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Genotypic Resistance Tests 
Sequences Reveal the Role of 
Marginalized Populations in HIV-1 
Transmission in Switzerland
Mohaned Shilaih1,2, Alex Marzel1,2, Wan Lin Yang1, Alexandra U. Scherrer1,2, Jörg Schüpbach2, 
Jürg Böni2, Sabine Yerly3, Hans H. Hirsch4, Vincent Aubert5, Matthias Cavassini6, 
Thomas Klimkait7, Pietro L. Vernazza8, Enos Bernasconi9, Hansjakob Furrer10, 
Huldrych F. Günthard1,2, Roger Kouyos1,2  & the Swiss HIV Cohort Study† 

Targeting hard-to-reach/marginalized populations is essential for preventing HIV-
transmission. A unique opportunity to identify such populations in Switzerland is provided 
by a database of all genotypic-resistance-tests from Switzerland, including both sequences 
from the Swiss HIV Cohort Study (SHCS) and non-cohort sequences. A phylogenetic tree was 
built using 11,127 SHCS and 2,875 Swiss non-SHCS sequences. Demographics were imputed 
for non-SHCS patients using a phylogenetic proximity approach. Factors associated with 
non-cohort outbreaks were determined using logistic regression. Non-B subtype (univariable 
odds-ratio (OR): 1.9; 95% confidence interval (CI): 1.8–2.1), female gender (OR: 1.6; 95% 
CI: 1.4–1.7), black ethnicity (OR: 1.9; 95% CI: 1.7–2.1) and heterosexual transmission group 
(OR:1.8; 95% CI: 1.6–2.0), were all associated with underrepresentation in the SHCS. We 
found 344 purely non-SHCS transmission clusters, however, these outbreaks were small 
(median 2, maximum 7 patients) with a strong overlap with the SHCS’. 65% of non-SHCS 
sequences were part of clusters composed of >= 50% SHCS sequences. Our data suggests 
that marginalized-populations are underrepresented in the SHCS. However, the limited 
size of outbreaks among non-SHCS patients in-care implies that no major HIV outbreak in 
Switzerland was missed by the SHCS surveillance. This study demonstrates the potential of 
sequence data to assess and extend the scope of infectious-disease surveillance.

One of the key challenges in HIV surveillance and more generally in infectious-disease epidemiology is that the 
sampled or surveyed population might not be representative of the target population, especially with respect to 
hard-to-reach/marginalized subgroups1,2. The Swiss HIV Cohort Study (SHCS) is one of the most comprehensive 
HIV cohorts, with an estimated coverage of at least 45% of the cumulative number of HIV-infected individuals in 
Switzerland, approximately 75% of HIV-patients on antiretroviral treatment, and as much as 80% of AIDS cases3. 
However, since enrolment into the SHCS is voluntary, the possibility remains that marginalized populations are 
underrepresented and that entire sub-epidemics might be missed by the cohort2,4.
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These issues are particularly important in the context of late presentation of HIV patients, which is a 
known public health challenge worldwide. Marginalized populations have been shown to be prone to pres-
ent late as demonstrated in the UK5 and Europe in general6. Late presentation is one of the hurdles against 
“treatment-as-prevention” efforts on the population scale7. Therefore, marginalized populations present a prime 
target for intervention and knowing their characteristics would help tailor better interventions8.

A unique opportunity to assess the presence of such “under-the-radar” populations is provided by geno-
typic resistance testing, which is universal in most industrialized countries (i.e. virtually every patient in care 
receives a resistance test). In our case, we use for Switzerland a database of all genotypic resistance tests (GRT) 
performed in Switzerland. This database includes both cohort and non-cohort patients and has been initiated by 
the Swiss-Federal-Social-Insurance Office (“BSV”) as a quality-control measure for HIV genotyping. All Swiss 
Laboratories which perform routine HIV resistance tests are obliged to submit sequence data along with minimal 
demographic information for patient de-duplication, into this database, which therefore contains also sequence 
data for patients that are not enrolled in the SHCS.

