concentrations in combination with depleted CO5 can
result in a high photorespiration activity. This consequently leads to a temporal
decrease in biomass productivity. Prevention of COy depletion can therefore
limit respiration activity.

After carbon, nitrogen is the most important nutrient contributing to the
biomass production. Nitrogen content can range from 1% to more than 10% and
it not only varies between different groups (e.g. low in diatoms) but also within
a particular species, depending on the supply and availability. Typical responses
to nitrogen limitation are discolouration of the cells (decrease in chlorophylls
and increase in carotenoids) and accumulation of organic carbon compounds
such as polysaccharides and lipids [76]. Nitrate and also urea are mostly used
for nitrogen supply, with similar growth rates recorded [202].

Phosphorus is essential not only for growth but also for many cellular processes
such as energy transfer, biosynthesis of nucleic acids, etc. Orthophosphate
(POZf) is the preferred form to be supplied to microalgae. Although less then
1% phosphorus contributes to the algal biomass composition, it is often one of
the most important growth limiting factors in algal cultivation. Phosphorus is
easily bound to other ions (e.g. calcium or iron) resulting in precipitation and
consequently rendering it unavailable for algal uptake. Interestingly, microalgae
are known to be able to store excess phosphorus in polyphosphate bodies during
the so-called luxury uptake [152].
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1.1.3 Applications: from high value to bulk products
History of microalgal mass cultivation

The cultivation of microalgae in the laboratory only started 140 years ago, while
commercial production was only initiated less than 60 years ago. It is thus
one of the modern biotechnologies in comparison to the thousands of years of
experience in production of conventional crops. The first unialgal cultures were
achieved by Beijerinck in 1890 with Chlorella vulgaris [9], and the use of such
cultures for studying plant physiology was developed by Warburg in the early
1900’s. Mass culture of microalgae really began to be a focus of research after
1948 at Stanford (USA), Essen (Germany) and Tokyo and the classic book
edited by Burlew (1953) summarises many of these early studies [32]. Interest
in applied algal culture continued, especially with studies on the use of algae as
photosynthetic gas exchangers for space travel and as microbial protein sources.

Commercial large-scale production of microalgae started in the early 1960s
in Japan with the culture of Chlorella, followed in the early 1970’s with the
establishment of an Arthrospira (formerly known as Spirulina) culturing and
harvesting facility in Lake Texcoco, Mexico by Sosa Texcoco S.A. In 1977 Dai
Nippon Ink and Chemicals Inc. established a commercial Arthrospira plant in
Thailand, and by 1980 there were 46 large-scale factories in Asia producing
approximately 5,000 kg of microalgae (mainly Chlorella) per month. In 1996
about 2,000 tonnes Chlorella was traded in Japan alone. Other Arthrospira
plants were established in the USA (e.g. Earthrise Nutritional LCC in California
and Cyanotech Corp in Hawaii). In the late nineties, Arthrospira production
became established in China and rapidly grew to a yearly production of 5,000
tonnes. Commercial production of Dunaliella salina, as a source of B-carotene,
became the third major microalgae industry when production facilities were
established by Western Biotechnology Ltd and Betatene Ltd (now Cognis
Nutrition and Health) in Australia in 1986. These were soon followed by other
commercial plants in Israel and the USA with an estimated yearly production of
>1,000 tonnes. More recently several plants producing Haematococcus pluvialis
as a source of astaxanthin have been established in Israel, the USA and India.
In a short period of about 30 years the industry of microalgal biotechnology
has grown and diversified significantly.

Simultaneously with the developments in Japan in the sixties, William Oswald
and colleagues at the University of California did pioneering research on the
large-scale microalgae production for wastewater treatment using high rate
algal ponds (HRAP) [135]. In their study the fermentation of microalgae was
proposed to produce methane as a source of energy. This work was the basis for
a new critical assessment of algae for energy by Oswald en Benemann towards
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the end of the 1970s [134]. In 1980, the US Department of Energy initiated the
"Aquatic Species Program" (ASP) aimed to develop algae as sources of liquid
oil fuels which would be able to compete with fossil fuels. The ASP programme
demonstrated the technical feasibility of the large scale cultivation of some
species of microalgae for relatively long periods in open pond systems (Section
1.1.4). However, the application of biofuel production from these microalgae
was evaluated as not economically viable. Moreover, the report stated that
the only possible near- to mid-term application of microalgae biofuels needs
integration with wastewater treatment [166]. Recent increase in fossil energy
prices boosted new interest for microalgal biofuels research and applications.

Present state of microalgal production and applications

Today, only a few species are available on the market in commodity
scale, comprising a total annual microalgae production of less than 10,000
tonnes (Table 1.2). Basically, all established species are extremophiles and
therefore easier to control during cultivation. Chlorella favours high nutrient
concentrations, while Arthrospira is cultivated at high alkalinity and Dunaliella
in highly saline waters. Other species cultivated on small scale with niche
applications are Nannochloropsis, Porphyridium, Haematococcus, Tetraselmis,
Phaeodactylum, Pavlova, Skeletonema, Thalassiosira and Chaetoceros. The
main products are high in value and related to human and animal nutrition,
aquaculture and cosmetics. Examples are tablets of dried Arthrospira
or Chlorella sold as nutritional supplements, food enriched products with
Arthrospira or Chlorella, or purified phycocyanin (blue pigment) from Arthrospira
used in candy and sweets. In animal nutrition, both species are also used
for chicken or fish feed. Specific species are used as food for larval fish in
aquaculture (Nannochloropsis, Tetraselmis, Thalassiorisa and Chaetoceros)
[128]. For cosmetics, mostly Chlorella and Arthrospira are used in creams and
soaps while astaxanthin extracts are often used in skin-care products.

Novel applications of microalgae

Currently, new promising high-value applications based on lipids are under
development. The lipid content of microalgae can be up to 30% (Table 1.1).
Especially marine species can be rich in long chain omega-3 polyunsaturated
fatty acids (PUFAs) such as eicosapentaenoic acid (EPA) or docosahexaenoic
acid (DHA). Those PUFAs are known to have beneficial effects for cardiovascular
diseases and for neuropsychiatric disorders including depression and dementia.
Several beneficial effects of PUFAs are legally accepted claims [62]. Secondly,
short chain omega-3 fatty acids such as alpha-linolenic acid (ALA) can be found
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Table 1.2: Present state of established microalgal production on commodity

11

scale [8, 152, 23, 173].
Species Annual Producer country Application Price order
production (US$ kg™ 1)
(ton dw)
Arthrospira >5000 China, India, USA, human and animal 8-15
Japan nutrition,
cosmetics
Chlorella 5000 Taiwan, Germany, human and animal 20-30
Japan nutrition,
aquaculture,
cosmetics
Dunaliella >1000 Australia, Israél, [B-carotene 600-3,000"
salina USA, China
Haematococcus 300 USA, India, Israél astaxanthin 10,0002

pluvialis

L. price B-carotene
2. price astaxanthin

in a wide variety of microalgal species. This type of PUFAs can have interesting
applications as biobased bulk chemicals in industrial applications such as paints,
lubricants or bioplastics [84].

Microalgae contain antioxidants to protect the cells against reactive oxygen
species (ROS) which are continuously produced when exposed to light. Next to
the carotenoids that can be found in plants (e.g. [S-carotene, lutein, zeaxanthin),
microalgae contain additional carotenoids such as astaxanthin and fucoxanthin
[49]. They also have phycobiliproteins such as phycocyanin (Arthrospira) and
phycoerytrin (Porphyridium) which are interesting pigments that can be used
as natural colorants. Other important antioxidants found in microalgae are
the vitamins C (ascorbic acid) and E (tocopherols) and glutathion [148, 25].
Recent studies have shown the potential of microalgae as source of bioactive
compounds with pharmaceutical potential such as halogenated fatty acids and
sulphated polysaccharides [170, 25, 78]. Currently the focus of this research is
still on screening of species and strains.

Next to these high value applications, the use of microalgae in the nutrient
recovery process in wastewater treatment holds great potential. Recent
studies revealed successful treatment of municipal, agricultural and industrial
wastewaters [35]. In contrast to conventional methods, the use of microalgae
leads to an efficient removal of both N, P and toxic metals. They can therefore
play an important remediation role in the future particularly during the final
(tertiary) treatment of wastewater [142].
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Biofuels from microalgae

Recent increases in fossil oil prices have worldwide boosted the search for
renewable energy resources. The production of microalgae has gained increasing
interest for bioenergy production to improve fuel security and reduce COq
emissions. Microalgae are particularly interesting compared to other crops
because they can be produced on non-arable land, utilizing saline and wastewater
streams [102]. Moreover, lipid accumulation can be boosted by applying
stress conditions resulting in ’fat’ microalgae enriched in triacylglycerols
(TAGs). These TAGs can then be used directly or converted to biodiesel
by transesterification. Alternatively, hydrogen can be produced by certain
microalgae (e.g. Chlamydomonas reinhardtii) under specific conditions such
as an anaerobic environment or sulfur deprivation [170]. To date, published
studies concerning biofuels from microalgae have focused on less than 20 species
taken from culture collections. Of these publications, 70% refer to only one of
the genera and are thus not comparative studies (Fig 1.1). A significant number
of scientific papers have published optimistic numbers of oil yield derived from
microalgae biomass which strengthened the promise of biofuels from microalgae,
while other studies posed concerns about economical viability and sustainability
[72, 40, 161, 191, 141, 115, 194, 182).
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Figure 1.1: (a) Microalgae strain-specific publications related to biofuels
published in Web of Science since 1991. The references presented capture 70%
of all microalgal biofuel publications. (b) Number of publications by year for
microalgae biofuel publications referring to biodiesel, hydrogen and lipids [102].

In 2009, research funding and private initiatives were boosted by the $600M
initiative by Exxon Mobil Corporation to research and develop next-generation
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biofuels produced by photosynthetic organisms. Today, new initiatives are taken
worldwide to bring that promise into reality. A recent example is the construction
of a 120 ha green crude farm in New Mexico, USA by Sapphire Energy to yearly
produce 3.8 million liter of jet fuels and biodiesel. Recently, numerous studies
have proposed the concept of a biorefinery in order to meet the economical
challenges of biofuels production from microalgae. This approach integrates
nutrient recovery processes within a concept of a sequential production of various
co-products, including biofuels [189, 133, 52]. Unlike for mature biorefineries
such as sugar, starch, vegetable oil or lignocellulosic pulp, the proof-of-concept
for microalgal biorefineries remains to be established [153].

1.1.4 General production process

Several production steps are needed in order to obtain dry microalgal biomass.
First, microalgae are cultivated in specific open or closed systems. Secondly,
the microalgae are harvested and subsequently dried. Additionally, further
downstream processing like cell disruption and extraction is necessary to produce
specific products derived from microalgae (Fig 1.2).

N N AN AN AN
Cultivation Harvesting Drying Cell disruption Extraction

Figure 1.2: General production process of microalgae and derived products

Cultivation

Microalgae can be cultivated using two main types of system: open pond culture
systems or closed photobioreactors (Fig 1.3). Open ponds are currently the
main system used to commercially produce microalgae, while most research and
development is done on the improvement of closed photobioreactor systems.

Open pond systems can broadly be classified into three types: circular central-
pivot ponds, raceway ponds and shallow lagoons and ponds (Fig 1.4). Circular
ponds are mixed using a rotating arm and are the oldest type of ponds.
They are still used for commercial cultivation of Chlorella in Taiwan (Section
1.1.3). Raceway ponds are the most widely used culture system for commercial
microalgae cultivation as well as in wastewater treatment [23]. Typically, water
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Figure 1.3: Example of open raceway pond reactors (Ingrepro, The
Netherlands) and a novel design of a low-cost photobioreactor (Proviron,
Belgium) [187].

flow rates of between 20 and 30 cm s~! are required to achieve reliable high

productivities and are mainly obtained by using paddlewheels. Shallow pond
systems are similar to raceway ponds, but have the additional feature of being
sloped. This results in the need of pumping the culture back to the highest point
of the system. Such a system does not continuously require agitation power and
allows the implementation of a pumping strategy dependent on environmental
conditions such as temperature and light intensity.

PADDLE WHEEL
AGITATOR

SLOPE

Figure 1.4: Main types of open pond cultivation systems. 1 Circular central-
pivot ponds. 2a Single raceway pond. 2b joined raceway ponds. 3 Shallow pond
with circulating pump [8].

Photobioreactors are closed systems to cultivate microalgae and can be divided
into two main types: flat panel and tubular photobioreactors [125]. For both
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Table 1.3: Advantages and drawbacks of design approaches for algae production

[42].
Design Culture Productivity? Gas exchange  Scalability = Culture control
density!
Raceway pond 0.25-1 10-20 Low High Low
Tubular system 1.5-5 20-30 Very low Medium High
Biofilm system 50-70° 5-10 High High Low

L expressed in g L™1
2: expressed in gm~2 47!
3. bacteria are included

types, productivities are generally higher when compared to open pond systems
because light is provided more efficiently to the system. At this moment, only a
few hundred tonnes of microalgae are being produced in closed photobioreactors,
especially for high value products such as astaxanthin production (Section
1.1.3). The development of new types of photobioreactors is mainly focused on
decreasing capital costs and improving temperature control of the system. A
good example is the ProviAPT system developed by the Proviron Holding in
Belgium [154] (Fig 1.3).

An alternative system is cultivation using biofilms. In this case, microalgae are
grown attached to supportive material and as such the challenge of harvesting
is overcome (Section 1.2). Biofilm formation benefits from the presence of
bacteria and therefore this approach is mainly used in wastewater treatment
applications.

Both open and closed systems have their advantages and drawbacks (Table
1.3). Among scientists, there is an ongoing debate about which system is most
suitable for large scale production of microalgae. In most cases, the choice for a
particular system will depend on the application. Generally, open systems have
a lower capital and operational cost than closed systems while closed systems
can deliver higher culture densities and productivities. Temperature control
and gas exchange needs special attention during photobioreactor design while
open system face evaporation. Since closed systems allow better process control,
culture management is easier in closed systems compared to open systems.

Harvesting, dewatering and drying

After cultivation, microalgae are harvested and subsequently dewatered and
dried. A huge amount of water needs to be removed in order to obtain a dry
concentrate (>90%) since cultivation densities can be lower than 0.05%. In
a first step, microalgae are harvested as a wet paste with up to 15-25 % dry
solids. The fundamental properties of microalgae such as particle shape, particle
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size, presence of a cell wall, specific weight and surface charge will influence
their recovery. The challenge of harvesting is discussed in further detail in
Section 1.2. Subsequently, the wet paste is further dewatered using solar drying,
spray-drying, drum-drying or freeze-drying. The choice of a drying method
can have consequences with respect to stability of the biomass content. A
recent study showed that spray-dried Phaeodactylum tricornutum was more
susceptible to oxidation than freeze-dried microalgae, possibly due to breakdown
of protecting carotenoids upon spray-drying [157].

1.1.5 Challenges for microalgae production

For commodity applications of microalgae, production cost is the main driver
for process development. Currently, production costs need to be reduced at
least an order of magnitude to become competitive for energy markets. A recent
study stated that production costs need to be less than US$ 1 kg—! biomass
in order to become cost-competitive on the energy market. But even then, a
biorefinery approach (1.1.3) is needed to valorise all co-products [195].

Improving cost efficiency can be done by reducing the cost of each process
step. For example, the harvesting process can be improved (Section 1.2). The
challenge of harvesting is discussed in detail in Section 1.2. Additionally, drying
is also a very energy intensive process and extra energy is also needed to unlock
microalgal compounds from the cells in order to achieve satisfactory extraction
yields. Current research is focused on the development of wet extraction routes
in order to exclude the drying process and energy-efficient disruption methods
to improve extraction yield [190, 160].

Alternatively, a lot of research has focussed on the improvement of microalgal
productivities. Theoretical productivities can be calculated based on light
energy conversion using the photosynthetic efficiency as important parameter.
As stated in Section 1.1.2, numerous factors influence this parameter resulting in
a disagreement in literature about a realistic target. Conservative calculations
propose 4.5% as a potential future target [191] resulting in a theoretical
productivity of 130 ton ha~! yr~!. Based on current productivities in
pond systems, actual photosynthetic efficiencies can be estimated to be
around 1%. Currently, research is focusing on improving the biology of
photosystems by reduction of the cellular antenna size as well as on improvement
of photobioreactor design with respect to light dilution, gas exchange and
temperature control [125].

Next to cost and productivity, new challenges will appear in the near future.
A lot of species and strain selection is ongoing with respect to screening for
bioactive compounds. This will trigger the need for research on novel cultivation
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methodologies since current cultivation processes are only established for a few
- mostly extremophilic - species. The development of new process tools for
monitoring and controlling large scale cultivation systems is boosted by recent
developments in low cost and miniaturised sensor technology. Besides this,
culture management is still a challenge. There is a need for the development of
long term cultivation control strategies preventing contamination and predation.

1.2 The challenge of harvesting microalgae

A major challenge in downstream processing of microalgae lies in separating the
microalgae from their growth medium, i.e. the harvesting process. Because a
high biomass concentration leads to mutual shading of the microalgal cells and
thus a reduction in productivity, biomass concentrations in microalgal cultures
are usually low: from 0.5 g L=' in open pond reactors to about 5 g L~ in
photobioreactors. This means that a large volume of water has to be removed
to harvest the biomass. Due to the small size of the microalgal cells (2 — 20 pm)
and their colloidal stability in suspension (Section 1.3.1), harvesting by means
of sedimentation or simple screening is not feasible, except perhaps for larger
species such as Arthrospira.

