INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION AND EDUCATION OF MATHEMATICS AND SCIENCES 2014

ICRIEMS 2014
Yogyakarta, 18-20 May 2014

Global Trends and Issues on Mathematics and Sciences and the Education
ICRIEMS 2014 : Global Trends and Issues on Mathematics and Science and The Education

- Mathematics & Mathematics Education
- Physics & Physics Education
- Chemistry & Chemistry Education
- Biology & Biology Education
- Science Education

© June 2014

Editorial Board:

Hari Sutrisno
Wipsar Sunu Brams Dwandaru
Kus Prihantoso Krisnawan
Denny Darmawan
Erfan Priyambodo
Evy Yulianti
Sabar Nurohman

Board of Reviewer

Prof. Dr. Saberi bin Othman (Universiti Pendidikan Sultan Idris, Malaysia)
Prof. Samsuuk Ekasit (Mahidol University, Thailand)
Prof. Dean Zollman (Kansas State University, U.S.)
Prof. Tran Vui (Hue University, Vietnam)
Prof. Dr. Amy Cutter-Mackenzie (Southern Cross University, Australia)
Dr. Alexandra Lynman (Universitas Hindu Indonesia)
Prof. Dr. Rusgianto Heri Santoso (Yogyakarta State University)
Prof. Dr. Marsigit (Yogyakarta State University)
Prof. Dr. Mundilarto (Yogyakarta State University)
Prof. Dr. Zuhdan Kun Prasetyo (Yogyakarta State University)
Prof. Dr. K.H. Sugijarto (Yogyakarta State University)
Prof. Dr. A.K. Prodjosantoso (Yogyakarta State University)
Prof. Dr. Djukri (Yogyakarta State University)
Prof. Dr. Bambang Subali (Yogyakarta State University)
Table of Content

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Cover</td>
</tr>
<tr>
<td>Editorial Board and Reviewers</td>
</tr>
<tr>
<td>Preface</td>
</tr>
<tr>
<td>Forewords From The Head of Committee</td>
</tr>
<tr>
<td>Forewords From The Dean of Faculty</td>
</tr>
<tr>
<td>Table of Content</td>
</tr>
</tbody>
</table>

Plenary Session

Using Dynamic Visual Representations To Discover Possible Solutions In Solving Real-Life Open-Ended Problems
Prof. Tran Vui

Parallel Session

MATHEMATICS

| 01 | Probability Density Function of M/G/1 Queues under (0,k) Control Policies: A Special Case
Isnandar Slamet, Ritu Gupta, Narasimaha R. Achuthan | M-1 |
| 02 | $C[\alpha, b]$-Valued Measure And Some Of Its Properties
Firdaus Ubaidillah, Soeparna Darmawijaya, Ch. Rini Indrati | M-9 |
| 03 | Applied Discriminant Analysis in Market Research
Hery Tri Sutanto | M-17 |
| 04 | Characteristic Of Group Of Matrix 3×3 Modulo P, P A Prime Number
Ibnu Hadi, Yudi Mahatma | M-25 |
| 05 | The Properties Of Group Of 3×3 Matrices Over Integers Modulo Prime Number
Ibnu Hadi, Yudi Mahatma | M-31 |
| 06 | Random Effect Model And Generalized Estimating Equations For Binary Panel Response | M-37 |
Jaka Nugraha

07 The Properties of Ordered Bilinear Form Semigroup in Term of Fuzzy Quasi-Ideals
Karyati, Dhoriva Urwatul Wutiq

08 Symmetry Of Limit Cycles On A Liénard-Type Dynamical System
Kus Prihantoso Krisnawan

09 Systems Of Interval Min-Plus Linear Equations And Its Application On Shortest Path Problem With Interval Travel Times
M. Andy Rudhito and D. Arif Budi Prasetyo

10 Some Properties Of Primitive ϑ – Henstock Of Integrable Function In Locally Compact Metric Space Of Vector Valued Function
Manuharawati

11 Learning Gauss-Jordan Elimination Using Ms Excel
Meifry Manuhutu

12 Linear Matrix Inequality Based Proportional Integral Derivative Control For High Order Plant
M. Khairudin

13 Bayesian With Full Conditional Posterior Distribution Approach For Solution Of Complex Models
Pudji Ismartini

14 Optimal Control Analyze And Equilibrium Existence Of Seir Epidemic Model With Bilinear Incidence And Time Delay In State And Control Variables
Rubono Setiawan

