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Abstract 

Following a risk-science perspective IIASA’s Water Futures and Solutions Initiative has 
developed a novel indicator for measuring water security and water challenges. A hydro-
economic classification depicts countries and/or watersheds in a two-dimensional space 
using normalized indicators of economic-institutional coping capacity and hydrological 
complexity. Lacking adequate data on institutional capacity that was acceptable to 
stakeholders, we use in a first attempt GDP per capita as proxy for economic-institutional 
coping capacity. Hydrological complexity is measured by an weighted indicator based on 
four component indicators: i) total renewable water resources per capita; ii) intensity of 
water use; iii) runoff variability; and (iv) dependency of external water resources. 
Indicators were selected to provide global data coverage and future projections using the 
results from global hydrological and water use models. Here we create a hydro-economic 
classification of countries for the year 2000 Using data from the Food and Agriculture 
Organization AQUASTAT database and ISI-MIP hydrological model results.  
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Towards indicators for water security - A global hydro-
economic classification of hydrological challenges and socio-
economic coping capacity 

Gűnther Fischer, Eva Hizsnyik, Sylvia Tramberend, David Wiberg 

1 Introduction 

1.1 Background 

One of the primary tasks of the Water Futures and Solutions (WFaS) initiative is to 
develop global scenarios of water potentials and stressors and their interdependencies 
across the different water sectors, the climate-water-food-energy-ecosystem nexus, and 
the impacts on human wellbeing and earth ecosystems and the services they provide. A 
global assessment is essential in view of the increasing importance of global drivers such 
as climate change, population growth and rapid urbanization, economic globalization or 
safeguarding biodiversity. Maintaining a global perspective and providing the necessary 
regional detail to identify future pathways and solutions is key for water scenario 
development. Against this background, WFaS aims for its quantitative scenario 
assessment not only a high level of regional detail (typically at the grid-cell level) but also 
to go beyond globally uniform assumptions of important scenario drivers. This requires 
developing a system of classification for countries and watersheds describing different 
conditions pertaining to water security (or its reverse water challenges). We start from a 
general discussion on water security indicators leading to the novel concept of hydro-
economic classification. Then we propose a compound indicator based methodology for 
the classification of countries (and watersheds) into a two-dimensional hydro-economic 
space. In this way, countries and/or watersheds can assume varying scenario drivers (e.g. 
technological change rates) for defined categories of hydro-economic development 
challenges.  

1.2 Indicators of water security 

The concept of water security (and its reverse water scarcity) is complex to define because 
it means different dimensions or facets. First, security needs to be understood as a relative 
concept, i.e., an imbalance between “supply” and “demand” that varies according to local 
conditions. Second, water security and water scarcity are fundamentally dynamic. For 
example, water scarcity intensifies with increasing demand by users and with the 
decreasing quantity and quality of the resource. It can further decrease when the right 
response options are put in place.  

A widely used simple indicator in the context of population growth and finite water 
resources is the water crowding indicator (Falkenmark, et al., 2007). Its reverse, the per 
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capita available renewable water resources, are referred to as “Falkenmark Water Stress 
Indicator” (Falkenmark, 1989). Both relate the maximum theoretical yearly amount of 
water available for a country to population. Defining thresholds related to water scarcity 
for these indicators is complex as it involves assumptions on water use and its efficiency. 
Human use of available water resources includes agriculture (irrigation), energy 
generation, other industry (mainly manufacturing), and households. In addition some 
water should be reserved as ‘environmental flows’ (Smakhtin, 2008) (Pastor, et al., 2014) 
required for protecting aquatic ecosystems.  

The intensity of human uses of finite water resources generally measures water use to 
availability ratio. It describes demand-driven scarcity and is often referred to as water 
stress (Kummu & Varis, 2011). The United Nations (UN, 1997) has set the withdrawal 
of 40% as the threshold for situations of high water stress. Almost 2 billion people live in 
countries where water use exceeds 40% of availability including India where the 40% 
threshold has just been reached. In many of these countries the majority of water use is 
for agriculture.  

The International Water Management Institute (IWMI) introduced the concept of physical 
and economic water scarcity (Molden, 2007). The former is used to define situations 
where insufficient water is available to meet all demands including water needed for 
maintaining aquatic ecosystem services. Economic water scarcity is caused by lacking 
capacity for infrastructure development to use available water resources.  

Recently frameworks focus on defining water security rather than water scarcity and 
include consideration of societies’ adaptation or coping capacity to water related 
challenges. (Grey, et al., 2013) perceived water security from a risk-science perspective 
and categorized countries and regions into four quadrants in terms of i) complexity and 
risk of the hydrological system and ii) the level of investment for water risk reduction.  

Following the risk-science perspective IIASA’s WFaS Initiative has developed for its 
scenario analysis a hydro-economic classification determined by a combination of 
economic-institutional coping capacity and hydrological complexity.  

