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Abstract—Spatial multiplexing multiple-input-multiple-output
(MIMO) communication systems have recently drawn significant
attention as a means to achieve tremendous gains in wireless
system capacity and link reliability. The optimal hard decision
detection for MIMO wireless systems is the maximum likelihood
(ML) detector. ML detection is attractive due to its superior
performance (in terms of BER). However, direct implementation
grows exponentially with the number of antennas and the
modulation scheme, making its ASIC or FPGA implementation
infeasible for all but low-density modulation schemes using a
small number of antennas. Sphere decoding (SD) solves the
ML detection problem in a computationally efficient manner.
However, even with this complexity reduction, real-time imple-
mentation on a DSP processor is generally not feasible and
high-performance parallel computing platforms such as FPGAs
are increasingly being employed for this class of applications.
The sphere detection problem affords many opportunities for
algorithm and micro-architecture optimizations and tradeoffs.
This paper provides an overview of techniques to simplify and
minimize FPGA resource utilization of sphere detectors for high-
performance low-latency systems.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems are known

for their capability of achieving high data rates [1] and

increasing the robustness to combat the fading in wireless

channels. However, the complexity of the optimum detector,

i.e. maximum-likelihood (ML) receiver, for MIMO systems

grows exponentially with more antennas and higher modula-

tion orders. In order to reduce this complexity, sphere detection

[2], and its K-best variation, has been proposed [3], analyzed

[4] and implemented [5], [6], [7], [8], [9].

MIMO solutions have become more popular during the

recent years, and are becoming an option in several wireless

standards. Therefore, it is crucial to study methods that further

reduce the complexity of detection while maintaining high

BER performance. Conventional K-best MIMO detectors typ-

ically require long delay cycles for sorting steps. For instance,

for a multi-stage real-valued based K-best detector for a 16-

QAM MIMO system, a bubble sorter needs more than 40
cycles if the detector parameter, K, is set to 10. This long

list size introduces a large delay for the processing of the next

stage.

In this paper, we present the FPGA implementation of

a configurable MIMO detector that supports 4, 16, 64-QAM

modulation schemes as well as a combination of 2, 3 and 4
antennas. The detector can switch between these parameters

on-the-fly. The breadth-first search employed in our realization

presents a large opportunity to exploit the parallelism of the

FPGA in order to achieve high data rates. Moreover, the

extension of the detector to soft detection and its architecture

implications are discussed.

The paper is organized as follows: Section II introduces the

system model, section III introduces the MIMO detector. The

FPGA design and implementation are discussed in section IV,

and the extension to soft detection/decoding is presented in

section V. Finally, the papers is concluded with section VI.

II. SYSTEM MODEL

We consider a MIMO system with MT transmit and MR

receive antennas. The input-output model is captured by

ỹ = H̃s̃ + ñ (1)

where H̃ is the complex-valued MR × MT channel matrix,

s̃ = [s̃1, s̃2, ..., s̃MT
]T is the MT -dimensional transmitted

vector whose elements are chosen from a complex-valued

constellation Ω of the order w = |Ω|, ñ is the circularly

symmetric complex additive white Gaussian noise vector of

size MR and ỹ = [ỹ1, ỹ2, ..., ỹMR
]T is the MR-element re-

ceived vector. Each modulation constellation point corresponds

to Mc = log w bits. The preceding MIMO equation can be

decomposed into real-valued numbers as follows [8]:

y = Hs + n (2)

corresponding to

( �(ỹ)
�(ỹ)

)
=

( �(H̃) −�(H̃)
�(H̃) �(H̃)

) ( �(̃s)
�(̃s)

)
+

( �(ñ)
�(ñ)

)
(3)

with M = 2 ·MT and N = 2 ·MR presenting the dimensions

of the new system.

We call the ordering in (2), the conventional ordering.

Using the conventional ordering, all the computations can be

performed using only real values. Note that after real-valued

decomposition, each si in s is chosen from a set of real

numbers, Ω′, with w′ =
√

w elements.

III. MIMO DETECTION

The optimum detector for such a system is the maximum-

likelihood (ML) detector. ML is essentially based on mini-

mizing ‖ y−Hs ‖2 over all the possible combinations of the
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s vector. The ML detection requires exhaustive exponentially

growing search among all the candidates, that can become

practically impossible when large number of antennas are

used. In order to address this challenge, the distance metric is

modified [10] as follows:

D(̃s) = ‖ y −Hs ‖2

= ‖ QHy −Rs ‖2=
1∑

i=M

|yi
′ −

M∑
j=i

Ri,jsj |2 (4)

where H = QR represents the channel matrix QR decom-

position, QQH = I, R is an upper triangular matrix, and

y′ = QHy.

Using the notation of [5], the norm in (4) is computed in an

iterative process. Starting with TM+1(s(M+1)) = 0, the Partial

Euclidean Distance (PED) at each level is given by

Ti(s(i)) = Ti+1(s(i+1)) + |ei(s(i))|2 (5)

|ei(s(i))|2 = |yi
′ −Ri,isi −

M∑
j=i+1

Ri,jsj |2 (6)

with s(i) = [si, si+1, ..., sM ]T , and i = M,M − 1, ..., 1.

This iterative algorithm can be implemented as a tree

traversal with each level of the tree corresponding to one i
value, and each node having w′ children. The tree traversal can

be performed in a breadth-first manner. At each level, only the

best K nodes, i.e. the K nodes with the smallest Ti, are chosen

for expansion. This type of detector is generally known as the

K-best detector. Note that such a detector requires sorting a

list of size K×w′ to find the best K candidates. For instance,

for a 64-QAM system with K = 16, this requires sorting a

list of size K ×w′ = 16× 8 = 128 at most of the tree levels.