15 Selection Of The Best Univariate Normality Test On The Category Of Moments Using Monte Carlo Simulation
Sugiyanto and Etik Zukhronah

16 Additive Main Effect and Multiplicative Interaction on Fixed Model of Two Factors Design
Suwardi Annas and Selfi Dian Purtanti

17 Gram-Schmidt Super Orthogonalization Process For Super Linear Algebra

M-45

M-55

M-61

M-69

M-77

M-83

M-93

M-101

M-111

M-119

M-127
SYSTEMS OF INTERVAL MIN-PLUS LINEAR EQUATIONS
AND ITS APPLICATION ON SHORTEST PATH PROBLEM
WITH INTERVAL TRAVEL TIMES

M. Andy Rudhito and D. Arif Budi Prasetyo
Department of Mathematics and Natural Science Education
Universitas Sanata Dharma, Paingan Maguwoharjo Yogyakarta

Abstract
The travel times in a network are seldom precisely known, and then could be represented into the interval of real number, that is called interval travel times. This paper discusses the solution of the iterative systems of interval min-plus linear equations its application on shortest path problem with interval travel times. The finding shows that the iterative systems of interval min-plus linear equations, with coefficient matrix is semi-definite, has a maximum interval solution. Moreover, if coefficient matrix is definite, then the interval solution is unique. The networks with interval travel time can be represented as a matrix over interval min-plus algebra. The networks dynamics can be represented as an iterative system of interval min-plus linear equations. From the solution of the system, can be determined interval earliest starting times for each point can be traversed. Furthermore, we can determine the interval fastest time to traverse the network. Finally, we can determine the shortest path interval with interval travel times by determining the shortest path with crisp travel times.

Key words: Min-Plus Algebra, Linear System, Shortest Path, Interval.

INTRODUCTION

Let $\mathbb{R}_\varepsilon := \mathbb{R} \cup \{\varepsilon\}$ with \mathbb{R} the set of all real numbers and $\varepsilon : = \infty$. In \mathbb{R}_ε defined two operations: $orall a, b \in \mathbb{R}_\varepsilon$, $a \otimes b := \min(a, b)$ and $a \oslash b := a - b$. We can show that $(\mathbb{R}_\varepsilon, \oplus, \odot)$ is a commutative idempotent semiring with neutral element $\varepsilon = \infty$ and unity element $e = 0$.
Moreover, $(\mathbb{R}_\varepsilon, \oplus, \odot)$ is a semifield, that is $(\mathbb{R}_\varepsilon, \oplus, \odot)$ is a commutative semiring, where for every $a \in \mathbb{R}$ there exist $-a$ such that $a \odot (-a) = 0$. Thus, $(\mathbb{R}_\varepsilon, \oplus, \odot)$ is a min-plus algebra, and is written as \mathbb{R}_{\min}. One can define $0^\ominus := 0$, $\sum_{i=1}^{n} x_i := x \oplus \sum_{i=1}^{n-1} x_i$, $\sum_{i=1}^{n} 0_i := 0$ and $\sum_{i=1}^{n} \varepsilon := \varepsilon$ for $k = 1, 2, \ldots$. The operations \oplus and \odot in \mathbb{R}_{\min} can be extend to the matrices operations in $\mathbb{R}_{\min}^{m \times n}$, with $\mathbb{R}_{\min}^{m \times n} := \{A = (A_{ij}) \mid A_{ij} \in \mathbb{R}_{\min}, \text{for } i = 1, 2, \ldots, m \text{ and } j = 1, 2, \ldots, n\}$, the set of all matrices over max-plus algebra. Specifically, for $A, B \in \mathbb{R}_{\min}^{m \times n}$ we define $(A \oplus B)_{ij} = A_{ij} \oplus B_{ij}$ and $(A \otimes B)_{ij} = \bigoplus_{k=1}^{n} A_{ik} \otimes B_{kj}$. We also define matrix $E \in \mathbb{R}_{\min}^{m \times n}$, $(E)_{ij} = \begin{cases} 0, & \text{if } i = j \\ \varepsilon, & \text{if } i \neq j \end{cases}$ for every i and j. For any matrices $A \in \mathbb{R}_{\min}^{m \times n}$, one can define $A^\ominus = E_n$ and $A^\otimes = A \otimes A^{k-1}$ for $k =$...
1, 2, For any weighted, directed graph $G = (V,A)$ we can define a matrix $A \in \mathbb{R}_\text{min}^{n \times n}$, $A_{ij} = \begin{cases} w(j,i), & \text{if } (j,i) \in A \\ e, & \text{if } (j,i) \notin A \end{cases}$ called the weight-matrix of graph G.