When microalgae are produced for high-value products, harvesting is done
in one step by centrifugation. Centrifugation is however too expensive and
energy-intensive if biomass is to be used for low-value products such as biofuels
due to the large volumes of culture medium that need to be removed (Section
1.2.1). Finding an alternative technology that is capable of processing large
volumes of culture medium at a minimal cost is thus essential to reduce the
cost and increase the scale of microalgal biomass production to a level that will
make commercial application of low-value products feasible [121, 181, 28, 162].
Furthermore, alternative harvesting approaches should minimize contamination
of the biomass and extracted compounds and avoid interference during cell
disruption or extraction processes. Finally, the harvesting process may not
inhibit the recycle of the cultivation medium after harvesting by interfering
with the growth of the microalgae.

Microalgal biomass can be spoiled in hours if the moisture content remains higher
than 85%. Therefore, the residence time during harvesting is also important
in the evaluation of harvesting methods because it will additionally determine
cost and reliability of methods for further processing [117].
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1.2.1 State of the art harvesting technology
Centrifugation

Centrifugation is based on the generation of a centrifugal force which acts radially
and accelerates the separation of particles based on their density difference.
Since the density of microalgae is similar to that of water (density Chlorella
= 1.070 kg m~3), high centrifugal forces and thereby a high energy input is
needed to achieve separation. On the other hand, centrifugation can be operated
continuously and can be used for almost all types of microalgae. Generally, three
types of centrifuges are used for harvesting microalgae: disc stack, decanter,
and spiral plate centrifuges.

Disc stack centrifuges are the most commonly used in commercial plants for
high value algal products [121]. This type of centrifuge operates with a rotating,
relatively shallow cylindrical bowl containing a number of closely spaced metal
discs. They are ideally suited for separating particles of the size (3-30um)
and concentration (0.02-0.05%) of microalgae cultures up to 15 % solids while
consuming 0.7-1.3 kWh m~3 [120].

The decanter or scroll centrifuge is one of the most promising centrifugal
devices for recovery of microalgae. They can operate continuously, have a high
capacity and low maintenance requirements. However, the high capital cost and
energy demand often limits their use to high value products. Essentially, this
type of centrifuge contains two concentric rotating elements surrounded by a
stationary cover and can deliver microalgae biomass concentrates up to 22%
while consuming 8 kWh m~3 [120].

Recently, a centrifuge system based on spiral plate technology was designed
specifically for microalgae harvesting by Evodos™. The system contains rotating
curved plates inside a sliding cylindrical drum to reduce the particle settling
distance and the system is operated at low rotation speed. It is claimed to be
able to concentrate Nannochloropsis from 0.025% up to 31.5% with an energy
usage of 0.95 kWh m~3. Current systems only allow a discrete discharge of
harvested microalgae limited to 4 m® h™! and long term reliability has yet to
be proven [120].

Filtration

Numerous types of filtration systems such as micro-stainers, vibrating screens,
filter presses, belt filters and vacuum drums have been used to harvest microalgae.
Generally, filtration can be classified by the pore size of the membrane; macro-
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filtration (> 10 pm), micro-filtration (0.1-10 pm), ultra-filtration (0.02-2 pm)
and reverse osmosis (<0.001 pum). Pressure is needed to force the liquid through
the membrane. Generally, the required energy for this increases with reducing
membrane pore size.

Macro-filtration is widely used for larger microalgae species like Arthrospira. Belt
filters are able to filter up to 20% with an energy consumption of 0.5 kWh m—3
if the feed is pre-concentrated at 4%.

Micro-filtration is seen to have the most appropriate pore size to retain the
majority of common species. While it has been stated that micro-filtration could
be even less economic than centrifugation for the recovery of microalgal cells
on a large scale [121], recent studies showed that harvesting using submerged
filtration in combination with centrifugation could achieve concentration up to
22% and reduce energy needs under 1 kWh m~3 [16].

Ultra-filtration is a possible alternative in particular for very fragile cells, but
has not generally been used for recovery of microalgae since operating and
maintenance costs are high [155, 120]. Energy consumption is believed to be
between 1 and 3 kWh m™3.

Flotation

Flotation is a separation process based on the adhesion of particles to air or
gas bubbles, which carry the particles to the liquid surface, allowing further
separation usually via skimming. Classification of flotation processes is based on
the method of bubble production: dispersed air flotation, dissolved air flotation
and suspended air flotation [196].

During dispersed air flotation, air is continuously pumped into a flotation cell
and foam is created using a surface-active chemical. Hydrophobic solids adsorb
to the air bubbles and are separated from the suspension. While concentration
factors between 50 and 200 have been reported in the past, this method is not
widely used for recovery of microalgae. A recent study however claims that this
method has potential as primary concentration method. Initial concentration
at a very low cost can improve efficiency and costs of secondary or tertiary
dewatering methods. The energy requirement concentrating Chlorella up to
2.5% was 0.015 kWh m~—3 [45].

Higher flotation efficiencies can be obtained if air-supersaturated water is injected
under pressure in the flotation cell, a process known as dissolved air flotation.
In addition, the solid concentration that can be achieved in dissolved flotation
systems is higher (7%). Unfortunately, operational costs of such systems is high
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due to the high energy cost of supersaturating the water with air under pressure
[83].

Suspended air flotation eliminates the need for a compressor and saturator
for the creation of small air bubbles. However, this system utilises chemicals
such as cationic surfactant to create small bubbles. In addition, the bubbles
can be electrically-charged to increase float stability. Bench-scale results claim
an energy usage of 0.003 kWh m~2 to concentrate microalgae up to 5% [196].
However, this technology is rather new and upscale reliability is yet to be proven.

Sedimentation

Solid-liquid separation by sedimentation is one of the simplest ways to
harvest microalgae. The separation is caused by gravitational forces and
the sedimentation rate is determined by Stokes’ Law, which states that the
sedimentation velocity is proportional to the radius of the cells and the difference
in density between the microalgae and the medium (Eq 1.1). This method
acquires low design costs and low requirements for skilled operators. For a
spherical shaped microalgae, Chlorella, the settling velocity was calculated to
be 0.1 m day~—! [120]. But Stokes’ law holds only for spheroid shapes, while
microalgae are most often not spherical. In a study on 24 autotrophic microalgae
ranging in size from 10 - 1,000 pym it was found that the sedimentation rate
varied between 0.4 to 2.2 m day~! [138]. Especially motile species are not forced
to settle.

2 2 Pp—Pf
v=9Tg ; (1.1)

v particle settling velocity [m s~!]
T cell radius [m]
g gravitational acceleration (9.81) [m s~2]
Pp mass density particle kg m~?]
ps  mass density fluid [kg m™3]
n dynamic viscosity [N s m™2]

Cell recovery using sedimentation is generally low : 60-65% with a solid
concentration up to 1.5%. Energy consumption of sedimentation using lamella
separators is up to 0.1 kWh m~3. Settling velocity, cell recovery as well as solid
concentration can be improved by inducing flocculation prior to sedimentation.
The different approaches for microalgae flocculation are discussed in Section
1.3.
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Table 1.5: Comparison of state of the art microalgal harvesting methods
[120, 121].

Method Advantages Drawbacks DST ER? (kWh
(%) m_3)

Centrifugation rapid, efficient, suitable high CAPEX® & OPEX? 10-22 0.7-8

for most microalgae

species
Filtration high system variety species specific, fouling 2-27 0.5-3
Flotation faster than sedimentation species specific, high 2.5-7 0.015-1.5

CAPEX

Sedimentation low CAPEX & OPEX species specific, low final 0.5-3 0.1-0.3

concentration

DS = dry solids output concentration
?ER = energy requirement

3CAPEX = capital expenditures
4OPEX = operating expenditures

Comparison of methods

A recent review stated that there is no superior method for harvesting and
dewatering of microalgae [181]. An overview of advantages and drawbacks are
given in Table 1.5. Centrifugation can rapidly and efficiently handle most algal
species, but capital and operational costs remain high. Filtration is best suited
for microalgae species with large cells but struggles from time to time with
fouling issues. Flotation can be more rapid than sedimentation, but is very
algae specific and costly. Sedimentation is promising because of its low cost,
but is limited to specific non motile species.

1.3 Approaches for microalgae flocculation

1.3.1 Colloidal stability of microalgal suspensions
Surface charge

Microalgae exhibit a slightly negative charge at neutral pH, due to the presence
of proton-active carboxylic, phosphoric, phosphodiester, hydroxyl and amine
functional groups [81, 121]. To maintain electrical neutrality, opposite charged
ions (counter-ions) will be attracted in the surrounding solution, while negative
ions (co-ions) will be repelled. Close to the particle surface, the counter-ions
form a dense layer that is inaccessible to other counter ions, which is called
the Stern layer. A dynamic equilibrium of charges attributed by counter-ions
and co-ions is established and is free to move around the Stern layer to form a
diffuse layer. This layer extends from the edge of the Stern layer to a certain
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distance in the surrounding solution until the concentration of counter-ions and
co-ions are identical and there is a zero charge. This results in the development
of a surface potential around the particle. The total system of the particle
surface charge and associated counter ions in the surrounding solution is called
the electrical double layer (Fig 1.5a).

The surface potential is difficult to measure but can be estimated by the surface
charge, which is determined by pH titration [81]. Another frequently used
parameter of any colloid is the potential at the end of the diffuse layer (slipping
plane), known as the zeta (¢) potential (Fig 1.5a). This parameter is related,
but not identical to the surface potential. In contrast to the surface potential,
the zeta potential is however easy to measure by determining the mobility
of charged particles in an electric field. For microalgae, the zeta potential is
typically negative and is usually within the range of -10 to -35 mV [85].

Interaction between charged particles

The interaction between colloidal charged particles is described by the DLVO
theory, which is named after its developers: Derjaguin, Landau, Verwey and
Overbeek. This quantitative theory describes the interaction between colloids as
a competition model between attraction by van der Waals forces and electrostatic
repulsion in terms of energy as function of the distance between particles (Fig
1.5b).

The zeta potential is an important parameter to evaluate the colloidal stability
of a system. When the zeta potential is high (> 25 mV, positive or negative),
electrical repulsion between particles is strong and the suspension is said to be
stable. When the zeta potential is close to zero, particles can approach each
other to a point where they will be attracted by Van der Waals forces. When
that happens, particles will aggregate and flocculation or coagulation will occur.

Next to the zeta potential, the size of the double layer is also important as
it will determine the relation between attraction and repulsion and is mainly
dependent on the ionic strength (I,), which is a measure for all ions present in
the solution (Eq 1.2). Increasing the I, results in a decreased size of the double
layer, which will promote attraction and finally aggregation. This phenomenon
is known as double layer compression and is highly relevant to the stability
of colloidal particles. The thickness of the double layer can be quantified as
the Debye length £k~ according to Equation (1.3). For typical sea waters and
natural waters, values of the Debye length x~! can range from less than 1
nm to around 100 nm or more. For completely deionized water at 25 °C, the
concentrations of Ht and OH~ are each 10~7 M and x~! is 960 nm.
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Figure 1.5: (a) Structure of the electrical double layer of charged ions in
solution surrounding a negatively charged microalgal cell and the potential
difference between the particle and the bulk fluid as a function of the distance
from the particle surface [187] (b) Potential energy diagram for the interaction
of equal spheres. The curves show the electrical (Vg), van der Waals (V4), and
total (V) interaction energy [73].

1
L=t Z (12)

I,  ionic strength [mol m~3]
¢ molar concentration [mol m~3]
2 number of charges [-]
-1 ekT
K= 5N (1.3)
k~1  Debye length [m]
€ electrical permittivity [C? J=1 m~!
k Boltzmann constant (1.380 10723) [J K~!]
N,  Avogadro number (6.022 10?3) [mol~!]
e elementary charge (1.602 10719) [C]
T temperature [K]
I, ionic strength [mol m~3]
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Figure 1.6: Overview of different coagulation mechanisms (a) charge
neutralization (b) electrostatic patch mechanism (¢) bridging mechanism (d)
sweeping flocculation.

1.3.2 What is flocculation?

Flocculation is the process whereby destabilized particles are induced to
coagulate, make contact, and thereby form larger agglomerates [26]. Flocculation
of particle suspensions can often be attributed to four coagulation mechanisms,
acting alone or in combination. (1) Charge neutralization is the phenomenon in
which charged ions, polymers or colloids strongly absorb on the opposite charged
surface of a particle, followed by destabilization, coagulation and flocculation
(Fig 1.6a). (2) The electrostatic patch mechanism is the phenomenon in which a
charged polymer binds to a particle with opposite charge. The polymer locally
reverses the charge of the particle surface, resulting in patches of opposite charge
on the particle surface. Particles subsequently connect with each other through
patches of opposite charge, causing flocculation (Fig 1.6b). (3) Bridging is
the phenomenon in which polymers or charged colloids simultaneously bind
to the surface of two different particles to form a bridge between them. This
bridge brings the particles together and causes flocculation (Fig 1.6¢). (4)
Sweeping flocculation is the process in which particles are entrapped in a
massive precipitation of a mineral which causes their flocculation (Fig 1.6d).
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1.3.3 Chemical flocculation

Metal salts such as alum and ferric chloride are widely used for flocculation in
industries such as water treatment and mining. Although metal salts are being
applied for harvesting microalgae (e.g. Dunaliella [11]), their use results in high
concentrations of metals in the harvested biomass. These metals remain in the
biomass residue after extraction of lipids or carotenoids [156], but may interfere
with the use of the protein fraction in this residue. Despite this shortcoming,
metal coagulants provide a good model system to study the interaction between
flocculants and microalgal cells because their properties are well understood
[198, 204].

Other commonly used chemical flocculants in other industries are synthetic
polyacrylamide polymers. These may however contain traces of toxic acrylamide
and thus also contaminate the microalgal biomass [26]. Flocculants based on
natural biopolymers are therefore a safer alternative. To be able to interact
with the negative surface charge of microalgal cells, these biopolymers should
be positively charged, which is rare in nature. A well-known positively charged
biopolymer is chitosan, which is derived from chitin, a waste product from
shellfish production. Chitosan is a very efficient flocculant but it works only
at low pH, while the pH in microalgal cultures is relatively high (Fig 1.7a)
[113, 51, 200]. An alternative to chitosan is cationic starch, which is prepared
from starch by addition of quaternary ammonium groups (Fig 1.7b; Chapter 2).
Other examples of biopolymers that can be used to flocculate microalgae are
poly-vy-glutamic acid (an extracellular polymer produced by Bacillus subtilis)
[205] or polymers present in flour from Moringa oleifera seeds [179]. A general
problem of polymer flocculants is that they undergo coiling at high ionic
strengths and become ineffective [181]. Therefore, they are less suitable for
harvesting microalgae cultivated in seawater. Two very recent studies showed
that the usage of cationic aluminum and magnesium backboned organoclays
has potential to be used for microalgae flocculation [107, 58].

1.3.4 Autoflocculation

Flocculation often occurs spontaneously in microalgal cultures when pH increases
above 9 [172]. This type of flocculation is often referred to as autoflocculation
because it occurs spontaneously in microalgal cultures as a result of a pH
increase due to photosynthetic CO5 depletion. Autoflocculation is associated
with the formation of calcium or magnesium precipitates. Depending on the
conditions, these precipitates carry positive surface charges and can induce
flocculation (Chapter 4).
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Figure 1.7: Structure of (a) chitosan and (b) cationic amino starch.

Calcium phosphate precipitates are positively charged when calcium ions are
in excess of phosphate ions and interact with the negative surface charge of
microalgal cells [42, 162]. High phosphate concentrations are required for this
type of flocculation to occur. As a result of the declining phosphate resources and
increasing prices of phosphate, flocculation by calcium phosphate precipitation
is unsustainable, except perhaps in applications where microalgae are used
for wastewater treatment and excess phosphate needs to be removed [114].
Magnesium hydroxide or brucite also precipitates at high pH (Chapter 4).

1.3.5 Physical flocculation methods

Contamination of the biomass could be avoided if it were possible to induce
flocculation by applying only physical forces. For instance, flocculation of
microalgae can be accomplished by applying a field of standing ultrasound
waves. Although this method works well in the laboratory, it is difficult to apply
on larger scales [24]. In electrocoagulation flocculation, flocculation is induced
through electrolytic release of metal ions from a sacrificial anode and avoids
contaminations of anions (Chapter 3). OriginOil™ claims to have developed a
system that is similar to this principle. Their method uses only electromagnetic
pulses to neutralize the surface charge of microalgal cells and induce flocculation
[69].

Recently, several studies have explored the use of magnetic nanoparticles to
harvest microalgae [147]. Magnetite (Fe;O3) nanoparticles may adsorb directly
on the microalgal cells, upon which the cells can be separated from the medium
by applying a magnetic field. This method thus combines flocculation and
separation in a single process step [37]. Magnetite nanoparticles seem to adsorb
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more easily on some microalgal species than on others [199]. Adsorption can be
improved by coating the nanoparticles with cationic polymers [110, 112]. An
advantage of using magnetite nanoparticles is that they can be recovered after
harvesting and reused later [37].

1.3.6 Biological flocculation

In natural blooms of microalgae in lakes or rivers, flocculation sometimes occurs
spontaneously. This spontaneous flocculation is assumed to be caused by
extracellular polymer substances in the medium and is called bioflocculation
[102]. Bioflocculation is often used successfully for harvesting microalgae
in facilities where microalgae are employed for wastewater treatment [46].
The underlying mechanism, however, is poorly understood and deserves
further research as it may lead to a chemical-free method for flocculating
microalgae. Some microalgal species flocculate more readily than others and
such naturally bioflocculating microalgae can be mixed with other species to
induce flocculation [158, 159]. There are indications that bioflocculation may be
initiated by infochemicals. Recently, an infochemical isolated from a senescent
and flocculating culture of a Skeletonema species was found to be capable of
inducing flocculation in a culture of another species of microalgae [178].

Bacteria or fungi can also induce bioflocculation of microalgae. Some fungi, for
instance, have positively charged hyphae that can interact with the negatively
charged microalgal cell surface and cause flocculation [203, 206, 207]. Specific
consortia of bacteria can also induce flocculation of microalgae [80, 104]. These
flocculating fungi or bacteria can be cultivated separately or in combination with
the microalgae. In the latter case, a carbon source is required in the medium.
In wastewater, a carbon source is usually present which allows co-cultivation
of microalgae and bacteria. This results in a culture of mixed algal-bacterial
flocs that can easily be harvested [175, 183]. The use of bacteria or fungi as
a flocculating agent avoids chemical contamination of the biomass but results
in microbiological contamination, which may also interfere with food or feed
applications of the microalgal biomass.