1.3 Aims and objectives 

The primary aim is to produce a hydro-economic classification of countries for use in the 
WFaS scenario approach. As watersheds and their inherent water challenges extend 
beyond national boundaries the hydro-economic classification should also be applicable 
to the geographic entity of watersheds. To be useful in WFaS the classification approach 
must meet three basic principles:  

(i) Produce a small number of distinct classes that differentiate countries in terms 
of (current and future) water challenges and the means they have to act and 
the urgency and priorities they are likely to assign to finding water solutions;  

(ii)  Use variables/indicators that are not only available for past years but can also 
be computed for future periods and scenarios;  

(iii)  Apply an approach that is flexible, transparent and can by refined/tailored to 
reflect stakeholder priorities and needs. 
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2 Methodology and data for hydro-economic classification 

2.1 Conceptual approach and overview 

The hydro-economic classification consists of two broad dimensions representing 
respectively  

(i) a country’s/region’s economic and institutional capacity to address water 
challenges; i.e. the economic institutional capacity (y-dimension) 

(ii)  a country’s/region’s magnitude / complexity of challenges related to the 
management of available water resources; i.e. hydrological 
challenge/complexity (x-dimension) 

For the classification, each major dimension is measured by a normalized composite 
index, which is computed from a set of relevant indicators. In this way countries/regions 
will be located in a two-dimensional space representing different human-natural water 
development challenges and levels of water security.  

For example, for the estimation of qualitative and quantification assumptions of critical 
water dimensions (e.g. technological change rates) in the WFaS ‘fast-track’ scenario 
assessment we assign different values depending on the country’s location in one of four 
quadrants in the two-dimensional space (Figure 1). 

  

Figure 1. Conceptual framework for allocation of hydro-economic classification to four 
quadrants of water security 
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For the y-dimension, we’ve selected one indicator, namely GDP per caput (in constant 
PPP dollars per caput) as a measure of economic strength and financial resources 
available for investing in risk management.  

Another indicator initially discussed was the Corruption Perception Index (CPI) 
(Transparency International1). In a first attempt the CPI was included in the compound 
indicator for economic-institutional capacity based on the assumption that lower 
corruption may indicate higher coping capacity to water related risks and vice versa. 
However, in response to disapproval of this indicator by a workshop of WFaS 
stakeholders, the CPI was excluded from the composite indicator. Moreover for 
determining hydro-economic classes in different future scenarios, an estimation of the 
CPI would be required using formal methods or expert judgments based on the 
information available in the scenario narratives. 

For the x-dimension of water challenge complexity, we use four component indicators:  

(i) Total renewable water resources per capita (in m3/person/yr) as a measure for 
water availability;  

(ii)  The ratio of annual water withdrawal to total renewable water resources (scalar 
fraction) as a proxy for relative intensity of water use; 

(iii) Runoff variability expressed by the coefficient of variation of simulated monthly 
runoff for a 30-year period as proxy for both inter- and intra-annual variability of 
water resources; 

(iv)  The share of external (from outside national boundaries) to total renewable water 
resources as a measure for the dependency of external water resources. 

2.2 Methodology for indicator calculation  

After selecting relevant indicator variables and data sources for X- and Y-dimensions of 
the hydro-economic classification scheme the classification process proceeds as 
follows:  

1) For each indicator variable, define 5 classes along relevant scale (decide on linear 
or log scale as appropriate). Typical class names would be, for instance, ‘very 
low’, ‘low’, ‘medium’, ‘high’, ‘very high’ (or similar). 

2) Map each indicator/variable Vi for i=1,…,n to a normalized index value Xi by: 

a. Determining the interval (broad class) vϵ[Vj,Vj+1]into which the indicator 
value vi of a country/region falls; 

b. Calculate the normalized index value Xi(vi) according to ܺሺݒሻ =  ܺሺ ܸሻ + max ሺͲ, min ቆͳ, ݒ − ܸܸ+ଵ − ܸቇሻሺ ܺ( ܸ+ଵ) − ܺ( ܸ)ሻ 

3) Determine an appropriate weight wi for each sub-index. We follow the method 
proposed in WRI-Aqueduct (WRI, 2013) to set weights in a non-linear way 
according to a few classes of perceived importance of the criteria, for instance: 

  

                                                 
1 See www.transparency.org 
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Importance Weight 
Very low 1 
Low 2 
Medium 4 
High 8 
Very high 16 
 

4) Calculate the composite index I as weighted sum of normalized sub-indexes Xi: 

�ሺܸሻ = ∑ �ݓ
=ଵ ܺሺݒሻ/ ∑ �ݓ

=ଵ  

where V= (v1,…,vn) is the vector of observed (or simulated) indicator variables for 
each country/region. 

5) Make sure when combining sub-indexes Xi that all have the same orientation, i.e., 
a low value indicates respectively a low economic-institutional capacity or a low 
hydrological challenge and a high value indicates a high challenge. The 
orientation of a sub-index can be reversed by using an index X’ instead of X 
according to: ܺ′ = ͳ − ܺ 

6) Do above calculations separately for X- and Y-axis and map a country’s/region’s 
position in the resulting two-dimensional plane. This will produce a scattergram 
of normalized index values in the interval of [0,1] in both dimensions, which is 
easy to divide into a convenient number (say four or nine) of mutually exclusive 
hydro-economic classes. 

2.3 Quantifying ‘economic-institutional capacity’ 
As discussed above we currently apply one variable as proxy for ‘economic-institutional 
coping capacity’, namely GDP (in PPP terms) per capita.  

Estimates of GDP (in PPP terms using constant 2005 US dollars) per caput (GDPC; 
US$/cap/yr) are taken from World Bank. Note, country estimates of this indicator are also 
part of the quantified SSP variables and projections are available for future periods by 
country and different five different SSP scenarios. Five classes are used for the 
normalized sub-index function: 

Very low: CL1 … 3000 > GDPC > 250 
Low: CL2 … 10000 > GDPC > 3000 
Medium: CL3 … 10000 > GDPC > 20000 
High: CL4 … 35000 > GDPC > 20000 
Very high: CL5 … 90000 > GDPC > 35000 
 

The range values are set with consideration of the significant GDP per capita increase in 
future projection. The index function ranges from 0 to 0.2 for values of GDPC in class 1, 
0.2 to 0.4 for values in class 2, etc. For GDPC > 90000 US$2005/cap/yr the index function 
is set to 1, for GDPC < 250 US$2005/cap/yr an index function value of 0 is used. An index 
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function value of zero indicates a very low economic capacity, an index value of 1 means 
a rather high economic capacity. Figure 2 presents the normalized component index 
function �௬ଵሺ�ܥ�ܦሻ used to express the dimension of income along the Y-axis of 
economic coping capacity. 

