TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>xx</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2 THEORY AND LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2.2. Copper(II) carboxylates</td>
<td>4</td>
</tr>
<tr>
<td>2.3. Cyclam</td>
<td>10</td>
</tr>
<tr>
<td>2.4. Fourier transform infrared spectroscopy</td>
<td>17</td>
</tr>
<tr>
<td>2.5. Electronic spectroscopy</td>
<td>20</td>
</tr>
<tr>
<td>2.6. Magnetic properties</td>
<td>22</td>
</tr>
<tr>
<td>2.7. Thermal properties</td>
<td>24</td>
</tr>
<tr>
<td>2.8. Theoretical concepts</td>
<td>31</td>
</tr>
<tr>
<td>References</td>
<td>34</td>
</tr>
</tbody>
</table>
CHAPTER 3 EXPERIMENTAL

3.1. Introduction

3.2. Materials

3.3. Synthesis

3.3.1. Copper(II)-cyclam-alkylcarboxylates

(a) [Cu(C_{10}H_{24}N_4)(H_2O)_2](CH_3(CH_2)_5COO)_2.2H_2O (1) 38

(b) [Cu(C_{10}H_{24}N_4)(H_2O)_2](CH_3(CH_2)_6COO).7H_2O (2) 39

(c) [Cu(C_{10}H_{24}N_4)(H_2O)_2](CH_3(CH_2)_8COO).2H_2O (3) 39

(d) [Cu(C_{10}H_{24}N_4)(H_2O)_2](CH_3(CH_2)_10COO).2H_2O (4) 40

(e) [Cu(C_{10}H_{24}N_4)(H_2O)_2](CH_3(CH_2)_12COO).2H_2O (5) 40

(f) [Cu(C_{10}H_{24}N_4)(H_2O)_2](CH_3(CH_2)_14COO).2H_2O (6) 40

(g) [Cu(C_{10}H_{24}N_4)(H_2O)_2](CH_3(CH_2)_16COO)(CH_3(CH_2)_3COO).5CH_3CH_2OH (7) 40

3.3.2. Copper(II)-cyclam-arylcarboxylates

(a) [Cu(p-H_2NC_6H_4COO)_2(C_{10}H_{24}N_4)].2H_2O (8) 41

(b) [Cu(p-HOC_6H_4COO)_2(C_{10}H_{24}N_4)] (9) 41

(c) [Cu(C_{10}H_{24}N_4)(H_2O)_2](p-CH_3OC_6H_4COO)_2.2H_2O (10) 41

(d) [Cu(C_{10}H_{24}N_4)(H_2O)_2](p-CH_3C_6H_4COO)_2.2H_2O (11) 42

(e) [Cu(p-N≡CC_6H_4COO)(C_{10}H_{24}N_4)(H_2O)]-(p-N≡CC_6H_4COO).3H_2O (12) 42

(f) [Cu(C_{10}H_{24}N_4)(H_2O)_2](C_6H_5COO)_2.2H_2O (13) 42

(g) [Cu(C_{10}H_{24}N_4)(H_2O)_2](C_6F_5COO)_2.2H_2O (14) 42

3.4. Instrumental analyses

3.4.1. X-ray crystallographic data and structural determination

3.4.2. Elemental analyses

3.4.3. Fourier transform infrared spectroscopy

3.4.4. Ultraviolet-visible spectroscopy
3.4.5. Magnetic susceptibility 44
3.4.6. Thermogravimetry 45
3.4.7. Differential scanning calorimetry 45
3.4.8. Optical polarizing microscopy 45