This uniquely complete sequence database allows for the assessment of how well the Swiss HIV epidemic is 
covered by the SHCS. Both an overall good representation and occasional representation gaps appear plausible for 
this setting: On the one hand, the very high coverage and systematic long-term follow-up of the SHCS argues for a 
very high representativeness; on the other hand, populations that fear deportation, persecution, or social rejection 
might be less willing to participate in cohorts9.

Molecular phylodynamics10 has been used extensively in the recent years to evaluate several features of epi-
demics11, with HIV being one of the more studied viruses in Switzerland12 Europe13, and the rest of the world14. 
We aim to further investigate the utility of sequence data (which is being rapidly accumulated worldwide) in 
extending the scope of epidemiological analysis and to assess the unavoidable gaps arising in classical epidemio-
logical surveillance with a focus on marginalized populations (in this study: all patients facing barriers for enrol-
ment). We leverage the versatile tool of molecular phylodynamics to examine whether cohort and non-cohort 
patients differ with respect to demographics, whether non-cohort patients constitute entire missed outbreaks, and 
whether missing demographic information can be inferred from clustering patterns.

Results
We obtained 4,294 non-SHCS HIV sequences from the BSV database collected between 2003 and 2014, of those, 
879 were deemed potential duplicates of SHCS patients and thus discarded. Of the remaining 3415, only the first 
sequence per patient was retained using the workflow delineated in the methods, for a total of 2875 non-SHCS 
sequences.

The resulting 2,875 non-SHCS sequences were added to the first sequence from the 11,127 SHCS patients 
with available sequences (out of 18,688 SHCS enrolled patients as of December 2014) for a total of 14,002 Swiss 
sequences (Table 1). These sequences were then used along with >27,000 background sequences (from the Los 
Alamos HIV sequence database, see methods) to construct a maximum likelihood phylogenetic tree.

Demographics analysis. SHCS collected demographics. We found that SHCS patients differ from 
non-cohort patients (with a sequence, hereafter referred to as non-cohort or non-SHCS for simplicity) in terms 
of viral subtype and demographics (Tables 1 and 2). SHCS patients were 29% females, compared to 36% in the 
non-SHCS. Thus, women were overrepresented among non-SHCS patients (univariable odds ratio (OR) 1.6; 
95% confidence interval (CI) 1.4, 1.7),). In regards to subtypes (Fig. 1), univariable analysis showed that non-B 
subtypes were overrepresented among non-SHCS patients (OR 1.9, 95% CI 1.8, 2.1).

Sequence based demographics inference. In order to determine transmission-group and ethnicity for non-cohort 
patients, we utilized phylogenetic clustering with cohort patients (for whom these demographic variables are 
known, see methods). This approach is based on the fact that patients in the same phylogenetic cluster tend 
to exhibit similar demography15. The method was validated by testing its predictive power on two subsets of 
cohort-sequences with known demographics (a random sample from the SHCS and a group of late enrollers, see 
methods).

Overall, the inference method performed well (up to 81% correct predictions), yet the performance was 
dependent on the demographic feature predicted and the genetic distance (i.e. the comprehensiveness of sam-
pling and the consequent tightness of social clusters). More complex models (Support vector machines) improved 
prediction by 3–6%, when taking into account the inferred demographic, the larger cluster demographics distri-
bution, cluster size, and overall genetic distance (results not shown).

The inferred demographics of the non-SHCS individuals were then compared to that of the SHCS (Table 2). 
In univariable analysis, we found an overrepresentation of heterosexuals (HET) (OR 1.80, 95% CI 1.63, 1.99; 
compared to MSM), and intravenous drug users (IDU) (OR 1.8, 95% CI 1.52, 2.1) in the non-SHCS, while other 
transmission-groups were not significantly different between the two populations. Black ethnicity was overrep-
resented among non-SHCS patients (OR 1.9, 95% CI 1.7, 2.1), while other ethnicities showed no difference. This 
finding is consistent with the above observation of non-B subtypes being more frequent in non-SHCS patients 
than in the SHCS, given that non-B subtypes are highly correlated with non-white ethnicities. All the covariates 
were similar in magnitude and significance in a multivariate model as well (Table 2).