 

Figure 2. Index function for rating economic capacity for indicator of GDP (in constant 
PPP $ of 2005) per caput 

2.4 Quantifying ‘hydrological complexity’ 
Next we present the approach applied for computing normalized index functions for a 
range of indicator values aimed at measuring the hydrological complexity of a spatial 
assessment unit, which is used here as the X-dimension for a hydro-economic 
classification of countries/regions. This X-dimension refers to a country’s/regions’s 
perceived magnitude of water challenges, which is computed from four indicators: (1) 
total renewable water resources per capita; (2) the ratio of annual water withdrawal to 
total renewable water resources; (3) variability of monthly runoff; and (4) a country’s 
share of (actual) external to total renewable water resources. 

 
Total renewable water resources per capita 

Estimates of this indicator TWRC (m3/cap/y) are available in the national statistics of 
AQUASTAT2. The statistical indicator for ‘actual total renewable water resources’ is 
calculated by adding an estimate of a country’s internal renewable water resources and 
the inflow from neighboring countries (and a part of the resources of shared lakes and 
border rivers) adjusted for the part of the flow that is secured/committed through treaties 
and agreements (in upstream and downstream countries). As the classification approach 
and this indicator is also required for different future scenarios, we apply a simulation 
approach and use as a proxy of a country’s/region’s internal renewable resources the 

                                                 
2 online database available at http://www.fao.org/nr/water/aquastat/dbase/index.stm 
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calculated mean annual runoff over a 30-year period averaged of a multi-model ensemble 
of hydrological and climate models (for current calculations the hydrological results have 
been used from six hydrological models and five GCMs, for the historical period 1971-
2000 and for three future 30-year periods (2011-2040, 2041-2070, 2070-2099) available 
for four RCPs (RCP2p6, RCP4p5, RCP6.0, RCP8p5). To this we add the AQUASTAT 
estimate of (actual) external renewable water resources (adjustments of this term, both 
due to climate change and possible changes in secured/committed flows, for future 
periods are still under discussion). For the base period we use population of 2000 to 
compute per capita water resources availability. Range values are based on 
(Shiklomanov, 2000). Five classes are used for the normalized sub-index function: 

 
Very high: CL1 … 20000 > TWRC > 10000 
High: CL2 … 10000 > TWRC > 5000 
Medium: CL3 … 5000 > TWRC > 2000 
Low: CL4 … 2000 > TWRC > 1000 
Very low: CL5 … 1000 > TWRC > 100 
 

The resulting normalized index function ranges from 0 to 0.2 for values of TWRC in class 
1 (i.e. TWRC > 10000 m3/cap/yr), 0.2 to 0.4 for values in class 2, etc. For TWRC > 20000 
m3/cap/yr the index function is set to 0; for TWRC < 100 m3/cap/yr an index function 
value of 1 is assigned. An index value of zero indicates a low hydrological complexity 
(in this case a large volume of per capita water resources available), an index value of 1 
means an extreme low availability of water resources per capita (and thus a high 
challenge).  

Figure 3 shows the normalized component index function �ݔͳሺ�ܹ�ܥሻ used to express the 
dimension of water resources availability along the X-axis of hydrological complexity.  

 

 

Figure 3. Index function for rating hydrological complexity for sub-indicator of water 
availability per caput (m3/cap/yr) 
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Intensity of water use 

We apply the ratio of total water withdrawal to total renewable water resources 
(TWD/TWR; scalar) as proxy for intensity of water use. Again, estimates of this indicator 
can be compiled (for most countries) for the base year from AQUASTAT. As an 
alternative, and for applying the classification in future scenario periods, we use water 
withdrawals estimated by participating water demand models and total renewable water 
resources based on average annual runoff plus (actual) external water resources estimated 
by participating hydrological models to compute the respective future scenario-specific 
sub-indicator variables. Note that the ratio can exceed 1 due to use of non-renewable 
water sources, such as aquifers with ‘fossil’ water but also water from desalination plants, 
due to over-exploitation of renewable groundwater resources, or due to re-use of water 
(i.e. return flows of non-consumptive use). 

Five classes are used for this normalized component index function: 

Very low: CL1 … 0.01 < TWD/TWR < 0.05 
Low: CL2 … 0.05 < TWD/TWR < 0.15 
Medium: CL3 … 0.15 < TWD/TWR < 0.30 
High: CL4 … 0.30 < TWD/TWR < 0.60 
Very high: CL5 … 0.60 < TWD/TWR < 1.00 

The normalized component index function �௫ଶሺ�ܹܦ/�ܹ�ሻ ranges from 0 to 0.2 for 
values of TWD/TWR in class 1 (i.e. TWD/TWR < 0.05), 0.2 to 0.4 for values in class 2, 
etc. For TWD/TWR > 1 the index function is set to 1, for TWD/TWR < 0.01 an index 
function value of 0 is used (Figure 4). Again, an index value of zero indicates a very low 
complexity (in this case a low withdrawal ration relative to water resources availability), 
an index value of 1 means that annual water withdrawals exceed annual water resources. 