3.5. Computational methods 46

References 46

CHAPTER 4 RESULTS AND DISCUSSIONS 47

4.1. Introduction 47

4.2. Copper(II)-cyclam-alkylcarboxylate complexes 47

4.2.1. Structural elucidation 47

(a) \([\text{Cu}(\text{C}_{10}\text{H}_{24}\text{N}_{4})(\text{H}_2\text{O})_2]\left(\text{CH}_3(\text{CH}_2)_{3}\text{COO}\right)_2\cdot2\text{H}_2\text{O} (1)\) 47
(b) \([\text{Cu}(\text{C}_{10}\text{H}_{24}\text{N}_{4})(\text{H}_2\text{O})_2]\left(\text{CH}_3(\text{CH}_2)_{6}\text{COO}\right)_2\cdot7\text{H}_2\text{O} (2)\) 52
(c) \([\text{Cu}(\text{C}_{10}\text{H}_{24}\text{N}_{4})(\text{H}_2\text{O})_2]\left(\text{CH}_3(\text{CH}_2)_{8}\text{COO}\right)_2\cdot2\text{H}_2\text{O} (3)\) 55
(d) \([\text{Cu}(\text{C}_{10}\text{H}_{24}\text{N}_{4})(\text{H}_2\text{O})_2]\left(\text{CH}_3(\text{CH}_2)_{10}\text{COO}\right)_2\cdot2\text{H}_2\text{O} (4)\) 58
(e) \([\text{Cu}(\text{C}_{10}\text{H}_{24}\text{N}_{4})(\text{H}_2\text{O})_2]\left(\text{CH}_3(\text{CH}_2)_{12}\text{COO}\right)_2\cdot2\text{H}_2\text{O} (5)\) 61
(f) \([\text{Cu}(\text{C}_{10}\text{H}_{24}\text{N}_{4})(\text{H}_2\text{O})_2]\left(\text{CH}_3(\text{CH}_2)_{14}\text{COO}\right)_2\cdot2\text{H}_2\text{O} (6)\) 63
(g) \([\text{Cu}(\text{C}_{10}\text{H}_{24}\text{N}_{4})(\text{H}_2\text{O})_2]\left(\text{CH}_3(\text{CH}_2)_{7}\text{CH}((\text{CH}_2)_{5}\text{CH}_3)\text{COO}\right)_2\cdot5\text{CH}_3\text{CH}_2\text{OH} (7)\) 66

4.2.2. Physical and chemical properties 70

(a) Magnetic studies 70
(b) Thermal properties 73

4.2.3. Concluding remarks 81

4.3. Copper(II)-cyclam-arylcarboxylates 81

4.3.1. Structural elucidation 81

(a) \([\text{Cu}(p-\text{H}_2\text{NC}_{6}\text{H}_4\text{COO})_2(\text{C}_{10}\text{H}_{24}\text{N}_{4})]\cdot2\text{H}_2\text{O} (8)\) 81
(b) \([\text{Cu}(p-\text{HOC}_{6}\text{H}_4\text{COO})_2(\text{C}_{10}\text{H}_{24}\text{N}_{4})]) (9)\) 85
(c) \([\text{Cu}(\text{C}_{10}\text{H}_{24}\text{N}_{4})(\text{H}_{2}\text{O})_{2}] (p\text{-CH}_{3}\text{OC}_{6}\text{H}_{4}\text{COO})_{2} \) (10) 88
(d) \([\text{Cu}(\text{C}_{10}\text{H}_{24}\text{N}_{4})(\text{H}_{2}\text{O})_{2}] (p\text{-CH}_{3}\text{C}_{6}\text{H}_{4}\text{COO})_{2}\text{H}_{2}\text{O} \) (11) 92
(e) \([\text{Cu}(p\text{-N=CC}_{6}\text{H}_{4}\text{COO})(\text{C}_{10}\text{H}_{24}\text{N}_{4})(\text{H}_{2}\text{O})] (p\text{-N=CC}_{6}\text{H}_{4}\text{COO}).3\text{H}_{2}\text{O} \) (12) 95
(f) \([\text{Cu}(\text{C}_{10}\text{H}_{24}\text{N}_{4})(\text{H}_{2}\text{O})_{2}] (\text{C}_{6}\text{H}_{4}\text{COO})_{2}.2\text{H}_{2}\text{O} \) (13) 97
(g) \([\text{Cu}(\text{C}_{10}\text{H}_{24}\text{N}_{4})(\text{H}_{2}\text{O})_{2}] (\text{C}_{6}\text{F}_{5}\text{COO})_{2}.2\text{H}_{2}\text{O} \) (14) 99