Overall, these analyses reveal a robust overrepresentation of non-B (not imputed) subtypes and non-MSM 
transmission groups (imputed) among patients not enrolled in the cohort.

Clusters Analysis. To shed light on possible clusters of patients that are not enrolled in the SHCS we focused 
on clusters that were predominantly Swiss (>=80% SHCS and non-SHCS) without imposing bootstrap-support 
or genetic-distance criteria12. As previously suggested, such transmission clusters can be interpreted as separate 
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introductions of HIV-1 into Switzerland12. Alternative cluster definitions exhibited similar patterns (data not 
shown).

Cluster size distribution and clustering pattern comparison. We found a similar degree of clustering among 
SHCS and non-SHCS Swiss patients and a strong intermixing between the two populations. 1,645 clusters were 
composed of >= 80% Swiss sequences, encompassing 8,135 (73%) of the SHCS sequences, and 1,938 (67%) 
non-SHCS sequences. The median cluster size was 2 with an interquartile range between two and five (Figure S1).

Most non-SHCS patients belonged to mixed clusters (of SHCS and non-SHCS sequences) indicating a strong 
mixing between SHCS and non-SHCS patients. Specifically, 65% of clustered non-SHCS patients (1253) were part 
of outbreaks that consisted of >= 50% SHCS sequences (this threshold was chosen to account for the fact that the 
median cluster size is two).

Factors determining predominantly Swiss clusters. Univariable analyses revealed that non-SHCS Swiss sequences 
were less likely to be part of a Swiss transmission cluster in comparison to SHCS sequences (OR 0.8, 95% CI 0.7, 
0.9) however this association was not robust for adjustment (OR 1.0, 95% CI 0.9, 1.1). In both univariable and 
multivariable analysis, non-B subtype significantly decreased the chances of being in a cluster (OR 0.27, 95% CI 
0.25, 0.29), which was similarly reflected in black ethnicity and other non-white ethnicities having similarly lower 
odds of clustering. The only consistent association of transmission group was that IDUs were more likely to clus-
ter than other transmission groups, while HETs and other transmission groups showed no significant associations 
(all compared to MSM) (Table 3).

Characteristics of purely non-SHCS clusters. Importantly, we found 344 transmission clusters consisting only of 
non-SHCS patients. These clusters occurred frequently but were limited in size (Fig. 2) with a median size of 2 
patients, IQR: 2–2 and a maximum cluster of seven patients, thus suggesting a strong overlap between transmis-
sion chains among SHCS and non-SHCS populations. In particular, this implies the absence of long transmission 
chains in Switzerland occurring completely outside the SHCS. Finally, there were no apparent subtypes or demo-
graphical factors driving the non-SHCS outbreaks (Table 4).

SHCS
Swiss Sequences 

(SHCS and non-SHCS)
SHCS 

sequences
Non-SHCS 
sequences

Demographics

 Number of Patients 18688 14002 11127 2875

 Median Sample year – 2004 (IQR 1998–2008) 2002 (IQR 
1997–2006)

2009 (IQR 
2006–2012)

Sex, No. (%)

Male 13458 (72%) 9794 (70%) 7956 (72%) 1838 (64%)

Female 5230 (28%) 4208 (30%) 3171 (29%) 1037 (36%)

Transmission groupb, No. (%)

MSM 6996 (37%) 5252 (38%) 4307 (39%) 945 (33%)

HET 6153 (33%) 5388 (38%) 3959 (36%) 1429 (50%)

IDU 4770 (26%) 2769 (20%) 2396 (21%) 373 (13%)

