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PREFACE 

The Regional Water Policies pro jec t  of IIASA w a s  focused on inten- 
sively developed regions where t h e  water resources  are integrat ing ele- 
ments of t h e  environment. The resea rch  w a s  di rec ted towards t h e  develop- 
ment of methods and models to  suppor t  t h e  resolut ion of confl icts within 
such socio-economic environmental systems. One of o u r  case studies deals 
with open-pit l ignite mining areas. The developed Decision Suppor t  System 
MINE has  been implemented f o r  a test region in t h e  Lusatian Lignite Distr ict 
of t h e  GDR. 

The complex problems of such regional policy analysis are not tract- 
ab le  in one model using any of exist ing computational methods. That is why a 
heur ist ic  two-level model approach has  been applied. Simplified first-level 
models together  with interact ive procedures f o r  multi-criteria analysis are 
used in t h e  Running Model f o r  screening analysis of rat ional  long-term 
policies. Second-level models s e r v e  f o r  t h e  veri f icat ion and specif icat ion of 
t h e  resu l ts  of screening analysis. 

In developing t h e  system o u r  major goal w a s  t o  make i t  user-friendly, 
highly interact ive and robust .  For  t h e  planning model these  fea tu res  are 
determined above al l  by t h e  effect ivi ty of t he  problem so lver  f o r  multi- 
c r i t e r i a  analysis. The given pape r  descr ibes such a problem so lver  being 
developed f o r  t h e  DSS MINE. This r esea rch  has  been done within t he  frame- 
work of a col laborat ive agreement between IIASA and t h e  Technical Univer- 
s i ty  of Warsaw, Inst i tute of Automatic Control. 

Serge i  Orlovski 
P ro jec t  Leader 
Regional Water Policies Pro jec t  





The Decision Support System MINE has been developed fo r  t he  analysis 
of regional water policies in open-pit lignite mining areas. I t  is  based on a 
two-level model approach. The first-level pLanning model is used fo r  the  
estimation of rat ional strategies of long-term development applying dynamic 
multi-criteria analysis. The second-level management model considers 
managerial/ operational aspects f o r  shor te r  time steps (monthly and 
yearly). 

The paper  descr ibes the  problem solver f o r  multi-criteria analysis in 
the  planning model. This analysis is based on the ref irence po in t  a p p r o a c h .  
For the  solution of the  resulting nonlinear programming problem the  MSPN- 
algorithm, developed at t he  Institute of Automatic Control of the  Technical 
University has been adopted. The solver considers the special character is-  
t ics of the  mathematical model of t he  DSS MINE, as i ts  non-linearity and the 
sparse  charac te r  of the  resulting Jacobian matrix. 

Start ing with t he  description of t he  general mathematical s t ruc tu re  of 
the  planning model within the  DSS MINE the  problem formulation f o r  multi- 
c r i te r ia  analysis based on the  Refirence Po in t  Approach is  given. Next, the  
non-linear problem solver MSPN is presented, including a program descrip- 
tion. Finally t he  resul ts of some computational tests are shown. 
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DECISION SUPPORT SYSTEX MINE 
PROBLEM SOLVER FOR NONLKNEAR MULTI-CRITERIA ANALYSIS 

S.   ad en' and T. ~ r e g l e w s k i ~  

1. I n t roduc t ion  
Regions with open-pit lignite mining are character ized by complex and strong 

interactions in the  socio-economic environmental system with special regard  to 
water resources. Caused by lignite mining, above al l  the  necessary mine drainage, 
originate significant conflicts between different interest  groups. For a detailed 
description of those problems see Kaden et al., 1985a. 

Due t o  the  complexity of t he  socio-economic environmental processes in min- 
ing areas, the  design of regional water policies and water use technologies as well 
as mine drainage can only be done proper ly based on appropr ia te  mathematical 
models. From a cr i t ical  analysis of the  state-of-the-art of modeling in lignite mining 
areas i t  has been concluded, tha t  above al l  methods and models are required to 
support  the  analysis and implementation of r a t i o n a l  long-term regional  w a t e r  
pol ic ies  in open-pit lignite mining a reas ,  t o  achieve a proper  balance between 
economic welfare and the  state of t he  environment, Kaden et al. 1985b. 

Towards that  goal the research  of the  Regional Water Policies project  of 
IIASA, in collaboration with research  institutes in the  GDR, and in Poland, in the  
period 1984-1985 was directed. One of i ts  major products is the Decis ion Support  
System MINE, see Kaden et al. 1985a. Kaden 1986. The DSS MINE has been imple- 
mented f o r  a test region in the  Lusatian Lignite District in the GDR. 

The analysis of regional water policies in mining regions is a problem of 
dynamic multi-criteria choice. An advanced system of decision aids is needed 
which allows, Kadsn et al. 1986: 

')~nternational institute for  Applied Systems Analysis Laxenburg, Austria 
%wtitute of Automatic Control, Technical University of Warsaw, Poland 



- to consider the controversy among different water users and interest  groups, 
- to include multiple c r i te r ia  some of which can not be evaluated quantitatively, 
- to take into the  account the uncertainty and the  stochastic cha rac te r  of the  

system inputs as well as the  limited possibilities to analyze al l  t he  decisive 
natural  and socio-economic processes and impacts, 

- to of fer  a set of decision alternatives, demonstrating t he  necessary trade-offs 
between different water users and interest  groups. 

A t  present no mathematical methods are available or pract ical  applicable consid- 
er ing al l  these problems in one single model. Only time-discrete hierarchical  
model systems can satisfy all requirements. Frequently already a two-level model 
hierarchy satisf ies most requirements. For the  DSS MINE such a two-level system 
has been realized. 

The first-level model is a Planning Model f o r  the  dynamic multi-criteria 
analysis f o r  a relatively small number of planning  per iods  , j =1, .. .,J as the  time 
step f o r  principal management/technological decisions. Variable time s teps are 
used start ing with one yea r  and increasing with time up to 15 years.  

The planning model serves  f o r  t he  estimation of rat ional s t ra teg ies of long- 
t e r m  systems development. These strategies are selected by multi-criteria 
analysis. 

The second-level Management Model is  applied f o r  the  simulation of systems 
behavior f o r  a l a rger  number of smaller management periods  (monthly and yearly 
time steps). I t  is used to analyze managerial decisions by the  help of stochastic 
simulation and to verify resul ts obtained with the planning model. 

The DSS MINE is intended to be highly interactively, user-friendly and robust. 
The realization of these goals depends above all on the  effectivity of t he  basic 
mathematical methods and models. One of the fundamental algorithms is the algo- 
rithm fo r  non-linear multi-criteria analysis in t he  planning model. 

The given paper  descr ibes the solver f o r  non-linear multi-criteria analysis of 
the  DSS MINE. I t  has been developed in collaboration between IIASA and the  Insti- 
tute of Automatic Control of the Technical University Warsaw, Poland. 

2. Multi-Criteria Analysis 

2.1. Structure of the planning model of the DSS MINE 

The planning model covers a planning  hor i zon  of 50 years  divided into max- 
imum 10 planning periods, see Figure 1. 
The f igure i l lustrates t ha t  the  highest accuracy is achieved fo r  the  f i r s t  planning 
periods. The la te r  planning periods give rough estimates of fu ture systems 
development. Their consideration ensures a rat ional systems development in the  
long-term run. 

The planning model of the DSS MINE serves fo r  t he  estimation of rat ional stra- 
tegies of long-term systems development. These s t ra teg ies are selected by multi- 
c r i te r ia  analysis considering a number of cr i t er ia .  The c r i te r ia  have to be  chosen 
from a given set of ind i ca to r s ,  e.g. cost of water supply, cost of mine drainage, 
satisfaction of water demand and environmental requirements. These indicators are 
assumed t o  be integral values over  t he  whole planning horizon. In Figure 2 a block 
scheme of the  planning model is given. 

