Internal friction of hydrated soda-lime-silicate glasses
S. Reinsch, R. Müller, J. Deubener, and H. Behrens

Citation: The Journal of Chemical Physics 139, 174506 (2013); doi: 10.1063/1.4828740
View online: http://dx.doi.org/10.1063/1.4828740
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/139/17?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching

Micro-Brillouin spectroscopy mapping of the residual density field induced by Vickers indentation in a soda-lime silicate glass

Near-infrared emission from Eu–Yb doped silicate glasses subjected to thermal reduction
Appl. Phys. Lett. 98, 071911 (2011); 10.1063/1.3556316

Ionic diffusion and the topological origin of fragility in silicate glasses

On the computer simulation of silicate glass surfaces
Internal friction of hydrated soda-lime-silicate glasses

S. Reinsch,1 R. Müller,1 J. Deubener,2 and H. Behrens3

1BAM Federal Institute for Materials Research and Testing, 12489 Berlin, Germany
2Institute of Non-Metallic Materials, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
3Institute of Mineralogy, Leibniz University of Hannover, 30167 Hannover, Germany

(Received 16 August 2013; accepted 21 October 2013; published online 6 November 2013)

The internal friction of hydrated soda-lime-silica glasses with total water content (C_{W}) up to 1.9 wt. % was studied by dynamic mechanical analysis (DMA) using temperature-frequency sweeps from 723 K to 273 K and from 1 s$^{-1}$ to 50 s$^{-1}$. Total water content and concentrations of H$_2$O molecules (C_{H_2O}) and OH groups (C_{OH}) in the DMA specimens were determined by infrared spectroscopy. For low water contents ($C_{W} \approx C_{OH} < 0.25$ wt. %) two discrete internal friction peaks below the glass transition (α relaxation) were assigned to the low-temperature motion of alkali ions (γ relaxation) and cooperative movements of dissimilar mobile species under participation of OH at higher temperature (β_{OH} relaxation). For large water contents ($C_{W} > 1$ wt. %), where significant amounts of molecular water are evident ($C_{H_2O} > 0.15$ wt. %), however, internal friction spectra change unexpectedly: the β_{OH} peak heights saturate and a low temperature shoulder appears on the β-relaxation peak. This emerging relaxation mode (β_{H_2O} relaxation) was assigned to the motions of H$_2$O molecules. β_{H2O} relaxation was found to be faster than β_{OH} but slower than γ relaxation. Activation energy of the different relaxation modes increased in the order $\gamma < \beta_{H2O} < \beta_{OH} < \alpha$. © 2013 AIP Publishing LLC.

I. INTRODUCTION

Sub-T_g relaxation phenomena have crucial impact on aging and fatigue of glass.$^{1-3}$ For multi-component glasses they were reported to cause compaction4 and sub-critical crack growth5,6 at room temperature, where these relaxation modes are much faster ($\tau \approx 10^4$–10^8 s) and decoupled from the cooperative rearrangements of the glassy network ($\tau > 10^{27}$ s).4

To get insights into fast relaxation processes, internal friction studies were carried out on different glass compositions, such as alkali and alkali-alkaline earth silicates and phosphates as reviewed in Roling and Ingram7 and Zdaniewski et al.8 Using free and forced oscillation methods (mostly torsion and bending of glass beams) several sub-T_g relaxation modes and the relaxation of the glass network, often labeled in the order of increasing temperature as γ, β, and α relaxation, have been reported.9–11 The low temperature γ relaxation ($T_\gamma < 373$ K; $T_\gamma/T_g \approx 0.38^{12}$) has been assigned to motions of alkali ions13,14 since their range of activation energies ($E_a \approx 63$–105 kJ mol$^{-1}$) is almost independent on the nature of the glass network forming oxides and resembles that of alkali diffusivity (63–84 kJ mol$^{-1}$).8 At higher temperatures, β relaxation phenomena have been assigned to several mechanisms. In case of binary alkali silicate glasses, the β-peak was suggested to account for nonbridging oxygen ion movements.8,10 On the other hand, β relaxation was attributed to the cooperative movement of equal15 or dissimilar mobile species such as alkali or alkali alkaline earth ions$^2,7,16-18$ or as the interaction between the network and clusters formed as a consequence of alkaline earth addition.10

Reported activation energies for β relaxation range between 94 and 217 kJ mol$^{-1}$. 7,15,16 Depending on glass composition, γ and β relaxation peaks may or may not occur simultaneously in internal friction measurements.7–8 Moreover, Ryder10 and Shelby16,17 reported for alkali-alkaline earth silicate and mixed alkali silicate glasses, respectively, the simultaneous occurrence of 3 peaks: γ and two β relaxation maxima. In these cases, one β peak was attributed to nonbridging oxygen ion movements while the second β peak was explained either as a cooperative movement of mobile species16,17 or as interaction between the network and alkali earth induced clusters.10 As the temperature further increases, relaxation of the glass network results in a broad internal friction peak, which dominates the relaxation spectra. This α relaxation is characterized by relative large activation energies ($E_a \approx 419$–502 kJ mol$^{-1}$),8 which are in agreement with those of viscosity at T_g.