Other 372 (2%) 246 (2%) 206 (2%) 40 (1%)

NA 397 (2%) 347 (2%) 262 (2%) 88 (3%)

Ethnicityb, No. (%)

White 12614 (68%) 10449 (75%) 8623 (78%) 1826 (63%)

Black 1889 (10%) 2059 (15%) 1318 (12%) 741 (26%)

Otherc 931 (5%) 892 (6%) 657 (6%) 235 (8%)

NAc 3254 (17%) 602 (4%) 532 (5%) 73 (3%)

Subtype, No. (%)

Aa 624 (4%) 446 (4%) 178 (6%)

Ba 9907 (71%) 8440 (75%) 1467 (51%)

Ca 647 (5%) 416 (4%) 231 (8%)

01_AEa 546 (4%) 403 (4%) 143 (5%)

02_AGa 784 (6%) 448 (4%) 336 (12%)

Other Subtypesa 1494 (10%) 974 (9%) 520 (18%)

Table 1.  Baseline demographics and the demographics of sequences on the phylogenetic tree stratified 
by their membership in the SHCS, Switzerland, 1988–2014. Abbreviations: GRT: Genotypic resistance test, 
MSM: men who have sex with men, HET: heterosexual, IDU: intravenous drug users, NA: not applicable. 
aSubtypes can only be determined for patients with a GRT. bTransmission group and ethnicity for non-cohort 
patients were determined by our phylogenetic predictor (see methods) with no restrictions applied on distance 
and sampling year. cOther ethnicities encompass all non-white and non-black ethnicities (e.g. Asian), while 
NA refer to patients with no applicable ethnicity information. For non-SHCS “NA” inferred ethnicity refers to 
patients to whom the closes SHCS patient had no applicable ethnicity information.
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Discussion
In this study we used a database containing all GRTs performed in Switzerland (since 2003) to evaluate the 
coverage-especially systematic gaps in the coverage-of the SHCS. Despite having an overall excellent coverage 
(79% of GRTs were from SHCS patients), we found that non-SHCS patients deviate in terms of demographics 
in comparison to SHCS patients. The most significant of these differences was an overrepresentation of non-B 
subtypes among non-SHCS patients. As non-B subtypes dominate in Africa and east Asia16, and as these subtypes 
exhibit a low degree of clustering in our data, this suggests that patients who acquired the infection abroad or 
from persons originating from those geographical regions, are less likely to enroll in the cohort. Accordingly, 
we also found that black ethnicity was more frequent among non-SHCS patients. These differences in subtype 
distribution and ethnicity indicate that hard-to-reach, marginalized populations, or individuals infected abroad 
were less likely to enrol in the SHCS compared to Swiss or individuals infected in Switzerland. Our results also 
emphasises the deep intermingling between the two populations, as 65% of non-SHCS patients were within SHCS 
outbreaks. In summary, non-SHCS patients do not seem to play a significant role in sustaining HIV transmission 
outside of the cohort, but have significant contributions toward the propagation of non-B subtypes in Switzerland.

As part of the growing understanding that migrants and refugees, especially from HIV-endemic countries 
are a vulnerable population with specific health needs, the Swiss Federal Office of Public Health is currently con-
ducting a survey among Sub-Saharan African population in Switzerland to map and characterize the needs and 
attitudes of this population (http://afric-answer.weebly.com/, accessed 1/02/2016). Our work further emphasizes 

Variable Univariable OR (95% CI) Multivariable OR (95% CI)c

Transmission Group 

 MSM 1 (Reference)

 HET 1.80 (1.63, 1.99) 1.40 (1.22, 1.60)

 IDU 1.78 (1.52, 2.07) 2.24 (1.90, 2.65)

 Other 1.02 (0.70, 1.48) 0.89 (0.59, 1.31)

Subtypes

 Subtype B 1 (Reference)