4.3.2. Physical properties 104
(a) Magnetic studies 104
(b) Thermal properties 105

4.3.3. Concluding remarks 107

4.4. Molecular modelling 108

4.4.1. Computational results 109
(a) \([\text{Cu}(p\text{-H}_{2}\text{NC}_{6}\text{H}_{4}\text{COO})_{2}(\text{C}_{10}\text{H}_{24}\text{N}_{4})].2\text{H}_{2}\text{O} \) (1) 109
(b) \([\text{Cu}(p\text{-H}_{2}\text{NC}_{6}\text{H}_{4}\text{COO})_{2}(\text{C}_{10}\text{H}_{24}\text{N}_{4})].2\text{H}_{2}\text{O} \) (8) 114
(c) \([\text{Cu}(p\text{-HOCC}_{6}\text{H}_{4}\text{COO})_{2}(\text{C}_{10}\text{H}_{24}\text{N}_{4})] \) (9) 117
(d) \([\text{Cu}(\text{C}_{10}\text{H}_{24}\text{N}_{4})(\text{H}_{2}\text{O})_{2}] (p\text{-CH}_{3}\text{OC}_{6}\text{H}_{4}\text{COO})_{2} \) (10) 120

4.4.2. Concluding remarks 123

References 124

CHAPTER 5 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 126

5.1. Conclusions 126

5.2. Suggestions for future work 128

References 129

APPENDICES
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The structural formula of cyclam</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>The structural formula of cyclam</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic view of the typical paddle-wheel structure of [Cu₂(RCOO)₄(L)₂]; L is most often solvent molecules</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>An oligomeric structure of [Cu₂(RCOO)₄], showing only two dimers</td>
<td>6</td>
</tr>
<tr>
<td>2.4</td>
<td>Crystal structure of copper(II) decanoate, [Cu₂(CH₃(CH₂)₆COO)₄]; hydrogen atoms were not shown</td>
<td>7</td>
</tr>
<tr>
<td>2.5</td>
<td>ORTEP view of the structure [Cu(CH₃(CH₂)₆COO)₂(py)₂(H₂O)] with atom labelling scheme, hydrogen atoms were not drawn</td>
<td>8</td>
</tr>
<tr>
<td>2.6</td>
<td>(a) ORTEP view of [Cu(CH₃(CH₂)₆COO)₂(NH₃)₂], H₂O with atom labelling scheme, hydrogen atoms were omitted; and (b) schematic presentation of the coordination environment around the copper atom</td>
<td>8</td>
</tr>
<tr>
<td>2.7</td>
<td>Crystal structure of [Cu₂(o-NO₂C₆H₄COO)₄(CH₃CN)₂]</td>
<td>9</td>
</tr>
<tr>
<td>2.8</td>
<td>Crystal structure of [Cu₂(o-FC₆H₄COO)₄(CH₃OH)₂]</td>
<td>9</td>
</tr>
<tr>
<td>2.9</td>
<td>Crystal structure of [Cu₂(CF₃(CH₂)₆COO)₄, showing two paddlewheel structures</td>
<td>10</td>
</tr>
<tr>
<td>2.10</td>
<td>The schematic representation of cyclam</td>
<td>10</td>
</tr>
<tr>
<td>2.11</td>
<td>(a) Schematic representations of the five possible cyclam configurations according to Bosnich’s nomenclature; wedge refers to an N–H bond pointing above the plane and hashed wedge is an N–H bond that points below; and (b) idealized structures of the octahedral complexes of cyclam</td>
<td>12</td>
</tr>
<tr>
<td>2.12</td>
<td>Molecular structure of [Zn(cyclam)(cis-OOCCH=CHCOO)] with atom-labelling scheme; carboxylate groups are directly coordinated to zinc(II) ion</td>
<td>13</td>
</tr>
<tr>
<td>2.13</td>
<td>Molecular view of Zn(cyclam)(H₂O)₂ with atom-labelling scheme; fumarate anion is not coordinated to Zn atom</td>
<td>14</td>
</tr>
<tr>
<td>2.14</td>
<td>Molecular structure of Ni(cyclam)(H₂O)₂. 4H₂O; Ni(II) ion in the cyclam is six-coordinated with distorted octahedral geometry with four aza-N atoms in the equatorial plane and water molecules in the apices</td>
<td>15</td>
</tr>
<tr>
<td>2.15</td>
<td>Molecular structure of [Ni(cyclam)(C₆H₅COO)₂], showing direct coordination between Ni atom and carboxylate groups</td>
<td>16</td>
</tr>
</tbody>
</table>
Figure 2.16 Molecular structure of [Cu(cyclam)(H₂O)₂](C₆H₅COO)₂.2H₂O 17
Figure 2.17 Molecular structure of [Cu(cyclam)(H₂O)₂](C₆F₅COO)₂.2H₂O 17
Figure 2.18 An infrared spectrum showing the position of COO stretching band 19
Figure 2.19 (a) The UV-vis spectrum of copper(II) acetate, [Cu₂(CH₃COO)₄(H₂O)₂]; and (b) the schematic view of the structure of the complex 21
Figure 2.20 Schematic representation of a Gouy balance 23
Figure 2.21 TG/DTA curves of [Cu₂(CH₃)(CH₂)₁₆COO]₄ 24
Figure 2.22 DSC curves of [Cu₂(CH₃)(CH₂)ₙCOO]₄ (ₙ = 10, 12, 14 and 16) 25
Figure 2.23 Representative examples of: (a) calamitic; and (b) discotic mesogens 27
Figure 2.24 Schematic representations of: (a) calamitic mesogen; and (b) discotic mesogen. Arrows indicate the axes of the molecules that align to the director n 27
Figure 2.25 (a) Schematic representation; and (b) schlieren texture of a nematic mesophase 28
Figure 2.26 Schematic representations of smectic phases, showing layered structure: (a) SmA; and (b) SmC (tilted) 28
Figure 2.27 2-Alkoxy-5-phenylpyrimidines 29
Figure 2.28 SmA mesophase of 2-Alkoxy-5-phenylpyrimidines (ₙ = 5), displaying a fan-shaped texture under crossed polarizers upon cooling from the isotropic liquid 29
Figure 2.29 DSC curve of 2-Alkoxy-5-phenylpyrimidines (ₙ = 6) 30
Figure 2.30 Mesogenic dimer bearing hydrazide group 30
Figure 2.31 A distinct difference between: (a) SmA (focal conic texture); and (b) SmC (fan-shaped texture). The red arrows indicate the direction of the polarisers 31
Figure 2.32 An optical texture of (a) N₁D[48]; and (b) Colₜ 31
Figure 2.33 FTIR spectra of 2-chloro-4-nitroaniline: (a) calculated and (b) observed 32
Figure 2.34 Molecular electrostatic potential surface of 6-nitro-ₘ-toluic acid 33
Figure 3.1 The structural formula of cyclam