A matrix $A \in \mathbb{R}_\text{min}^{n \times n}$ is said to be semi-definite if all of circuit in $G(A)$ have nonnegative weight, and it is said definite if all of circuit in $G(A)$ have positive weight. We can show that if any matrices A is semi-definite, then $\forall p \geq n, A^p \preceq_m E \oplus A \oplus \cdots \oplus A^{p-1}$. So, we can define $A^e = E \oplus A \oplus \cdots \oplus A^e \oplus A^{e+1} \oplus \cdots$. Define $R^{\text{min}}_n := \{ x = [x_1, x_2, \ldots, x_n]^T | x \in \mathbb{R}_\text{min}, i = 1, 2, \ldots, n \}$. Notice that we can be seen R^{max}_n as R^{min}_n. The elements of R^{max}_n is called vector over R^{min}_n. In general, min-plus algebra is analogous to max-plus algebra. Further details about max-plus algebra, matrix and graph can be found in Baccelli et al. (2001) and Rudhito (2003).

The existence and uniqueness of the solution of the iterative system of min-plus linear equation and its application to determine the shortest path in the with crisp (real) travel times had been discussed in Rudhito (2013). The followings are some result in brief. Let $A \in \mathbb{R}_\text{min}^{n \times n}$ and $b \in \mathbb{R}_{\text{max}}^n$. If A is semi-definite, then $x = A \otimes b$ is a solution of system $x = A \otimes x \oplus b$. Moreover, if A is definite, then the system has a unique solution. A one-way path network with crisp activity times, is a directed, strongly connected, acyclic, crisp weighted graph $S = (V,A)$, with $V = \{1, 2, \ldots, n\}$. Such that if $(i, j) \in A$, then $i < j$. In this network, point represent crosspathway, arc expresses a pathway, while the weight of the arc represent travel time, so that the weights in the network is always positive. Let x^e_i is earliest starting times for point i can be traversed and $x^e = [x^e_1, x^e_2, \ldots, x^e_n]^T$. For the network with crisp travel times, with m modes and A the weight matrix of graph of the networks, then

$$x^e = (E \oplus A \oplus \cdots \oplus A^{e-1}) \otimes b^e = A^e \otimes b^e$$

with $b^e = [0, e, \ldots, e]^T$. Furthermore, x^e_i is the fastest times to traverse the network. Let x^l_i be latest time left point i and $x^l = [x^l_1, x^l_2, \ldots, x^l_n]$. For the network above, vector $x^l = - (A^e)^T \otimes b^l$ with $b^l = [e, e, \ldots, -x^e_n]^T$. Define, a pathway $(i, j) \in A$ in the one-way path network S is called shortest pathway if $x^l_i = x^l_j$ dan $x^e_i = x^e_j$. Define, A path $p \in P$ in the one-way path network S is called shortest path if all pathways belonging to p are shortest pathway. From this definition, we can show that a path $p \in P$ is a shortest path if and only if it has minimum weight, that is equal to x^e_n. Also, a pathway is a shortest pathway if and only if it belonging to a shortest path.

DISCUSSION

We discusses the solution of the iterative systems of interval min-plus linear equations its application on shortest path problem with interval travel times. The discussion begins by reviewing some basic concepts of interval min-plus algebra and matrices over interval min-plus algebra. Definition and concepts in the min-plus algebra analogous to the concepts in the max-plus algebra which can be seen in Rudhito (2011).

The (closed) interval x in \mathbb{R}_min is a subset of \mathbb{R}^{min} of the form
The interval x in \mathbb{R}_{min} is called \textit{min-plus interval}, which is in short is called \textit{interval}. Define $I(\mathbb{R}) := \{ x = [\underline{x}, \overline{x}] | x, \overline{x} \in \mathbb{R}, \underline{x} \leq_m x \leq_m \overline{x} \} \cup \{ \varepsilon \}$, where $\varepsilon := [\varepsilon, \varepsilon]$.