As water decisively influences the glass transition temperature$^{19-21}$ and kinetic fragility,22 it also affects internal friction. Thus, Coenen2 found β relaxation peaks in hydrated sodium disilicate glasses (total water content $C_{W} \approx 0.059$ wt. %). Since the β peak was absent in sodium diborate glasses (total water content $C_{W} \approx 0.054$ wt. %), a new type of β relaxation was proposed originating from interaction of Na$^+$, non-bridging oxygens (NBO), and protons in hydrogen bonded bridging positions.2–8 However, β relaxation was also found in fully polymerized 25 Li$_2$O - 25 Al$_2$O$_3$ - 50 SiO$_2$ glasses after partial exchange of protons for lithium21 indicating that NBOs are not necessarily required for β relaxation. This mechanism was therefore solely attributed to cooperative movements of Li$^+$ and H$^+$ ions.23 Based on these findings and internal friction studies on numerous other water-poor glasses (water is predominantly present as OH groups) such as NaPO$_3$ ($C_{W} \approx 0.016$–0.330 wt. %),24 18 Na$_2$O - 82 SiO$_2$...
A. Glass preparation

B. Infrared spectroscopy

C. Dynamic mechanical analysis

D. Determination of glass transition temperature
TABLE I. Total water C_W and water species concentrations C_{OH} and C_{H_2O} of base glass 1 and hydrated glasses 2–5 using samples of thickness d and density ρ and IR absorbance at 2850 cm$^{-1}$, 4500 cm$^{-1}$, and 5200 cm$^{-1}$ (Sec. II C). Glass transition temperatures were either measured by dilatometry (T_g) or calculated using the water speciation data (T_{gc}, see Sec. II D) after Deubener et al.20

<table>
<thead>
<tr>
<th>Glass</th>
<th>T_g (K)</th>
<th>T_{gc} (K)</th>
<th>d (μm)</th>
<th>ρ (g/l$^{-1}$)</th>
<th>$A_{2850} \times 10^3$</th>
<th>$A_{4500} \times 10^3$</th>
<th>$A_{5200} \times 10^3$</th>
<th>C_{OH} (wt. %)</th>
<th>C_{H_2O} (wt. %)</th>
<th>C_W (wt. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>811</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0151 ± 0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>798</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.170 ± 0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>789</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.243 ± 0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>661</td>
<td>...</td>
<td>82 ± 2</td>
<td>2489</td>
<td>623 ± 1</td>
<td>...</td>
<td>...</td>
<td>1.09 ± 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>674</td>
<td>248 ± 2</td>
<td>2489</td>
<td>...</td>
<td>16.6 ± 1</td>
<td>4.8 ± 1</td>
<td>0.94 ± 0.08</td>
<td>1.09 ± 0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>606</td>
<td>...</td>
<td>255 ± 2</td>
<td>2477</td>
<td>981 ± 1</td>
<td>...</td>
<td>...</td>
<td>1.89 ± 0.09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

weight fractions ($c_i = C/100\%$) of anhydrous glass and water dissolved as H$_2$O molecules and OH groups, respectively. A_{OH} and B_{H_2O} are parameters weighting the influence of hydroxylic and molecular H$_2$O on T_g. For depolymerized glasses A_{OH} is 30 and B_{H_2O} is 5,20 similar values for soda-lime-silica glasses were reported by Del Gaudio et al.34 Uncertainty of this method is ±40 K for glasses with total water > 1 wt. %.20 Calculated and experimental T_g values are in very good agreement (see Table I) supporting the internal consistency of the data.