1.3.7 Flocculation induced by genetic modification

Many research efforts are currently directed towards genetic modification of
microalgae. Most recently published studies and granted patents in this field are
aimed at increasing biomass productivity or increasing production of specific
metabolites, most often lipids [67, 102]. However, genetic modification may
also be a promising way to harvest microalgae [42, 67]. Here, achievements in
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genetic modification of yeast may be used as an example. In yeast, genetically
modified strains have been developed that express flocculin proteins in their
cell walls, causing the cells to aggregate [70]. The expression of these proteins
can be induced by an environmental trigger or during a specific growth stage.
Sapphire Energy™ has described a method for flocculating microalgae in which
ligand-receptor pairs can be expressed in different strains that are mixed to
induce flocculation, or that are expressed sequentially in the same strain [119].
Genetic modification or selection may also be aimed at facilitating flocculation
by other methods. For instance, a cell wall-deficient mutant of Chlamydomonas
has been found to flocculate much more easily under alkaline conditions than
the wild type strain [163]. This indicates that minor genetic modifications may
greatly facilitate flocculation.



Chapter 2

Cationic starch as a novel
flocculant to harvest
microalgae

Adapted from: Vandamme D, Foubert I, Meesschaert B, Muylaert K. 2010. Flocculation
of microalgae using cationic starch. Journal of Applied Phycology, 22(4), 525-530.
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2.1 Introduction

Harvesting microalgae by means of flocculation has a lot of potential to decrease
microalgal biomass production costs. However, the applied flocculants need to
be cheap, efficient and avoid contamination of biomass and minimize toxicity of
residual medium after cultivation. Inorganic flocculants such as alum and iron
chloride are efficient but are required in high doses and result in contamination
of the biomass with aluminum or iron [8]. Biodegradable organic flocculants do
not contaminate the algal biomass and are often required in lower doses [169].
They are based on biopolymers like chitin, guar gum, alginic acid, or starch.
Of these, chitosan has been shown to be an effective flocculant for microalgae
[51]. It has no apparent toxic effects on fish feeding on the harvested algae [99].
It is, however, a high-value product with a market value of about $US 10 per
kilogram [8, 149].

Starch consists of a mixture of amylose and amylopectin and is one of the
most abundant natural polymers. Chemically modified starches have properties
very different from the parent starch and have many applications in industrial
processes [146]. Cationic starch is prepared by addition of quaternary ammonium
groups to the glucose hydroxyl groups. Because of its low cost (about $US 1-3
per kilogram), cationic starch is increasingly used as an alternative for inorganic
and synthetic organic flocculants in liquid—solid separation processes, more
specifically in wastewater treatment and paper mill industries [136]. As polymer
flocculants are often specific, flocculants that are effective for clay dispersions
or cellulose are not necessarily applicable to algal cells. The goal of this chapter
is to evaluate the potential of cationic starch for flocculation of microalgae.

2.2 Materials and methods

Four microalgal species were obtained from culture collections: Parachlorella
kessleri (SAG 27.87), Scenedesmus obliquus (CCAP 276j3A), Phaeodactylum
tricornutum (CCAP 1055/1), and Nannochloropsis salina (SAG 40.85). The
microalgae were cultured in Wright’s Cryptophyte medium [79], which was
prepared from pure salts and deionized water. The concentration of the medium
was increased five times to allow the microalgae to attain a biomass concentration
comparable to commercial culture systems (up to 0.5 g dry weight per liter).
For the marine species, synthetic sea salt (Ultramarine Synthetica, Waterlife
Research, UK) was added at a concentration of 30 g L=!. The medium was
adjusted to pH 8 and autoclaved. An inoculum was added under a sterile
hood at a 1:10 ratio. The microalgae were cultured in five parallel 2 L bottles
incubated in a temperature controlled room (20°C). The bottles were irradiated
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with daylight fluorescent tubes (light intensity = 100 gmol photons m=2 s~1)
and were bubbled with sterile-filtered air at a rate of approximately 200 mL
min~! to create turbulence and avoid CO; limitation. Flocculation experiments
were carried out when algae were in their exponential growth phase. The algal
biomass concentration in the reactors at that moment varied between 0.15 and
0.5 g dry weight per liter. Algal biomass was estimated from optical density
measurements at 550 nm using a spectrophotometer (Hach Lange DR 2800).
Optical density was calibrated against dry weight measured gravimetrically on
preweighed GF/F glass fiber filters (R? > 0.98).

Two commercial cationic starches were used in the experiments. Greenfloc
120 (Hydra 2002 Research, Development and Consult, Hungary) is a cationic
starch with a degree of substitution of 0.15 that is mainly used in wastewater
treatment. It was supplied as a concentrated solution in water (16%) that was
ready for use. Cargill C*bond HR 35.849 (Cargill Deutschland, Germany) is a
cationic starch with a degree of substitution of 0.11 that is used in the paper
manufacturing industry. It was supplied as a dry product that was dissolved in
water and heated to 80°C for 20 min before use.

Flocculation of microalgae after addition of cationic starch was evaluated using
jar tests [44]. The algal suspensions were divided into replicate 100 mL beakers.
The initial algal biomass concentration in the beakers was estimated from the
optical density at 550 nm. Cationic starch was added at a specific dose under
intensive stirring (1,000 rpm) using a magnetic stirrer. After 5 min, the stirring
speed was reduced to 250 rpm. Stirring was stopped 30 min after addition of
the cationic starch. After another 30 min, the optical density of the supernatant
was measured at half the height of the clarified layer. The percentage of algal
biomass removed was estimated from the ratio of the initial over the final optical
density. To evaluate the influence of pH on flocculation, pH was adjusted using
0.5 N HCI or 0.5 N NaOH. Results were statistically evaluated using one-way
analysis of variance (ANOVA) and a Tukey’s test (Sigmaplot 11, Systat Software,
Inc.). The potential toxicity of cationic starch on the microalgae was evaluated
using measurements of the maximum quantum yield of photosynthetic efficiency
of photosystem II, measured using an AquaPen-C fluorometer (Photon Systems
Instruments, Czech Republic). This parameter is a sensitive indicator of stress
experienced by microalgae and is often used for evaluating toxicity of substances
towards microalgae [43]. The quantum yield of photosynthetic efficiency of
photosystem II was measured 3 h after addition of cationic starch and after 20
min of dark adaptation of the microalgae. Statistical analysis was performed
using one-way ANOVA (Sigmaplot 11, Systat Software, Inc.).
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2.3 Results and discussion

Our results indicate that cationic starch is an efficient flocculant for the
freshwater microalgae Scenedesmus and Parachlorella. Suspensions of unicellular
microalgae are stabilized by the negative surface charge of the algal cells.
Cationic starch can induce flocculation of negatively charged particles through
bridging and/or patch charge neutralization [165, 26]. In jar tests using
Parachlorella and the cationic starch Greenfloc 120, the flocculation efficiency
increased strongly over a relatively narrow range of cationic starch concentration
(about 10-20 mg L~1; Fig 2.1). At the optimal dose, more than 90% of the
biomass was removed by the flocculant. The Greenfloc 120 cationic starch
dose required to flocculate 80% of Parachlorella biomass was above a certain
concentration linearly related to the algal biomass concentration (Fig 2.2).
A linear relation between flocculant dose and particle concentration is often
observed in cationic polyelectrolyte flocculants [19].

The ratio of cationic starch over Parachlorella biomass required to achieve
80% flocculation was approximately 0.1. For Scenedesmus, a lower dose of
Greenfloc 120 cationic starch was required to induce flocculation. The ratio
of cationic starch over algal biomass required to achieve 80% flocculation for
Scenedesmus was 0.03 or less (Fig 2.3). As Parachlorella and Scenedesmus have
a comparable charge density [86], this difference can probably be ascribed to
the larger size of Scenedesmus. Larger particles often require a lower polymer
dose for flocculation than smaller particles [26].

In the experiments with low biomass concentrations of Parachlorella as well as
in the experiment with Scenedesmus, it was clear that overdosing of cationic
starch resulted in dispersion restabilization. This phenomenon is commonly
observed with polyelectrolyte flocculants, including cationic starch [59, 27, 112]
and is probably the result of steric hindrance and/or electrostatic repulsion.

For the marine microalgae Nannochloropsis and Phaeodactylum, the ratio of
Greenfloc 120 cationic starch over algal biomass required to induce flocculation
was around 1 (results not shown). Therefore, it appears that cationic starch is
inefficient for flocculating marine microalgae. This is probably due to high NaCl
concentrations. In experiments with kaolin dispersions, a decrease in flocculation
efficiency of cationic starch was observed at high NaCl concentrations [18]. Like
cationic starch, chitosan is also ineffective for flocculating microalgae in seawater
(17, 51, 112, 86].

In dense microalgal cultures, pH is often highly variable: it may increase to 10
due to intensive primary production or decrease to 6 during CO5 addition or as
a result of respiration. As pH affects the zeta potential of charged particles, it
may interfere with flocculation. Flocculation of Parachlorella using Greenfloc
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120 cationic starch increased slightly but significantly with pH over a pH range
of 5 to 10 (Fig 2.4, ANOVA, p < 0.001).

This is in contrast to flocculation of microalgae using chitosan, which is only
efficient at a pH below 8 [51, 112]. In cationic starch, the positive charge
is due to quaternary ammonium salts, which maintain their positive charge
even at relatively high pH. The increase in flocculation efficiency at high pH is
probably due to some autoflocculation of Parachlorella, which occurs at a pH
of 10 or higher (unpublished results). The Greenfloc 120 cationic starch had
no significant (ANOVA, p = 0.330) effect on the maximum quantum yield of
photosynthetic efficiency of photosystem IT in Parachlorella (Fig 2.5). Therefore,
it appears that cationic starch has no short-term effects on the viability of the
algae.

For Parachlorella, we compared flocculation by two commercial cationic starch
polyelectrolytes, both with a relatively low degree of substitution. Greenfloc
120 is a flocculant designed for wastewater treatment while C*bond HR 35.849
is designed for applications in the paper industry. Using C*bond HR 35.849, a
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flocculation of the alga Parachlorella
using cationic starch (Greenfloc 120)
at an algal biomass concentration of
0.43 ¢ L=! and a cationic starch dose
of 70 mg L='. The white point
corresponds to the control in which pH
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whether pH has a significant influence
on flocculation efficiency; means with
the same letter are not significantly
different (o = 0.1).

cationic starch (Greenfloc 120) con-
centrations on the maximum quantum
yield of photosynthetic efficiency of
photosystem II in Parachlorella.
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higher dose was required compared to the Greenfloc 120 cationic starch (Fig
2.6). The ratio of C*bond HR 35.849 cationic starch over algal biomass required
to achieve 80% flocculation was approximately 0.3. Moreover, the flocculation
increased more slowly with increasing cationic starch concentration. The lower
flocculation efficiency of C*bond HR. 35.849 may be due to the lower degree of
substitution (0.11 versus 0.15). It is well-known that the flocculation efficiency of
polyelectrolytic flocculants in general and cationic starch in particular is related
to the degree of substitution [27]. However, the flocculation efficiency generally
increases linearly with the degree of substitution, especially at a low degree of
substitution [100]. As the degree of substitution of Greenfloc 120 is only 1.4
times that of C*bond HR 35.849, while the optimal dose for flocculation was at
least three times lower, other factors probably contributed to the difference in
flocculation efficiency. The location of the substitutions [168], the molecular
weight of the polymers [100], the steric configuration [59], and the amylose to
amylopectin ratio have been shown to influence the flocculation efficiency of
cationic starch [136].
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Figure 2.6: Comparison of flocculation of Parachlorella using two types of
cationic starch (white points correspond to Greenfloc 120 and black points
correspond to Cargill C*Bond HR 35.849). Initial algal biomass was 0.3 g L.



36 CATIONIC STARCH AS A NOVEL FLOCCULANT TO HARVEST MICROALGAE

2.4 Conclusions

Our results show that cationic starch is a potentially useful flocculant for
harvesting freshwater microalgae. Compared to inorganic flocculants, cationic
starch requires a lower dose. Moreover, it is approved for food contact and for
use in treatment of drinking water [100]. In these aspects, cationic starch is
similar to chitosan. Due to the lower number of functional groups, the dose
required for cationic starch is higher than that for chitosan. On the other hand,
chitosan is more expensive than cationic starch; it is not available in very large
volumes and is more difficult to apply due to its pH-dependence.

The cationic starches used in this study were not designed for harvesting algae.
The large difference between the two cationic starches tested suggests that there
is room for improvement of the efficiency of cationic starches for flocculating
algae. The flocculation efficiency might be improved by increasing the degree of
substitution. It should be noted, however, that the production cost of cationic
starch increases with the degree of substitution. Other options to improve the
flocculation efficiency include modification of the amylose to amylopectin ratio
or modification of the polymer chain lengths.
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flocculation for microalgae
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Adapted from: Vandamme D, Pontes S, Goiris K, Foubert I, Pinoy L, Muylaert K. 2011.
Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae.
Biotechnology and Bioengineering, 108(10), 2320-2329.
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3.1 Introduction

Microalgae can easily be flocculated using metal coagulants such as Fe?t or
A3 salts [1, 13, 137]. In wastewater treatment, electro-coagulation flocculation
(ECF) has been proposed as an alternative for chemical coagulants [123, 122].
In ECF, iron or aluminum ions are released from a sacrificial anode through
electrolytic oxidation. Compared to coagulation-flocculation with Fe3+ or Al3+
salts, ECF has the advantage that no anions such as chlorine and sulphate are
introduced in the process water. The electrolytic oxidation of the sacrificial
anode, however, requires electricity.

During ECF, the following reactions occur at the anode.
Using an aluminum anode:

Al = APPT 4 3¢ (3.1)

XAPP* 4+ yOH™ — Al (OH)}" (3.2)

The speciation of the aluminum hydroxides formed during ECF is highly variable
and is strongly influenced by pH [126].

Using an iron anode:

Fe — Fe’t +2e~ (3.3)
Fe?t +20H™ — Fe(OH), (3.4)
or
Fe — Fe®t 4+ 3¢ (3.5)
Fe*™ 4 30H™ — Fe(OH), (3.6)

It is not clear whether ferrous or ferric ions are formed during ECF [12].
Moreover, Fe?t can be rapidly oxidized in solution to Fe?* in the presence
of oxygen. Release of Fe?t during ECF leads to green hydroxide precipitates,
while Fe?* ions result in yellow hydroxide precipitates.

At both the Al and Fe anodes, water is oxidized as a side reaction and oxygen
is produced:

2H,0 = O, +4H" +4e” (3.7)
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The main reaction at the cathode is the reduction of water and the formation
of hydrogen gas:

2H,0+2¢~ - H, +20H" (3.8)

So far, the use of ECF for harvesting microalgal biomass has not been thoroughly
evaluated. Some studies have investigated the use of ECF for removal of
microalgae from drinking or wastewater [3, 5, 63, 64, 144, 174]. In these studies,
however, microalgal densities were much lower than those typically occurring in
microalgal production systems. Moreover, these studies all focused on freshwater
and not on marine microalgae. The chemical composition and conductivity of
freshwater and seawater differ strongly and this may have a strong effect on
the efficiency of the ECF process. It is relevant to evaluate the use of ECF
as a harvesting method for marine microalgae because marine microalgae are
attractive as a source of biofuels due to their limited dependence on freshwater
resources.

The general aim of this chapter is to demonstrate the proof of principle for
harvesting of microalgae using electro-coagulation flocculation (ECF) in both
a freshwater and a marine environment. Specific goals are (1) to study the
influence of several important variables on the efficiency of the ECF process,
(2) to evaluate contamination of the microalgal biomass and process water with
metals released from the sacrificial anode, and (3) to estimate the electricity
demand of the ECF process.

3.2 Materials and methods

3.2.1 Cultivation of microalgae

Because we expected large differences in the efficiency of ECF for harvesting
microalgae from marine and freshwater medium, all experiments were carried
out with the freshwater chlorophyte Chlorella vulgaris (SAG, Germany, 211-11B)
and the marine diatom Phaeodactylum tricornutum (UGent, Belgium, Pt 86).
Both Chlorella and Phaeodactylum are promising species for the production of
microalgal biomass for food, feed, or fuel, and are currently intensively studied.
Chlorella vulgaris was cultured in Wright’s cryptophytes medium prepared from
pure chemicals dissolved in disinfected tap water [79].

Phaeodactylum tricornutum was cultured in WC medium prepared in deionized
water to which 30 g L' synthetic sea salt (Homarsel, Zoutman, Belgium)
was added. Table 3.1 illustrates the differences in chemical composition and
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Table 3.1: Main differences in chemical composition of freshwater and marine
cultivation medium.

Freshwater (mM) Marine water (mM)

Cl 1.7 442.1
Na 1.9 338.6
Mg 1.0 80.5
Ca 2.7 9.1

K 0.3 6.4

S0, 1.3 40.2
Conductivity (mS cm™1) 0.8 43.0

conductivity between both media. Both species were grown in 30 L plexiglas
bubble column photobioreactors (diameter 20 cm). Degassing was carried out
with humidified and filtered air at a rate of 5 L min~!. The pH was controlled
at 8.5 by addition of CO, (2-3%) using a pH-stat system. The ECF experiments
were carried out at the beginning of the stationary phase, corresponding to a
microalgal density of 0.3-0.6 g dry weight per liter.