With the  purpose of a unified model being independent on the  chosen c r i te r ia  
i t  is  assumed that  f o r  all indicators bounds a r e  given and all indicators are t reated 
as constraints. Based on that  t he  following multi-criteria problem for a subset 
OI l  E L o  of the indicators 0 (q , l  =I. ..., L )  is  defined: 
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Figure 1: Time discretization f o r  the planning model 
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This model descr ibes a non-linear dynamic multi-criteria problem. For t h e  given 
problem in mining areas i t  can  b e  assumed t ha t  t h e  systems dynamic is determined 
above a l l  by t h e  external ly  f ixed mine drainage. The internal  systems dynamic is  
relat ively sl ight,  t ha t  means t he  influence of t h e  state var iables on t h e  resu l t  
( indicators) is  less important. Consequently t he  problem Eq.(2.1)-(2.4) may be  
divided into subproblems f o r  a few subho r i zons  m,  m =I,. . ., M, see Figure 1. 

o'(m) => Minimum ! , m =1, ..., M (2.5) 

subject  t o  Eq.(2.2)-(2.4) f o r  subhorizon m .  This approach reduces t h e  computa- 
t ional e f for t  due t o  t h e  smaller dimension of t h e  non-linear programming problem. 

In Figure 3 t h e  s t r uc tu re  of t h e  Jacobian matr ix i s  depicted f o r  a subhorizon 
with two planning periods. The numbers give t h e  ac tua l  size of t h e  problem f o r  t h e  
GDR test area. 
The Figure i l lustrates t h e  spa rse  cha rac te r  of t h e  matrix. With t he  increasing 
number of planning per iods p e r  subhorizon t h e  matrix i s  gett ing more sparse .  The 
algorithm f o r  non-linear programming has  to  consider th is  p roper ty  in o r d e r  t o  
reduce  s to rage  consumption and computational e f for t .  

2.2. Prob lem fo rmu la t i on  f o r  mu l t i - c r i t e r ia  ana l ys i s  

Instead of t he  problem or iented model formulation above f o r  simplicity and 
convenience in t he  following a more compact mathematical formulation of t h e  
multi-criteria problem Eq.(2.1)-(2.5) i s  used. 

W e  consider a nonl inear optimization problems of t he  form: 

minimize set of functions 

subject  to: 

nonlinear inequality constra ints 

nonlinear equality const ra in ts  

and bounds f o r  a l l  var iables 



Figure 3: Structure of the  Jacobian matrix 

The nonlinear functions j i ( z )  , i =1, ... , n h  are assumed to be  differentiable and 
the i r  gradients must be  known in the analytical f o r m .  These functions, together 
with the  r ight  hand sides bi , i =1, ..., nh , the  lower bounds l j  , j  =1, ..., n , and the  
upper bounds uj , j =l,. . . ,n , constitute the model of systems behavior. 

A s  explained above some of the  values j'{(z) , i 4 , .  . . , n, calculated in the  
model are defined as indicators of systems development. The set of indices I ,  con- 
tains the numbers of functions j'{(z) selected as objectives, being of interest  f o r  
the  decision maker applying the  DSS MINE. This set can be changed at any time. 

Most frequently the set I ,  has more than one element and in such a case prob- 
lem (2.6) - (2.9) is the problem of mult iobjec t ive  o p t i m i z a t i o n .  To solve such a 
problem, one must s c a l a r i z e  i t ,  i.e. reduce i t  to single c r i te r ia  equivalent using a 
s c a l a r i z i n g  &nct ion.  

2.3. Scalarizing method - the Reference Point Approach 

For the DSS MINE the Reference Point Approach (Wierzbicki, 1983) is applied. 
In this method the  reduction of the  multiobjective optimization problem to a single 
objective one must be interactively defined by the decision maker (the model 
user). The preferences among several  c r i te r ia  are unknown a pr ior i  and are 
determined during the interactive 'procedure. For this purpose, the  decision maker 
defines a re fe rence  value r{ f o r  each selected objective function j i ( z )  . These 
values should ref lect  in some sense desired values of the objectives. 

If all functions of t he  mathematical model are l inear, then the scalarizing 
function using re ference values can be given as follows: 



with 
w = (x ) - - distance between current  values Pi (x)  and 

desired (reference) values ri ; 
E - small positive number. 

The second t e r m  of the  scalarizing function is added t o  guarantee Pare to  optimal- 
ity of the solution. (If E = O  only weak Pare to  optimality is guaranteed). 

If P i ( x ) r r i  f o r  al l  objectives, then the f i rs t  t e r m  of (2.10) is simply a Che- 
byshev norm of the  distance between solution f ( ~ )  and re ference point r ; in a 
more general case, th is scalarizing function is not necessarily equivalent t o  a 
norm, but is str ict ly monotonous and thus guarantees Pare to  optimality of i ts  mini- 
mas. Unfortunately, this function is non-differentiable and cannot be used in the 
case when the  mathematical model is non-linear, because non-linear non- 
differentiable optimization methods are neither robust nor  efficient enough fo r  
use in interactive systems. In the  non-linear case only a smooth approximation of 
function (2.10) can be used. 

The approximation used in th is package has the form: 

with 
no - number of objectives; 
s i - scaling factor  fo r  i- th objective; 

W i  = Pi (x ) -5 - - measure of distance between Pi ( x )  and ri ; 
- Ti -Pi 
Pi - lower bound fo r  f i ( x )  and ri ; 
P - positive (even) integer. 

For the  lower bound ~7 the  u t o p i a  (ideal) va lue  may be used minimizing objective 
i separately. 

If p is very large, then the  approximation of the function (2.10) by (2.11) is 
good. Unfortunately, t he  problem of minimizing (2.11) becomes badly conditioned in 
such a case. Therefore, p =4 o r  6 is  used in this package. 

3. Non-Linear Problem Solver MSPN 

3.1. Theoretical background 

3-1.1. General description of the algorithm 
For a given fixed set of indices I. , fixed re ference point values ri and scal- 

ing factors  si , t he  resulting optimization problem takes the  form: 

The feasible set X is  determined as a intersection of t w o  other  sets: 

X, is  the set described by nonlinear inequalities (2.7) and equalities (2.8). 

XL is  t he  set described by lower and upper bounds (l inear inequalities) (2.9). 



Thus, the problem (3.1) is a standard nonlinear constrained optimization problem. 
In this package a double i te ra t i ve  pena l t y  algor i thm is used fo r  the  problem 
solver. 

The lower level algorithm solves the problem: 

I 1 min F ( z )  =s , ( z )  + p ( z , v . k ) ,  
D E xL 1 

The objective function used here,  called penalty function, consists of the' sum of 
the original objective function and a penalty t e r m  p (z  , v  , k )  ( the precise f o r m  of 
this t e r m  is given la ter ,  see (3.6)). Linear constraints are satisfied at each step of 
the algorithm because a special method of reduced gradient is used f o r  th is pur- 
pose. Nonlinear constraints, however, a r e  violated and the penalty term in (3.5) is 
related to  this violation. 

The upper level algorithm adjusts parameters v and k in the penalty func- 
tion to  satisfy nonlinear constraints. A t  each step of this algorithm, the lower level 
problem (3.5) is solved. However, the  required accuracy of i ts  solution depends on 
the  violation of nonlinear constraints. Nonlinear constraints are strongly violated 
in very  f i rs t  i terations of the upper  level algorithm and, therefore,  the  lower level 
problem can be  solved very  roughly. 

3.1.2. Reduced gradient algorithm 

The algorithm described he re  and applied in the software package uses gra- 
dient reduction, that  is, an elimination of some gradient components. If, at some 
point, the value of a part icular variable zi is between i ts bounds I( and ui , then 
this variable can be e i ther  increased o r  decreased. However, if this value is equal 
to one of the bounds, say, to the upper  bound ui , then this variable can be only 
decreased. In such a case, negative values of the objective gradient component can 
not be accepted and are set to  zero; this variable will remain unchanged in the 
next direction of search. This modified gradient is called reduced because some of 
i ts components are set to zero  and i t  acts only in s o m e  subspace of the space of al l  
variables. 

The algorithm begins by calculating the gradient of the penalty function (3.5) 
at some start ing point z0 . This gradient is then reduced in such a way that a 
nonzero s tep in the direction of search can be performed inside the  set XL . The 
step-size in this direction is calculated using quadratic approximations in the  line 
search  method. In the  resulting point, the gradient is calculated and reduced 
again. First direction is just opposite to  the reduced gradient (minus gradient), 
t he  next directions are conjugate directions constructed on reduced gradients. 
After s o m e  number of i terations the algorithm resets itself and uses minus gradient 
direction again. 

Following notation and symbols will be used in the detailed description of the 
algorithm : 

E - accuracy parameter given f r o m  the upper level algorithm; 
k - i terat ion number; 
m - number of conjugate direction. 

The algorithm can be character ized by the  following steps: 

lo Initialize: Set  k = 0 and m = 0 

2' Calculate gradient: g k  = VF(Z k ,  



3O Gradient reduction f o r  each i =1, . . . , n : 

if g!>0 a n d x f = ~ {  o r  g:<0 and x f = u (  then se t  g:=0. 