III. RESULTS

Table I summarizes total water, C_W, and water species concentrations, C_{OH} and C_{H_2O} as well as measured and calculated glass transition temperatures of the base glass 1 and the hydrated glasses 2–5. In agreement with the physicochemical description of water as a fluxing agent, the glass transition temperature decreased with increasing water content. Inspection of Table I revealed that H$_2$O molecules and OH groups were evident in glasses 4 and 5. NIR spectra were not recorded on glasses 1–3, but results of Stuke et al.31 indicate that C_{H_2O} is ≪ 0.02 wt. % for these glasses. Thus, for the sample set under investigation C_{H_2O} increased systematically with increasing C_W and reached 0.52 wt. % in glass 5.

Figure 1 exemplarily shows internal friction data for $f = 7.125$ s$^{-1}$. Although slightly shifted towards higher temperature, data for other frequencies f were similar in shape and are not shown here. For better visualization of sub-T_g relaxation, the dominating effect of α relaxation was subtracted as illustrated in the inset of Figure 1 for glass 1. For that sake, the α relaxation peak was modeled in terms of a Gaussian curve. Unfortunately, its maximum temperature, T_{α}, cannot be measured due to the progressive viscous sample bending under the applied static load. Also, because of the frequency dependence of α relaxation, T_{α} cannot be simply approximated by the T_γ values listed in Table I. Instead, T_{α} was assumed to be the temperature at which the DMA relaxation time $\tau_{DMA} \approx 1/2\pi f$35,36 matches the Maxwell relaxation time of viscosity

$$\tau_\eta = \frac{\eta(T_{\alpha})}{G_\infty} = \tau_{DMA},$$

where, η and G_∞ denote viscosity and room temperature shear modulus, respectively. For glass 1, $\eta(T)$ was calculated from VFT parameters $A = -2.462$, $B = 3950$, $T_0 = 274$ °C, and $G_\infty = 29.1$ GPa.35 For the hydrated glasses 2–5, viscosity data reported in Ref. 34 were utilized.

Using this T_{α} value, the half-width and the amplitude of the Gaussian α relaxation peak was fitted to the low temperature flank of experimental tan δ data for each mechanical loss spectrum. This procedure can cause a certain inaccuracy in the determination of the γ and β peak temperature and height. The effect is most pronounced for the β peak, which appears as a shoulder at the α relaxation (Figure 1, inset). However, variation of the fitting parameter or a direct fitting of the shoulder without subtracting the α relaxation (Figure 1, inset), or calculated from T_{γ} appears at ≈ 343 K in glass 1. With increasing water content the γ peak decreases in height and slightly shifts towards higher temperature.
of the peak temperatures was considered. In particular the relaxation time of each DMA loss maximum \(\tau_{\text{DMA}} \) was calculated using the simple calculus \(\tau_{\text{DMA}} \approx 1/2\pi f \). Assuming in general an Arrhenian dependence of local sub-\(T_g \) relaxation processes (in contrast to the non-Arrhenian dependence of the cooperative processes of the \(\alpha \) relaxation) and plotting the logarithm of the different relaxation times on an inverse temperature scale, \(\tau_{\text{DMA}} \) relaxation times were assigned to \(\beta_{\text{OH}}, \beta_{\text{H}_2\text{O}}, \gamma \) relaxation modes (Figure 3). In the same way relaxation times of ultrasonic damping \(\tau_{\text{US}} \) and effective water diffusion \(\tau_D \) of previous studies on glasses of the same composition were handled. Further the time scales of network relaxation \(\alpha \) for glass 1 (black line A) and 5 (blue line B) were added in Figure 3 to separate the temperature-time space of the relaxed liquid from that of the unrelaxed glass (sub-\(T_g \) range).

From inspection of Figure 3 the following trends can be extracted: In addition to the \(\alpha \)-relaxation up to three contributions to the mechanical loss spectra were observed. In the glasses 1–3 where water is predominantly dissolved as OH groups, \(\beta_{\text{OH}} \) and \(\gamma \) relaxation were evident (lines C, G, and H). If both water species (\(\text{H}_2\text{O} \) molecules and OH groups) are present in the glass, \(\beta_{\text{OH}} \) and \(\beta_{\text{H}_2\text{O}} \) were found (lines D, E, and F). The slope of the sub-\(T_g \) relaxation lines decreased in the

IV. DISCUSSION

For glasses 1–3 (\(C_W < 0.25 \) wt. \%) DMA spectra are in agreement with previous literature. In particular, both the decrease of the \(\gamma \) peak height and the slight increase of \(T_g \) with increasing water content resemble observations in previous studies on alkali and alkaline earth silicate glasses for increasing amounts of a second mobile species (e.g., other alkali ions, protons, alkaline earth ions). To relate internal friction to water speciation in glasses 1–5 and to compare the DMA results of this study with the sub-\(T_g \) dynamics of other methods, the frequency dependence