Figure 4.1 Molecular structure of 1, showing displacement ellipsoids at 50% probability level; operator used to generate symmetry equivalent elements: x, ½-y, -½+z

Figure 4.2 Representation of the chair conformation of the six-membered (A) and gauche five-membered chelate ring (B) of cyclam group of 1; carbon bound H-atoms were not shown

Figure 4.3 Unit cell of 1, viewed along crystallographic b-axis, N–H···O and O–H···O bond is indicated as green and pink dashes respectively (some hydrogen atoms were not shown)

Figure 4.4 Molecular view of the dimeric paddlewheel structure of [Cu₂(CH₃(CH₂)₅COO)]₄, drawn at 70% probability level; symmetry elements are related by operator –x, 2–y, –z

Figure 4.5 The FTIR spectrum of 1

Figure 4.6 The UV-vis spectrum of 1

Figure 4.7 The FTIR spectrum of 2

Figure 4.8 The UV-vis spectrum of 2

Figure 4.9 Schematic representation of the proposed structure of 2; N–H···O and O–H···O bond is indicated as green and pink dashes respectively; the remaining five solvated H₂O molecules are not shown

Figure 4.10 Molecular structures of 3, showing displacement ellipsoids at 70% probability level; operator used to generate symmetry equivalent elements: 1-x, 1-y, 1-z

Figure 4.11 Unit cell of 3, viewed along crystallographic b-axis, N–H···O and O–H···O bond is indicated as green and pink dashes respectively (some hydrogen atoms were not shown)

Figure 4.12 The FTIR spectrum of 3

Figure 4.13 The UV-vis spectrum of 3

Figure 4.14 Molecular structures of 4, showing displacement ellipsoids at 70% probability level; operator used to generate symmetry equivalent elements: 2-x, -y, 2-z

Figure 4.15 Unit cell of 4, viewed along crystallographic b-axis, N–H···O and O–H···O bond is indicated as green and pink dashes respectively (some hydrogen atoms were not shown)

Figure 4.16 The FTIR spectrum of 4
Figure 4.17 The UV-vis spectrum of 4

Figure 4.18 Molecular structures of 5, showing displacement ellipsoids at 70% probability level; operator used to generate symmetry equivalent elements (unlabelled atoms): 2–x, –y, –z