If t he  resulting subspace is dif ferent than this obtained in last preceding 
iteration, set m =O . 
4' Stop test: if ( I gk  I I 5 E then stop 

5' Calculation of new direction: if m =O o r  m is g rea te r  than the  number of 
nonzero elements in syk  then get a simple direction 

dk = -syk 

otherwise calculate conjugate direction using Polak-Ribiere algorithm: 

dk = -gk + p d k - 1  

with 

6' Direction check: if < d k  , g k  > 2: 0 then set m = 0 and go back t o  s tep 5' 

7' Step-size limit: 

TM = min max d-4 1 
' - 4 k  

'&in 

8' Line search: find step-size ? such that  

/ (xk  + i d k )  = min{(xk + r d k )  
[0.ry 

If i t  fails ,i.e. ? = 0 then set m = O  and go back t o  s tep 5' 

9' Step: 

xk+ '  = x b  + i d k  , k = k + I  , m = m  + 1  

go to  step Z 0  

The actual algorithm implemented in FORTRAN is much more complicated. I t  
includes many safeguards and i t  takes into account round off errors and finite 
accuracy of computations. 

3.1.3. Penalty shift algorithm 
The penalty t e r m  in (3.5) has the following form: 

with 
k, - positive penalty coefficients, 
vi - penalty shifts, 

v4  non-negative fo r  i = l ,  . . . , n, , 
v{ unconstrained f o r  i =nu + l , .  .. , nh . 



Standard penalty algori thms use any method of unconstrained optimization t o  solve 
(3.5). The penalty coeff ic ients are then increased according t o  t h e  violation of 
constra ints obtained and (3.5) i s  solved again. This procedure i s  repea ted  until t h e  
solution of (3.5) is fo rced by t h e  penalty t e r m  to be sufficiently close to t he  feasi- 
ble set. Most frequently, t h e  penalty coeff ic ients become very  la rge  which makes 
problem (3.5) ill conditioned. 

In t h e  shigted penaLty jgunction a tgor i thm t h e r e  is no need t o  increase 
penalty coeff ic ients as strongly as in standard penalty algorithms; penalty shi f ts  
are used instead to increase t h e  penalty effect.  The penalty function is shif ted in 
t h e  di rect ion opposite t o  t h e  constra int  violation. In t h e  case of inequality con- 
st ra ints,  th is leads to a shi f t  "inside" t h e  admissible set XN ; t o  shi f t  a constra int  
f { (x)  5b{ inside, one must dec rease  t he  r igh t  hand side b{ o r ,  equivalently, set a 
positive value of t h e  shi f t  parameter  v{ in (3.6). The penalty t e r m  becomes then 
act ive  in a band measured by v{ along t h e  corresponding boundary of t h e  set XN . 
In t h e  case of equality constra ints,  penalty sh i f ts  can be  e i t he r  positive o r  nega- 
tive; t h e  adequate shi f t  is just in t h e  di rect ion opposite to t h e  cu r ren t  violation of 
constra ints when solving (3.5). In both cases,  penalty shi f ts  increase t h e  re la ted 
penalty term in (3.6). Additional safeguards are employed to avoid stopping t he  
algorithm inside t h e  feasible set with r espec t  t o  t h e  ac t ive  constra int .  

The algorithm is character ized by t h e  following steps: 

1' Set init ial k{ = k p  and v{ = o , i =I,. . . , nh  

2' Solve problem (3.5) using t h e  reduced conjugate gradient  algorithm; calculate 
maximal violation of constra ints at t h e  solution point: 

with 
gv - norm of violation of inequality constraints: 

gv  = max max(O,( f { (x )  - 9 ) )  
(-1. .... "0 

gf - norm of inequality constra ints forced inside t h e  feasible set: 

h v  - i s  t h e  norm of violation of equality constraints: 

h v =  max I f { ( x ) - b { I  
{=nu+' ..... nh 

3' Stop test: if q  i s  less than a given accuracy  coefficient 7 then stop. 

4' If i t  is  a f i r s t  i terat ion then set c  = q  and go t o  s t ep  6' . 
5' If q  > d then set p = d and go  t o  s t ep  9' 

6' Penalty shif ts: 

v{ = max ( 0 ,  vc + f { (x )  - b i ) ,  i =1, . . . , n u  

7' If q  > c  then set p = c  and go t o  s tep  9' 



9' For each constra int  violated more than p , increase t h e  penalty coeff ic ients 
ki =2 * and decrease  t h e  penalty shi f ts  vi =0.5 * v$ . Go t o  s tep  8" . 

In most cases changes of penalty shi f ts  in s tep  6' are sufficient t o  ge t  conver- 
gence. However, if t he  rate of convergence in not sat is factory,  penalty coeffi- 
c ients are also changed in s t ep  9" . 

3.1.4. Verification of gradients 
Depending on t he  number of time per iods taken into account in t h e  model, com- 

p a r e  Section 2.1, t he  number of functions f $ ( z )  in t he  genera l  form (2.6) - (2.9) of 
t he  model changes from about th i r t y  t o  severa l  hundreds. The number of nonzero 
gradient  elements changes from severa l  hundreds t o  severa l  thousands. The model 
of t h e  system itself i s  r a t h e r  complicated: i t  i s  not a single FORTRAN subroutine, 
but  r a t h e r  l a rge  set of interconnected subroutines and da ta  blocks, see Kaden 
1986. Thus i t  i s  ve r y  easy t o  make a mistake calculating analyt ical forms of t he  
der ivat ives of complex expressions in t h e  model. 

Unfortunately, optimization algori thms are very  sensit ive t o  such mistakes 
and become inefficient o r  even fa i l  if t he  changes of object ive values and con- 
s t ra in ts  are inconsistent with t he i r  gradients. 

Therefore  i t  is  necessary  t o  check t h e  consistency of a l l  gradients a f t e r  each 
modification of t he  model. For  th is purpose,  a special numerical algorithm was 
included in t he  optimization package. In th is algorithm gradients are checked 
numerically by applying a f ini te d i f ference method. 

According t o  t he  Lagrange theorem in a single dimensional case t h e  t e r m :  

f'(z2) - f ( z 1 >  

x2 - 21  

is  equal t o  t he  der ivat ive of t h e  function f' ( z )  at some point between z ,  and re. 
Typical algori thms of gradient  estimation assume tha t  th is term i s  t h e  best  approx- 
imation of t he  gradient  in t he  cen te r  of th is  interval.  However, such approach 
requ i res  2 * n points to estimate a gradient  in t h e  n dimensional case . 

A regu la r  simplex method can be  applied t o  minimize t h e  number of points 
where t h e  functions f $ ( z )  have t o  b e  calculated. At a neighborhood of such a point 
zo a regu la r  simplex of n + 1 ver t ices  z,, zz, .  .. ,z,+~ i s  constructed with x in t h e  
center :  

In a regu la r  simplex al l  d is tances r = ( 1 z -zj ( , j =l,. . . ,n + l  are equal and 
value r i s  called t h e  radius of t h e  simplex. The problem i s  t o  find the  di rect ions 
dj  =zj -xo  tha t  span t h e  regu la r  simplex. 

The algorithm of grad ient  veri f icat ion consist of two par ts :  construct ion of a 
simplex (steps 1" - 4")  and calculation of gradient  est imate (steps 5' - 7' ). 

1' Calculate scalars:  



2' Calculate f i rs t  direction: 

3' Calculate next directions recursively fo r  j = 2,. . . , n +1 

but f o r  each d additionally changing only component number j -1 

dl- '  = - ( j  -1) d l - '  

4' Calculate vert ices of the simplex as: 

zj = z o + d j ,  j = l ,  . . . ,  n + l  

5' A t  each point zj , j = l , .  . . , n +1, calculate values 

PI = Pc(zj) 

6' For each functions P i (z )  calculate an estimate of i ts  gradient component: 

7' Compare these numerical estimates with the  gradients calculated analytically at 
point z,. 

3.2. Program description 

3.2.1. Program structure 
The problem solver MSPN f o r  non-linear multi-criteria analysis i s  embedded in 

the  complex DSS MINE as i t  is  i l lustrated in Figure 4. A detailed description of the 
model system is given in Kaden, 1986. 
The MSPN package is a set of 21  interlinked FORTRAN subroutines and functions. 
In Figure 5 the s t ruc tu re  of the  MSPN package is depicted. 
A detailed description of the used COMMON blocks and of al l  subroutine and func- 
tions is given in the  Appendices A and B. 