 Non-B subtypes 1.94 (1.77, 2.13) 1.57 (1.39, 1.77)

Ethnicity

 White 1 (Reference)

 Black 1.90 (1.69, 2.13) NAb

 Other 1.11 (0.94, 1.32) NAb

Sex

 Male 1 (Reference)

 Female 1.56 (1.41, 1.73) 1.26 (1.12, 1.42)

Sample Year 1.17 (1.16, 1.19) 1.19 (1.17, 1.21)

Table 2.  Univariable and Multivariable logistic regression analysis of the non-SHCS demographics 
compared to the SHCSa (reference), Switzerland, 2003–2014. Abbreviations: MSM: men who have sex 
with men, HET: heterosexual, IDU: intravenous drug users, NA: not applicable. aCohort membership was the 
dependent variable with being in the SHCS as the base case. bEthnicity was not included in the multivariate 
model because of co-linearity with subtype. cAdjusting for potential confounders sex, sample year, subtype, and 
transmission group.

Figure 1. Subtypes Distribution in the overall Swiss patients analysed. The X-axis represents the proportion 
of the patients, while the breadth of the column reflects the number of Swiss patients per subtype.

http://afric-answer.weebly.com/
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Variable Univariable OR (95% CI) Multivariable OR (95% CI)b

Cohort Membership (Baseline SHCS)

SHCS 1 (Reference)

Non-SHCS 0.79 (0.72, 0.88) 1.02 (0.91, 1.14)

Transmission Group 

 MSM 1 (Reference)

 HET 0.41 (0.37, 0.46) 0.92 (0.80, 1.06)

 IDU 1.45 (1.19, 1.77) 1.66 (1.35, 2.05)

 Other 0.51 (0.36, 0.73) 0.83 (0.57, 1.23)

Subtypes

 Subtype B 1 (Reference)

 Non-B subtypes 0.25 (0.22, 0.27) 0.30 (0.26, 0.34)

Ethnicity

 White 1 (Reference)

 Black 0.26 (0.23, 0.28) NAa

 Other 0.46 (0.4, 0.53) NAa

Sex

 Male 1 (Reference)

 Female 0.49 (1.52, 1.78) 0.75 (0.66, 0.85)

Sample Year 0.98 (0.98, 0.99) 0.98 (0.97, 1.00)

Table 3.  Univariable and Multivariable logistic regression analysis of factors associated with clustering of 
Swiss sequences. Abbreviations: MSM: men who have sex with men, HET: heterosexual, IDU: intravenous drug 
users, NA: not applicable. aEthnicity was not included in the multivariate model because of co-linearity with 
subtype. bAdjusting for: sex, sample year, subtype, and transmission group.

Figure 2. A boxplot of the size distribution of pure SHCS clusters (transmission clusters consisting only of 
SHCS sequences) and pure non-SHCS clusters SHCS (transmission clusters consisting only of Swiss non-
SHCS sequences). 
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that stigmatization, criminalization, and racial discrimination of patients with HIV are potential obstacles in the 
battle against the HIV pandemic9.

Our sequence-based approach also validated previous independently-derived results about the representa-
tiveness of the SHCS3,17. Our finding that overall 79% of patients with a GRT are enrolled in the SHCS, agrees 
with previous studies3 showing that approximately 75% of patients on ART in Switzerland are in the SHCS. 
Furthermore, we also found an underrepresentation of non-B subtypes, which is in good qualitative and quanti-
tative agreement with the results from previous studies who also found that migrants were less likely to enrol in 
the SHCS4,18.