 

Figure 4. Index function for rating hydrological complexity for sub-indicator of water 
withdrawal to renewable water resources 
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Variability of monthly runoff 

For this indicator (CVTWR; CV %) we use simulated 30-year time series of total monthly 
runoff averaged across participating hydrological models to compute the respective 
coefficient of variation (i.e. standard deviation divided by mean) for each country and 
river basin for respectively 1971-2000, 2011-2040, 2041-2070 and 2070-2099. Note this 
CV captures both inter- and intra-annual variability of runoff. 

Five classes of CV ranges are used for the normalized sub-index function: 

Very low: CL1 … 0 < CVTWR < 30 
Low: CL2 … 30 < CVTWR < 60 
Medium: CL3 … 60 < CVTWR < 100 
High: CL4 … 100 < CVTWR < 150 
Very high: CL5 … 150 < CVTWR < 225 
 

The normalized index function �௫ଷሺܸܥ�ܹ�ሻ ranges from 0 to 0.2 for values of CVTWR 
in class 1, 0.2 to 0.4 for values in class 2, etc. For CVTWR > 225% the index function is 
set to 1 (Figure 5). As before, an index value of zero indicates a very low complexity in 
terms of variability of monthly runoff, an index value of 1 means that the standard 
deviation of monthly runoff is more than twice tHE-30-year mean, which suggests a 
substantial challenge for managing month-by-month variations of water resources. 

 

Figure 5. Index function for rating hydrological complexity for sub-indicator of 
variability of total monthly runoff 
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Dependency share of external to total renewable water resources 

For this indicator (DPC; scalar) we use the ratio of (actual) external water resources to 
estimated (actual) total renewable water resources as indicator variable. Figure 9 shows 
the S-shaped form of the normalized sub-index function �௫ସሺܥ�ܦሻ: 

Very low: CL1 … 0.05 < DPC < 0.30 
Low: CL2 … 0.30 < DPC < 0.45 
Medium: CL3 … 0.45 < DPC < 0.55 
High: CL4 … 0.55 < DPC < 0.70 
Very high: CL5 … 0.70 < DPC < 0.95 
 

The normalized index function ranges from 0 to 0.2 for values of DPC in class 1 (i.e. a 
dependency share of 0.05 to 0.30), 0.2 to 0.4 for values in class 2, etc. For DPC > 0.95, 
i.e. when only 5% of a country’s water resources originate internally, the index function 
is set to 1 (Figure 6). An index value close to zero indicates that only a small fraction of 
total water resources comes from neighboring countries; an index value of 1 means that 
nearly all renewable water resources originate from outside a country, as inflow from 
upstream countries or from shared bordering lakes or rivers. Such dependency on 
upstream neighboring countries may increase the complexity of water challenges and 
management. Countries with very high dependency on external resources include for 
example Bangladesh, Egypt and Hungary. 

 

Figure 6. Index function for rating hydrological complexity according to dependency on 
(actual) external water resources 
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2.5 Assigning weights to all indicators 

We propose to assign a ‘high’ importance (i.e. weight is 8) to three of the above criteria, 
for respectively total renewable water resources per caput, for share of annual water 
withdrawals to total annual renewable water resources and for variability of monthly 
runoff, and to use ‘medium’ importance for dependency on external water resources. 
Note, the relative importance of different component indicators is expressed by weights 
wi and could be set according to stakeholder priorities. 

2.6 Example for quantification of X-dimension 

Below is a worked example of the classification procedure for quantifying the X-
dimension of the hydro-economic classification, which intends to quantify a 
country’s/region’s position with regard to its hydrological challenges and complexity. 

Indicator variables are calculated as averages of outputs of global simulations on 0.5 
degree global grids from six hydrological models and using outputs from five different 
climate models for the period 1971-2000. Quantifications of water withdrawals were 
taken from AQUASTAT. Table 1 presents indicator values, values of individual index 
functions for the five criteria and the resulting compound index function values. 

 

Table 1: Example quantification of X-dimension of hydro-economic classification 

Country Component Variable Component Index Function X-Ind 

V1 V2 V3 V4 X1 X2 X3 X4 Ix 

Weight     8 8 8 4  

Austria 9706 0.047 24.2 0.292 0.212 0.185 0.161 0.194 0.187 

Spain 2768 0.323 65.4 0.003 0.549 0.615 0.427 0.000 0.455 

Ukraine 2854 0.186 43.4 0.619 0.543 0.448 0.289 0.693 0.465 

China 2188 0.195 58.0 0.010 0.587 0.460 0.386 0.000 0.410 

Israel 296 1.029 118.2 0.579 0.956 1.000 0.673 0.638 0.842 

Argentina 22041 0.040 23.7 0.661 0.000 0.150 0.158 0.748 0.195 

Brazil 47201 0.007 52.9 0.342 0.000 0.000 0.353 0.256 0.137 

Algeria 382 0.490 73.1 0.036 0.937 0.727 0.466 0.000 0.609 

Nigeria 2314 0.036 87.6 0.228 0.579 0.130 0.538 0.142 0.377 

Tanzania 2828 0.054 84.1 0.127 0.545 0.208 0.520 0.062 0.372 

S. Africa 1148 0.243 40.0 0.128 0.770 0.524 0.267 0.063 0.455 

Note: V1=Renewable water resources per capita; V2=Ratio of total water withdrawals to total renewable 
water resources; V3=CV of 30-year variability of monthly total runoff; and V4=dependency on external 
water resources.  
 