3.2.2 ECF experiments

All the ECF experiments were carried out at room temperature in a PVC
batch reactor of 20 cm (length) x 5 cm (width) x 15 cm (height) filled with
1 L of microalgal broth. The electrodes consisted of two parallel flat metal
plates with a surface area of 200 cm?, placed 4.4 cm apart near the walls
of the reactor. Aluminum or iron plates were compared as anodes while an
inert net of IrO5/TiO2 was used as the cathode. The anode and cathode were
connected to the positive and negative outlets of a DC power supply (EHQ
Power PS3010), respectively. The current density was controlled by changing
the current of the DC power supply, which was operated in the constant current
mode. The microalgal broth in the vessel was stirred using an overhead stirrer
(IKA Labortechnik Eurostar digital Model RW-16).

To determine the microalgal recovery efficiency 7, of microalgal biomass, samples
were collected at different time points during the ECF process. 10 mL samples
were collected at 5 cm below the water surface in the ECF reactor. In the
samples, flocs of microalgae either settled to the bottom or floated to the surface
of the sample tube. Flotation of the flocs was caused by the formation of Hs at
the cathode and O, at the anode. The microalgal recovery efficiency 7, was
determined based on the decrease in optical density of the microalgal suspension



MATERIALS AND METHODS 41

(measured at 550 nm with an UV-VIS spectrometer Thermo Scientific Nicolet
Evolution 100). The recovery efficiency 7, was subsequently calculated as:

OD; — 0D
o = (3.9)
OD;
where OD; is the optical density of the suspension prior to the start of the ECF
process, and OD¢ is the optical density of the suspension at time t.

3.2.3 Influence of variables on the ECF process

The influence of several important variables on the ECF process was studied
using a one-variable-at-a-time approach. Consecutively, the influence of the
anode material (Fe or Al), the sedimentation time after finishing the ECF-
treatment, the current density, the (initial) pH, and the stirring speed were
investigated. The influence of a specific variable was studied using the best
values found for the variables that were already investigated.

3.2.4 Calculation of the power consumption

The power consumption E (in kWh kg~! of recovered microalgae) was calculated
as

B Ult
1000V n,c;
where U is the voltage (V), I the current (A), ¢ the time of the ECF treatment

(h), V the volume of the microalgal solution treated (m?), n, the microalgae
recovery efficiency, and ¢; the initial microalgae biomass concentration (kg m=3).

(3.10)

3.2.5 Al, Ca, and Mg analyses in the harvested algal biomass
and the process water

To determine the degree of contamination of the microalgal biomass and the
process water, the Al, Ca, and Mg content of the microalgal biomass recovered
during the ECF process as well as of the supernatant remaining after the ECF
treatment was determined. Al, Ca, and Mg in solution were determined by
atomic absorption spectroscopy (AAS, Solaar UNICAM 989). For measurements
on the microalgal biomass, calcination was done in a furnace at 550°C during
4 h and then the ashes were dissolved in 37% fuming hydrochloric acid. The
total amount of metals released during ECF was estimated by assuming that
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the electrical efficiency for the release of metal was 100%. This is in reality an
overestimation, as the formation of O, competes with AI** formation at the
anode.

3.3 Results and Discussion

3.3.1 Influence of variables

In all ECF experiments, 1, increased with time following a sigmoid pattern.
This observation is in accordance with a model in which metal ions such
as AI3T or Fe?T /Fe3t are continuously released from the anode during the
ECF treatment. These aluminum and iron ions react with water to form metal
hydroxides [53]. Positively charged soluble metal hydroxides bind to the negative
surface of the microalgal cells and destabilize the microalgal suspension by
charge neutralization. Insoluble metal hydroxides can destabilize the microalgal
suspension through a mechanism known as sweeping flocculation, resulting in
enmeshment of microalgae and insoluble precipitates [54]. For both mechanisms,
the inflection point of the sigmoidal curve corresponds to the time required to
produce a sufficient amount of aluminum or iron hydroxides to destabilize the
microalgal dispersion [123, 122].

Visual observation of the solution during the ECF process revealed the formation
of insoluble metal hydroxides, either as brown-green precipitates when using an
iron anode, or as a milky precipitate when using an aluminum anode. The brown-
green color of the precipitates, formed when an iron anode was used, suggests
that Fe?* rather than Fe3" was released from the anode during ECF. The metal
hydroxide precipitates interfered to some extent with the spectrophotometric
quantification of microalgal biomass. On the one hand, they may have caused
a residual turbidity in the solution after 7, reached a plateau and therefore
may have caused a slight underestimation of the maximum 7,. These insoluble
metal hydroxides also explain why in some cases negative recovery efficiencies
were measured prior to the destabilization of the microalgal suspension.

In Figure 3.1, the performance of aluminum and iron electrodes is compared.
For both Chlorella wvulgaris and Phaeodactylum tricornutum, dispersion
destabilization of the microalgal suspension occurred much faster with aluminum
electrodes than with iron electrodes. The lower efficiency of the iron electrodes
is probably due to the lower current efficiency generated by iron electrodes when
compared to aluminum electrodes [33, 209]. Also, iron hydroxides are relatively
inefficient coagulants compared to aluminum hydroxides [57]. In a study on the
use of ECF for removal of microalgae from eutrophic surface waters, Gao et al.
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Figure 3.1: Microalgae recovery efficiency 7, as function of ECF time using
different electrodes. Conditions: (A) Chlorella vulgaris, (B) Phaeodactylum
tricornutum, 3mA cm~2, pH = 8, no stirring and no sedimentation time.

(2010) also noted a higher efficiency of aluminum compared to iron electrodes
[63]. Because of this higher efficiency, aluminum electrodes were selected as the
anode material in further experiments.

When samples were taken from the ECF reactor, destabilization of the microalgal
suspension continued after sampling. This is illustrated for Chlorella vulgaris
and Phaeodactylum tricornutum in Tables 3.2 and 3.3, respectively. Particularly
for samples collected at time points close to the inflection point of the sigmoidal
curve, this continued coagulation—flocculation—sedimentation of microalgae
after sampling resulted in a substantial increase of 7,, up to 25% over a
period of 30 min. This can be ascribed to continued reaction between
dissolved metal hydroxides and microalgal cells and to the fact that some
time is needed for sedimentation of the flocs. Because of this continued
coagulation—flocculation—sedimentation after sampling, 7, was determined in
further experiments 30 min after sampling.

As electricity is the driving force for the reactions occurring at the anode,
current density is an important variable in the ECF process (Fig 3.2). For
Chlorella vulgaris, current densities between 1.5-12 mA cm ™2 were evaluated.
It was not possible to maintain a lower current density in a stable way in the
freshwater medium. For Phaeodactylum tricornutum, current densities between
0.6-3 mA cm~2 were used. The use of higher current densities in the salt water
medium resulted in the electrolytic formation of NaClO or bleach, which visually
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Table 3.2: Microalgae recovery Table 3.3: Microalgae recovery

efficiency 7, (%) as function of efficiency 7, (%) as function of
additional sedimentation time ST additional sedimentation time ST
for different ECF times. Conditions: for different ECF times. Conditions:
Chlorella vulgaris, 3 mA cm~2, pH Phaeodactylum tricornutum, 3 mA

= 8, no stirring. cm ™2, pH = 8, no stirring.

ST (min) ST (min)
ECF (min) 0 10 20 30 ECF (min) 0 10 20 30
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Figure 3.2: Microalgae recovery efficiency 7, in function of ECF time
using different current intensities. Conditions: (A) Chlorella vulgaris, (B)
Phaeodactylum tricornutum, pH = 8, no stirring, sedimentation time = 30 min.

led to the disappearance of microalgae flocs. This bleach formation was also
reported by Gao et al. (2010) and should be avoided [64]. For both Chlorella
vulgaris and Phaeodactylum tricornutum, the time required to destabilize the
microalgal suspension decreased with increasing current density. To reach an
Na of 95% for Chlorella vulgaris, 50 min ECF was required using 1.5 mA cm™2,
while only 10 min ECF was required using 12 mA cm~2. For Phaeodactylum
tricornutum, an 7, of 80% was reached after 30 min using a current density of
0.6 mA cm~2, while only 10 min were required using 3 mA cm™2.

In Figure 3.3, the influence of the initial pH on the ECF process is shown. For
both Chlorella vulgaris and Phaeodactylum tricornutum, the efficiency of the
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Figure 3.3: Microalgae recovery efficiency 7, as function of ECF time using
different pH levels. Conditions: (A) Chlorella vulgaris, (B) Phaeodactylum
tricornutum, 3 mA cm™2, no stirring, sedimentation time = 30 min.

process decreased with increasing pH. This influence of pH was more pronounced
for Phaeodactylum tricornutum than for Chlorella vulgaris. It is well known
that pH is an important variable in ECF [126], as it determines speciation
of aluminum hydroxides in the solution [54, 73]. Under acidic conditions,
the formation of positively charged monomeric aluminum hydroxides such
as AI(OH)?**, or polymeric aluminum hydroxide cations such as Alg(OH)3,
Al;(OH)}F, Alg(OH)5¢ ,Al304(OH)5, and Aly3(OH)5S is promoted [33, 123].
These react with the negatively charged surface of the microalgal cells and
are able to destabilize the microalgal suspension by charge neutralization. At
more alkaline pH levels, the formation of the negatively charged aluminum
hydroxide Al(OH), is promoted, which will not react with the negatively
charged microalgal cells. Under these conditions, coagulation—flocculation of
microalgal cells is probably mostly due to sweeping coagulation—flocculation
by insoluble aluminum hydroxide A1(OH)s. In their study on the use of ECF
for removal of microalgae from eutrophic surface waters, Gao et al. (2010) also
noted that a low pH had a positive effect on the recovery efficiency of microalgae
during ECF [64]. Because of this positive effect of a low initial pH, an initial
pH value of 4 was used in all subsequent experiments.

Figure 3.4 illustrates the influence of stirring during the ECF process on 7,.
For an increase in stirring speed from 0 to 60 and 150 rpm, the time required
to achieve destabilization of the microalgal suspension decreased by almost
a factor two. At the maximum stirring speed of 200 rpm, however, the time
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Figure 3.4: Microalgae recovery efficiency 7, as function of ECF time at
different stirring speeds. Conditions: (A) Chlorella vulgaris, (B) Phaeodactylum
tricornutum, 3 mA cm™2, pH = 4, sedimentation time = 30 min.

required to achieve destabilization increased again. Previous studies on ECF
for other applications have also demonstrated that stirring can improve the
coagulation—flocculation efficiency [33]. Stirring improves the recovery efficiency
by enhancing contact rates between the coagulants and the microalgal cells [122].
The highest stirring rate, however, probably caused break-up of microalgal flocs
due to the high shear forces applied, resulting in a longer time needed to achieve
a similar recovery efficiency. Because the time needed to achieve a maximal
7 Was shortest for a stirring speed of 150 rpm, this stirring speed was used in
subsequent experiments.

The reproducibility of the ECF process was evaluated in a new set of experiments
in triplet, working under the following (optimal) experimental conditions:
Aluminum anode, pH 4, sedimentation time of 30 min, and stirring speed
of 150 rpm. For both types of microalgae, the two lowest current densities from
the range tested above were used (1.5 and 3 mA cm~2 for Chlorella vulgaris and
0.6 and 1.5 mA cm~2 for Phaeodactylum tricornutum). Figure 3.5 illustrates
that, for both species, the time required to initiate flocculation as well as the
final recovery efficiencies are reproducible.
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Figure 3.5: (A and B) Microalgae recovery efficiency 7,, Al in (C and D) liquid
phase, and (E and F) in residual biomass measured using two different current
densities. Conditions: (A, C, E) Chlorella vulgaris, (B, D, F) Phaeodactylum
tricornutum, pH = 4, stirring speed = 150 rpm, sedimentation time = 30 min
(n = 3).
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3.3.2 Accumulation of aluminum during ECF

During the above-mentioned experiment, we also investigated the accumulation
of aluminum in both the recovered microalgal biomass and in the liquid phase
during the course of the ECF process (Fig 3.5). As predicted by Faraday’s
law, the concentration of aluminum in both the biomass and the liquid phase
increased with time and with current density. Aluminum content in the recovered
microalgal biomass was about twice as high at the higher current density than
at the lower current density. For both species, the aluminum content in the
microalgal biomass continued to increase after the maximal 7, was reached,
which can be ascribed to continued precipitation of aluminum hydroxides. In
the experiment with Chlorella vulgaris, aluminum concentration in the liquid
phase was relatively high and continued to increase after the maximal 7, was
reached. In Phaeodactylum tricornutum, on the contrary, the Al concentration
in the liquid phase was much lower and appeared to stabilize when the maximal
7q Was reached.

The difference in aluminum concentration in the water between the marine and
freshwater species are most likely due to differences in the chemical composition
of the freshwater and the seawater medium. The seawater medium contains high
concentrations of sulphate anions. These sulphate anions are known to facilitate
precipitation of aluminum hydroxides [74, 54]. This probably explains the
low residual aluminum concentrations in the process water in the experiments
with Phaeodactylum tricornutum. The seawater medium also contains high
concentrations of magnesium and calcium cations (Table 3.1). Electrolytic
release of hydroxyl anions at the cathode may lead to high pH levels near the
cathode. This is known to cause precipitation of carbonates and hydroxides
of calcium and magnesium [116, 193]. We monitored calcium and magnesium
concentrations in the experiments with Phaeodactylum tricornutum at a current
density of 1.5 mA cm~2. Calcium concentrations did not decrease appreciably in
the medium during the course of the experiment but magnesium concentrations
decreased by about 15%, suggesting that precipitation of magnesium carbonates
or hydroxides did indeed occur. Magnesium concentrations in the biomass
did not increase during the experiment, most likely because magnesium was
precipitated on the cathode. In long-term operation, this may lead to an
increased current consumption during the ECF process.

Both in the marine and the freshwater medium, it is clear that the aluminum
content in both the water and the microalgal biomass can be kept low by using
a lower current density. To avoid accumulation of excess aluminum in either
the liquid phase, the biomass, or both, ECF should not be continued beyond
the point where 7, reaches the saturation phase. Taking this into account, the
aluminum content in the microalgal biomass could be kept below 1% in the
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harvested biomass. In the process water it could be kept below 2 mg L~ for
Chlorella vulgaris or 0.5 mg L~ for Phaeodactylum tricornutum in the process
water.

In the experiments described in this research, microalgae were coagulated-
flocculated by aluminum hydroxides. This mechanism of coagulation—flocculation
is comparable to coagulation—flocculation of microalgae using aluminum salts
like alum. According to the literature [167], 80-250 mg alum L~! corresponding
to 7.2-23 mg Al L~! is needed to coagulate/flocculate a microalgal suspension.
For harvesting Chlorella minutissima, Papazi et al. (2009) used 750 mg L~!
alum, which corresponds to 120 mg L~! of aluminum [137]. If we assume
that only aluminum oxidation occurred at the anode, we estimated that in the
experiments in which the lowest current density was used, only 3.5 mg Al L~!
was released in the experiment with Chlorella vulgaris and 1.7 mg Al L=! in
the experiment with Phaeodactylum tricornutum. This suggests that ECF is
more efficient in terms of aluminum consumption than coagulation—flocculation
using alum. These findings coincide with the results of Canizares et al. (2009)
on the use of ECF for treatment of textile waters [34].

3.3.3 Power Consumption

The experimental results indicated that similar microalgal recovery efficiencies
could be obtained by applying a high current density during a short time
as by applying a low current density during a longer time. From an energy
consumption point of view, it is unclear which strategy is best. Therefore, for
the data presented in Figure 3.2, the global power consumption, expressed as
kWh kg=! dry weight microalgal biomass recovered during the ECF process
was calculated using Equation 3.10 for each sampling time (Tables 3.4 and
3.5). For each ECF run, a point in time could be identified at which the power
consumption per unit of microalgal biomass recovered was minimal. This point
in time generally corresponded to the time at which 7, reached the saturation
phase. For Chlorella vulgaris, for instance, this corresponded to an ECF time
of 40 min at a current density of 1.5 mA cm™2 and 20 min at 6 mA cm—2.
For Phaeodactylum tricornutum, this point in time was situated at 20 min at a
current density of 0.6 mA cm~2 and 3-5 min at 3 mA cm~2.

These analyses clearly indicated that the minimal power consumption per unit
of microalgal biomass recovered is much lower if lower current densities are
used than when higher current densities are used. For Chlorella vulgaris,
1.3 kWh kg~! recovered microalgae was consumed at a current density of
1.5 mA cm~—2 while 9.5 kWh kg~! recovered microalgae was consumed at

6 mA cm~2.  For Phaeodactylum tricornutum, the difference was smaller,



50 EVALUATION OF ECF FOR MICROALGAE CONCENTRATION

Table 3.4: Power consumption (kWh kg~! dry weight recovered microalgae)
using different current densities (CD) for Chorella vulgaris based on previous
experiment (Fig 3.2).

ECF time (min)
CD (mA em~2) 10 20 30 40 50 60 70 80

1.5 53 84 23 13 15 19 21 24
3 113 36 41 57 70 83 - -
6 134 95 141 - - - - -
12 254 343 - - - - - -

- = no data available: ECF process completed

Table 3.5: Power consumption (kWh kg~! dry weight recovered microalgae)
using different current densities CD for Phaeodactylum tricornutum based on
previous experiment (Fig 3.2).

ECF time (min)
CD (mA cm™2) 3 5 8 10 20 30

0.6 - - - 04 02 03
1.5 - - 1.1 04 05 0.8
3 04 04 05 05 08 1.7

- = insufficient microalgae recovery achieved to calculate realistic values

with 0.2 kWh kg~! recovered microalgae consumed at 0.6 mA cm~2, and

0.4 kWh kg~! recovered microalgae were consumed at 3 mA cm~2. Previous
studies, in which ECF was used to remove microalgae from surface waters, have
also indicated that the energy consumption to achieve coagulation—flocculation
is lower when a lower current density is used [63]. Although a higher current
density thus leads to a more rapid coagulation—flocculation of the microalgae,
the use of a low current density is more efficient, from an energy consumption
point of view. It should be noted, however, that the use of a low current density
requires relatively long retention times of the water in the reactor. It is not
unusual, however, to use long retention times in other applications of ECF
[50, 208]. Nevertheless, the retention time should be taken into account when
the process is applied at an industrial scale. A long retention time will require
a larger reactor to process the same volume of water. A long retention time
may also influence the quality of the algal biomass that is harvested.