![FIG. 2. Maximum temperature \(T_g \) (a) and peak height (b) of DMA relaxation peaks (\(\beta_{\text{OH}}, \beta_{\text{H}_2\text{O}}, \) and \(\gamma \)) for \(f = 7.125 \text{ Hz} \) of Figure 1 vs. \(C_W \). \(T_g \) is estimated from viscosity data using Eq. (1). Lines are intended as visual guides.](image)

![FIG. 3. Relaxation time scales in base glass 1 (74 \(\text{SiO}_2 \)–16 \(\text{Na}_2\text{O} \)–10 \(\text{CaO} \) (mol. %)) and hydrated glasses 2–5 comprising relaxation times of viscosity \(\tau_\eta \) (triangle), ultrasonic \(\tau_{\text{US}} \) (square), effective water diffusion \(\tau_D \) (diamond), and internal friction \(\tau_{\text{DMA}} \) (circle) of this work. Relaxation lines decreased in the range (sub-\(T_g \) range). Arrows indicate the effect of increasing water content on \(\alpha \) and \(\beta_{\text{OH}} \) relaxations.](image)
order C, D, E, F, G, and H. Using $E_i = R\ln(10) \times (d\log(\tau_i/s)) / (d(1/T))$ of the relaxation modes i one finds the activation energies (in kJ mol$^{-1}$): 150 ± 3 (C) and 110 ± 3 (D) for β_{OH}, 91 - 85 (E, F) for β_{H2O}, and 78 - 71 (G, H) for γ relaxation.

Activation energies of the γ relaxation agreed well with those of sodium self-diffusion in soda-lime-silicate glasses of similar composition (Na$_2$O/CaO in mol. %): 75 kJ mol$^{-1}$ (15.5/12.8), 40 65 kJ mol$^{-1}$ (15.5/12.8), 41 and 95 kJ mol$^{-1}$ (15.5/10.7), 42 which further validate the assignment of the low temperature friction peak (Figure 1) with the time scale of sodium migration. The β_{OH} peak was found to behave as previously reported for other systems as its height and temperature shift with C_W oppositely compared to the γ peak, i.e., the β_{OH} peak height increases and its maximum temperature decreases with C_W in the low water range (Figure 2). Analogous effects are well known for mixed alkali and alkali alkaline earth silicate glasses, as well as for low water containing 18 Na$_2$O - 82 SiO$_2$, 33 Na$_2$O - 67 SiO$_2$, 13 NaPO$_3$, 44, 45 and 50 Al$_2$O$_3$ - 50 Na$_2$P$_2$O$_5$ glasses in which water is predominantly present as OH-groups. Further, β_{OH} relaxation times of this study fit to the time scales of effective water diffusion and the activation energy of this relaxation mode agreed with previous findings in other glass compositions ($E_{\beta_{OH}} = 126-167$ kJ mol$^{-1}$), 2, 7, 8, 10, 37 As Day 28 attributed β_{OH} relaxation to stress-induced cooperative rearrangements of alkali ions and neighboring protons, it seems likely that β relaxation is related in the glasses of the present study to cooperative Na, Ca, and water species rearrangement mechanisms, which are decisively influenced by the water content. Since water molecules are negligible in glasses 1–3, this mechanism should mainly involve OH groups.

For $C_W > 1$ wt. % the β_{OH} peak position decreases further from 500 to 473 K whereas the β_{OH} relaxation peak height remains nearly constant at $C_W > 0.24$ wt. % (Figure 2). The latter effect cannot be explained if one assumes a positive correlation of the β_{OH} relaxation peak height and C_W and is not expected from previous literature. For instance, Day and Stevels 24 reported a linear increase of the β peak height in NaPO$_3$ glass with water content up to the largest water content studied (0.33 wt. %). Most notably, a pronounced shoulder appears at the low temperature flank of the β_{OH} relaxation peak while the γ relaxation at \approx343 K fully disappears according to the trend shown in Figure 2. The shoulder occurs at approximately 423 and 403 K for glasses 4 and 5, respectively, i.e., the temperature of the maximum of the Gaussian component (see dashed curves in Figure 1) decreases with increasing water content. This behavior and the observed strong increase in shoulder intensity with increasing water content make it difficult to attribute this shoulder to the γ relaxation peak of alkali motion.