Despite the differences in the demographics and subtypes, there was no evidence of large outbreaks consisting 
of purely non-cohort patients (we found a single maximal cluster of 7 patients) (Fig. 2). Theoretically, one cannot 
rule out that the absence of larger clusters is caused by systematic sample collection bias (for GRTs) that only cap-
tures far linked parts of transmission chains, thus leading to smaller observed clusters19. However, this is highly 
unlikely given the universal coverage of the Swiss Health Care System, the fact that genotypic drug resistance 
testing is part of the standard of care, and the high probability that patients will seek care when they reach the 
AIDS phase (or often earlier). Furthermore, even for subtype CRF02_AG, the subtype with the worst representa-
tiveness, 57% of patients with GRT are enrolled in the SHCS (Table 1), and non-SHCS clusters are characterized 
by similar demographics than Swiss-transmission clusters in general. Altogether, this indicates that the sampling 
gaps of the SHCS are not substantial and even sub-epidemics containing non-enrollers are covered (at the very 
least, partly).

It should be noted that not all HIV positive patients have a genotypic HIV resistance test; thus, there may 
be fraction of diagnosed patients that are not part of the BSV database and hence not in our study population. 
For example, there may be a tendency to obtain resistance testing preferentially for patients that are considered 
eligible for treatment because of low CD4 cell counts, or pregnancy. However, it is likely that such effects have 
decreased in recent years, as GRTs close to the time of diagnosis have become the standard of care in Switzerland 
since approximately 2003. In addition, a large part of non-SHCS patients is also cared for in the SHCS cen-
tres, thus the same high medical standards are in place for this population and thus no bias towards less resist-
ance testing is expected4. Thus the population of patients with a GRT corresponds closely to the population of 
HIV-patients in care and especially to the population of patients on ART.

We employed a BLAST-based method to retrieve background sequences. The study’s outcomes were 
unchanged compared to including the entire Los Alamos pol sequences (results not shown). Using fewer 
sequences allowed for smaller trees that take less computational time to be built, thus enabling running the anal-
ysis several times as new sequences are added to the SHCS drug resistance database.

In this study, we utilized a liberal cluster definition (80% Swiss with no bootstrap support or genetic distance 
limitations), which allowed us to capture the maximal number of outbreaks from non-SHCS patients. For the 
purpose of this study (i.e. excluding large outbreaks among non-cohort patients), this cluster definition is con-
servative as it treats all possible clusters as true ones. Therefore this approach has the maximal possible sensitiv-
ity in detecting outbreaks outside the SHCS. Moreover, our findings remained robust under alternative cluster 
definitions (combinations of bootstrap support values (70%, 95%) and genetic distances (1.5% and 4.5%). The 
non-SHCS clusters found were comparable to those found under the presented cluster definition. The SHCS IQR 
and maximum cluster size remained stable at all combinations strict and liberal, reflecting the robustness of those 

Variable Univariable OR (95% CI) Multivariable OR (95% CI)b

Transmission Group

 MSM 1 (Reference)

 HET 1.11 (0.93, 1.33) 1.10 (0.88,1.39)

 IDU 1.34 (1.03,1.73) 1.44 (1.10,1.87)

 Other 1.57 (0.80,3.00) 1.61 (0.81,3.09)

Subtypes

 Subtype B 1 (Reference)

 Non-B subtypes 1.06 (0.90,1.25) 1.12 (0.91,1.39)

Ethnicity

 White 1 (Reference)

 Black 1.08 (0.90,1.30) NAa

 Other 0.68 (0.50,0.93) NAa

Sex

 Female 1 (Reference)

 Male 1.10 (0.93, 1.30) 1.18 (0.98, 1.42)

Sample Year

1.02 (0.99, 1.04) 1.02 (1.00, 1.05)

Table 4.  Univariable and Multivariable logistic regression of Factors affecting The Clustering of 
Predominantly Non-SHCS Sequences. Abbreviations: MSM: men who have sex with men, HET: heterosexual, 
IDU: intravenous drug users, NA: not applicable. aEthnicity was not included in the multivariate model because 
of co-linearity with subtype. bAdjusting for: sex, sample year, subtype, and transmission group.
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clusters. Thus despite the lack of a consensus for cluster definitions in molecular epidemiology20–22, our findings 
are robust in this regard.