For the experiments depicted in Figure 3.5, the minimum value of the power
consumption was 2.1 kWh kg~! of biomass harvested for Chlorella vulgaris
and 0.2 kWh kg~! of biomass harvested for Phaeodactylum tricornutum, at a
current density of 1.5 and 0.6 mA cm™2, respectively. These data confirm the
low power requirements of ECF, especially for the marine species. The lower
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power consumption needed for the marine species is mainly due to the higher
conductivity of the marine medium when compared to the freshwater medium,
which results in a higher efficiency of the electrolytic release of aluminum from
the anode [96], but other phenomena could also play a role here. Mouedhen et
al. (2008) reported that chloride ions present in seawater attack the aluminum
oxide layer formed on the surface of the anode, thereby enhancing the release
of aluminum from the anode [126].

In existing microalgal production systems for high value applications, cen-
trifugation is currently the most commonly used technology for harvesting
microalgae. For low value applications, however, the use of conventional
centrifuges is not economically feasible [121]. Power consumption of conventional
centrifugation has been estimated at 8 kWh m~2 of microalgal suspension [48].
Assuming a microalgal biomass concentration of 0.5 kg m™3, which is typical
for microalgal production systems and comparable to the microalgal biomass
concentration used in our experiments, this would correspond to a power
consumption of 16 kWh kg~! microalgal biomass recovered. The experiments in
this study indicate that, for the freshwater microalgae Chlorella vulgaris, power
consumption of ECF is an order of magnitude lower than for centrifugation. For
Phaeodactylum tricornutum, the difference is nearly two orders of magnitude.
Because ECF is a complex process involving electrolysis, coagulation—flocculation
and sedimentation/flotation, there is no straightforward approach for estimating
the challenges and costs associated with scaling-up of the technology [88]. Pilot-
scale tests are therefore required to confirm whether rates of power consumption
can be extrapolated to industrial scale ECF reactors, and to estimate additional
costs of a full-scale setup. An important parameter that will influence power
consumption in large-scale systems which was not investigated in this study
is the distance between the electrodes, which has an important influence on
power consumption [88, 96]. Nevertheless, our results indicate that ECF may
be a promising technology for harvesting microalgae, in particular for species
cultivated in seawater.

3.4 Conclusions

Although both aluminum and iron anodes achieved destabilization of the
microalgal suspensions, aluminum anodes proved to be more efficient. During
ECF, A3t and Fe?T are released from the sacrificial anode and form metal
hydroxides in the solution. Destabilization of the microalgal suspension was
probably achieved through a combination of charge neutralization by positively
charged metal hydroxides and sweeping coagulation—flocculation by insoluble
metal hydroxides. The efficiency of the ECF process using aluminum as an anode
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could be significantly improved by reducing the initial pH and by increasing
the turbulence. It is also recommended to include a sedimentation period
between ECF and the removal of the microalgal flocs as destabilization of the
microalgal suspension continues after removal of the microalgal suspension from
the ECF reactor. Although higher current densities resulted in a more rapid
destabilization of the microalgal suspension, this also resulted in a higher power
consumption and release of aluminum from the sacrificial anode. Release of
aluminum in the process water is lower, probably due to enhanced precipitation
of aluminum hydroxides related to the presence of sulphates in seawater. When
ECF is compared to chemical coagulation—flocculation using alum, consumption
of aluminum appears to be lower when ECF is used. Power consumption of
ECF was an order of magnitude lower than centrifugation when applied to the
freshwater microalgae Chlorella vulgaris and nearly two orders of magnitude
lower when applied to the marine microalgae Phaeodactylum tricornutum. ECF
is therefore an attractive technology for harvesting microalgae, particularly for
harvesting marine microalgae.



Chapter 4

Flocculation of Chlorella
vulgaris induced by high pH:
role of magnesium and
calcium and practical
implications

Adapted from: Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K. 2012.
Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and
practical implications. Bioresource Technology, 105, 114-119.
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4.1 Introduction

Several studies have demonstrated that flocculation of microalgae can also be
induced by increasing the medium pH, a phenomenon that is often referred
to as ‘autoflocculation’. Golueke and Oswald (1970) observed that microalgae
in waste stabilisation ponds flocculated on warm and sunny days, when CO,
was depleted and the pH increased [68]. Microalgal suspensions are generally
stabilised by a negative surface charge of the cells which is generated by carboxyl
and/or sulphate groups [81]. The fact that flocculation of microalgae occurs at
a high pH is therefore surprising, since the surface charge of microalgal cells is
expected to become more negative at a high pH and flocculation is thus inhibited
[103]. It has been suggested that flocculation at high pH is caused by chemical
precipitation of calcium and/or magnesium salts at a high pH [167]. Indeed,
Nurdogan and Oswald (1995) noted that autoflocculation did not occur in waters
poor in calcium and magnesium [132]. They demonstrated that flocculation
in such waters could be induced by addition of lime. Sukenik and Shelef
(1984), on the other hand, suggested that flocculation at high pH was caused
by precipitation of calcium phosphate [176]. High phosphate concentrations
(0.1-0.2 mM) are required for this process to be effective. Lavoie and De la
Notie (1987) could not induce flocculation of Scenedesmus in a medium that
was low in phosphate, which supports the role of calcium phosphate [103].

Although it appears from these previous studies that calcium and/or magnesium
play a role in flocculation of microalgae at high pH, there is still uncertainty
about the general underlying mechanism. Moreover, the practical implications
and the potential for reducing the cost of harvesting microalgae have not been
fully explored. The goal of this study is therefore, (1) to investigate the role
of calcium and magnesium in the flocculation process, and (2) to evaluate
the practical implications for flocculation induced by high pH for harvesting
microalgae.

4.2 Materials and methods

4.2.1 Culturing of microalgae

We used Chlorella vulgaris (211-11b SAG, Germany) as a model species
for investigating the mechanism of and practical implications for the use of
pH induced flocculation in freshwater medium. C. vulgaris is a promising
species for the production of microalgal biomass for food, feed or fuel, and
is currently intensively studied [60]. C. vulgaris as cultured in dechlorinated
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Table 4.1: Concentrations of the main ions in the medium used to culture
Chlorella.

Freshwater (mM)

Cl 1.7
Na 1.9
Mg 1.2
Ca 2.0
K 0.3
P 0.06
SOy 1.3
Conductivity (mS cm™1) 0.8

tap water enriched with inorganic nutrients according to the concentrations of
the Wright’s cryptophytes medium [79]. Table 4.1 shows the concentrations of
the main ions in this medium. The microalgae were cultured in 30 L bubble
column photobioreactors that were mixed by sparging with 0.2 pm-filtered
air (5 L min~!). Growth of the microalgae was monitored by measuring the
absorbance at 550 nm. Flocculation experiments were conducted at a microalgal
density of approximately 0.5 g dry weight per litre.

4.2.2 General setup of flocculation experiments

Flocculation of the microalgal suspensions induced by high pH was investigated
using jar test experiments (n = 2). These experiments were carried out in
100 mL beakers that were stirred using a magnetic stirrer. pH was adjusted
by addition of 0.5 M sodium hydroxide. The microalgal suspension was mixed
intensively (1000 rpm) for 10 min during and just after pH adjustment. Then,
the suspensions were mixed gently (250 rpm) for another 20 min, after which they
were allowed to settle for 30 min. The flocculation efficiency 7, was estimated
by comparing absorbance at 550 nm between the pH-adjusted treatment and a
control treatment. Samples (3.5 mL) were collected in the middle of the clarified
zone. The flocculation efficiency 7, was calculated as:

OD; — ODy
="t =) 4.1
where OD; is the optical density of the suspension after 30 min sedimentation
without pH adjustment, and ODy is the optical density of the suspension after
the complete treatment.
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4.2.3 The role of magnesium and calcium

Flocculation induced by high pH was tested at different pH levels between 9 and
12. To unequivocally demonstrate the role of bivalent cations in the flocculation
process, we tested if flocculation induced by high pH could be inhibited by
addition of EDTA (10 mM), a chelating agent that can sequester polyvalent
cations. This was done at the three pH levels where flocculation occurred (pH
11, 11.5 and 12).

To investigate the fate of calcium and magnesium during pH increase, we
monitored concentrations of these cations in the dissolved and particulate
phase before and after pH induced flocculation at pH 11. Concentrations
of cations in the dissolved phase were measured after removal of algal cells
by centrifugation followed by filtration over Whatman GF/C glass microfibre
filters. Concentrations in the particulate phase were measured in the pellet
obtained during centrifugation. The pellet was first dried at 100 °C for 24 h,
then incinerated at 450 °C for 24 h and the ashes were dissolved quantitatively
in HNO3:HCI 1:1. Calcium and magnesium concentrations were measured
using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES,
Jobin—Yvon Ultima, Horiba Scientific) and a mass balance was constructed.
In addition to these measurements, we calculated the saturation index (SI) of
Cas(PO,),, CaCO4, CaMg(CO,),, CaSO, and Mg(OH), at different pH levels
between 10 and 11.5 using PHREEQC version 2 (USGS, USA) to estimate the
influence of pH on precipitation of different calcium and magnesium salts.

To further investigate the relative importance of calcium and magnesium in
the flocculation process, we tested whether flocculation at high pH could be
induced in a medium lacking calcium or magnesium. To do so, Chlorella
was separated from the medium using centrifugation and resuspended in fresh
medium lacking calcium and magnesium. Preliminary experiments demonstrated
that concentration of Chlorella using centrifugation and subsequent resuspension
in the original medium had no influence on flocculation induced by high
pH. In a first series, Chlorella cells were resuspended in a medium lacking
magnesium and containing different calcium concentrations ranging between
0 and 2.5 mM. In a second series, calcium was omitted and magnesium was
added in concentrations ranging between 0 and 1.5 mM. The range of calcium
and magnesium concentrations used encompassed the range of calcium and
magnesium observed in typical surface waters [30].
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4.2.4 Practical implications of using flocculation induced by
high pH for harvesting microalgae

The efficiency of several widely available bases (sodium hydroxide, potassium
hydroxide, calcium hydroxide, magnesium hydroxide and sodium carbonate) was
compared for flocculation induced by high pH. We gradually added a 0.5 M base
solution to 100 mL beakers filled with a Chlorella suspension and monitored
the increase in pH until coagulation could be visually observed. We estimated
the ratio of base over microalgal biomass required for flocculation based on
the quantity of base added and the biomass concentration of Chlorella in the
medium.

We also investigated the influence of the pH increase on the viability of the cells.
First, cell numbers were compared before and after flocculation. Flocculation
tests were done by increasing the pH to 12, resulting in a flocculation efficiency
of 99%. The medium was removed, the particulate phase was resuspended in
distilled water, neutralised (pH 6.5) and stirred at 550 rpm for 60 min, resulting
in a complete dissolution of the flocs and resuspension of the algal cells. Cell
numbers were determined by counting intact cells using a Biirker count chamber.
A minimum of 200 algal cells were counted in duplicate giving a counting
error of maximum 5%. Average cell numbers before and after flocculation and
resuspension were compared using a t-test with equal variances (as checked
with an F-test; Sigmaplot 11, Systat Software, Inc.). Secondly, the quantum
yield of photosystem II of the microalgal cells was compared before and after
flocculation by pH increase (pH 10.5, 11, and 12). The quantum yield was
measured after 20 min of dark adaptation of the cells using a PST AquaPEN
PAM fluorometer (sample size = 3.5 mL; n = 3). The quantum yield is a
sensitive indicator for stress in microalgae [43].

4.3 Results and discussion

4.3.1 The role of magnesium and calcium

The influence of pH on flocculation efficiency was tested in a pH range from
9 to 12 (Fig 4.1 — pH treatment). No flocculation occurred up to pH 10.5.
At pH 11, a flocculation efficiency of 75% was observed. At pH 11.5 and 12,
the flocculation efficiency exceeded 95%. This indicates that Chlorella can be
flocculated efficiently by increasing the pH of the culture to 11. This observation
is in agreement with previous studies [21, 201].
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Figure 4.1: Flocculation efficiency 7, of Chlorella vulgaris as a function of pH
in treatments with and without EDTA (0.5 M).

Several studies have suggested that bivalent cations such as calcium and
magnesium play a role in the flocculation process at high pH [132, 167]. We
wanted to unequivocally confirm the role of calcium and/or magnesium in
pH-induced flocculation by addition of EDTA to remove bivalent cations from
solution at pH levels 10.5, 11 and 12 (Fig 4.1 — pH treatment + EDTA). Addition
of EDTA resulted in a strong and significant decrease in the flocculation efficiency
74 at the three pH levels tested, confirming that bivalent cations such as calcium
and/or magnesium are indeed involved in flocculation at high pH.

To evaluate whether flocculation at high pH was related to precipitation of
calcium and/or magnesium, we monitored both cations in the dissolved (medium)
and particulate (biomass) phase before and after flocculation at pH 11 (Fig 4.2).
Before flocculation, 97% of magnesium and 41% of calcium was in the dissolved
phase. After flocculation, only 41% of the magnesium and 6% of the calcium
was in the dissolved phase. This indicates that during flocculation, precipitation
of both calcium and magnesium occurred. The fact that a substantial fraction
of the calcium was already found in the particulate phase before the increase of
pH to 11 suggest that some precipitation may already have occurred, probably
due to increases in pH as a result of photosynthetic depletion of carbon dioxide.
This observed precipitation of calcium and magnesium is in agreement with
predictions of the PHREEQC model, which indicates that at pH 11 both
calcium and magnesium are expected to precipitate as calcium carbonate,
calcium magnesium carbonate, calcium phosphate and magnesium hydroxide.
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Figure 4.2: Mass balance of calcium (A) and magnesium (B), before treatment
(BF) and after flocculation treatment (AF) at pH 11 for the dissolved phase
and the particulate phase.

We then evaluated whether precipitation of calcium and magnesium salts
separately were capable of inducing flocculation of the Chlorella suspension. We
therefore isolated Chlorella cells from the growth medium and resuspended them
in fresh medium lacking either calcium or magnesium or both and quantified
the flocculation efficiency 7, at pH 10.5, 11 and 12. When Chlorella was
resuspended in medium lacking both calcium and magnesium 7, was low at
all pH levels (<20%) (Fig 4.3, control). This confirms the results of the
EDTA addition experiment that calcium and/or magnesium are essential for the
occurrence of flocculation at high pH. When calcium was added to the medium
at concentrations ranging between 0.025 and 2.5 mM (Fig 4.3A), 7, remained
low (<20%) at all pH levels. This indicates that, although calcium precipitated,
it did not induce flocculation. In a similar experiment, magnesium was added
to the medium at concentrations between 0.015 and 1.5 mM. At a magnesium
concentration of 0.015 mM, the flocculation efficiency was below 20% at the
three pH levels. At a concentration of 0.075 mM, the flocculation efficiency
increased with pH, being about 25% at pH 10.5 and close to 85% at pH 12. At
magnesium levels of 0.15 mM or higher, the flocculation efficiency was between
90% and 100% at the three pH levels tested. This indicates that in contrast
to calcium, magnesium precipitation was capable of inducing flocculation of
Chlorella.



60 FLOCCULATION OF C. VULGARIS INDUCED BY HIGH PH

100 100 - .
- 105 A. - 105 T T fl_B.
= 11 = 11
80 - | 3 12 80 4 | @ 12
. 60 60 |
B S
= =
40 40
20 20
0 Jﬁﬂ_ﬁﬂ_ﬁﬁ_ﬂﬂ_ﬂ]ﬂ—&ﬂ— 0- L U 1L
control 0.025 0.125 0.25 1.25 25 control 0.015 0.075 0.15 0.75 1.5
Ca (mM) Mg (mM)

Figure 4.3: Flocculation efficiency 7, of Chlorella vulgaris at three pH levels as
a function of the calcium concentration (A) and the magnesium concentration (B)
in the medium. Control treatment is without addition of calcium or magnesium.

The DLVO theory states that suspensions are stabilised by surface charges
of the particles [26]. In the case of microalgal cells, the surface charges are
negative. The balance between the electrostatic repulsion and the Van der
Waals attraction can be shifted towards attraction, causing coagulation and
flocculation through several mechanisms. First of all, flocculation can result from
an increase in medium ionic strength, which causes double layer compression. It
is unlikely that this mechanism was involved in our experiments, as the change
in ionic strength caused by pH increase is limited. Furthermore, this mechanism
cannot explain the observed differences in flocculation behaviour upon addition
of calcium versus magnesium. Another possible mechanism can be a reduction
in surface charge of the microalgae. However, as microalgae generally carry
a negative surface charge, an increase in pH will cause an increase in surface
charge rather than a decrease, excluding this mechanism as a possible cause for
flocculation induced by high pH.

In contrast, we propose that flocculation in our experiments was caused by a
third mechanism, being charge neutralisation. During pH increase, magnesium
hydroxide or brucite is formed. In brucite, some of the bivalent magnesium
cations in the crystal structure are replaced by trivalent cations such as iron or
aluminium, resulting in a layered double hydroxide crystal that carries positive
charges [2]. These positive charges probably neutralise the negative surface
charge of the microalgal cells, reducing the energy barrier between cells and thus
causing destabilisation and subsequent flocculation of the microalgal suspension.
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In wastewater treatment, precipitation of magnesium hydroxides at high pH
is indeed sometimes used as an alternative for metal coagulants or synthetic
polymeric flocculants to remove pollutants from wastewater [108, 164].