The MSPN package contains only the  algorithms fo r  multiobjective optimiza- 
tion. All input data and the mathematical model (Eq.(2.6)-(2.9)) are prepared out- 
side ouf MSPN in the  DSS MINE. The same holds t r u e  fo r  the storage, processing 
and output of optimization results. A detailed description is given in Kaden, 1986. 

The only link between model users and the MSPN package takes place in the  
case of modification of optimization control parameters (default values are 
defined), and in case of numerical problems. In Section 3.2.3 and 3.2.4 some infor- 
mations are given. 
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Figure 4: St ruc tu re  of the  Decision Support  System MINE 

3.2.2. Storage method for Jacabian matrix 
Since t h e  Jacobian matrix is  spa rse  (compare Section 2.1) i ts  columns (gra- 

dients of constraints) are stored in a special way using an  indirect  indexing 
method. The gradients of constra ints are not s tored as n-dimensional vectors  
(sequences of n elements) but r a t h e r  as sequences of elements known t o  b e  'active' 
i.e. such elements which can  have nonzero values. The remaining elements ('non 
act ive') must b e  known to be  equal to ze ro  during t he  en t i r e  optimization process.  

The act ive elements are assumed t o  be l isted as sequences of elements 
o rdered  according t o  the i r  p lace in t h e  original n dimensional vector .  This method 
of listing i s  not obl igatory but t h e  package is more efficient if act ive elements are 
ordered  in such a way. 

The beginning indices and t h e  lengths of these sequences are stored in t he  
matr ix of indices icon(). The nonzero gradient elements themselves are s to red  in 
t he  Jacobian area of a genera l  purpose s torage matrix r ( )  (see descript ions of 
COMMON blocks /optc/ and /opti/ in Appendix A). 

The a r r a y  icon() i s  used f o r  addressing t h e  a r r a y  icon() itself and t h e  s torage 
a r r a y  r ( ) .  I t  has t w o  logical par ts :  t h e  f i r s t  p a r t  has  ng + nh elements and contains 
f i r s t  level indices f o r  addressing t h e  second p a r t  of icon(), t h e  second p a r t  con- 
tains t he  descript ions of gradients of constraints. The length of t he  second p a r t  of 
icon() is equal to  ng + nh plus twice t h e  number of separa te  sequences of elements 
used f o r  stor ing al l  t h e  elements of t h e  constraint  gradients. 
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Figure 5: Structure of the MSPN package 

For a given constraint number i : 

icon( i ) - contains t he  index of an element in t he  second p a r t  of 
icon(), where the  gradient description of th is part icular 
constraint begins, define ki = icon ( i ); 

icon( ki ) - contains the minus index of the  a r r a y  r ( )  where the  f i rs t  
active element of this gradient is stored. All o thers  active 
elements of th is constraint a r e  stored in the  next con- 
secutive elements of the  a r r a y  r ( ) ;  



icon( k i + l  ) - contains the number of the  f i r s t  active element of the 
gradient in the  whole n dimensional vector;  if i t  is  non- 
positive, then this constraint has no active elements at all 
(in case of dummy constraint) and i t  is  the  end of the 
description of th is constraint; 

icon( ki+2 ) - contains the  length of the  sequence of active elements (it 
can be equal t o  one); 

icon( k i+3 ) - contains the  number of the beginning of the next sequence 
of active elements of the gradient; if i t  is  positive then 
element icon( ki+4 ) performs the  s a m e  ro le  as icon( ki+2 
), otherwise i t  is  the end of the  description of this con- 
straint .  

Pai rs  number/length are repeated as many times as required t o  descr ibe al l  
separate nonzero sequences of elements of the gradient. 

3.2.3. Optimization control parameters 

According to  the  optimization algorithm described in Section 3.1 the  following 
control parameters a r e  needed: 

Range (rk): 
Roughly estimated range of changes of variables during the  optimization pro- 
cess, scaling of variables is useful. 

default: rk  =l. 

Norm (eps): 
The stop test in the  reduced conjugate gradient algorithm checks whether the 
norm of gradients of the  penalty function is less then the value of eps 
(denoted as E in the  s tep 4' of t he  algorithm in the Section 3.1.2), if eps is to  
small stop with ip=4. 

default: eps =0.1 

Violation (eta): 
The stop test in the  penalty shift  algorithm checks whether all constraints are 
violated less then 7 (denoted as 7 in t he  s tep 3' of the  algorithm in the Sec- 
tion 3.1.3) 

default: e ta  

Penalty (penco): 
The initial value of penalty coefficients in t he  penalty shift  algorithm (denoted 
as k: in t he  s tep 1' of the  penalty shift  algorithm - Section 3.1.3). A s  an esti- 
m a t e  the  ra t io  of gradients of the  objective function t o  gradients of con- 
s t ra in ts  should be used. 

default: penco =I. 

Iterations (Ism): 
Maximal number of i terations (calculations of model values) 

default: Ism =I000 

rho: 



Parameter fo r  scalarizing function of the  re ference point method, see p in 
Section 2.3, Eq.(2.11) 

default: rho=4 

In Section 4.1 the  influence of control parameters on the  optimization procedure is 
analyzed. 

3.2.4. Error handling 
The basic presumption fo r  a successful optimization is the  co r rec t  model for-  

mulation, above all t he  analytical gradients. The , la t ter  can be checked using the  
verification algorithm, see Section 3.1.4. 

From the MSPN package the  following interrupts are realized in case of possi- 
ble e r ro rs :  
- Optimal solution not found because of the  limit of i teration number (ip=3). 
- Optimal solution not found because of numerical errors - required accuracy 

not attainable. In th is case the control parameter eps might be increased. But, 
usually th is interrupt indicates that  analytical formulas f o r  functions o r  the i r  
gradients are wrong (ip=4). 

- Optimization algorithms can not start because of too s m a l l  storage a r e a  
reserved in the  a r r a y  r ( )  in t he  COMMON block /optc/ (ip=5). For s torage 
allocation see Kaden, 1986. 

- Optimization fai ls because of t he  empty feasible set (ip=6). This might be 
caused by to  strong constraints and bounds o r  by model formulation e r ro rs .  

In case of the in ter rupts  (ip=3,4,6) the  model output can be  used t o  localize possi- 
ble e r ro rs .  This output includes: 

deps and eta - values compared on the  stop test with eps and eta parame- 
te rs ,  respectively; deps is the  cur ren t  norm of the 
penalty function, deta is the  cur ren t  violation of con- 
s t ra in ts  

ip - e r r o r  condition parameter; ip=2 means "optimal solution 
found" 

i t e r  - total number of model calculations (calls f o r  subroutine 
cricon). 

Lines with numbers at t he  beginning descr ibe active constraints with: 
** - the i r  number (column in the  Jacobian matrix), 

w - the  cur ren t  value of constraint, 

v - the  cur ren t  penalty shift ,  

penal- the  cur ren t  coefficient. 

The value I =(v +w)*penal is a n  approximation of a Lagrange multiplier with 
respect  t o  the  scalarized objective function. It may be used fo r  a post-optimal 
analysis. 

4. Computational T e s t s  

4.1. Robustness of MSPN solver 
In o rde r  t o  analyze the robustness of t he  MSPN algorithm with respect  t o  the  

optimization control parameters, see Section 3.2.3, a ser ies of numerical tests with 
the DSS MINE have been performed. 



The tests have been done f o r  a planning horizon of 7 planning periods. A s  c r i -  
te r ia  t he  following had been selected: 

dev-m - Deviation municipal water demand/supply , 
dev-i - Deviation industr ial  water demand/supply , 
cost-mi - Total mine drainage cost ,  
cost-m - Cost f o r  municipal water supply, 
cost-i - Cost f o r  industr ial  water supply. 

For each c r i t e r i a  t h e  utopia point w a s  selected as re fe rence  point. A s  t he  s tar t ing 
point one with significant deviation t o  the  expected solution w a s  used in o r d e r  t o  
real ize a l a rge  number of i terat ions. 