In the $I(\mathbb{R})_e$, define operation \ominus and \odot as

$$x \ominus y = [\underline{x} \ominus \underline{y}, \overline{x} \ominus \overline{y}] \text{ and } x \odot y = [\underline{x} \odot \underline{y}, \overline{x} \odot \overline{y}]$$

for any $x, y \in I(\mathbb{R})_e$.

Since $(\mathbb{R}, \ominus, \odot)$ is an idempotent semiring and it has no zero divisors, with neutral element ε, we can show that $I(\mathbb{R})_e$ is closed with respect to the operation \ominus and \odot. Moreover, $(I(\mathbb{R})_e, \ominus, \odot)$ is a comutative idempotent semiring with neutral element $0 = [0, 0]$. This comutative idempotent semiring $(I(\mathbb{R})_e, \ominus, \odot)$ is called \textit{interval min-plus algebra} which is written as $I(\mathbb{R})_{\text{min}}$.

Define $I(\mathbb{R})_{e}^{mn} := \{ A = (A_{ij}) | A_{ij} \in I(\mathbb{R})_{\text{min}}, \text{ for } i = 1, 2, ..., m \text{ and } j = 1, 2, ..., n \}$. The element of $I(\mathbb{R})_{e}^{mn}$ are called \textit{matrices over interval min-plus algebra}. Furthermore, this matrices are called \textit{interval matrices}. The operations \ominus and \odot in $I(\mathbb{R})_{\text{min}}$ can be extended to the matrices operations of in $I(\mathbb{R})_{e}^{mn}$. Specifically, for $A, B \in I(\mathbb{R})_{e}^{mn}$ and $\alpha \in I(\mathbb{R})_{\text{min}}$ we define

$$(\alpha \odot A)_{ij} = \alpha \odot A_{ij}, (A \ominus B)_{ij} = A_{ij} \ominus B_{ij} \text{ and } (A \odot B)_{ij} = \sum_{k=1}^{n} A_{ik} \odot B_{kj}.$$

Matrices $A, B \in I(\mathbb{R})_{e}^{mn}$ are \textit{equal} if $A_{ij} = B_{ij}$, that is if $A_{ij} = B_{ij}$ and $A_{ij} = B_{ij}$ for every i and j.

We can show that $(I(\mathbb{R})_{e}^{mn}, \ominus, \odot)$ is an idempotent semiring with neutral element ε, with $(x)_{ij} := \varepsilon$ for every i and j, and unity element is matrix E, with $(E)_{ij} := \begin{cases} 0, & \text{if } i = j \\ \varepsilon, & \text{if } i \neq j \end{cases}$. We can also show that $I(\mathbb{R})_{e}^{mn}$ is a semi-module over $I(\mathbb{R})_{\text{min}}$.

For any matrix $A \in I(\mathbb{R})_{e}^{mn}$, define the matrices $\underline{A} = (A_{ij}) \in \mathbb{R}_{\text{min}}^{mn}$ and $\overline{A} = (\overline{A}_{ij}) \in \mathbb{R}_{\text{min}}^{mn}$, which is called \textit{lower bound matrices} and \textit{upper bound matrices} of A, respectively. Define matrices interval of A, that is $\underline{A}, \overline{A} = \{ A \in I(\mathbb{R})_{\text{min}}^{mn} | \underline{A} \leq_m A \leq_m \overline{A} \}$ and $I(\mathbb{R})_{e}^{mn} = \{ [\underline{A}, \overline{A}] | A \in I(\mathbb{R})_{\text{min}}^{mn} \}$.

Specifically, for $[\underline{A}, \overline{A}], [\underline{B}, \overline{B}] \in I(\mathbb{R})_{e}^{mn}$ and $\alpha \in I(\mathbb{R})_{\text{min}}$ we define

$$\alpha \odot [\underline{A}, \overline{A}] = [\underline{A} \odot \underline{A}, \overline{A} \odot \overline{A}], [\underline{A}, \overline{A}] \ominus [\underline{B}, \overline{B}] = [\underline{A} \ominus \underline{B}, \overline{A} \ominus \overline{B}]$$

and $[\underline{A}, \overline{A}] \odot [\underline{B}, \overline{B}] = [\underline{A} \odot \underline{B}, \overline{A} \odot \overline{B}]$.