We also presented a sequence-based method for inferring demographics information for patients with no 
such data available. This method allowed for the characterization of the demographics of non-SHCS patients and, 
more generally, proves to be a potential method for extending the coverage of other cohorts by using sequence 
data from non-cohort individuals (especially given the ever increasing ubiquity of sequencing data). It should be 
noted that the general problems associated with imputation (see for example23) also apply here. As with all infer-
ence methods, the quality of the training set plays a vital role in the prediction performance. In our data, some 
of the patients had uncertainties about the route of infection HET or IDU (7% of the all patients). This was in 
return reflected in the predictor performance where MSM membership was better predicted than HET and IDU. 
In addition, there are limitations to the correspondence of the HIV phylogenetic tree and the true underlying 
structure of the transmission chain, which might affect the prediction performance21,24. Despite the imperfect 
performance of the predictor, and given the difficulties associated with evaluating multinomial classification25, the 
predictor still provides some information about an otherwise completely unlit part of the population. Finally, the 
imperfect performance of the predictor does not affect the other major results of our analysis (overrepresentation 
of non-B subtypes among non-cohort patients; no large outbreaks completely outside the cohort). Therefore this 
method could allow the identification of sub-populations who are underrepresented in cohorts and who may 
therefore profit from additional recruitment and care efforts.

More generally, this work highlights the utility of molecular epidemiology in extending and testing the scope 
of classical epidemiological data. As sequencing pathogens from a large and representative number of patient 
samples becomes increasingly affordable, the situation we have encountered with the SHCS and the Swiss HIV 
epidemic will become more frequent: such a situation is characterized by high-quality and detailed epidemio-
logical data available for a limited number of patients and sequence data available beyond this group. Our work 
further demonstrates that in this setting sequence data can be used to approximate some of the missing epidemio-
logical information, to assess how well the available epidemiological data captures the spread of an infectious dis-
ease (in particular to test whether a cohort misses entire outbreaks), and to identify marginalized subpopulations.

Methods
Ethics statement. Participants in the SHCS provided written informed consent and the SHCS, this study, 
all associated experimental and non-experimental protocols has been approved and is in accordance with local 
ethics committees’ guidelines in the respective study centres (Kantonale Ethik-Kommission Zurich, Basel, Bern, 
Lugano, St Gallen, Geneva and Lausanne). In addition, the Kantonale Ethik-Kommission Zurich approved of the 
present analysis (approval number 29/14).

Patients data. The SHCS-drug-resistance database is part of the SHCS, which is a national cohort study that 
started in 1988 with ongoing enrolment and semi-annual follow up visits3. The SHCS-drug-resistance database 
contains 21,623 sequences (July 2014) belonging to 11,127 patients. Genotypic resistance tests are done routinely 
when the patient is first diagnosed, upon a viral-load test, or if virus rebound is observed during ART; in addition 
retrospective sequencing from the SHCS bio-bank was performed to maximize representativeness. Only the ear-
liest sequence of every SHCS patient was included in the phylogenetic tree, and only from patients belonging to 
MSM, HET, and IDU transmission groups (covering 96% of HIV cases in the SHCS). Further information about 
the sequences and their availability can be found in the supplementary material.

The BSV database started collecting genotypic resistance tests in 2003 as they became part of the standard of 
care in Switzerland; the analysis was hence restricted to data collected after 2003 from the SHCS as well. As some 
non-cohort patients choose to partake in the SHCS after having been tested and deposited in the BSV-database, 
suspected duplicate records between non-SHCS and the SHCS were discarded. A non-SHCS sequence was sus-
pected to be part of the SHCS (and hence discarded) if it matched an SHCS patient record on sex and birthdate, 
and their sequences formed a monophyletic clade.