In the example of Table 1, total water resources per capita (variable V1 in m3/cap/yr) 
range from 296 m3/cap for Israel to 47,201 m3/cap for Brazil. The respective component 
index function values are respectively 0.937 and 0.000. A component index function 
value of 0.5 is attained for a water resource level of 3,500 m3/cap. As for the share of 
water withdrawal in total water resources (variable V2), the lowest value of 0.007 is 
shown for Brazil, the highest for Israel (V2=1.029). The normalized index function results 
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in values of respectively 0.000 and 1.000. The last column in Table 2 applies the weights 
for the individual component indicators and shows the compound index value of 
‘hydrological complexity’. The lowest value, hence the least complexity, is computed for 
Brazil, the highest value for Israel. 

2.7 Hydro-economic classification diagram 

The previous descriptions and worked examples explain the quantification of X- and Y-
dimensions used for hydro-economic classification, namely of ‘hydrological complexity’ 
(X-dimension) and ‘economic-institutional capacity’ (Y-dimension). All data are 
available for the base period and can be calculated for future periods, which allows each 
country to be displayed in a 2-dimensional hydro-economic classification diagram. In the 
following section we show a calculated example for all countries of the world for the year 
2000 (Figure 7).  

In this diagram, both dimensions range from 0 to 1, which makes it particularly easy to 
classify by quadrants (4 classes), or to use any other and more detailed number of classes 
(e.g. 9 classes) that may help to account for transition phases in development. 

The rating of component indicators described in this note is fairly simple, flexible and 
easy to present to stakeholders. Combining the component indicators into compound X- 
and Y-dimensions is transparent. The effect of assigning different priorities and selecting 
different criteria weights can easily be assessed, and stakeholders can be consulted when 
setting priorities and associated criteria weights. 

From a risk-science point of view, the diagram helps identify regions/countries with 
higher or lower development challenges for water management. For example, an 
economic-institutional capacity (countries depicted in the upper area of the diagram) may 
support solutions for water management even in regions of high hydrological complexity 
(right area of the diagram). Development challenges are highest in the lower right corner 
of the diagram where countries face a high degree of hydrological complexity but have 
little economic-institutional capacity for responding to these challenges.  
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3. A hydro-economic classification of countries 

A hydro-economic classification can be calculated at different geographic scales (e.g. for 
countries or watersheds) and for different time periods. Over time countries will shift their 
relative position in the scatter plot because of their demographic and economic 
development but also because water resources may be affected by climate change.  

Here we present an example for the year 2000 calculated at the country level using data 
summarized in Table 2 and the specification of the compound indicators described in 
section 2.  

 

Table 2: Data sources for the calculation of the compound indicators 

Variable Unit Data source 

GDP per capita, PPP  Constant 2005 international $ Worldbank 
Population Number of people United Nations 
Total renewable water 
resources 
Total water withdrawal 
External water resources 

Km3/year AQUASTAT Database  
of the United Nations Food and 
Agriculture Organization (FAO) 

Coefficient of variation  
of monthly river runoff 

 Model-ensemble of six 
hydrological models calculated 
from ISI-MIP (Warszawski, 2014) 

 

Figure 7 presents a scatter plot of the two compound indicators calculated for 160 
countries of the world for the year 2000. Different colors are used for countries in 
different broad (continental) regions, e.g. red for countries in North Africa and the Middle 
East, blue for countries in Europe. Defined areas can be delineated for grouping countries 
according to their hydro-economic classification. In the example presented we’ve 
assigned countries to four major groups. These are referred to as hydro-economic class 1 
(HE-1) to 4 (HE-4).  

In our example the indicator on the y-axis comprises only one indicator, GDP per capita. 
Therefore we can readily indicate the level of GDP per capita in each of the four HE 
groups. In contrast hydrological complexity is a compound indicator using four sub-
indices related to hydrological complexity and challenges. An increasing indicator 
denotes an increasing level of hydro-climatic challenges and complexity. Although a 
strong simplification, we may designate countries located in HE-1 and HE-2 as regions 
exposed to ‘low’ hydrological challenges and countries in HE-3 and HE-4 exposed to 
‘high’ hydrological complexity/challenges (Table 3). 

 

Table 3. Definition of four major groups in the hydro-economic classification 

 HE-1 HE-2 HE-3 HE-4 

Economic capacity (y-axis) Low (poor) High (rich) High (rich) Low (poor) 

GDP per capita < 15,000 Int$ < 15,000 Int$ > 15,000 Int$ > 15,0000 Int$ 

     

Hydrological complexity (x-axis) 
Low 

(Water 
secure) 

Low 
(Water 
secure) 

High 
(Water stress) 

High 
(Water stress) 



 14 

Countries with highest hydro-economic development challenges are located towards the 
lower right corner of the scatter plot (quadrant HE-4). In these countries the economic-
institutional coping capacity is low and at the same time hydrological complexity is high. 
The classification maps countries in Northern Africa (Egypt, Algeria), the Middle East 
(Iraq, Syria, Yemen, Jordan), Sub-Saharan Africa (Niger, Somalia, Sudan) and Asia (e.g. 
Pakistan) into this sphere of high hydro-economic development challenges.   

Relatively few countries appear in the upper right corner (quadrant HE-3), representing 
high economic capacity and high hydrologic challenges, in this case mainly the very dry 
climate (e.g. Saudi Arabia, Israel, United Arab Emirates). 

Hydro-economic development challenges tend to be lower the more a country is located 
towards the upper left corner of the diagram. Here countries have a high economic-
institutional coping capacity and are exposed to relatively low hydrological complexity. 
Many industrialized countries in Europe (e.g. Germany, United Kingdom, Italy, France), 
North America (USA, Canada) and Asia (Japan) are mapped here (quadrant HE-2).  