The matrices interval $[\underline{A}, \overline{A}]$ and $[\underline{B}, \overline{B}] \in I(\mathbb{R})_{e}^{mn}$ are \textit{equal} if $\underline{A} = B$ and $\overline{A} = \overline{B}$. We can show that $(I(\mathbb{R})_{e}^{mn}, \ominus, \odot)$ is an idempotent semiring with neutral element matrix interval $[\varepsilon, \varepsilon]$ and the unity element is matrix interval $[E, E]$. We can also show that $I(\mathbb{R})_{e}^{mn}$ is a semimodule over $I(\mathbb{R})_{\text{min}}$.

The semiring $(I(\mathbb{R})_{\text{min}}^{mn}, \ominus, \odot)$ is isomorphic with semiring $(I(\mathbb{R})_{e}^{mn}, \ominus, \odot)$. We can define a mapping f, where $f(A) = [\underline{A}, \overline{A}], \forall A \in I(\mathbb{R})_{e}^{mn}$. Also, the semimodule $I(\mathbb{R})_{e}^{mn}$ is isomorphic with semimodule $I(\mathbb{R})_{e}^{mn}$. So, for every matrices interval $A \in I(\mathbb{R})_{e}^{mn}$ we can
determine matrices interval \([\mathbf{A}, \overline{\mathbf{A}}] \in \mathbf{l}(\mathbb{R}^{n \times n}) \). Conversely, for every \([\mathbf{A}, \overline{\mathbf{A}}] \in \mathbf{l}(\mathbb{R}^{n \times n}) \), then \(\mathbf{A}, \overline{\mathbf{A}} \in \mathbf{R}^{n \times n} \), such that \([\mathbf{A}_{ij}, \overline{\mathbf{A}}_{ij}] \in \mathbf{l}(\mathbf{R}^{n \times n}) \), \(\forall i \) and \(j \). The matrix interval \([\mathbf{A}, \overline{\mathbf{A}}] \) is called matrix interval associated with the interval matrix \(\mathbf{A} \) and which is written \(\mathbf{A} \cong [\mathbf{A}, \overline{\mathbf{A}}] \). So we have \(\alpha \otimes \mathbf{A} \cong [\mathbf{u} \otimes \mathbf{A}, \mathbf{v} \otimes \overline{\mathbf{A}}] \), \(\mathbf{A} \otimes \mathbf{B} \cong [\mathbf{A} \otimes \mathbf{B}, \overline{\mathbf{A}} \otimes \overline{\mathbf{B}}] \) and \(\mathbf{A} \otimes \mathbf{B} \cong [\mathbf{A} \otimes \mathbf{B}, \overline{\mathbf{A}} \otimes \overline{\mathbf{B}}] \).

We define for any interval matrices \(\mathbf{A} \in \mathbf{l}(\mathbf{R})^{n \times n} \), where \(\mathbf{A} \cong [\mathbf{A}, \overline{\mathbf{A}}] \), is said to be semi-definite (definite) if every matrices \(\mathbf{A} \in [\mathbf{A}, \overline{\mathbf{A}}] \) is semi-definite (definite). We can show that interval matrices \(\mathbf{A} \in \mathbf{l}(\mathbf{R})^{n \times n} \), where \(\mathbf{A} \cong [\mathbf{A}, \overline{\mathbf{A}}] \) is semi-definite (definite) if and only if \(\mathbf{A} \in \mathbf{R}^{n \times n} \) semi-definite (definite).

Define \(\mathbf{l}(\mathbf{R})_{\text{min}}^{n} := \{ \mathbf{x} = [x_{1}, x_{2}, \ldots, x_{n}]^{T} \mid x_{i} \in \mathbf{l}(\mathbf{R})_{\text{min}}, i = 1, 2, \ldots, n \} \). The set \(\mathbf{l}(\mathbf{R})_{\text{min}}^{n} \) can be seen as set \(\mathbf{l}(\mathbf{R})_{\text{max}}^{n} \). The Elements of \(\mathbf{l}(\mathbf{R})_{\text{min}}^{n} \) is called interval vector over \(\mathbf{l}(\mathbf{R})_{\text{min}} \). The interval vector \(\mathbf{x} \) associated with vector interval \([\overline{\mathbf{x}}, \mathbf{x}] \), that is \(\mathbf{x} \cong [\overline{\mathbf{x}}, \mathbf{x}] \).