In Figure 6 some resu l ts  are depicted i l lustrating t h e  influence of control  parame- 
ters on the  resul ts.  Only those c r i t e r i a  are shown which are strongly af fected by 
t he  parameters.  For t h e  c r i t e r i a  dev-m, dev-i, cost-m the  influence is almost negli- 
gible. 
From these tests t h e  following conclusions can be  drawn: 

range (rk): 

The influence of th is parameter  on t he  numerical resu l ts  i s  negligible. The varia- 
t ions are less then 1%. But a to  small value af fects t he  number of i terat ions signifi- 
cantly. According t o  Figure 6a values between 0.1  and 5 are reasonable. 

violation (eta): 

The influence of th is parameter  i s  again small, less then 1%. Smaller numbers of e t a  
increase the  number of i terat ions. A s  a compromise eta=l0-' should be  chosen. 

norm (eps): 

A s  expected th is parameter  s t ronger  e f fec ts  numerical resu l ts  and number of 
i terat ions. Only values greater/equal  0.05 could be chosen. For t h e  value e p s  =0.01 
t h e  required accuracy has not been attainable. The resu l ts  deviate in a range 
between maximum 5 and 10% - qui te acceptable from the  pract ica l  point of view. 
Furthermore in each case Pareto-optimality (a t  least  locally) w a s  achieved, com- 
p a r e  resu l ts  f o r  cost-mi and cost-i in Figure 6c. A s  a good compromise between 
accuracy and number of i terat ions e p s  =0.1 should be  chosen. 

penalty (penco): 

The initial penalty coeff icient has  been var ied between 0.5 and 10. I t  does pract i -  
cally not e f fec t  t he  numerical results. The influence on t h e  number of i terat ions i s  
small f o r  values between 0.5 and 5. Only in the  case of penco =10 t he  number of 
i terat ions increased. A s  a good compromise penco =I. i s  proposed. 

Above t he  influence of optimization parameters  on t he  c r i t e r i a  as in tegral  parame- 
ters has  been analyzed. Another interest ing question i s  the i r  influence on the 
var iables (decisions). 

The same parameter  combinations as depicted in Figure 6 have been analyzed 
with respec t  to t he i r  impact on t he  variables. Analogously to t he  c r i t e r i a  the  
MSPN-algorithm is a lso ve ry  robust  with r espec t  to t he  variables. The influence of 
varying range and violation i s  almost negligible. The deviations are less then 5%, 
in most cases even less then 1% ( re lated to the  value of t h e  variable). Only in one 
case t h e  deviations are st ronger .  This i s  depicted in Figure 7 f o r  the  var iables g ,, 
and ad,,, as decisions on water allocation (water quantity). For detai ls on the  
meaning of t he  variables see Kaden et al., 1985a. 
The solution f o r  period 1 divers  significantly in t he  case of range r k=0 .1  from the  
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o ther  solutions. For that  two reasons are seen: 
- t he  optimization is performed with respect  to  c r i te r ia  as integral values over  

the whole planning horizon. Due t o  the  increasing time s teps of planning 
periods la te r  planning periods represents  a l a rger  p a r t  of the c r i te r ia ,  get  a 
higher weight. 

- the  parameter combination of a small norm esp=0.1 with a rough violation 
q=0.01 is  not very  reasonable. 

Nevertheless the  water balance is satisfied. The increased %,,-value is compen- 
sated by a reduced qb ,,, . 

The effect of the  norm is more significant as i t  should be expected from the  
resul ts f o r  cr i ter ia ,  see Figure 6c. In Figure 8 the resul ts f o r  four variables are 
depicted. These are the  variables with the  strongest deviations. For al l  o ther  
variables the deviations are less then 5%. 
The deviations are hardly t o  be explained. Probably they are above al l  caused by 
f lat objective functions with respect  t o  the given variables. Small numerical devia- 
tions due t o  dif ferent accuracy could lead t o  dif ferent solutions. 

4.2. Influence of starting point values 

The optimization problem to  be solved is non-linear in most of i ts parts.  For 
such a complicated mathematical model as i t  is  given fo r  the  DSS MINE i t  is practi- 
cally impossible t o  analyze analytically t he  propert ies of the objective function 
with respect  t o  convexity and extremal values. The existence of local optima has 
t o  be expected. O r ,  with o ther  words, the  estimated solution is not necessarily an 
global optimal solution. 

Two principle possibilities are available t o  check the  solution behavior with 
respect  t o  local/global optima: 
- Application of an optimization procedure resulting p e r  definition in a solution 

being a global optimum. Such proper ty  posses some random search methods, 
e.g. ASTOP, Born 1985. The numerical ef for t  of such methods is extremely 
high, the i r  applicability f o r  t he  given problem is sti l l  under study. 
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- Experimental analysis varying t he  star t ing points f o r  optimization. 

In t h e  following a few resu l ts  f o r  a n  experimental analysis are given. 

The most logical way t o  analyze t he  influence of star t ing point values i s  t he  
random selection of t h e  star t ing points between upper  and lower bound. This has 
been done using a random generator  f o r  uniform distr ibuted random numbers. For 
t he  tests t he  same c r i te r ia  as descr ibed in Section 4.1 have been considered. 
Results f o r  selected c r i t e r i a  are l isted in Table 1. 
The Table i l lustrates that  only t he  c r i te r ia  cost -mi and cost -i significantly 
depend on s tar t ing point values. The maximal deviation i s  in t h e  range of 10%. 

An interest ing question is, whether t h e  dif ferent s tar t ing points resu l t  in dif- 
fe ren t  local optima, o r  t h e  resu l ts  are simply di f ferent  Pareto-optimal solutions. In 
Figure 9 t h e  resu l ts  f o r  t w o  c r i te r ia  are graphical ly i l lustrated. 
I t  is  out  of question that  only 11 tests are stat ist ical ly not sufficiently f o r  general- 
ization. Nevertheless from t h e  Figure 9 could be concluded tha t  some of t he  solu- 
t ions (connected by the  dashed line) are global Pareto-optimal, a f e w  o the rs  only 
local. But even f o r  the  "worst solution" t h e  distance t o  t h e  next  hypothetic global 



Table 1: Solutions f o r  randomly se lec ted s tar t ing  point values 
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Figure 9: Solutions f o r  d i f fe rent  s tar t ing  point values 
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Pareto-optimal point i s  less then 7 - 10% of i ts  value. 

Another s e r i e s  of numerical tests h a s  been done chosing lower and upper  
bounds of var iab les  as s ta r t i ng  point values. For  these  tests only one  planning 
per iod has  been analyzed. For  each  var iable one r u n  was made with lower and 
upper  bound, t h e  resu l t s  were compared with a n  a r b i t r a r y  "nominal" solution. 
Fourteen var iab les  have been var ied  (28 runs) .  In Table 2 some resu l t s  are dep- 
icted. 
The resu l ts  i l lus t ra te  t h e  smal.1, influence of var iat ions of single s ta r t i ng  points f o r  
one per iod.  The e f fec t  i s  accumulating if more planning per iods are under 
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Table 2: Statist ical analysis of t h e  influence of star t ing point on c r i t e r i a  
( f i rs t  period) 

1 c r i te r ia  1 nominal value ! mean value 1 standard deviation 1 

consideration. In a l l  cases f o r  reasonable s tar t ing values the  deviations are in t he  
range  of pract ica l  acceptance. 
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4.3. Conclusions 

A ser ies  of numerical tests has  been performed in o r d e r  t o  analyze t he  
robustness of t he  MSPN-algorithm with respec t  to  optimization parameters  and t o  
check t he  influence of s tar t ing point values. From t h e  resu l ts  can be  concluded 
tha t  t he  MSPN-algorithm is well suited f o r  t h e  given problem. Variations in optimi- 
zation parameters d o  not e f fec t  t he  solutions significantly. 
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The mathematical model of t he  DSS-MINE behaves robust  with respec t  t o  t he  
selection of s tar t ing points. I t  can not b e  excluded tha t  local optima are estimated, 
but  t he  local optima are expected close t o  global optima. 

For  a l l  tests deviations in c r i te r ia  values have been found less then about 10%. 
Taking into t h e  account t he  accuracy of input data ,  t h e  simplified mathematical 
models of environmental and socio-economic processes th is  deviation i s  fully 
acceptable.  

4 

2 

64.2 

1.1 

35.5 

Some of t h e  tests are from t h e  pract ical  point of view not  real ist ical ly, espe- 
cially t he  random generation of star t ing point values. For  t he  pract ica l  problem 
the  s tar t ing point values are in most cases known quite w e l l  and a consistency of 
var iables in time has  t o  be  considered. (It does not  make much sense t o  change 
variables as water allocation drast ical ly between planning periods). Consequently 
t h e  problem of star t ing point selection and local/global optima is from the  pract i -  
ca l  point of view less significant. Furthermore t h e  resu l ts  of t h e  multi-criteria 
analysis within t he  planning  model serves  only as a guideline f o r  a more detailed 
analysis with t h e  second level management model. 