Countries across the globe appear in the lower left quadrant (HE-1) characterized by low 
economic coping capacity to respond to hydrological challenges. However at the same 
time these challenges are comparatively low.  

 

 

Figure 7. Hydro-economic classification of countries according to their level of 
hydrological complexity (X-axis) and their economic capacity (Y-axis) for the year 2000 
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Table 4 summarizes the number of people living in countries assigned to the four major 
hydro-economic classifications. In addition the table shows detailed results for the index 
values of economic capacity (Indicator Y-Axis) and hydrologic complexity and 
challenges (Indicator X-Axis) for selected countries (sorted by their population numbers). 
Annex I provides the indicators for all the 160 countries which were included in the 
calculations considering size and data availability and covering 99.5% of the world’s 
population and area.  

More than half of global population lives in countries grouped into HE-1. Their economic 
capacity for investments is low making them vulnerable to hydrologic complexity and 
challenges, which however are relatively low as well. As much as 98 countries throughout 
the world are located in the lower left quadrant of the major group HE-1.  

The second largest group in terms of population is HE-4. In these countries economic 
coping capacity is low as in HE-1 but in addition hydrological complexity and challenges 
are high. About one fourth of global population in 28 countries (including India, Pakistan, 
Egypt, Iran) lives in these countries, which have a low adaptation capacity and are 
exposed to water high challenges. Except India, Pakistan and Uzbekistan countries of HE-
4 are regionally concentrated in northern Africa and selected Sub-Saharan African 
countries. The most vulnerable countries with economic coping capacity indicators below 
0.2 and hydrologic complexity indicators above 0.6 include Pakistan, Sudan, Niger, 
Somalia, Uzbekistan and Yemen.  

It should be pointed out that the compound indicator for hydrologic complexity for China 
and India, the world’s most populated countries, is 0.41 and 0.55 respectively. Both are 
thus close to our (arbitrarily) defined threshold of 0.5, which separates HE-1 from HE-4. 
This demonstrates the importance for a careful interpretation of countries located in 
‘water secure’ (HE-1) or ‘water stress’ (HE-4) environments when the hydro-economic 
classification is divided into only four major groups.   

The higher a country located in the hydro-economic diagram (i.e. increasing Y-Axis), the 
higher its economic strength and coping capacity. Only some 15% of global population 
lives in HE-2 and HE-3 pointing towards the current high level of global inequalities in 
economic potential. In HE-3 hydrological challenges are high but countries have high 
economic coping capacity. Less than 100 thousand people live in HE-3 including a 
number of countries in the Central East (Saudi Arabia, Israel).  

Some 14% of global population is home to countries in HE-2 where (on aggregate average 
across the country area) water related risks are relatively low. This is due to low 
hydrological complexity combined with high economic coping capacity. The majority of 
industrialized countries are classified into HE-2 including the United States, Canada, 
Japan, Australia and many European countries.  
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Table 4: Hydro-economic classification, by countries, year 2000  

Major Hydro-Economic Class 
Selected country 

Population 
Economic coping 

capacity 
Hydrologic 

complexity/challenge 

 (million people) (Indicator: Y-Axis) (Indicator: X-Axis) 

 

HE-1: (Poor economies; Low hydrological complexity) 

Total in HE-1 3502 (57%) n.a. n.a. 

of which    

China 1298 0.18 0.41 

Indonesia 213 0.18 0.17 

Brazil 174 0.34 0.14 

Russian Federation 147 0.36 0.12 

Bangladesh 130 0.05 0.39 

Nigeria 124 0.09 0.38 

Mexico 100 0.43 0.40 

Viet Nam 79 0.10 0.36 

Philippines 77 0.18 0.31 

Ethiopia 66 0.02 0.36 

Turkey 64 0.40 0.40 

Thailand 63 0.27 0.41 

 

HE-2: (Rich economies; Low hydrological complexity) 

Total in HE-2 852 (14%) n.a. n.a. 

of which    

United States of America 282 0.82 0.23 

Japan 126 0.72 0.33 

Germany 82 0.74 0.43 

United Kingdom 59 0.72 0.34 

France 59 0.71 0.36 

Italy 57 0.70 0.37 

Spain 40 0.67 0.45 

Canada 31 0.77 0.09 

Australia 19 0.73 0.18 

 

HE-3: (Rich economies; High hydrological complexity/challenges) 

Total in HE-1 91 (1.5%) n.a. n.a. 

of which    

Korea Rep. 46 0.57 0.52 

Saudi Arabia 20 0.60 0.81 

Belgium 10 0.74 0.51 

Israel 6 0.64 0.84 

United Arab Emirates 3 0.92 0.86 

    

HE-4: (Poor economies; High hydrological complexity/challenges) 

Total in HE-4 1658 (27%) n.a. n.a. 

of which    

India 1054 0.11 0.55 

Pakistan 145 0.12 0.69 

Egypt 68 0.24 0.81 

Iran, Islamic Rep. 65 0.33 0.57 

Sudan (former) 34 0.08 0.63 

Kenya 31 0.08 0.52 

Algeria 31 0.28 0.61 

Morocco 29 0.19 0.58 

Source: WFaS/IIASA  
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Annex I. Hydro-economic classification, by country, year 2000 

Country 
Population 
(thousand 

people) 

Hydrologic 
complexity 

(Indicator: X-Axis 

Economic 
capacity 

(Indicator: Y-Axis 

HE Class 

 