Definition 1. Let \(\mathbf{A} \in \mathbf{l}(\mathbf{R})^{n \times n} \) and \(\mathbf{b} \in \mathbf{l}(\mathbf{R})^{1 \times n} \) a interval vector \(\mathbf{x} \in \mathbf{l}(\mathbf{R})_{\text{min}}^{n} \) is called interval solution of iterative system of interval min-plus linear equations \(\mathbf{x} = \mathbf{A} \otimes \mathbf{x} \otimes \mathbf{b} \) if \(\mathbf{x} \) satisfy the system.

Theorem 1. Let \(\mathbf{A} \in \mathbf{l}(\mathbf{R})_{\text{max}}^{n \times n} \) and \(\mathbf{b} \in \mathbf{l}(\mathbf{R})^{1 \times n} \). If \(\mathbf{A} \) is semi-definite, then interval vector \(\mathbf{x} = [\overline{\mathbf{A}} \otimes \mathbf{b}, \mathbf{A} \otimes \mathbf{b}] \), is an interval solution of system \(\mathbf{x} = \mathbf{A} \otimes \mathbf{x} \otimes \mathbf{b} \). Moreover, if \(\mathbf{A} \) is definite, then interval solution is unique.

Proof. Proof is analogous to the case of max-plus algebra as seen in the Rudhito (2011).

Next will be discussed the earliest starting times interval for point \(i \) can be traversed. The discussion is analogous to the case of (crisp) travel time (Rudhito, 2013), using the interval min-plus algebra approach.

Let \(\mathbf{E}_{\mathbf{x}} \) is earliest starting times interval for point \(i \) can be traversed, with \(\mathbf{x}^{e} = [\mathbf{x}^{e}_{1}, \mathbf{x}^{e}_{i}] \).

\[
A_{ij} = \begin{cases}
\text{interval travel-time from point } j \text{ to point } i \text{ if } (j, i) \in \mathbf{A} \\
\varepsilon = [\pm \infty] \text{ if } (j, i) \notin \mathbf{A}
\end{cases}
\]

We assume that \(\mathbf{x}^{e}_{i} = 0 = [0, 0] \) and with interval min-plus algebra notation we have

\[
\mathbf{x}^{e}_{i} = \begin{cases}
0 & \text{if } i = 1 \\
\bigoplus_{(j, k) \in \mathbf{A}} (A_{ij} \otimes \mathbf{x}^{e}_{j}) & \text{if } i > 1
\end{cases}
\] (1)

Let \(\mathbf{A} \) is the interval weight matrix of the interval-valued weighted graph of the networks, \(\mathbf{x}^{e} = [\mathbf{x}_{1}^{e}, \mathbf{x}_{2}^{e}, \ldots, \mathbf{x}_{n}^{e}]^{T} \) dan \(\mathbf{b}^{e} = [0, e, \ldots, e]^{T} \), then equation (1) can be written in an iterative system of interval max-plus linear equations

\[
\mathbf{x}^{e} = \mathbf{A} \otimes \mathbf{x}^{e} \otimes \mathbf{b}^{e}
\] (2)

Since the project networks is acyclic directed graph, then there are no circuit, so according to the result in Rudhito (2011), \(\mathbf{A} \) is definite. And then according to Theorem 1,
\[x^e = A^e \otimes b^e = [A^e \otimes b^e, A^e \otimes b^e] \]

is a unique solution of the system (2), that is the vector of earliest starting times interval for point \(i \) can be traversed.

Notice that \(x^e_i \) is the \textit{fastest times interval to traverse} the network. We summarize the description above in the Theorem 2.

\textbf{Teorema 2.} Given a one-way path network with interval travel times, with \(n \) node and \(A \) is the weight matrix of the interval-valued weighted graph of networks. The interval vector of earliest starting times interval for point \(i \) can be traversed is given by

\[x^e = [(E \oplus A \oplus ... \ A^{\otimes n-1}) \otimes b^e, (E \oplus A \oplus ... \ A^{\otimes n-1}) \otimes b^e] \]

with \(b^e = [0, \varepsilon, ..., \varepsilon]^T \). Furthermore, \(x^e_i \) \textit{is the fastest times interval to traverse the network.}

\textbf{Bukti:} (see description above).