0.2 

0.8 

1.2 

0.0 

0.7 



5. Ref  ere nces 

B0rn.J. 1985. Adaptively controlled random search - a variance function approach. 
Systems analysis, Modelling, Simulation, Vol. 2, No. 2, pp.109-112, Akademie- 
Verlag Berlin. 

Kaden,S., Hummel, J., Luckner.L., Peukert.D., Tiemer,K. 1985a. Water Policies: 
regions with open-pit lignite mining (Introduction to the IIASA study), IIASA, 
WP-85-4, p.67. 

Kaden,S., Luckner,L., Peukert,D., Tiemer,K. 1985b. Decision support  model system 
fo r  regional water policies in open-pit lignite mining areas. International 
Journal of Mine Water. Vol.  4, No.1, pp.1-16. 

Kaden,S, Michels,I., Tiemer,K. 1986. Decision Support System MINE; the  Manage- 
ment Model, IIASA, CP-86, forthcoming. 

Kaden,S. 1986. Decision Support System MINE; Description of the Model System, 
IIASA, WP-86, forthcoming. 

Wierzbicki,A.P. 1983. A Mathematical Basis f o r  Satisficing Decision Making. 
Mathematical Modeling USA 3:391-405 (Report IIASA RR-83-7). 



APPENDIX k COMMON blocks 

All COMMON blocks used in t h e  solver p a r t  of t he  program are described 
h e r e  in lexicographical o rde r .  For each block, the  full l ist of elements includ- 
ing a shor t  descript ion is  given a f t e r  i t s  name. The types of elements are 
described using FORTRAN keywords preceding each element name. 

in teger  lbgh - t he  number of Jacobian matrix elements known t o  b e  
nonzero and s tored;  

in teger  kbgh - t he  index of t he  beginning of an  area in t he  a r r a y  r ( . )  
where the  Jacobian matrix is  s tored;  

in teger  icon() - the  a r r a y  of indices organizing s to rage  of Jacobian 
matrix in t he  a r r a y  r ( . )  (see the  descript ion in Section 
3.2.2); t he  tota l  size of th is  a r r a y  i s  defined outside 
t he  package (see t h e  descript ion of subroutine go); 

in teger k l  - the  index of t he  beginning of an  area in t h e  a r r a y  r ( )  
where cu r ren t  values of the  scalarized object ive func- 
tion and const-raints are stored;  

integer k2 - t he  index of t he  beginning of an  area in t h e  a r r a y  r ( )  
where t he  penalty shi f ts  are stored;  

in teger  k 3  - t h e  index of the  beginning of an area in t h e  a r r a y  r ( )  
where t h e  penalty coefficients are stored;  

integer k5 - t he  index of t h e  beginning of a n  area in t he  a r r a y  r ( )  
where t he  best  feasible point x is s tored;  

in teger  k6 - the  index of t he  beginning of an  area in t h e  a r r a y  r ( )  
where t he  values of scalarized object ive function and 
constraints at the  best  feasible point x are stored;  

real*8 r ( )  - a general  purpose a r r a y  used f o r  s to rage  of severa l  
kinds of da ta  in most subroutines; areas of any s ize in 
th is a r r a y  are allocated using indices in t he  COMMON 
block /opti/ (see below); t h e  total size of th is a r r a y  is  
defined outside t he  package (see t h e  descript ion of 
subroutine go); 

real*8 db - the  absolute accuracy of real*8 computations, re la ted 
t o  t he  smallest real*8 positive number distinguishable 
from real*8 zero;  

real*8 dw - the  re la t ive  accuracy of real*8 computations, re la ted 
t o  t he  smallest real*8 positive number which added t o  
real*8 one i s  distinguishable from real*R one; 



logical ws - 

logical t p  - 

/optg/ 

in teger  kb - 

/opti/ 

in teger i l  - 

in teger  i2 - 

/optk/ 

in teger  kf - 

in teger  kgh - 

in teger  k bf - 

in teger  kbgh - 

in teger  k r h s  - 

/optk l /  

in teger  kx - 

in teger  kx l  - 

in teger  kxu - 

a logical var iable which is  t r u e  if f o r  some reasons t he  
value and/or  gradient  of penalty function a r e  recalcu- 
la ted using previous da ta  ( the values and/or  gradients 
of object ives and constraints);  otherwise i t  is  false; 

a logical var iable which is  fa lse if during cu r ren t  l ine 
sea rch  at least  one s tep  with improvement w a s  per-  
formed, otherwise i t  i s  t rue ;  

t h e  index of t h e  beginning of a n  area in t h e  a r r a y  r ( )  
where t he  gradient  of t h e  penalty function is  s tored;  

t h e  index of t h e  f i r s t  element of t h e  a r r a y  r ( )  f r e e  f o r  
use, elements r (1)  - r(i1-1) being a l ready al located. In 
o r d e r  t o  use a data  area of t h e  size M subrout ine uses 
i l  as t h e  beginning index of th is  area and sets i l= i l+M 
t o  inform a l l  o t he r  subrout ines t ha t  th is area i s  
a l ready al located; 

t h e  index of t h e  last element of the  a r r a y  r ( )  increased 
by one; i l  must always be  less than i2. This condition is  
checked in a l l  subroutines which al locate areas in 
a r r a y  r ( ) .  If th is  condition i s  violated, then t h e  value 
of IP  i s  set t o  IP=5 and th is  value i s  re turned from the  
package; 

t he  index of t he  place in t h e  a r r a y  r ( )  where t h e  value 
of t h e  scalar ized object ive function is  s tored;  

t he  index of t he  beginning of an area in t h e  a r r a y  r ( )  
where values of constra ints are stored;  

t he  index of t h e  beginning of an  area in t h e  a r r a y  r ( )  
where t h e  gradient  of t h e  scalar ized object ive function 
i s  s tored;  

t h e  index of t h e  beginning of a n  area in t h e  a r r a y  r ( )  
where t he  Jacobian matr ix is  s to red  (this i s  t h e  same 
value as kbgh in COMMON block /consti/ - i t  i s  repeated 
h e r e  f o r  convenience); 

t he  index of t h e  beginning of an area in t he  a r r a y  r ( )  
where t h e  r ight  hand s ides of constra ints are stored;  

t he  index of the  beginning of an  area in t h e  a r r a y  r ( )  
where t he  cu r ren t  point is  s tored;  

t he  index of t h e  beginning of an area in t h e  a r r a y  r ( )  
where lower bounds are stored;  

t h e  index of t he  beginning of an  area in t h e  a r r a y  r ( )  
where upper  bounds are stored;  



/optn/ 

in teger n 

integer ng 

integer nh 

/opt0 / 

real*8 eta 

logical logn 

/opts/ 

in teger 1s 

- t h e  number of independent var iables x; 
- t h e  number of nonlinear inequality constraints; 
- t he  number of nonlinear equality constraints; 

- a n  accuracy parameter  set by t h e  user  (see an2 
below); 

- a logical var iable which i s  t r u e  if at least  one feasible 
point w a s  found, otherwise i t  i s  false; 

- the  number of cal ls to subroutine cricon calculating 
t h e  model (see Kaden 1986) tha t  remains t o  t he  end of 
computations if t he  i terat ion number limit will become 
active. A t  the  beginning, th is number i s  set t o  t he  maxi- 
mal number of i terat ions defined by t h e  user ,  and then 
subsequently decreased; 

- t h e  value of t h e  norm of penalty function minimized in 
t he  reduced gradient algorithm. The stop test checks 
whether this value is  less than t h e  given accuracy 
parameter eps; 

- t he  value of cu r ren t  maximal violation of constraints. 
The s top test of t he  shif ted penalty algorithm checks 
whether th is value i s  less than t h e  given accuracy 
parameter  e ta ;  



APPENDIX Bs Subroutines and functions 
All subroutines and functions of the MSPN package a r e  described here  in 

the alphabetical o rder .  Each formal parameter and COMMON block element is 
preceded by i ts function code and FORTRAN type. Possible function codes are:  

(i) - input item, not changed inside the  routine; 

(0) - output item, the input value does not influence the  calculations 
inside the routine; 

(-) - item not used, given fo r  alignment purposes only; 

(i/o) - input and output item. 