Although calcium also precipitated when pH was increased, this precipitation did
not appear to induce flocculation of Chlorella. Calcium may have precipitated as
calcium carbonate or calcium phosphate. In contrast to magnesium hydroxide,
calcium carbonate crystals are not charged and are thus unlikely to induce
coagulation by charge neutralisation. On the other hand, Sukenik and Shelef
(1984) demonstrated that flocculation of microalgae at high pH was related
to precipitation of calcium phosphate [176]. They found that the calcium
phosphate precipitate had a positive surface charge, inducing flocculation
through charge neutralisation, similar to the mechanism proposed here for
magnesium hydroxide. A concentration above 0.1 mM phosphate was required
to induce flocculation at high pH. It should be noted that in our experiments, the
phosphate concentration before the flocculation treatment was only 0.006 mM.
Therefore, calcium phosphate precipitation was probably insufficient to induce
flocculation. Possibly, at higher phosphate concentrations, calcium phosphate
precipitation plays a more important role in flocculation induced by high pH.

4.3.2 Practical implications of using flocculation induced by
high pH for harvesting microalgae

Because flocculation of microalgae induced by high pH is correlated to
precipitation of magnesium, the mechanism is dependent on the presence of
magnesium in the growth medium. As magnesium is removed from the medium
during flocculation, this may also have implications for the recycling of process
water, which is required for sustainable cultivation of microalgae and their
products. When Chlorella was flocculated induced by high pH, the magnesium
concentration in the medium was reduced from an initial concentration of 1 mM
to a final concentration of 0.35 mM. As we showed that a minimum concentration
of about 0.15 mM of magnesium is required to induce flocculation at high pH,
this means that repeated re-use of the water may lead to gradual depletion of
magnesium, resulting in a failure of pH induced flocculation. Consequently,
magnesium addition will be required from time to time.

Based on the mass balance in Fig 4.2, per 100 mL of microalgal culture, 1.2
mg of magnesium is transferred to the particulate phase after flocculation,
which results in an increase of 30 mg Mg g~! biomass dry weight. However,
if the magnesium concentration in the medium is higher, the concentration of
magnesium hydroxide that precipitates is also likely to be higher. Further
research is required to evaluate whether this may interfere with specific
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Table 4.2: Comparison of the use of four bases to induce coagulation at high
pH.

NaOH KOH Ca(OH), Mg(OH),

PHeoagulation 10.8 10.8 10.8 9.7
Final base concentration 5.75 8.00 4.00 11.5
(M)

Required amount of base 9 12 18 27

(mg g~! biomass)

applications of the microalgal biomass (e.g. as animal feed) or with further
processing of the biomass.

Harvesting of microalgae induced by high pH requires the addition of a base
to raise the pH. Although we used sodium hydroxide to increase pH in our
experiments, other bases may be cheaper or safer to use in an industrial
environment. We thus tested whether other bases could be used to induce
flocculation (Table 4.2). Sodium carbonate failed to induce flocculation, even
when pH was increased to well above 11 (data not shown). Potassium hydroxide
and calcium hydroxide induced flocculation at the same pH as sodium hydroxide
(pH 10.8). The lowest quantity of base was required for sodium hydroxide
(9 mg g~! biomass), followed by potassium hydroxide (12 mg g=! biomass)
and calcium hydroxide (18 mg g~! biomass). Magnesium hydroxide induced
flocculation at a lower pH than the other bases (pH 9.7) but a relatively large
quantity of base was required (27 mg g~! biomass). In industrial applications,
both the low cost and the low risk would favour calcium hydroxide or slaked
lime over the other bases tested. Assuming a cost of 150$ ton~—! slaked lime,
flocculating microalgae induced by high pH would cost approximately 18$ ton~?
biomass. Obviously, the sludge obtained after flocculation should be dewatered
further using centrifugation. In our experiments with Chlorella, flocculation
induced by high pH could be used to concentrate microalgal suspensions by a
factor of about 50, which implies a large reduction in the electricity consumption
during centrifugation.

An alternative to the use of lime may be to induce an increase in pH by intense
microalgal photosynthesis. In cultures of Phaeodactylum, Spilling et al. (2011)
observed that flocculation occurred without addition of base when CO, supply
was interrupted and pH increased to 9.5 as a result of photosynthesis [172].
Nurdogan and Oswald (1995) also noted that flocculation of microalgae in high
rate algal ponds occurred during warm and sunny days, when low solubility
of CO, and high photosynthetic uptake of CO, resulted in a high pH. More
research is required to investigate what conditions favour a natural increase
in pH in microalgal cultures up to a point that precipitation of magnesium
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Table 4.3: Cell numbers for untreated microalgae (control) and microalgae
after flocculation at pH 12 (AF pH 12).

Control AF (pH 12) p (a = 0.05)

Cell number 6.10x107 + 2.12x105 5.15x107 + 1.14x106 0.034
(#cells mL~1)

hydroxides occurs.

The use of flocculation induced by high pH for harvesting microalgae may have
as advantage that the high pH effectively sterilises the microalgal biomass as
well as the process water. This may be advantageous when microalgae are used
in wastewater treatment, as the high pH may kill pathogenic microorganisms
[164].

Care should however be taken that the high pH does not destroy the microalgal
cells, as this may result in loss of useful bioproducts from the biomass. To
evaluate whether the high pH causes cell lysis of Chlorella, the cell numbers
were compared before and after flocculation by pH increase to pH 12 (Table 4.3).
Although a significant decrease in cell numbers was detected upon flocculation
(p = 0.034; @ = 0.05), it is clear that the major part of the microalgal cells
was still intact (>85%). Secondly, we measured the maximum quantum yield
of photosystem II in Chlorella biomass after flocculation induced by high
pH using lime. We did not notice a significant decrease in the maximum
quantum yield as long as pH remained below 12. The results of both methods
suggest that the loss of useful bioproducts will most likely be minimal. Using
light microscopy, Knuckey et al. (2006) also did not observe any apparent
deterioration of microalgal biomass harvested after pH increase. But an earlier
study by Blanchemain & Grizeau (1999) noted that cell lysis occurred after
1 h at pH 10.2 for Skeletonema costatum based on colour change of the algal
culture from brown to green [99, 20]. Taken together, these findings suggest
that operation time will be an important process parameter to take into account
in the development of a pH induced harvesting process for microalgae. However
more exact and standardized methods to measure cell lysis are needed for an
in-depth and quantitative analysis of its influence on the cell viability.
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4.4 Conclusions

Our experiments demonstrate that the terminology ‘autoflocculation’ is
misleading because flocculation induced by high pH is not related to changes
in properties of the microalgal cells, but is a form of chemical flocculation in
which precipitation of magnesium is involved. Flocculation induced by high pH
is a potentially useful method to preconcentrate microalgal biomass. However,
the method depends on sufficiently high magnesium (>0.1 mM) concentrations.
From a cost as well as safety perspective, pH is best increased using calcium
hydroxide. Further research regarding the impact of pH induced flocculation on
cell viability and recycling of process water is needed.



Chapter 5

Influence of organic matter
generated by Chlorella
vulgaris on five different
modes of flocculation

Adapted from: Vandamme D, Foubert I, Fraeye I, Muylaert K. 2012. Influence of organic
matter generated by Chlorella vulgaris on five different modes of flocculation. Bioresource
Technology, 124, 508-511.
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5.1 Introduction

Primary concentration of microalgae can be achieved by flocculation, a
phenomenon which can be induced by the addition of polyvalent metals such
as aluminum sulfate (alum) or ferric chloride, or by electrochemical release of
metal ions from a sacrificial anode in electro-coagulation flocculation (ECF)
(Chapter 3). Alternatively, cationic biopolymers, such as chitosan or the cheaper
alternative cationic starch (Chapter 2), can be used. Finally, flocculation of
microalgae can be induced by increasing the pH, which leads to precipitation of
magnesium hydroxides which act as a flocculant (Chapter 4). Polyvalent metal
ions, cationic polymers and magnesium hydroxides precipitates carry positive
charges that interact with the negative surface charge of microalgal cells and
induce flocculation by charge neutralization and/or bridging.

During cultivation, microalgae release significant amounts of algal organic
matter (AOM). In microalgae cultivation systems, microalgae can excrete
up to 17% of fixed carbon, which can amount to 60-80 mg C L' in closed
photobioreactors [90]. This AOM comprises a wide range of compounds such
as proteins, neutral and charged polysaccharides, nucleic acids, lipids and
small molecules, but polysaccharides comprise the major fraction [127]. It is
well-known that AOM interferes with the removal of particulates using metal
coagulants in the production of drinking water, where concentrations of AOM
are much lower than in algal production systems (0.1-1.5 mg C L~1; [15, 87]).
Little is known about the possible interference of high concentrations of AOM
present in dense algal cultures with flocculation-based harvesting of microalgae.
It was demonstrated for the cyanobacterium Aphanotece [39] and for the green
alga Chlorella zofingiensis [204] that excreted polysaccharides resulted in an
increased dose of metal coagulant needed to induce flocculation. No publications
have focused on interference with other flocculants. Therefore, in this chapter,
the influence of AOM on flocculation of Chlorella vulgaris using five different
flocculation technologies was evaluated.

5.2 Materials and methods

5.2.1 Cultivation of Chlorella vulgaris

C. vulgaris (211-11b SAG, Germany) was used as a model species and was
cultured in dechlorinated tap water enriched with inorganic nutrients according
to the concentrations of the Wright’s cryptophyte medium [79]. The microalgae
were cultured in 30 L bubble column photobioreactors in which the cultures
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were mixed by sparging with 0.2 pm-filtered air (5 L min~!). Growth of
the microalgae was monitored by measuring the absorbance at 550 nm [75].
Microalgal dry weight was determined gravimetrically by filtration using
Whatman glass fiber filters (Sigma—Aldrich) and drying at 105°C until constant
weight. All flocculation experiments were performed in the early stationary
growth phase at a biomass concentration of 0.25 g L~1.

5.2.2 General setup of flocculation experiments

To investigate the relative importance of AOM in the flocculation process,
flocculation of Chlorella was compared in medium with and without AOM. To
remove AOM, Chlorella was separated from the medium using centrifugation
(4,000g) and resuspended in fresh Wright’s cryptophyte medium. AOM
concentration in the original medium and in the fresh medium with resuspended
microalgae was estimated through measurement of the total carbohydrates,
which comprise the major fraction of the AOM [127]. Carbohydrates were
measured using the phenol-sulfuric acid method [55]. Carbohydrate content in
the original medium was 5 mg C L~! and this was reduced to only 0.5 mg C L~}
in the fresh medium with resuspended microalgae. Preliminary experiments
demonstrated that centrifugation and resuspension of Chlorella in the original
medium had no influence on flocculation, confirming that these operations
themselves did not affect the results.

Five flocculation methods were evaluated and the flocculant demand for
Chlorella was compared in the presence and absence of AOM: alum, electro-
coagulation—flocculation (ECF), chitosan, cationic starch and pH-induced
flocculation. For ECF, the setup described in Section 3.2.2 was used. In short,
this setup consisted of a 1 L rectangular PVC reactor with an aluminum anode
and an inert titanium oxide cathode and a power supply controller (EHQ Power
PS3010 DC). Current density in the experiments was set at 1.5 mA cm™2. Metal
release was directly proportional to the operation time, as stated by Faraday’s
law. The flocculation efficiency 7, was estimated by comparing absorbance at
550 nm between the flocculation treatment and a control. Samples of 3.5 mL
were taken every 5 min in the middle of the clarified zone and optical density
was measured after 30 min of sedimentation. The flocculation efficiency 7, was
calculated as:

OD; — ODy
’]’I = —-—me—e————
¢ OD;
where OD; is the optical density of the suspension after 30 min sedimentation
without flocculation treatment, and ODy is the optical density of the suspension

(5.1)
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after the completed flocculation treatment.

The four other flocculation mechanisms were assessed using jar test experiments.
For each method, the flocculation efficiency was estimated at different flocculant
doses. For alum, the pH was adjusted using 0.5 N HCI to 5.5 prior to addition
of the coagulant. A solution of 0.015 M Al,(SO,), - 18 H,O (Sigma Aldrich)
was added and the pH was immediately re-adjusted to 5.5. For flocculation
using chitosan (from crab shells, practical grade, Sigma Aldrich), the pH of the
suspension was re-adjusted to 7.5. A solution of 5 g L™! chitosan in 0.01 M HCI
was used. For cationic starch flocculation, a stock solution of 10 g L~! Greenfloc
120 (Hydra 2002 Research, Hungary) was prepared. The pH was not adjusted,
as it has been shown that flocculation efficiency is not pH-dependent (Section
2.3). For pH-induced flocculation, 0.5 N NaOH was used to increase the pH.
The jar test experiments were carried out in 100 mL beakers whose contents
were stirred using a magnetic stirrer. During addition of the flocculant, the
microalgal suspension was intensively mixed (500 rpm) for 10 min followed by
gentler mixing (250 rpm) for an additional 20 min. Subsequently, the suspension
was allowed to settle for 30 min. In order to estimate the flocculation efficiency
Na, samples (3.5 mL) were collected in the middle of the clarified zone and
absorbance at 550 nm was measured. The flocculation efficiency 7, was again
calculated according to Equation 5.1.

5.3 Results and discussion

The dose response curves of Chlorella cells in their original medium containing
AOM and resuspended in fresh medium without AOM are presented in Fig
5.1. To facilitate comparison between different treatments, the dose required to
achieve 85% flocculation efficiency (Dgsy ) was estimated from each dose response
curve. For each of the five flocculation technologies tested, 85% flocculation
efficiency (Dgsy;) was achieved at a much lower dose in the medium without
AOM than in the medium with AOM. For alum, Dgsy, was only 20 mg L1
in the absence of AOM and 115 mg L~! in the presence of AOM. For ECF,
flocculation occurred after 5 min in the absence of AOM (electricity demand:
0.2 kWh kg~! biomass) and after 25 min in the presence of AOM (electricity
demand: 1.2 kWh kg~! biomass). For chitosan, (Dgsy) was 8 mg L~ in the
absence of AOM and 75 mg L' in the presence of AOM. For cationic starch,
Dgso, increased from 20 mg L' in the absence of AOM to 90 mg L' in the
presence of AOM. Finally, when pH-induced magnesium hydroxides precipitation
was used to flocculate Chlorella, flocculation occurred at pH 10.5 in the absence
of AOM (requiring 22 mg L~! NaOH) and at pH 11.5 in the presence of AOM
(requiring 49 mg L~ NaOH). The doses required to induce flocculation in the
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Dose response curves for different flocculation methods: for

Chlorella vulgaris in original (AOM+) medium and resuspended (AOM-) in
fresh medium: (A) alum, (B) ECF, (C) cationic starch, (D) chitosan, (E) pH
induced flocculation.

Chlorella cells in their original medium were in the range of the doses mentioned
in previous studies [184, 186, 188], while the doses required after resuspension
in the fresh medium were generally much lower.

Flocculation induced by alum required six times higher doses in the presence of
AOM. For ECF, in which aluminum ions were released from a sacrificial anode,
Dgsy, was expressed as a function of energy consumption, which is directly
proportional to operation time. The 5-fold increase in energy consumption
needed to achieve flocculation in the presence of AOM using ECF was in
accordance to the 6-fold increase of the alum dosage for the alum flocculation
method. This outcome is not surprising, as ECF releases aluminum directly
proportional to current density and operation time and flocculation by ECF is
thus essentially based on the same underlying mechanism as alum flocculation.
It is well-known from studies on water treatment that AOM interferes with
flocculation using metal coagulants such as alum and ferric chloride [14, 87].
Bernhardt et al. (1989) showed that AOM contains extracellular polysaccharides
with negatively charged carboxyl groups that interact with the positively charged
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metal coagulants making them unavailable for microalgae flocculation and thus
resulting in a higher coagulant demand [15]. Both the number and position of
these carboxyl groups and the size of the polysaccharide polymers influence the
interaction with metal coagulants [15, 87]. In addition, the protein fraction of
the AOM can form complexes with the metal coagulants, again making them
unavailable for flocculation of the microalgae and thus resulting in a higher
coagulant demand [143, 177]. Bernhardt et al. (1989) showed that even low
concentrations of AOM (a few mg C L™1) resulted in a strong increase in the
coagulant demand. Compared to these low concentrations in surface water
systems, AOM concentration of Chlorella cultivated in closed photobioreactors
is at least an order of magnitude higher [90]. Therefore, it is no surprise that the
alum demand and ECF energy consumption increased strongly in the presence
of AOM.

The present results showed that AOM also interferes with flocculation using
cationic biopolymers such as chitosan and cationic starch. Cationic biopolymer
flocculants may interact with oppositely charged polyelectrolytes within the
AOM, such as carbohydrates and proteins. Interference by AOM was particularly
important for chitosan, where a 9-fold increase in the flocculant dose was
observed. For cationic starch, the increase was slightly lower (5-6-fold). Possibly,
the difference is related to differences in the threedimensional structure of both
cationic biopolymers [27]. Overdosing cationic starch leads to a decrease in
the flocculation efficiency. This phenomenon of dispersion restabilization is
commonly observed with polyelectrolyte flocculants, including cationic starch
and is probably the result of steric hindrance and/or electrostatic repulsion
[186].

The present results demonstrated that AOM also interferes with flocculation by
magnesium hydroxide precipitates formed at a high pH. Lee et al. (1998) also
showed that flocculation induced by high pH in cultures of Botryococcus braunii
was affected by growth stage [106], which is also known to have an influence on
the amount of AOM [89]. Compared to the other flocculation technologies, the
dose of sodium hydroxide required to induce flocculation was only about 2-fold
higher in the presence of AOM. The reason for this is not clear. Possibly, it is
due to the fact that sodium hydroxide is not the primary flocculant, but induces
precipitation of magnesium hydroxides which act as the flocculant [184, 197].
As precipitation of magnesium hydroxides increases non-linearly with pH [108],
a limited increase in the amount of base added may result in a strong increase
in magnesium hydroxide precipitates.