\textbf{Example 1} Consider the project network in Figure 1.

We have

\[A = \begin{bmatrix}
\varepsilon, &\varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
[1,3] &\varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
[2,4] &\varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & [2,3] & [3,5] &\varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & [2,3] & [0,0] &\varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & [2,3] & [4,7] &\varepsilon \\
\varepsilon & \varepsilon & \varepsilon & [7,9] & [5,8] & [6,8]
\end{bmatrix} \]

Using MATLAB computer program, we have
The following theorem is given which relates the interval-shortest path and interval-shortest pathway.

Theorem 3. If path \(p \in P \) is an interval-shortest path, then all pathways in the \(p \) are interval-shortest path.

Proof: Let path \(p \in P \) is an interval shortest path, then according to Definition 2, there exist a set of times \(\bar{A}_j \in [\bar{A}_j, \bar{A}_j] \), \((i, j) \in \mathcal{A} \), such that \(p \) is shortest path, after replacing the interval travel times \(A_j \) with the travel time \(A_j \). Next, according to the definition of shortest path above, all pathways in \(p \) are shortest pathways for a set of travel times \(\bar{A}_j \in [\bar{A}_j, \bar{A}_j] \), \((i, j) \in \mathcal{A} \). Thus according to Definition 3, all pathways in \(p \) are interval-shortest pathways.

The following theorem is given a necessary and sufficient condition a path is an interval-shortest path.

Theorem 4. Let \(p \in P \) is an interval-shortest path in \(S \) if and only if \(p \) is a shortest path, with interval travel times \(A_j \in [\bar{A}_j, \bar{A}_j] \), \((i, j) \in \mathcal{A} \), have been replace with travel times \(A_j \) which is determined by the following formula.
\[A_{ij} = \begin{cases} \overline{A}_{ij} & \text{jika } (i, j) \in p, \\ \bar{A}_{ij} & \text{jika } (i, j) \notin p. \end{cases} \] (3)

Bukti : \(\equiv \) : Let \(p \) is an interval-shortest path, then according to Definition 2, there exist a set of travel times \(A_{ij}, A_{ij} \in [A_{ij}, \bar{A}_{ij}], (i, j) \in \mathcal{A} \), such that \(p \) is shortest pathway, after replacing the interval travel times \(A_{ij} \) with travel times \(\bar{A}_{ij}, (i, j) \in \mathcal{A} \) if the travel times for all pathways is located at \(p \) is reduced from \(A_{ij} \) to \(\bar{A}_{ij} \) and for all pathway is not located \(p \) is increased from \(A_{ij} \) to \(\bar{A}_{ij} \), then \(p \) is a path with minimum weight in \(\mathcal{S} \) for new travel time formation. Thus path \(p \) is a shortest path.

\(\Leftarrow \) : Since path \(p \) a shortest path with a set of travel times \(A_{ij} \in [A_{ij}, \bar{A}_{ij}] \), which is determined by the formula (9), then according to Definition 2, path \(p \) is an interval-shortest path. \(\blacksquare \)

Example 2. We consider the network in Example 1. We will determine all interval-shortest path in this network. For path 1\(\rightarrow \)3\(\rightarrow \)5\(\rightarrow \)7, by applying formula (9), we have weight

\[
\begin{bmatrix}
8 & 14 & 8 & 14 & 8 & 14 & 8 \\
15 & 23 & 15 & 23 & 15 & 23 & 15 \\
9 & 16 & 9 & 16 & 9 & 16 & 9 \\
16 & 25 & 16 & 25 & 16 & 25 & 16 \\
13 & 20 & 13 & 20 & 13 & 20 & 13 \\
12 & 18 & 12 & 18 & 12 & 18 & 12 \\
7 & 13 & 7 & 13 & 7 & 13 & 7 \\
14 & 22 & 14 & 22 & 14 & 22 & 14 \\
11 & 17 & 11 & 17 & 11 & 17 & 11 \\
10 & 15 & 10 & 15 & 10 & 15 & 10
\end{bmatrix}
\]

Using MATLAB computer program, we have a shortest path 1\(\rightarrow \)3\(\rightarrow \)5\(\rightarrow \)7 with minimum weight of path is 8. Thus 1\(\rightarrow \)3\(\rightarrow \)5\(\rightarrow \)7 is an interval-shortest path. The results of the calculations for all possible path in the network are given in Table 1 below.