Figure 4.19 Unit cell of 5, viewed along crystallographic b-axis, N–H···O and O–H···O bond is indicated as green and pink dashes respectively (some hydrogen atoms were not shown)

Figure 4.20 The FTIR spectrum of 5

Figure 4.21 The UV-vis spectrum of 5

Figure 4.22 Molecular structures of 6, showing displacement ellipsoids at 50% probability level; operator used to generate symmetry equivalent elements: –x, –y, 1–z

Figure 4.23 Unit cell of 6, viewed along crystallographic b-axis, N–H···O and O–H···O bond is indicated as green and pink dashes respectively (some hydrogen atoms were not shown)

Figure 4.24 The FTIR spectrum of 6

Figure 4.25 The UV-vis spectrum of 6

Figure 4.26 The FTIR spectrum of 7

Figure 4.27 The UV-vis spectrum of 7

Figure 4.28 Schematic representation of the proposed structure of 7; N–H···O and O–H···O bond is indicated as green and pink dashes respectively; the five solvated CH₃CH₂OH molecules are not shown

Figure 4.29 The extended hydrogen-bond network of 1 viewed down the a-axis, yellow dashed lines indicate N–H···O bond and blue dashed lines indicate O–H···O bond; the CH₃(CH₂)₃COO⁻ chains were shortened and lattice H₂O molecules were omitted for clarity.

Figure 4.30 The extended hydrogen-bond network of 6 viewed down the b-axis, yellow dashed lines indicate N–H···O bond and blue dashed lines indicate O–H···O bond; the CH₃(CH₂)₁₄COO⁻ chains were shortened.

Figure 4.31 TGA trace of 1
Figure 4.32 DSC traces of 1

Figure 4.33 Photomicrographs of 1 under crossed polarizers (a) melting at 44.2 °C; (b) clearing to an isotropic liquid at 135.0 °C; (c) and (d) crystals at two different sites upon cooling to room temperature

Figure 4.34 TGA trace of 6

Figure 4.35 DSC traces of 6

Figure 4.36 DSC traces of 6 separated to: (a) first cycle; and (b) second cycle

Figure 4.37 Photomicrographs of 6 under crossed polarizers on cooling at: (a) 102 °C; (b-d) 88 °C at three different sites; (e) crystalizing from left to right at 56.9 °C; and (f) room temperature

Figure 4.38 Molecular structure of 8, showing displacement ellipsoids at 70% probability level; operator used to generate symmetry equivalent elements (unlabelled atoms): –x, 2–y, –z

Figure 4.39 Unit cell of 8, viewed along crystallographic a-axis; the crystal structure formed two dimensional networks via O–H···O and N–H···O hydrogen bond (pink and green dashed lines, respectively).

Figure 4.40 The FTIR spectrum of 8

Figure 4.41 The UV-vis spectrum of 8

Figure 4.42 Molecular structure of 9, showing displacement ellipsoids at 70% probability level; operator used to generate symmetry equivalent elements (unlabelled atoms): 1–x, 1–y, –z

Figure 4.43 Unit cell of 9, viewed along crystallographic c-axis; the crystal structure formed two dimensional networks via O–H···O and N–H···O hydrogen bond (pink and green dashed lines, respectively).

Figure 4.44 The FTIR spectrum of 9

Figure 4.45 The UV-vis spectrum of 9

Figure 4.46 Molecular structure of 10, showing displacement ellipsoids at 70% probability level; operator used to generate symmetry equivalent elements (unlabelled atoms): 1–x, 1–y, 2–z