It is plausible that the same non-SHCS patient might have several sequences in the BSV database, therefore, 
in order to keep only the single earliest sequence per non-SHCS patient, we assumed that two sequences with the 
same sex and birthdate and a genetic distance of <2% belonged to the same patient. We choose this conservative 
cut-off based on Hightower et al.26 finding that the genetic diversity of HIV pol gene sequence in patients followed 
longitudinally for a median of 1.8 years was less than 1%, and the median time for SHCS patients between the last 
negative HIV test and registration being 3.1 years. Technically, a graph was created for every group of sequences 
sharing the same sex and birthdate with edge-lengths being the genetic distance between two sequences. Edges 
were dissolved if they carried a genetic distance >2% (indicating that the two vertices/sequences were likely not 
from the same patient). Isolated vertices were considered unique patients while only the sequence with the earli-
est sampling date was retained from the connected vertices in the graph.

Phylogenetic tree construction. To identify transmission clusters, we first pooled the Swiss sequences 
with non-Swiss sequences from the Los-Alamos sequence database27. Specifically, we considered all non-Swiss 
sequences available in the Los-Alamos sequence database which spanned the protease and reverse transcriptase 
genes. Of those, only a single sequence per patient was kept provided that the sequence spanned at least 850 
nucleotides of the protease and reverse transcriptase (positions 2253–3870 of the HXB2 reference sequence, 
114,609 sequences (April/2014)). After excluding Swiss sequences present in the Los Alamos Database, for every 
Swiss sequence, the ten closest sequences were retrieved using BLAST (Standalone 2.2.28+28). Overall, 27,803 
foreign sequences were pooled with the Swiss sequences for the final phylogenetic tree construction.
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Next, the Stanford and International Antiviral Society-USA drug resistance mutations lists were consulted and 
the major drug resistance mutations were removed29,30 to avoid the potentially distorting effect of ART-driven 
convergent evolution.

Sequences were aligned to HXB2 using Muscle (V3.731, default settings) respectively and the phylogenetic tree 
was constructed using FastTree 2.132 with the Generalized time-reversible model and the CAT approximation 
(which has been shown to be better or as accurate as other maximum-likelihood phylogenetic inference meth-
ods33). Bootstrap-support values for clusters were derived from 100 bootstrap trees (using FastTree 2.132 and 
GNU Parallel34).

Clusters extraction and demographics prediction. Clusters were defined as monophyletic sub-trees 
with at least 80% Swiss sequences (SHCS and non-SHCS)12. In addition, sensitivity analysis was performed with 
other cluster definitions (combinations of bootstrap support values (70%, 95%) and inter-cluster genetic distances 
(1.5 and 4.5%)). Clusters were extracted (using Ape35, Caper36, R37) so that every Swiss sequence could maximally 
be present once: if a sequence was part of two clusters one of which is nested within the other, only the larger 
cluster was kept.

For the SHCS sequences, the patients’ demographics were available in the SHCS-database. For Swiss 
non-SHCS patients, sex and birthdate were provided with the sequences in the BSV-database, other demo-
graphic variables (transmission group, ethnicity) were inferred using phylogenetic proximity. Starting from a 
given non-SHCS tip the tree was traversed up to the parent node then down to the nearest (based on cophenetic 
distance) SHCS child node with known demographics. If no child node with known demographic were to be 
found from this node, then the tree was climbed up to the following parent, and the previous process repeated 
recursively until an SHCS patient with known demographics is found (R code present with supplementary mate-
rials). This method was validated on two sets. The first consisted of randomly chosen SHCS patients matching the 
number of non-SHCS patients (2,875 and for whom demographics was known) with 10-folds cross validation. 
For the second test set, we approximated the non-SHCS populations by choosing SHCS patients who were found 
to be HIV-positive at least three years prior to enrolment in the SHCS; those patients were termed “late-enrollers”. 
As this group also experienced barriers to enrolment in the SHCS, it represents a better approximation for the 
non-cohort population.

These analyses were performed using uni- and multivariable logistic regression adjusting for the following 
potential confounders: sex, sample year, subtype, and transmission group.
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