Our results clearly showed that most of the flocculant dose required to flocculate
Chlorella in an exponentially growing culture is lost on the AOM rather than
being used for actual flocculation of the cells. The degree of inhibition of
flocculation by AOM is most likely related to the quantity and the composition
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of the AOM present in the medium, and these variables will therefore have a
major influence on the cost of harvesting microalgal biomass using flocculation.
Although all microalgae produce AOM, the quantity and quality of the AOM
differ between species and is influenced by culture conditions. For instance,
cyanobacteria tend to produce AOM that is relatively rich in proteins compared
to eukaryotic microalgae [177, 143]. The number and position of carboxyl
groups on polysaccharides and the size of the polysaccharides differ between
species of microalgae and also change with culture age [89, 143]. For C. vulgaris
in stationary growth phase, the composition of AOM was analyzed in detail
by Henderson et al. (2010) [87]. Chlorella produced about 0.0029 ng AOM
per cell. The charge density of AOM was 3.2 meq g~! and AOM contributed
84% of the total charge of the culture. The AOM had a protein:carbohydrate
ratio of 0.4% and 60% of the AOM consisted of >30 kDa molecules. The
current results suggested that some flocculation techniques are more sensitive
to inhibition by AOM than others, although the degree of inhibition of the
different techniques may be different with other species of microalgae and/or
other culture conditions.

The present findings have important implications for the development of
microalgal biofuels. To maximize lipid production in microalgae, cultures are
often subjected to nutrient stress [194]. As nutrient-limited cells generally
produce more AOM than exponentially growing cells [127], maximizing
lipid production will most likely also result in a higher flocculant demand.
Furthermore, medium recycling is essential to minimize the water demand
and thus the ecological impact and production costs of microalgal biofuels
[29]. During medium recycling, AOM is likely to accumulate in the medium,
probably resulting in a gradual increase in flocculant demand. In wastewater
treatment, several technologies, such as chlorine treatment or ozonation, have
been proposed to reduce the load of AOM [86]. Given the high concentrations of
AOM in dense microalgal cultures, it is questionable whether such technologies
will be effective in sufficiently reducing AOM in intensive microalgal production
systems. Oxidation of AOM may also result in lysis of algal cells, which might
further increase flocculant demand [86].

5.4 Conclusions

AOM present in microalgal cultures interferes strongly with harvesting of the
biomass using flocculation as a pre-concentration technique. This may have
important consequences for the cost of flocculation based harvesting. Some
flocculation technologies are more sensitive to interference by AOM than others.
The cost (related to the amount of base necessary) of pH-induced magnesium
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hydroxides flocculation, for instance, increases only 2-fold in the presence of
AOM while a 9-fold increase was observed for chitosan. Further research is
needed to determine whether these differences in inhibition by AOM between
flocculation techniques apply for all species of microalgae and under various
culture conditions, and to elucidate the underlying causes for these differences.
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Floc characteristics of
Chlorella vulgaris for five
different flocculation modes:
influence of coagulation
mechanism and presence of
organic matter

Adapted from: Vandamme D, Muylaert K, Fraeye I, Foubert I. 2013. Floc characteristics
of Chlorella vulgaris for five different flocculation modes: influence of coagulation mechanism
and presence of organic matter. Biomass and Bioenergy, under review.
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6.1 Introduction

Flocs that are formed by various coagulation mechanisms can exhibit different
floc characteristics such as floc size, structure and density and this will affect
important parameters such as settling velocity and concentration factor [109].
The settling velocity is a key parameter in the design of large scale sedimentation
units while the concentration factor is important to evaluate the water content
of the particulate phase. The final water content of the particulate phase in
addition to the flocculation efficiency will determine the overall efficiency of
a flocculation mode. Most studies however only focus on the evaluation of
flocculation based on flocculation efficiency. Recently, a few studies investigated
these additional parameters for pH induced and chitosan flocculation [91, 171].
However, those results were not related to coagulation mechanism, floc size
and structure. Therefore, in this study, the influence of coagulation mechanism
on the floc characteristics of Chlorella vulgaris using five different flocculation
modes was evaluated.

Microalgae are known to release significant amounts of organic matter (AOM).
In microalgae cultivation systems, AOM can amount to 60-80 mg C L1 [90].
The major fraction of this AOM consists of neutral or charged polysaccharides,
but other compounds such as proteins, nucleic acids, lipids and other small
molecules can be present as well [87, 127]. In Chapter 5, the effect of AOM on
flocculation efficiency of Chlorella vulgaris, induced by five different flocculation
modes, was evaluated. To the best of our knowledge, however, no publications
have focused on the effect of the presence of AOM on the floc characteristics
such as settling velocity, concentration factor and floc size. Therefore, in this
chapter, also the influence of the presence of AOM on these floc characteristics
of Chlorella vulgaris using five different flocculation modes was evaluated.

6.2 Materials and methods

6.2.1 Cultivation of Chlorella vulgaris

Chlorella vulgaris (211-11b SAG, Germany) was cultivated in dechlorinated tap
water enriched with inorganic nutrients according to the concentration of the
Wrights cryptophyte medium [79]. Bubble column photobioreactors (30 L) were
used to cultivate the microalgae. The system was mixed by sparging with 0.2 ym
filtered air (5 L min~!) and pH was controlled at 8.5 through 2-3% CO, addition
using a pH-stat system. Growth of the microalgae was monitored by measuring
the absorbance at 550 nm. Microalgal dry weight was determined gravimetrically
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by filtration using Whatman glass fibre filters (Sigma-Aldrich) and drying until
constant weight at 105°C. Flocculation experiments were performed in the early
stationary phase at a biomass concentration of 0.3 g L1,

6.2.2 Flocculation protocol

Five different flocculation modes were assessed: addition of alum (AL), electro-
coagulation- flocculation using aluminum anodes (ECF), addition of chitosan
(CH), addition of cationic starch (CS) and flocculation induced by high pH
(pH). In addition, the influence of AOM on the flocculation process was studied
for each flocculation mode. To do so, flocculation of Chlorella was compared in
medium with and without AOM. To remove AOM, Chlorella was separated from
the medium using centrifugation (4,000g) and resuspended in fresh medium.
This approach has already been used successfully in previous studies and it has
also been demonstrated that centrifugation and resuspension of Chlorella, as a
treatment as such, has no influence on the flocculation efficiency [185].

In a preliminary study, the flocculation parameters (pH and dosage) resulting
in a flocculation efficiency higher than 85% were determined in jar tests on 100
ml scale. For each flocculation mode, this was based on a protocol used in our
previous study (Section 5.2.2). For alum (Al,(SO,), - 18 H,O; Sigma Aldrich),
the pH was adjusted to 5.5 prior to and immediately after addition of the
coagulant. For ECF, the setup described in a previous study was used (Section
3.2.2). In short, this setup consisted of a 1-L rectangular PVC reactor with
an aluminum anode and an inert titanium oxide cathode and a power supply
controller (EHQ Power PS3010 DC). Current density in the experiments was
set at 1.5 mA cm~2. For flocculation using chitosan (from crab shells, practical
grade, Sigma Aldrich), the pH of the suspension was adjusted to 7.5 prior to and
immediately after addition. For cationic starch flocculation, a stock solution of
10 g L=t Greenfloc 120 (Hydra 2002 Research, Hungary) was prepared. The
pH was not adjusted, as it has been shown that flocculation efficiency was not
pH-dependent (2.3). For pH-induced flocculation, 0.5 N NaOH was used to
increase the pH.

6.2.3 Sedimentation analysis

After flocculation, using each of the flocculation modes, sedimentation was
followed in order to calculate the settling velocity. This analysis could not be
performed for ECF because flotation simultaneously occurred with flocculation.
For each flocculation treatment, coagulation was induced in 1 L cylindrical vessels
according to the dosage obtained in the preliminary flocculation experiment.
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Figure 6.1: Example of sedimentation analysis: grey values were analysed in
function of distance (A; red line). The interface of suspended and particulate
phase could be detected by an increase in grey value (B). The corresponding
height was plotted as function of time (C).

The suspension was stirred for 15 min at 300 rpm using an overhead stirrer.
Then the suspension was transferred to 1 L imhoff cones, allowing sedimentation
for 15 min. Images (Fig 6.1 A) were automatically taken at fixed time intervals
using a webcam. Grey values were analysed as function of height using ImageJ
(NIH, USA) allowing to determine the height of the interface between the
suspended and particular phase at each time step (Fig 6.1 A; red line + 6.1
B). The corresponding height was then plotted as function of sedimentation
time (Fig 6.1 C). The settling velocity is defined as the velocity in cm s™! to
achieve complete biomass settling without further observed increase of settled
floc volume. To calculate this, the distance at which the moving front remained
constant was divided by the corresponding settling time.

After 15 min of sedimentation, the suspension was allowed to settle an additional
15 min to determine the concentration factor (CF) and the aggregated volume
index (AVI). Both parameters are related to each other and provide information
about the residual water content of the particulate phase. The CF was
determined by dividing the total volume of 1000 ml by the volume of the
particulate phase after 30 min of sedimentation. The AVI was calculated
according to the method of Javaheri and Dick [92]. It is defined as the volume
in milliliters occupied by 1 g of algal suspension in the particulate phase after
30 min of settling and is calculated as:
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volume of settled biomass (mL L~1)

AVI(mL g7') = x 1000 (mg g~ 1)

(6.1)

microalgal biomass dry weight (mg L~1)

6.2.4 Particle size analysis

After sedimentation, a subsample of the particulate phase was taken and diluted
10 times. The flocs were then analysed using a stereo zoom microscope (Olympus
SZX10) and images were taken using a camera (Lumenera Infinity 2). Particle
size analysis was conducted using ImageJ (NIH, USA). The original images
were transformed to 8 bit, the background was substracted and particles smaller
than 100 px? were thresholded (Fig 6.2). After transformation of the image, the
average Feret’s diameter was calculated.

6.3 Results

The optimal flocculation parameters, pH and dosage, in order to achieve a
minimal flocculation efficiency of 85% were assessed in a preliminary study
and this for all flocculation modes with and without the presence of AOM.
Table 6.1 shows the pH and dosage selected for the remainder of the study to
induce coagulation on 1 L scale for floc characterization based on sedimentation
and particle size analysis. For all flocculation modes, the dosage to obtain a
flocculation efficiency of 85% increased between 1.5 and 5-fold when AOM was
present. This is in correspondence with previous results (Section 5.3).

Fig 6.3 presents floc front height as function of time for four different flocculation
modes containing AOM (indicated as AOM+; Fig 6.3 A) and resuspended in
fresh medium without AOM (indicated as AOM-; Fig 6.3 B). This analysis
could not be performed for ECF because flotation occurred simultaneously
with flocculation. For all flocculation modes with and without the presence
of AOM, the biomass settled within 15 min of sedimentation. Alum and
chitosan flocculation resulted in a faster sedimentation than pH induced
flocculation. In both treatments, cationic starch flocculation resulted in
the slowest sedimentation. The settling velocities were calculated for each
flocculation mode and ranged between 0.06 and 0.6 cm s~! with a maximal
standard deviation of 12%. They confirmed the first observations made on the
basis of the graphs. When AOM was present, the settling velocity was the
highest for chitosan flocculation (0.4 cm s~!), followed by alum flocculation
(0.2 cm s71) and the lowest for pH induced flocculation (0.09 cm s~!) and
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Figure 6.2: Original and transformed images used for particle size analysis
for alum flocculation (AL), electro-coagulation-flocculation (ECF), chitosan
flocculation (CH), cationic starch flocculation (CS) and pH induced flocculation
(pH) for Chlorella vulgaris with and without the presence of AOM.
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Table 6.1: Flocculation parameters (pH and dosage) of alum flocculation (AL),
electro-coagulation-flocculation (ECF), chitosan flocculation (CH), cationic
starch flocculation (CS) and pH induced flocculation (pH) for Chlorella vulgaris
with and without the presence of AOM.

AOM+ AOM-

Flocculation mode pH Dosage pH Dosage
(mg L") (mg L™

AL 5.5 100 5.5 20

ECF 8.5 1.21 8.5 0.4

CH 7.5 80 7.5 15

CS 8.5 150 8.5 100

pH 12 872 11.5 502

1

1. Dosage for ECF expressed as power consumption (kWh kg~! microalgae)

2: Dosage for pH expressed as concentration added NaOH

cationic starch flocculation (0.06 cm s~1). Without AOM, settling velocities
mostly increased, but the order as function of flocculation mode in general
remained the same. In the fast settling cases of chitosan and alum flocculation,
the settling velocity increased to 0.6 cm s~!. For pH induced flocculation,
it increased to 0.2 cm s~!. For cationic starch however, the settling velocity
decreased to 0.04 cm s™1.

Additional information about the residual water content of the particulate
phase is provided by calculating the concentration factor (CF; Fig 6.4 A) and
the aggregated volume index (AVI; Fig 6.4 B). A high concentration factor
corresponds to a low AVI. Using cationic starch, the algal biomass could be
concentrated more than 100 times, in the presence of AOM. After removal of
AOM, this even increased to 180 times. This corresponds with an AVI lower
than 25 mg g~. When AOM was present, the other flocculation modes resulted
in a clearly lower CF of between 15 and 35, corresponding to a distinctly higher
AVI of between 70 and 140 mg g~'. In the absence of AOM, the CF increased
and the AVI decreased for all flocculation modes. The Feret’s diameter of the
settled flocs for the five different flocculation modes was also determined (Fig
6.4 C). It varied between 130 and 2300 pm. When AOM was present, the flocs
were larger, except for flocculation by cationic starch. For chitosan flocculation
in the presence of AOM, flocs with a diameter higher than 2 mm were observed.
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Figure 6.3: Sedimentation analysis for four flocculation modes: alum
flocculation (AL), chitosan flocculation (CH), cationic starch flocculation (CS)
and pH induced flocculation (pH) for Chlorella vulgaris (A) with (AOM+) and
(B) without the presence of AOM (AOM-).
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Figure 6.4: Concentration factor (A), AVI (B) and Feret’s diameter (C) for
five flocculation modes: alum flocculation (AL), electro-coagulation-flocculation
(ECF), chitosan flocculation (CH), cationic starch flocculation (CS) and pH
induced flocculation (pH) for Chlorella vulgaris with (AOM+) and without the
presence of AOM (AOM-).
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6.4 Discussion

The present results show that the type of flocculation mode affects the microalgal
floc characteristics such as settling velocity, concentration factor and floc size.
Flocculation of microalgae should not only be effective in terms of flocculation
efficiency, but also in terms of settling rate and concentration of the biomass.
Those parameters are important in the design of a harvesting process including
a secondary harvesting step using for example centrifugation. As a consequence
of this, the delivery of a fast settled and high concentrated biomass is desirable
before centrifugation in order to improve overall energy consumption. Three
mechanisms, i.e. charge neutralization, sweeping by precipitation enmeshment
and bridging have been demonstrated in coagulation processes and differences
in these mechanisms may explain the influence of flocculation mode on floc
characteristics [22].

For flocculation modes using inorganic metal salts, the coagulation mechanism is
absorption-charge neutralization or sweeping flocculation caused by precipitate
enmeshment or a combination of both [7]. The usage of for example alum as
coagulant introduces water-binding amorphous precipitates, which are present
in large amounts especially when coagulation occurs by sweeping flocculation.
During absorption-charge neutralization those precipitates are present in limited
amounts and this has consequently less impact on the floc size [98, 6]. Absorption-
charge neutralization may thus result in smaller flocs compared to flocculation
based on sweeping. For alum flocculation, operating conditions such as
biomass density, coagulation pH and coagulant dosage determine the coagulation
mechanism [54]. In this study, pH was adjusted and controlled at 5 for alum
flocculation, which is known to facilitate coagulation dominated by absorption-
charge neutralization [98, 65]. In contrast, pH was not controlled during EC
flocculation using aluminum anodes. The initial pH was 8.5 (Table 6.1) and
is known to rise as function of operation time because of the hydroxide ions
released at the cathode [188]. In those conditions, sweeping flocculation is the
dominant flocculation mechanism [54]. This could explain the overall larger
flocs for the EC flocculation mode when compared to alum flocculation (Fig 6.4

Q).

For flocculation induced by high pH, similar floc sizes as for alum flocculation
were observed, but the floc compaction was inferior compared to alum
flocculation (Fig 6.4 A/B). Positively charged magnesium hydroxides are
involved in initiating coagulation by adsorption-charge neutralization and
partially also by sweeping flocculation, depending on pH and magnesium
concentration [184]. With an increasing pH, large quantities of amorphous
hydroxides are allowed to precipitate. These are known to have a high affinity
for water arising from mechanical trapping and hydrogen bonding and thus
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affect the water content of the particulate phase [6].

Cationic biopolymers have been used in coagulation/flocculation processes as
flocculation aid for water purification and are known to lower flocculation dosage
requirements, increase settlement and decrease sludge volume [22]. Generally,
flocculation using biopolymers is induced by a bridging mechanism. This type
of flocculation occurs when a polymer serves as a bridge after formation of
a lot of particle-polymer-particle aggregates [109]. In general, the usage of
polymers results in a higher effective density and thereby improved settling
and a higher floc compaction [6]. In this study, chitosan and cationic starch
flocculation indeed resulted in a higher compaction of the settled biomass, in
absence of AOM (Fig 6.4 A/B). Furthermore chitosan flocculation indeed had
the highest settling velocity, although cationic starch flocculation resulted in
the lowest settling velocity (Fig 6.3). It must be noted that in this study both
biopolymers were used as primary coagulant, while settling improvement is
mostly achieved when biopolymers acts as flocculant aid in combination with a
primary coagulant such as alum [151].