Afghanistan 22,856 0.514 0.037 HE4 

Albania 3,072 0.246 0.289 HE1 

Algeria 30,534 0.609 0.317 HE4 

Angola 13,926 0.198 0.162 HE1 

Argentina 36,931 0.195 0.406 HE1 

Armenia 3,076 0.449 0.149 HE1 

Australia 19,164 0.177 0.727 HE2 

Austria 8,005 0.187 0.757 HE2 

Azerbaijan 8,111 0.506 0.163 HE4 

Bahamas 298 0.397 0.744 HE2 

Bangladesh 129,592 0.389 0.051 HE1 

Belarus 10,058 0.300 0.316 HE1 

Belgium 10,176 0.509 0.739 HE3 

Belize 251 0.160 0.318 HE1 

Benin 6,518 0.400 0.071 HE1 

Bhutan 571 0.158 0.184 HE1 

Bolivia 8,307 0.214 0.270 HE1 

Bosnia and Herzegovina 3,694 0.145 0.298 HE1 

Botswana 1,758 0.410 0.391 HE1 

Brazil 174,425 0.137 0.358 HE1 

Bulgaria 8,006 0.418 0.342 HE1 

Burkina Faso 12,294 0.502 0.048 HE4 

Burundi 6,374 0.336 0.016 HE1 

Cambodia 12,447 0.275 0.059 HE1 

Cameroon 15,678 0.130 0.114 HE1 

Canada 30,667 0.092 0.766 HE2 

Central African Republic 3,702 0.142 0.038 HE1 

Chad 8,222 0.454 0.036 HE1 

Chile 15,420 0.103 0.420 HE1 

China 1,298,268 0.410 0.176 HE1 

Colombia 39,764 0.068 0.332 HE1 

Congo, Dem. Rep. 49,626 0.074 0.002 HE1 

Congo, Rep. 3,136 0.182 0.263 HE1 

Costa Rica 3,919 0.192 0.362 HE1 

Côte d'Ivoire 16,582 0.249 0.117 HE1 

Croatia 4,506 0.186 0.447 HE1 

Cuba 11,104 0.401 0.356 HE1 

Cyprus 943 0.554 0.636 HE3 

Czech Republic 10,243 0.373 0.547 HE2 
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Country 
Population 
(thousand 

people) 

Hydrologic 
complexity 

(Indicator: X-Axis 

Economic 
capacity 

(Indicator: Y-Axis 

HE Class 

 

Denmark 5,340 0.409 0.755 HE2 

Djibouti 732 0.617 0.111 HE4 

Dominican Republic 8,592 0.417 0.315 HE1 

Ecuador 12,345 0.090 0.324 HE1 

Egypt 67,648 0.809 0.285 HE4 

El Salvador 5,940 0.407 0.303 HE1 

Equatorial Guinea 520 0.104 0.373 HE1 

Eritrea 3,668 0.513 0.025 HE4 

Estonia 1,371 0.241 0.430 HE1 

Ethiopia 65,578 0.357 0.020 HE1 

Fiji 812 0.118 0.278 HE1 

Finland 5,173 0.097 0.698 HE2 

France 59,048 0.355 0.709 HE2 

Gabon 1,235 0.100 0.467 HE1 

Gambia 1,297 0.435 0.102 HE1 

Georgia 4,746 0.143 0.164 HE1 

Germany 82,349 0.432 0.737 HE2 

Ghana 19,165 0.344 0.061 HE1 

Greece 10,987 0.357 0.604 HE2 

Guatemala 11,237 0.235 0.279 HE1 

Guinea 8,344 0.168 0.045 HE1 

Guinea-Bissau 1,241 0.269 0.055 HE1 

Guyana 733 0.128 0.160 HE1 

Haiti 8,645 0.397 0.065 HE1 

Honduras 6,218 0.169 0.191 HE1 

Hungary 10,211 0.334 0.473 HE1 

Iceland 281 0.040 0.732 HE2 

India 1,053,898 0.553 0.108 HE4 

Indonesia 213,395 0.170 0.177 HE1 

Iran, Islamic Rep. 65,342 0.574 0.349 HE4 

Iraq 23,857 0.659 0.294 HE4 

Ireland 3,804 0.136 0.776 HE2 

Israel 6,015 0.842 0.643 HE3 

Italy 56,986 0.366 0.703 HE2 

Jamaica 2,582 0.363 0.342 HE1 

Japan 125,720 0.332 0.719 HE2 

Jordan 4,827 0.753 0.272 HE4 

Kazakhstan 14,957 0.416 0.308 HE1 

Kenya 31,254 0.522 0.075 HE4 

Korea DPR 22,894 0.406 0.084 HE1 

Korea Rep. 45,988 0.520 0.575 HE3 
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Country 
Population 
(thousand 

people) 

Hydrologic 
complexity 

(Indicator: X-Axis 

Economic 
capacity 

(Indicator: Y-Axis 

HE Class 

 