The COMMON block elements are already described in Appendix A. In the fol- 
lowing only the role of formal parameters of subroutines and functions is 
described. 

*** subroutine addgr 
Adds weighted gradient of constraint Ilk' to  the  'nl-dimensional gradient 

'gl' of the penalty function, ' rho'  is the weight (approximation of a Lagrange 
multiplier) of this constraint. The Jacobian matrix is sparse and so  i t  is stored 
in a special way using indirect indexing method (see jacdim function descrip- 
tion and Section 3.2.2). 

Parameters: 

(i/o) real*8 gl - n dimensional a r r a y  of gradient of penalty func- 
tion 

(i real*8 r h o  - weight of added constraint 

(i integer lk - number of added constraint 

(i integer n - number of gradient elements 

COMMON blocks: 

(-1 integer lbgh,kbgh 

(i) integer icon() 

/optc/ 

(i) real*8 r ( )  

*** function real*8 anom 
Calculates and re tu rns  square of Euclidean norm of 'nl-dimensional vec- 

t o r  'a ' .  Returns zero if 'n' is not positive. 

Parameters: 

(i) real*8 a() - 'n' dimensional a r r a y  

(i) integer n - dimension of a r ray  'a' 

*** function real*8 calpen 
Calculates and re tu rns  the  value of the penalty function and/or calcu- 

lates the  gradient of the penalty function according to  the value of parameter 
lb:. 

lb= 0 calpen calculates only value of the penalty function 



lb= -1 calpen calculates only gradient  of t he  penalty function 
lb= +1 calpen calculates both, value and gradient  of t he  

penalty function 
lb = +2 initialization of internal data 

Parameters:  

(i) real*8 x - t he  'n' dimensional a r r a y  containing a point 
where value and/or gradient have t o  be  calcu- 
lated 

( i )  in teger lb - determines t h e  required function (see above) 

COMMON blocks: 

/opta/ 

(i) integer kl,kZ,k3,k5,k6 

/optf / 

(i/o) logical w s  
(0) logical t p  

/optg/ 

(i) in teger kb 

/optk/ 

(i) integer kf ,kgh,kbf ,kbgh,krhs 

/optn/ 

(i) integer n.ng,nh 

/opto/ 

(i) real*8 eta 
(i/o) logical logn 

/opts/ 

(0) integer Is 

*** subroutine go 

I t  i s  t he  en t ry  t o  t h e  optimization system. I t  performs severa l  functions: 
- initialization of t he  whole optimization system; 
- reservat ion of main s torage areas checking whether t h e  requ i red space 

is available; 
- cal l  f o r  specsi subroutine f o r  dimension informations and control  param- 

eters from the  da ta  base; 



- call fo r  jacdim subroutine t o  initialize the  storage algorithm fo r  the  
Jacobian matrix; 

- call  f o r  datiou subroutine f o r  initial data from da ta  base; 
- if t he  value of ' iver '  variable is non zero cal l  f o r  gradient verification 

subroutine; 
- call  the subroutine go f o r  start ing the  optimization process; 
- call f o r  datiou subroutine f o r  saving resul ts of optimization; 
- output e r r o r  messages if optimization fails. 

The e r r o r  condition is detected using the value of parameter ip re turned from 
optimization subroutines, possible values and the i r  meanings a re :  

ip = 1 Used always as initial value when optimization subrou- 
tines a r e  called. 

ip = 2 Optimal solution with required accuracy ( E and 7 )  w a s  
found a f t e r  no more than Ism iterations. 

ip = 3 Optimal solution not found because of the  limit of i tera- 
tion number. 

ip = 4 Optimal solution not found because of numerical e r r o r s  
- required accuracy not attainable (May be analytical 
formulas f o r  functions or the i r  gradients are wrong ?). 

ip = 5 Optimization algorithms can not start because of too 
s m a l l  storage area reserved in the  a r r a y  r ( )  in the  
COMMON block / optJ. 

ip = 6 Optimization fai ls because of t he  empty feasible set. 

Parameters: 

(i/o> integer is - declared size of the  real*8 a r r a y  r ( )  in the  COM- 
MON block /optc/ 

(i) integer isi - declared size of the integer a r r a y  icon() in the  
COMMON block /consti/ 

COMMON blocks: 

/opta/ 

( -  integer kl,kZ,k3 

(0) integer k5,k6 

/opti/ 

(0) integer i l  

/optk/ 

(0) integer kf ,kgh,kbf ,kbgh,krhs 

(0) integer kx,kxl,kxu 



(0) integer n,ng,nh 

(i) integer 1s 

(i) real*€! an l ,an2  

(i) integer iver  

*** subroutine goopt 

Performs some  more initialization and cal ls  t h e  subroutine pensft which 
implements t h e  penalty shif t  optimization algorithm. 

Parameters:  

(i) integer n - t h e  number of var iables 'x' 

(i> integer ng - t he  number of inequality constraints 

(i) integer nh - t he  number of equality constraints 

(i/0) real*8 x - a r r a y  of var iables x s tar t ing point and 
optimal point are set h e r e  

(i) real*8 x l  - lower bounds f o r  var iables 'x' 
(i) real*8 xu - upper  bounds f o r  var iables 'x' 

(i) real*€! r k  - roughly estimated range of changes of variables 

(i real*€! eta 

(i) real*€! eps  - t h e  stop test in t h e  reduced conjugate gradient  
algorithm checks whether t h e  norm of gradient  
of penalty function i s  less then value of eps  
(denoted as E in t h e  s tep  4' of t h e  algorithm in 
t h e  Section 3.1.2) 

- t he  s top test in t h e  penalty shi f t  algorithm 

checks whether a l l  constra ints are violated less 
t he  eta (denoted as 7 in t he  s tep  3' of t h e  
algorithm in t h e  Section 3.1.3) 

(i) real*€! penco - t h e  initial value of penalty coeff icients in t h e  

penalty shi f t  algorithm (denoted as k t  in t he  
s tep  1' of t h e  penalty shi f t  algorithm - Section 
3.1.3) 

(i) integer Ism - maximal number of i terat ions (calculations of 
model values) 

(i) integer i s  - tota l  size of the  real*€! a r r a y  r ( )  in t he  COMMON 
block /optc/ 

(i/o) integer ip - error code parameter  (see t h e  descript ion of 
go subroutine) 

COMMON blocks: 

(-1 in teger i l  

(0) integer i2 



(0) in teger  1s 

(0) real*8 an l ,an2  

*** function in teger  jacdim 
Fills t h e  COMMON block /consti/ according t o  t h e  s t r uc tu re  of t he  Jaco- 

bian matrix. Calculates and re tu rns  t h e  size of s to rage  area in t h e  a r r a y  
icon(). 

Parameters:  

(i) in teger  isi - t he  reserved  size of t h e  a r r a y  icon() 

(i) in teger  n - t h e  number of var iables 

(i) in teger  ng - t h e  number of inequality constra ints 

(i) in teger  nh - t h e  number of equality constra ints 

(i) in teger  kbgh l  - t h e  index of t he  beginning of a n  area in t h e  
a r r a y  r ( )  where t he  Jacobian matr ix will be  
s to red  

COMMON blocks 

/consti / 

(o) in teger  lbgh,kbgh.icon() 

*** subroutine put jac 

Reserves area f o r  t h e  next  sequence of Jacobian elements and descr ibes 
i t  in t h e  a r r a y  icon(). See  Section 3.2.2 f o r  descript ion of t h e  s to rage  method. 

Parameters:  

(i/o) in teger  k - cu r ren t  position in icon() 

(i/o) in teger  1 - reserved  area in r ( )  

(i in teger  np - index of f i r s t  var iab le  of sequence of ac t ive  ele- 
ments 

(i) in teger  lp  - length of th is sequence 

COMMON blocks: 

- in teger  lbgh,kbgh 

(0) in teger  icon() 

*** subrout ine krok 
Adds t h e  'n' dimensional a r r a y  'b' t o  t h e  ano ther  'n' dimensional a r r a y  'd' 

multiplied by t h e  sca la r  'c' and puts t h e  resu l t  into t h e  'n' dimensional a r r a y  
'a'. I t  does nothing if 'n' i s  not  positive. 