On the other hand, its peak position occurs well below the β_{OH} peak, indicating a less complex relaxation mechanism. Although no strict evidence can be given here, such an effect seems rather plausible for water molecules than for structural groups related to dissociated water, which requires a more pronounced local network relaxation. Since in glasses 4 and 5 significant amounts of H$_2$O molecules are evident the β_{H2O} internal friction peak is assigned to the dynamics of H$_2$O molecules.

To discuss this assignment in the light of the present understanding of water diffusion in silicate glasses we shortly recall that depending on the number of non-bridging oxygen per network tetrahedron (NBO/T), i.e. fully polymerized vs. depolymerized glasses, two mechanisms were proposed to control the diffusion of water. In NBO-free glasses it has been proposed that H$_2$O molecules migrate through the silicate network by direct jumps between neighboring cavities, while a reaction with a bridging oxygen immobilizes the H$_2$O molecule. Furthermore, a transition state for the migration of molecular water, in which the H$_2$O molecule and the bridging oxygen (BO) forms a pair of OH groups has been suggested. Under sub-T_g condition, however, network relaxation is too slow to stabilize the extended transition state required for formation of OH pairs and to achieve equilibrium for hydrous species. Thus, under such non-equilibrium conditions the Doremus diffusion model, in which H$_2$O molecules play an important role in bulk water diffusion, works successfully. The migration of H$_2$O molecules out or at least with minor interaction with network oxygen has been evidenced by the study of Helmich and Rauch showing that below 473 K H$_2$O molecules diffuse as an entity into silica glass (NBO/T = 0) without isotopic exchange with BO. Further evidence comes from NMR and quasi-elastic neutron scattering experiments, which demonstrate that rotation of H$_2$O molecules around their bisector axis is active even at temperatures below 400 K. However, the dynamics of this motional process are found to be much faster ($\tau_{H2O_rot} \approx 10^{-12}$ s at 400 K) than translatory jumps from one cavity to another.

To compare these findings with the observed β_{H2O} relaxation times in hydrous soda-lime-silicate glasses (NBO/T = 0.7) the motional correlation times of molecular water diffusion in silica glass of Helmich and Rauch are approximated using $\tau_D \approx a^2/ID$ and the jump distance $a \approx$ 300 pm. Figure 4 shows that H$_2$O molecules in silica glass fit the relaxation times of the novel internal friction mode β_{H2O} of glasses 4 and 5.

FIG. 4. Relaxation time scales of water molecules in silicate glasses: τ_D in soda-lime-silica glasses 4 and 5 (NBO/T = 0.7) (half-filled circles) and τ_{H2O} in silica glass (NBO/T = 0) (dotted line and open squares).
On the other hand, in glasses of high NBO concentrations, reactions with diffusing protons favor the formation of OH groups. This results in a local charge imbalance, which facilitates the attack of a diffusing OH on one of the bonds associated with the BO."56 Thus, contributions of proton-hopping to water diffusion in hydrous silicate glasses are discussed in literature. In particular, proton conduction has been reported to water diffusion in hydrous barium disilicate glasses57 and in a Ca, Mg aluminosilicate glass at water contents above 1.5 wt. %, i.e., when molecular H₂O becomes more abundant.58 However, contributions of protons on water mobility in the studied soda-lime-silica glasses are speculative since conduction measurements are lacking and the conductivity change by water addition may be also due to the change in the mobility of other mobile ions in the glass (Na, Ca) by water addition.

Nevertheless, it is clear that molecular H₂O is the crucial species responsible for the βH₂O relaxation. To clarify the mechanism of this dynamic process in detail, internal friction studies are needed on hydrous glasses with low proton mobility, i.e., polymerized aluminosilicate glasses.58

V. CONCLUSIONS

Internal friction of hydrous soda-lime-silica glasses seems to be correlated with water speciation. Characteristic peaks of the mechanical loss tan δ can be assigned to the time scales associated with the dynamics of both OH groups and H₂O molecules. The relaxation of the H₂O-bearing mode is found to be faster and decoupled from the OH-based mechanism. This fast dynamic process is assigned to the jumps of H₂O molecules between adjacent cavities in the network while hopping of protons between H₂O molecules and non-bridging oxygens are less probable on the basis of the available data. Subsequent studies are required to confirm that assignment.

ACKNOWLEDGMENTS

Financial support of the Deutsche Forschungsgemeinschaft (DFG) by the priority program SPP 1594 is gratefully acknowledged. S.R. and R.M. thank A. Kohl (IR spectroscopy), R. Schadrack (horizontal dilatometry), A. Marek (density), and R. Koslowski (DMA sample preparation) at BAM for experimental help.