Kuwait 1,941 1.000 0.815 HE3 

Kyrgyzstan 4,955 0.461 0.091 HE1 

Lao PDR 5,317 0.224 0.079 HE1 

Latvia 2,385 0.193 0.371 HE1 

Lebanon 3,742 0.561 0.400 HE4 

Lesotho 1,964 0.321 0.067 HE1 

Liberia 2,847 0.131 0.006 HE1 

Libyan Arab Jamahiriya 5,231 0.705 0.455 HE4 

Lithuania 3,500 0.308 0.390 HE1 

Macedonia, FYR 2,009 0.352 0.345 HE1 

Madagascar 15,364 0.196 0.046 HE1 

Malawi 11,229 0.427 0.030 HE1 

Malaysia 23,415 0.079 0.412 HE1 

Mali 11,295 0.391 0.043 HE1 

Mauritania 2,643 0.628 0.107 HE4 

Mexico 99,960 0.398 0.428 HE1 

Moldova, Rep. 4,107 0.544 0.102 HE4 

Mongolia 2,411 0.145 0.143 HE1 

Montenegro 622 0.097 0.347 HE1 

Morocco 28,793 0.584 0.194 HE4 

Mozambique 18,201 0.301 0.018 HE1 

Myanmar 44,958 0.207 0.060 HE1 

Namibia 1,896 0.354 0.290 HE1 

Nepal 24,401 0.296 0.051 HE1 

Netherlands 15,863 0.421 0.783 HE2 

New Zealand 3,858 0.056 0.633 HE2 

Nicaragua 5,074 0.152 0.182 HE1 

Niger 10,922 0.576 0.025 HE4 

Nigeria 123,689 0.377 0.089 HE1 

Norway 4,491 0.062 0.833 HE2 

Oman 2,264 0.820 0.592 HE3 

Pakistan 144,522 0.688 0.117 HE4 

Panama 2,956 0.119 0.357 HE1 

Papua New Guinea 5,379 0.044 0.124 HE1 

Paraguay 5,344 0.204 0.291 HE1 

Peru 25,862 0.095 0.310 HE1 

Philippines 77,310 0.309 0.177 HE1 

Poland 38,302 0.401 0.435 HE1 

Portugal 10,336 0.401 0.615 HE2 

Puerto Rico 3,814 0.409 0.450 HE1 

Qatar 591 0.857 0.907 HE3 
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Country 
Population 
(thousand 

people) 

Hydrologic 
complexity 

(Indicator: X-Axis 

Economic 
capacity 

(Indicator: Y-Axis 

HE Class 

 

Romania 22,192 0.306 0.337 HE1 

Russian Federation 146,758 0.123 0.372 HE1 

Rwanda 8,098 0.338 0.028 HE1 

Saudi Arabia 20,045 0.810 0.603 HE3 

Senegal 9,506 0.443 0.089 HE1 

Serbia 10,145 0.279 0.330 HE1 

Sierra Leone 4,143 0.156 0.036 HE1 

Slovakia 5,405 0.260 0.455 HE1 

Slovenia 1,985 0.123 0.595 HE2 

Somalia 7,399 0.626 0.015 HE4 

South Africa 44,760 0.455 0.353 HE1 

Spain 40,288 0.455 0.669 HE2 

Sri Lanka 18,745 0.441 0.260 HE1 

Sudan (former) 34,188 0.633 0.077 HE4 

Suriname 467 0.161 0.299 HE1 

Swaziland 1,064 0.477 0.285 HE1 

Sweden 8,860 0.076 0.722 HE2 

Switzerland 7,168 0.206 0.803 HE2 

Syrian Arab Republic 15,989 0.756 0.273 HE4 

Tajikistan 6,173 0.513 0.053 HE4 

Tanzania UR 34,038 0.373 0.045 HE1 

Thailand 63,155 0.405 0.311 HE1 

Timor-Leste 830 0.341 0.065 HE1 

Togo 4,794 0.323 0.047 HE1 

Tunisia 9,456 0.641 0.321 HE4 

Turkey 63,628 0.402 0.398 HE1 

Turkmenistan 4,501 0.672 0.278 HE4 

Uganda 24,213 0.293 0.038 HE1 

Ukraine 48,892 0.465 0.274 HE1 

United Arab Emirates 3,033 0.857 0.925 HE3 

United Kingdom 59,096 0.340 0.722 HE2 

United States of America 282,496 0.233 0.817 HE2 

Uruguay 3,319 0.196 0.391 HE1 

Uzbekistan 24,776 0.707 0.101 HE4 

Venezuela 24,348 0.175 0.391 HE1 

Viet Nam 78,758 0.361 0.098 HE1 

Yemen 17,723 0.774 0.138 HE4 

Zambia 10,202 0.259 0.057 HE1 

Zimbabwe 12,509 0.556 0.015 HE4 
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Annex II. Scatter plots of component index functions 

 

The diagrams in Figures A1 to A4 below show scatter-plots of the different component 
index functions, for some 160 countries, against the Y-dimension of economic capacity. 
Both axes span an interval [0,1], where a high value along the Y-dimension indicates 
high income and coping capacity, a large value close to 1 along the X-dimension is an 
indication of a higher water related challenge. Different colors are used for countries in 
different broad (continental) regions, e.g. red for countries in North Africa and the 
Middle East, blue for countries in Europe 

 

 

Figure A1: Scatter-plot showing value of sub-index �௫ଵሺ�ܹ�ܥሻ of total renewable 
water resources per caput (along X-axis) against economic capacity index (Y-axis) 
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Figure A2: Scatter-plot showing value of sub-index �௫ଶሺ�ܹܦ/�ܹ�ሻ of share of water 
withdrawal to total renewable water resources per caput (along X-axis) against 
economic capacity index (Y-axis) 

 

Figure A3: Scatter-plot showing value of sub-index �௫ଷሺܸܥ�ܹ�ሻ of variability of 
monthly runoff (along X-axis) against economic capacity index (Y-axis) 
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Figure A4: Scatter-plot showing value of sub-index �௫ସሺܥ�ܦሻ of dependency on 
external water resources (along X-axis) against economic capacity index (Y-axis) 
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