From previous studies [15, 185, 204], it is known that the flocculant dosage
needed to achieve efficient flocculation is increased by the presence of AOM. In
this study, similar results were obtained (Table 6.1). The present results however
show that the presence of AOM also affects the microalgal floc characteristics
such as settling velocity, concentration factor and floc size. It was found that in
the presence of AOM the settled biomass has a greater water content, bigger
floc size and that the settling velocity is lower (Fig 6.3 and 6.4). Henderson et
al. (2010) characterized in detail the AOM produced by Chlorella vulgaris [87).
In the stationary growth phase, the AOM had a protein:carbohydrate ratio of
0.4 and a hydrophilicity of 71%. These hydrophilic attributes may contribute
to the increase in water content of the settled biomass, but it is more likely that
the increase in water content is caused by the increase of flocculation dosage
due to AOM interference [6, 98]. As for the influence on needed flocculant
dosage, also the importance of the influence of AOM on the floc characteristics
was clearly depending on the floc mode. While cationic starch flocculation
seemed to be hardly influenced by the presence of AOM, the characteristics of
the flocs obtained by addition of chitosan were very much influenced by AOM.
For chitosan, the presence of AOM resulted in the highest increase of flocculant
dosage needed, while for cationic starch, this increase was the lowest (Table
6.1). Chitosan is known to have a high affinity for dissolved organic matter and
this affected the required flocculant dosage in presence of AOM [22, 111, 129].
Abundant chitosan was as such available and flocs with a more open structure
were thus allowed to form. This explains both the fact that chitosan based
flocculation in the presence of AOM resulted in flocs with the lowest compaction
and the largest floc size.
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6.5 Conclusions

Floc characteristics such as settling velocity, concentration factor, aggregated
volume index and floc size were studied for five different flocculation modes for
Chlorella vulgaris. This study showed that coagulant dose and type determine
coagulation mechanism and by this affect the floc characteristics of the settled
microalgal biomass. The presence of AOM resulted in a lower concentration
of the settled biomass. Our study thus showed that in addition to flocculation
efficiency, the impact on the characteristics of the formed flocs needs to be taken
into account as well in the overall assessment of flocculation based harvesting
methods for microalgae.
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7.1 Development of low-cost flocculation technolo-
gies

To produce microalgal biomass for bulk food, feed or biofuels, the scale of
production has to be increased and the cost of production decreased by at least
an order of magnitude. In particular, cost-effective harvesting is considered to
be one of the biggest challenges to realize large-scale and low-cost production
of microalgae biofuels. The energy needed for harvesting microalgae from
typical open pond systems (0.03%) using centrifugation was calculated to be
14 MJ kgDW ! of microalgae [131]. When energy applications are the only
focus, this would imply that more than 50% of the total combustion energy
(estimated at 25 MJ kgDW 1) is to be invested in a one step harvesting process
using centrifugation. Moreover, if biodiesel (7-10 MJ kgDW 1) is the only
product, this would result in unsustainable production of biofuels [120]. This
simple calculation demonstrates the urgent need for low-cost and energy-efficient
harvesting methods. Flocculation is seen as a promising approach for reducing
the cost and energy input of microalgae harvesting.

Flocculation is a widely used technology in different fields of industry. Increasing
the particle size and concentration by flocculation increases the rate of settling
and decreases the slurry volume that needs further dewatering. Flocculation
processes are already frequently employed in water purification systems to
remove microalgae or in wastewater systems to concentrate sludge. Similar
to those systems, flocculation efficiency, settling rate and concentration factor
are important in the design of an efficient flocculation method for harvesting
microalgae. But in contrast to applications in other industries, the harvested
biomass is the desired end-product during production of microalgae instead of
the purified water. Consequently, the cost is related to the ratio of flocculant
dose over the harvested biomass and not by the ratio of the flocculant dose
over the volume of purified water. Secondly, because chemical flocculants added
during the process end up in the biomass, contamination of the biomass is
a critical evaluation criterion when developing flocculation technologies for
harvesting microalgae. Contamination of the biomass with flocculation aids
may limit the use of the biomass or fractions of the biomass for food and feed
applications, or they may interfere with downstream processing of the biomass
(e.g. lipid extraction). Moreover, the addition of chemicals should not limit the
reuse of the cultivation medium after harvesting. The given arguments indicate
that knowledge transfer from existing industries can certainly be interesting
and useful, but needs to be applied within the boundaries of the production
process of microalgae biomass.
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Polymers are widely used flocculants in water and wastewater treatment.
Synthetic polymers such as polyacrylamide are often used. However, because
they may contain toxic acrylamide residues, their use for harvesting microalgae
would result in contamination of the biomass as well as the culture medium.
Natural biopolymers are therefore preferred. Chitosan is a widely used
biopolymer made from shellfish waste and has been shown to be effective for
harvesting microalgae [124, 51, 91]. The cost of chitosan, however, is too high to
be used for harvesting microalgae. As an alternative biopolymer, cationic starch
was evaluated in this study. Flocculation using cationic starch showed to be
especially efficient for harvesting freshwater species and independent of pH, which
is not common for biopolymers. The optimal dosage of cationic starch compared
to chitosan is high but flocculant price is substantially lower, resulting in a much
lower total flocculant cost. Additionally, this flocculation mode was capable
of increasing the biomass concentration by the highest concentration factor.
Cationic starches with a low degree of quaternary ammonium group substitutions
are routinely used in wastewater treatment and do not pose environmental
toxicity issues. Cationic starch is cheaper than reference flocculants such as alum
and chitosan, but is probably still too expensive to use for biofuel production.
Since our study, several others have continued to work with cationic starch.
Recently, it was proposed to harvest freshwater microalgae using cationic starch
in a biorefinery concept for the treatment of wastewater systems, production of
biofuels and high added value products [133]. In a study addressing flocculant
effects on the production of biodiesel, biosolvents and bioplastics, a novel
designed and patent-protected cationic starch was claimed to be a more reliable
and cheaper flocculant in comparison with alum [R.J. Anthony, PhD. Utah
State University USA, personal correspondence]. Besides cationic starch, there
is still a scope for research on the potential of other low-cost and non-toxic
polymers based on proteins and peptides, tannins or Moringa oleifera seed
extracts [139, 10, 179].

Secondly, as alternative for alum, electro-coagulation flocculation (ECF) was
evaluated. During electrolysis, aluminum is dissolved in the medium at the anode
and the released Al formes hydroxides that cause flocculation. An advantage of
ECF over the use of metal salts is that no anions are released in the medium
during this process. Our experiments indicated that Al anodes were more
efficient than Fe anodes. ECF was capable of flocculating microalgae in both
freshwater and marine media. Due to the low electrical resistance of seawater,
the energy consumption was much lower in seawater than in freshwater. During
our experiments, we encountered both flocculation and flotation, affecting the
final concentration of the microalgae. Even in optimal conditions, residual
aluminum was detected at relatively high concentrations (1%) in the biomass
which can have limitations for food and feed related applications. On the
other hand, a new study concluded that the biomass quality of Nannochloropsis
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after electro-coagulation was not significantly changed in terms of total lipids,
fatty acid and pigment profile [118]. Two recent studies also showed that the
concept of electro-coagulation flocculation can still be improved by using polarity
exchange in a continuous harvesting system [94, 95].

It is a well-known phenomenon in open pond cultivation systems that microalgae
sometimes flocculate spontaneously at high pH. Studies in the 1980’s indicated
that this phenomenon of ’autoflocculation’ is related to precipitation of calcium
phosphates at high pH. Flocculation by calcium phosphates is efficient, but it is
not economically feasible nor sustainable due to the high phosphate requirements.
But flocculation also occurred in our experiments in absence of calcium and
phosphates in the medium. This was investigated further for the freshwater
species Chlorella vulgaris. In our study, it has been shown to be associated with
the formation of magnesium hydroxide precipitates. As pH is already quite high
in microalgae cultivation systems due to CO5 uptake by the microalgae during
photosynthesis, the need for a base to increase pH is minimized. If calcium
hydroxide or slaked lime is used to increase the pH, the cost of this flocculation
method is very low. Although magnesium and calcium will precipitate and
lime will be needed to increase pH, this method has significant potential in
terms of cost effectiveness. The biomass will contain high concentrations of
minerals with a low toxicity risk. For feed or food related applications, it will
however be preferable to remove them from the biomass, which can imply an
additional cost. Several other recent studies have highlighted the potential of
this flocculation method including that the flocculated medium can be reused
after neutralization [36, 162, 171, 197].

Table 7.1 summarizes the potential of the flocculation modes using cationic
starch, electro-coagulation flocculation and pH induced flocculation compared
with the two reference modes alum and chitosan flocculation as discussed above.
The operating expenditures (OPEX) are estimated only based on the required
dosage and the flocculant cost per ton and thus exclude operator costs and cost
of mixing energy. Rapid mixing or flash mixing can be done in a flow-through
stirred tank and average shear rates are usually in the region of 20-70 s'.
For a water volume of 400 m?® and using a motor with a power of 1 kW and
an efficiency of 60%, the effective shear rate turns out to be about 40 s~!
[66]. By this, mixing energy for microalgae flocculation is calculated to be
1.5 kWh tonDW~!. As this cost is a fraction of the flocculant cost it has been
neglected in this comparison.

From the above it can be concluded that a single best flocculation mode is yet to
be identified. There are however strong arguments presented in this work that no
single mode will be suited for all microalgae species or applications. The choice
will be largely dependent on the application and the cultivation conditions.
As a consequence, it may be necessary to use a less efficient method to limit
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Table 7.1: Potential of flocculation using cationic starch (CS), electro-
coagulation flocculation (ECF), and pH induced flocculation (pH) compared
with aluminum sulphate (AL) and chitosan (CH).

CS ECF pH AL CH
Medium type’ F M F F F
Dosage (ton tonDW ™) 0.1 0.02 0.02-0.05 0.15 0.03
Final concentration? (%) 3.8 0.4 0.6 1.2 0.6
Biomass contamination risk  low medium low high  low
OPEX ? ($ tonDW 1) 150 80 <50 300 500

L. freshwater (F) or marine (M)
2. initial concentration is 0.04 %
3. estimated by flocculant cost

restrictions on the further downstream processes or upstream medium recycling.
Chemical flocculation has the disadvantage that it results in contamination of
the biomass, although the use of natural polymers such as cationic starch may
minimize this problem. Electro-coagulation flocculation has a low electricity
demand when the method is used in seawater and may be a promising low-cost
method for harvesting marine microalgae cultivated for biofuel production. pH
induced flocculation holds promise as low-cost flocculation method but also
results in contamination of the biomass, albeit with mineral precipitates with
only low toxicity.

Other novel flocculation approaches are currently under development. The use
of magnetic nanoparticles could facilitate magnetic separation of microalgae
that are bound to those magnetic particles. Those nanoparticles are today
prohibitively expensive but their cost may go down in the future if new methods
for producing them become available. In addition, recycling these particles is
needed to improve the feasibility of this method. Bioflocculation by addition of
flocculating microalgae [158, 159], fungi [207] or bacteria [183] has also potential.
This method requires cultivation of these flocculating microorganisms, but the
cost for doing so is substantially lower than the cost of centrifugation. This cost
can be avoided altogether if non-flocculating microalgae are co-cultivated with
flocculating microalgae or bacteria. The latter is possible if the medium contains
a carbon source for the bacteria, as is often the case in wastewater. This approach
holds great potential and deserves further research. Additionally, controlled
flocculation of microalgae through infochemicals or genetic modification is a
promising technology but requires further basic research before it can be applied
[67, 178]. The use of both infochemicals and genetic modification is likely to be
highly species specific, which implies that research and development investments
will have to be made for each species of microalgae that is used for large-
scale production. So far, virtually no information is available on the identity
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of infochemicals that induce flocculation. For most species of microalgae, a
toolbox for genetic modification is not yet available.

7.2 Influence of organic matter on flocculation

During our experiments, we observed large differences in flocculation efficiency
of microalgae that were resuspended in fresh medium compared to microalgae
that were left in their original cultivation medium. We suspected that this was
due to organic matter produced by the microalgae. This was studied in detail
by comparing five flocculation methods: the three modes developed in this
thesis (CS, ECF, pH) and the two reference methods (AL and CH). Our results
showed that algal organic matter (AOM) is important to take into account.
AOM present in Chlorella cultures interfered with all tested flocculation modes
which may have substantial consequences for the cost of flocculation. We
showed that organic matter has an effect, but nothing is yet known about
the differences in the effect of organic matter between species or about the
influence of culture conditions on quantity and composition of organic matter.
Although in our experiments, only inhibition of flocculation was observed, other
studies have reported promotion of flocculation in the presence of AOM in
specific conditions for Scenedesmus obliquus [15]. This demonstrates the need
for further fundamental research to understand the interaction between AOM
and flocculation as function of microalgae species and cultivation conditions.

7.3 Sludge and floc properties as a parameter
for integration of flocculation as a two-step
harvesting process

When flocculation is used for harvesting microalgae, it is part of a two-step
harvesting process in which flocculation is used to preconcentrate the biomass
to a slurry with a 1-4% dry matter content before final dewatering to a paste
with a 25% dry matter content using a physical method (Fig 7.1). The more
water can be removed during the first flocculation step, the lower the cost for
the second mechanical dewatering step will be [93]. To minimize the cost for
mechanical dewatering, it is also important that flocculation results in a small
algal sludge volume [47]. Furthermore, the rate at which water can be removed
during flocculation and sedimentation is important as rapidly settling flocs
will require a smaller harvesting unit and thus incur lower investment costs for
subsequent sedimentation by gravity thickeners or lamella separators.
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Figure 7.1: Flow diagram for the harvesting of microalgae biomass: integration
of flocculation as part of a two-step harvesting process.

So far, few studies on flocculation of microalgae have taken parameters such as
the sludge volume or the sedimentation rate into account [71]. In this study,
we therefore evaluated slurry volume by assessing the concentration factor,
floc size and settling rate for the three modes developed in this study (CS,
ECF, pH) compared with two reference modes (Al, CH). Our studies showed
that the introduction of a flocculation based concentration method is able to
increase solid concentration from an initial concentration of 0.04% to maximal
3.8% (Table 7.1). Although there was a strong variation between the different
flocculation modes, we minimally noted a 15-fold increase in solid concentration
for every tested method. This significant reduction in microalgal biomass slurry
that needs further dewatering (for example by centrifugation) underscores
the advantage of using flocculation in a two-step harvesting process. Large
differences in settling rates and floc size were observed. This has important
implications for the choice of flocculation method. It is therefore recommended
that the assessment of concentration factor, floc size and settling rate is included
in future studies.

7.4 Short and medium term perspectives

This study has demonstrated the potential of flocculation based harvesting
methods for microalgae biomass production. The proof of concept given in this
study for flocculation using cationic starch, electro-coagulation flocculation and
pH induced flocculation already have and will continue to trigger new initiatives
towards the integration of flocculation in existing harvesting processes. Cationic
starches can be designed tailored to a specific microalgae species, which also
enables dose optimization. New types of electrodes or process regimes (e.g.
polarity exchange) can further lead to improved harvesting by electro-coagulation
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flocculation. Preliminary results of pH induced flocculation for marine species
offer favourable prospects. The high magnesium concentrations in marine
media are beneficial in lowering the sensitivity of the harvesting system to
mineral depletion. Moreover, the use of base or acids to apply pH induced
flocculation or to recover magnesium will have less impact on the salinity in
marine systems. Finally, the development of novel approaches such as recyclable
magnetic nanoparticles as coagulants or bioflocculation using bacteria, other
algae, infochemicals or flocculation induced by genetic modification could greatly
reduce the costs and lower contamination risks in the medium term.

Algal organic matter (AOM) was shown to interfere with all tested flocculation
modes, which may have a substantial impact on the cost of flocculation.
At present, the underlying mechanisms of the production of AOM and the
interference with flocculation remains a matter of conjecture. Further research
is needed to understand the relationship between the dynamics of AOM released
into the medium or attached to the cell wall and its interference with flocculation.

Our study showed that settling rate, floc size and floc compaction are important
parameters next to flocculation efficiency. But after flocculation, additional
dewatering is needed by for example centrifugation or filtration. Further insights
in the flocculation mechanisms could improve the dewaterability of microalgal
biomass during sedimentation. Therefore it would be interesting to assess floc
density as well. This can result in the development of efficient flocculation
aids. An integrated approach is therefore recommended in future work to
study the impact of flocculation on the efficiency of subsequent dewatering
methods. Finally, the biomass needs to undergo further handling which will
imply shear stress during pumping. The stress resistance of the obtained flocs
should be incorporated as well in future studies concerning the evaluation of
floc characteristics of microalgal biomass.

7.5 Long term perspectives

Improved living standards in developing and transitional economies trigger an
increasing demand for natural resources for food, feed and fuel. The worldwide
concerns about CO, emissions and the need for resource security have boosted
decision makers to increase research funding for projects concerning renewable
sources of energy. Currently, microalgae are considered to be one of the most
promising new sources for biofuels production. The responsibility of researches
lies in the objective assessment of the potential of these new approaches including
fuel from microalgae.
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Several key publications in high impact scientific journals have projected
scenarios to bring the promise of fuel from microalgae into reality. To replace
17% of petroleum that has been imported into the USA in 2008, an area the
size of South Carolina (= 8.2 x10° ha) is needed for microalgae cultivation.
Moreover, a quarter of the total amount of water the country currently uses
for irrigated agriculture is needed when freshwater microalgae are used [192].
For Europe, if all transportation fuels need to be replaced by biodiesel from
microalgae, the land the size of Portugal (= 9.2 x10° ha) is needed [194]. These
numbers show that a change from fossil to renewable fuels from microalgae will
still have an impact on society and environment.

These types of projections are probably important for decision makers, but
from a scientific point of view, this kind of analyses contain a lot of uncertainty.
Industrial experience on this large scale is not present and therefore the pre-
assumptions made during those analyses are more important than the actual
outcome. New initiatives taken to install demo plants worldwide will hopefully
deliver additional data and remove uncertainty about productivities. It is
reasonable to think that fuel from microalgae has a future as a by-product in
an integrated process where value is created by extracted compounds. Nutrient
and water recuperation will be crucial in order to meet sustainability criteria.
Similar to other biorefinery concepts, the maturity of the industry together
with a suited legislative governance will determine the success of microalgae as
a commodity for the upcoming biobased economy.
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