Parameters:  

(0) real*R a - n dimensional a r r a y  of resu l t  

(i) real*8 b - f i r s t  n dimensional a r r a y  of da ta  

(i) real*8 c - weight of t h e  second added a r r a y  

(i) real*8 d - second n dimensional a r r a y  of da ta  



(i) integer n - dimension of a l l  a r r a y s  

*** subroutine krokl 
Adds t h e  'n' dimensional a r r a y  'a'  t o  t h e  another  'n' dimensional a r r a y  'c '  

multiplied by t h e  sca la r  'b' and puts t he  resu l t  back into t h e  a r r a y  'a ' .  I t  does 
nothing if 'n' is  not  positive. 

Parameters:  

(i/o) real*8 a - n dimensional a r r a y  of resu l t  and f i r s t  added 

a r r a y  

(i real*8 b - weight of t h e  second added a r r a y  

(i) real*8 c - second n dimensional a r r a y  of da ta  

(i) integer n - dimension of a l l  a r r a y s  

*** subroutine lsrch 
Minimizes t h e  penalty function on t h e  cu r ren t  direct ion (Section 3.1.2 - 

step 8 O  of t he  algorithm). 

Parameters:  

(i in teger n - t he  number of var iables 'x* 

(0) real*8 x - t he  a r r a y  containing optimal point 'x' 

(i real*8 xo  - t he  a r r a y  containing initial values f o r  'x' 

(i) real*8 d - t he  a r r a y  containing di rect ion of changes of 'x' 

(i/0) real*8 y b - on en t ry  - value of t h e  minimized function in t he  
star t ing point; on r e t u r n  - value of t h e  minim- 
ized function in t h e  optimal point 

(i) real*8 pp - t h e  value of t he  direct ional der ivat ive of t h e  

minimized function in t he  di rect ion 'd' 

(i/o) real*8 zb - on en t ry  - init ial step-size in t h e  direct ion 'd'; 
on exi t  - optimal step-size in t h e  di rect ion 'd' 

(Val real*8 zm - on en t ry  - step-size limit; on ex i t  - if i t  is  non 
zero  then optimal solution is  equal t o  i ts  limit 
given on en t ry  

(i) real*8 del ta - re lat ive accuracy of t h e  direct ional minimiza- 

tion 

(i) integer lpm - maximal number of improvement s teps  

(i integer lcm - maximal number of a l l  s teps  
(i/o) integer ip - on en t ry  - must be  set to 1; on ex i t  - equals 2 if 

any improvement found, otherwise equals 4 

COMMON blocks: 

(i) real*8 db 



[opt&!/ 

(i) integer kb 

*** subroutine mnoz l  

Multiplies the 'n' dimensional vector 'a' times scalar  'b' and puts the 
result back into vector 'a'. I t  does nothing if In' is not positive. 

Parameters: 

(i/o> real*€! a - data and result vector 

(i > real*8 b - multiplier 

(i > integer n - dimension of all vectors 

*** subroutine move 

Moves data from the 'n' dimensional a r r a y  'b' into the 'n' dimensional 
a r r a y  'a'. I t  does nothing if 'n' is not positive. 

Parameters: 

6/01 real*8 a - destination a r ray  

(i > real*8 b - source a r r a y  

(i > integer n - dimension of all a r rays  

*** subroutine op tdm 

Determines absolute and relat ive accuracy of computations in the real*8 
arithmetic (see the description of the COMMON block /optd/ ) .  

Parameters: none 

COMMON blocks: 

*** subroutine pensft 
This subroutine implements the penalty shift algorithm described in the 

Section 3.1.3. 

Parameters: 

integer ip 

integer n 

real*€! x 

real*8 eps 

real*8 e ta  

real*8 penco 

on entry - must be se t  t o  1; on re tu rn  - indi- 
cates e r r o r  condition according to  the descrip- 
tion of subroutine g o  

the number of variables 'x' 

the a r r a y  of variables 'x'; contain start ing 
point on entry and solution point on exi t  

the lower bounds fo r  variables 'x' 

the upper bounds fo r  variables 'x' 
- the initial step-size fo r  reduced gradient algo- 

rithm 
- the required accuracy of minimization 
- the required accuracy of satisfying constraints 
- the initial value of the penalty coefficients 



COMMON blocks: 

/opta / 

(0) integer k l , k2 ,k3  

(i) integer k5,k6 

/optd/ 

(i) real*8 db,dw 

(0) logical ws,tp 

/optn/ 

( -  integer n l  

(i) integer ng,nh 

(0) real*8 etac 
(o) logical logn 

(i) integer 

(i/o) integer 1s 

( -  real*8 an1 

(0) real*8 q 

*** subroutine redgr 
This subroutine implements the  reduced conjugate gradient algorithm 

described in the  Section 3.1.2. 

Parameters: 

(i) integer n - the  number of variables 'x' 

(i/o) real*8 x - the  a r r a y  of variables 'x', contains start ing 

point on ent ry  and optimal point on exi t  

(i) real*8 xlb - the lower bounds fo r  variables 'x' 

( 0  real*8 xub - t he  upper bounds fo r  variables 'x '  

(i) real*8 zo - the  initial step-size of the  algorithm 

(i> real*8 eps  - the accuracy of minimization 

(i/o) integer ip - the same meaning as the  ip parameter in the  
pensf t subroutine 

COMMON blocks: 



/optd/ 

(i) real*0 db,dw 

/optg/ 

(i) in teger  k b  

(i/o) in teger  i l  

(i 1 in teger  i2 

/opts/ 

(i/o) in teger  1s 

(0) real*8 bn 

*** subroutine roznl 

Subt rac ts  t h e  'n' dimensional vec to r  'b' from t h e  ano ther  'n' dimensional 
vec to r  'a' and puts t h e  resu l t  back into t h e  vec to r  'a'. I t  does nothing if 'n' is  
not positive. 

Parameters:  

(i/o) real*8 a - da ta  and resu l t  vec to r  

(i > real*8 b - subt rac ted vec to r  

(i) in teger  n - dimension of a l l  vec to rs  

*** function real*8 skal 

Calculates t h e  scalar product  of t he  two 'n' dimensional vec to rs  'a' and 
'b'. Returns ze ro  if 'n' is  not  positive. 

Parameters:  

(i) real*8 a - f i r s t  vec to r  

(i> real*8 b - second vec to r  

(0 in teger  n - dimension of a l l  vec tors  

*** subroutine sub 

This subroutine works as a n  in ter face between optimization subroutines 
and t h e  model. I t  calculates value and/or  gradient  of t he  scalar ized object ive 
function. The input parameter  Ib selects one of t h e  following possible func- 
t ions of t h e  subroutine: 

lb = 0 calculates t h e  value of t h e  scalar ized function 
lb = -1 calculates t h e  gradient  of t h e  scalar ized function 
lb = + 1  calculates both t h e  value and t h e  gradient  of t h e  

scalarized function 
lb= +2 cal ls  t h e  model and calculates lower limits f o r  indivi- 

dual object ives and re fe rence  point values 



lb= +3 only calls the model (it is  the last  call - a f te r  optimiza- 
tion) 

Parameters: 

(i) real*8 x - the a r r a y  containing the point where the model 
has t o  be calculated 

(i) integer lb - the value of this parameter selects a function of 
the subroutine (see above) 

COMMON blocks: 

/ o p t k /  

(i) integer kf ,kgh,kbf 

(i) integer n,ng,nh 

*** subroutine ve rg ra  

Verifies analytically calculated gradients using the  algorithm described 
in Section 3.1.4. 

Parameters: 

(i) integer n - number of variables x 

(i) integer ng - number of inequality constraints 

(i) integer nh - number of equality constraints 

(i) real*8 x - point where gradients have t o  be  verified 

(i) real*8 r k  - range of changes of variables x (see the 

description of the  subroutine goopt )  

COMMON blocks: 

(i) real*  db,dw 

/opti/ 

(i) integer i l  

/ o p t k /  

( -  integer kf 

(i) integer kgh,kbf 

*** subroutine zero 

Resets to zero value al l  elements of the 'n' dimensional a r r a y  'a'. I t  does 
nothing if 'n' is not positive. 



Parameters: 

(0) real*8 a - reseted a r r a y  

(i) integer n - dimension of the  vector t o  be reseted 

*** subroutine znak 
Moves data f r o m  the  'n' dimensional a r r a y  'b' into the  another 'n' dimen- 

sional a r r a y  'a' changing sign of each element. It does nothing if 'n' is not 
positive. 

Parameters: 

(0) real*8 a - 
(i) real*8 b - 
(i integer n - 

destination a r r a y  

sou rcea r ray  

dimension of a l l  a r r a y s  