<table>
<thead>
<tr>
<th>No</th>
<th>Pathp</th>
<th>Weight Interval p</th>
<th>Shortest-pathp (with formula (9))</th>
<th>Weight of p</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1(\rightarrow)3(\rightarrow)5(\rightarrow)7</td>
<td>[8,14]</td>
<td>1(\rightarrow)3(\rightarrow)5(\rightarrow)7, 1(\rightarrow)3(\rightarrow)5(\rightarrow)7</td>
<td>8</td>
<td>Interval-shortest</td>
</tr>
<tr>
<td>2</td>
<td>1(\rightarrow)3(\rightarrow)5(\rightarrow)6(\rightarrow)7</td>
<td>[15,23]</td>
<td>1(\rightarrow)3(\rightarrow)5(\rightarrow)7</td>
<td>11</td>
<td>Not interval-shortest</td>
</tr>
<tr>
<td>3</td>
<td>1(\rightarrow)3(\rightarrow)4(\rightarrow)5(\rightarrow)7</td>
<td>[9,16]</td>
<td>1(\rightarrow)3(\rightarrow)4(\rightarrow)5(\rightarrow)7, 1(\rightarrow)3(\rightarrow)5(\rightarrow)7</td>
<td>9</td>
<td>Interval-shortest</td>
</tr>
<tr>
<td>4</td>
<td>1(\rightarrow)3(\rightarrow)4(\rightarrow)5(\rightarrow)6(\rightarrow)7</td>
<td>[16,25]</td>
<td>1(\rightarrow)3(\rightarrow)4(\rightarrow)5(\rightarrow)7, 1(\rightarrow)3(\rightarrow)5(\rightarrow)7</td>
<td>12</td>
<td>Not interval-shortest</td>
</tr>
<tr>
<td>5</td>
<td>1(\rightarrow)3(\rightarrow)4(\rightarrow)6(\rightarrow)7</td>
<td>[13,20]</td>
<td>1(\rightarrow)3(\rightarrow)4(\rightarrow)5(\rightarrow)7, 1(\rightarrow)3(\rightarrow)5(\rightarrow)7</td>
<td>12</td>
<td>Not interval-shortest</td>
</tr>
<tr>
<td>6</td>
<td>1(\rightarrow)3(\rightarrow)4(\rightarrow)7</td>
<td>[12,18]</td>
<td>1(\rightarrow)3(\rightarrow)4(\rightarrow)5(\rightarrow)7, 1(\rightarrow)3(\rightarrow)4(\rightarrow)7, 1(\rightarrow)3(\rightarrow)5(\rightarrow)7</td>
<td>12</td>
<td>Interval-shortest</td>
</tr>
<tr>
<td>7</td>
<td>1(\rightarrow)2(\rightarrow)4(\rightarrow)5(\rightarrow)7</td>
<td>[7,13]</td>
<td>1(\rightarrow)2(\rightarrow)4(\rightarrow)5(\rightarrow)7</td>
<td>7</td>
<td>Interval-shortest</td>
</tr>
<tr>
<td>8</td>
<td>1(\rightarrow)2(\rightarrow)4(\rightarrow)5(\rightarrow)6(\rightarrow)7</td>
<td>[14,22]</td>
<td>1(\rightarrow)2(\rightarrow)4(\rightarrow)5(\rightarrow)7</td>
<td>10</td>
<td>Not interval-shortest</td>
</tr>
<tr>
<td>9</td>
<td>1(\rightarrow)2(\rightarrow)4(\rightarrow)6(\rightarrow)7</td>
<td>[11,17]</td>
<td>1(\rightarrow)2(\rightarrow)4(\rightarrow)5(\rightarrow)7</td>
<td>10</td>
<td>Not interval-shortest</td>
</tr>
<tr>
<td>10</td>
<td>1(\rightarrow)2(\rightarrow)4(\rightarrow)7</td>
<td>[10,15]</td>
<td>1(\rightarrow)2(\rightarrow)4(\rightarrow)5(\rightarrow)7, 1(\rightarrow)2(\rightarrow)4(\rightarrow)7</td>
<td>10</td>
<td>Interval-shortest</td>
</tr>
</tbody>
</table>

REFERENCES