Figure 4.47 Unit cell of 10, viewed along the a-axis; the O–H···O and N–H···O hydrogen bonds (pink and green dashed lines, respectively) have led to the formation of chain along the b-axis.
Figure 4.48 The FTIR spectrum of 10
Figure 4.49 The UV-vis spectrum of 10
Figure 4.50 Molecular structure of 11, showing displacement ellipsoids at 70% probability level
Figure 4.51 Unit cell of 11, viewed along the c-axis; the O–H···O and N–H···O hydrogen bonds (pink and green dashed lines, respectively) have led to the formation chain along the b-axis.
Figure 4.52 The FTIR spectrum of 11
Figure 4.53 The UV-vis spectrum of 11
Figure 4.54 The molecular structure of 12, showing displacement ellipsoids at 70% probability level
Figure 4.55 The FTIR spectrum of 12
Figure 4.56 The UV-vis spectrum of 12
Figure 4.57 Molecular structure of 13, showing displacement ellipsoids at 70% probability level; operator used to generate symmetry equivalent elements (unlabelled atoms): -1–x, -1–y, -z
Figure 4.58 The FTIR spectrum of 13
Figure 4.59 The UV-vis spectrum of 13
Figure 4.60 Molecular structure of 14, showing displacement ellipsoids at 70% probability level; operator used to generate symmetry equivalent elements (unlabelled atoms): 1–x, 1–y, 1–z
Figure 4.61 Unit cell of 14, viewed along the c-axis; the O–H···O and N–H···O hydrogen bonds (pink and green dashed lines, respectively) have led to the formation chain along the a-axis.
Figure 4.62 The FTIR spectrum of 14
Figure 4.63 The UV-vis spectrum of 14
Figure 4.64 TGA trace of 9
Figure 4.65	TGA trace of 10	106
Figure 4.66	TGA trace of 12	107
Figure 4.67	The optimized structure of 1	109
Figure 4.68	Comparison of theoretical and experimental FTIR spectra of 1	111
Figure 4.69	Colour scheme showing relative electrostatic charge distribution	112
Figure 4.70	Molecular electrostatic potential map surface map of 1	113
Figure 4.71	The optimized structure of 8	114
Figure 4.72	Comparison of theoretical and experimental FTIR spectra of 8	115
Figure 4.73	The molecular electrostatic potential surface map of 8	117
Figure 4.74	The optimized structure of 9	118
Figure 4.75	Comparison of theoretical and experimental FTIR spectra of 9	119
Figure 4.76	The molecular electrostatic potential surface map of 9	120
Figure 4.77	The optimized structure of 10	121
Figure 4.78	Comparison of theoretical and experimental FTIR spectra of 10	122
Figure 4.79	The molecular electrostatic potential surface map of 10	123
LIST OF TABLES

Table 1.0 Structural formulas of complexes ii
Jadual 1.0 Formula struktur kompleks iv

Table 2.1 Relative energies calculated for the five isomers of cyclam 11
Table 2.2 Wavenumbers of COO$^-$ stretches of Zn(II) complexes with different binding mode 20
Table 2.3 Temperature of phase transitions from solid to liquid crystal mesophase from DTA and DSC, and enthalpy values of the selected copper(II) alkylcarboxylates 25

Table 3.1 The chemicals used in the project, arranged in alphabetical order 38

Table 4.1 FTIR data and assignments of 1 51
Table 4.2 Elemental analytical data of 2 52
Table 4.3 Elemental analytical data of 7 66
Table 4.4 Selected crystal parameters and refinement details of aliphatic crystalline complexes 69
Table 4.5 Distance values between the Cu atom and its ligand 70
Table 4.6 The magnetic data for 1 and 6 71
Table 4.7 DSC data of 6 79
Table 4.8 The FTIR and assignments of 8 84
Table 4.9 Selected crystal parameters and refinement details of aromatic crystalline complexes 103
Table 4.10 The magnetic data for 9, 10 and 12 105
Table 4.11 Comparison of selected theoretical and experimental bond lengths of 1 110
Table 4.12 The partial charge energy for selected atoms of 1

Table 4.13 Comparison of selected theoretical and experimental bond lengths of 8

Table 4.14 The partial charge energy for selected atoms of 8

Table 4.15 Comparison of selected theoretical and experimental bond length of 8

Table 4.16 The partial charge energy for selected atoms of 9

Table 4.17 Comparison of selected theoretical and experimental bond lengths of 10

Table 4.18 The partial charge energy for selected atoms of 10

Table 5.1 Chemical formula of copper(II) alkylcarboxylate-cyclam complex

Table 5.2 Chemical formula of copper(II) arylcarboxylate-cyclam complex
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 2.1</td>
<td>Reaction equations for the formation of $[\text{Cu}_2(\text{RCOO})_4]$</td>
<td>5</td>
</tr>
<tr>
<td>Scheme 2.2</td>
<td>Different binding mode of carboxylate ion</td>
<td>18</td>
</tr>
</tbody>
</table>