This introduces a long delay for the next processing block

in the detector unless a highly parallel sorter is used. Highly

parallel sorters, on the other hand, consist of a large number

of compare-select blocks, and result in dramatic area increase.

In order to simplify the sorting step, and significantly reduce

the delay of the detector, a minimum finder can replace the

sorter [6], [11], [12].

The soft information, typically Log-likelihood Ratio (LLR),

passed from the detection block to the decoding block is

obtained by

LD(xk|y) = ln
P [xk = +1|y]
P [xk = −1|y]

(7)

where k = 0, ...,MT · Mc − 1. This soft information is

updated in the decoder and fed back into the detector. Multiple

cycles of exchanging soft information between the detector

and decoder would eventually lead to more reliable soft

information, which will be used by the decoder, in the last

iteration, to hard-decode more reliably.

Soft information can be generated using a list of possible

vector candidates. Once this list is generated, LLR values of

Eq. (7) are computed and passed to the decoder [4]:

LE(xk|y) ≈ 1
2

max
x∈L∩Xk,+1

{
− 1

σ2
||ỹ − H̃s̃||2 + xT

[k] · LA,[k]

}

− 1
2

max
x∈L∩Xk,−1

{
− 1

σ2
||ỹ − H̃s̃||2 + xT

[k] · LA,[k]

}
(8)

where L is the list of possible vectors, x[k] is the sub-vector of

x obtained by omitting the k-th bit xk, LA,[k] is the vector of

all a priori probabilities LA for transmitted vector x obtained

by omitting LA(xk), σ2 is the noise variance, Xk,+1 is the

set of 2MT ·Mc−1 bits of vector x with xk = +1, while Xk,−1

is similarly defined.

IV. FPGA DESIGN OF THE MIMO DETECTOR

The detector is designed for the maximal case, i.e. MT ×
MR, 64-QAM case, so that it can also support a smaller

number of antennas and modulation orders.

Computing the norms in (4) is performed in the PED

blocks. Depending on the level of the tree, three different PED

blocks are used: The PED in the first real-valued level, PED1,

corresponds to the root node in the tree, i = M = 2MT = 8.

The second level consists of
√

64 = 8 parallel PED2 blocks,

which compute 8 PEDs for each of the 8 PEDs generated by

PED1; thus, generating 64 PEDs for the i = 7 level. Followed

by this level, there are 8 parallel general PED computation

blocks, PEDg , which compute the closest-node PED for all 8
outputs of each of the PED2s. The next levels will also use

PEDg . For any incoming node, PEDg computes and forwards

only the best children; whereas, both PED1 and PED2 forward

all the expanded children. At the end of the very last level, the

Min Finder unit detects the signal by finding the minimum of

the 64 distances of the appropriate level. The block diagram

of this design is shown in Figure 1.

Fig. 1. The block diagram of the Flex-Sphere. Note that there are M parallel
PEDs at each level. The inputs to the Min Finder is fed from the appropriate
PED block.

The MT determines the number of detection levels, and it

is set through MT input to the detector, which in turn, would

configure the Min Finder appropriately. Therefore, the mini-

mum finder can operate on the outputs of the corresponding

level, and generate the minimum result. In other words, the

multiplexers in each input of the Min Finder block, choose

which one of the four streams of data should be fed into

the Min Finder. Therefore, the inputs to final the Min Finder

would be coming from the i = 5, 3 or 1, if MT is 2, 3 or 4;

respectively, see Figure 1.

The MT input can change on-the-fly; thus, the design can

shift from one mode to another mode based on the number

of streams it is attempting to detect at anytime. Moreover, as

will be shown later, the configurability of the minimum finder

guarantees that less latency is required for detecting smaller

number of streams.

In order to support different modulation orders per data

stream, the Flex-Sphere uses another input control signal th(i)

to determine the maximum real value of the modulation order
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of the i-th level. Thus, th(i) ∈ {1, 3, 7}. Moreover, since

the modulation order of each level is changing, a simple

comparison-thresholding can not be used to find the closest

candidate for Schnorr-Euchner [13] ordering. Therefore, the

following conversion is used to find the closest SE candidate:

s̃i = g(2[
(1/Rii) · (yi

′ −∑M
j=i+1 Ri,jsj) + 1

2
]− 1) (9)

where [.] represents rounding to the nearest integer, and g(.)
is

g(x) =

⎧⎨
⎩
−th(i) x ≤ −th(i)

x −th(i) ≤ x ≤ th(i)

th(i) x ≥ q(i)

(10)

The above procedure is performed in PEDg to ensure select-

ing candidates within the proper range. In PED1 and PED2,

i.e. the first two levels, the PED of the out-of-range candidates

are simply overwritten with the maximum value; thus, they

will be automatically discarded during the minimum-finding

procedure.

As for the real-valued decomposition, we use the modified

real-valued decomposition (M-RVD) ordering of [11], [12].

In M-RVD, unlike the conventional ordering, each quadrature

component is followed by the in-phase component of the

same antenna. In other words, with the modified real-valued

decomposition (M-RVD), every antenna is isolated from other

antennas in two consecutive levels of the tree. Therefore, if we

use conventional real-valued decomposition, the results for a

2× 2 system would be ready only after going through all the

in-phase tree levels and the first two quadrature levels, while,

using M-RVD, there is no need to go through the latency of the

unnecessary levels. Thus, using the M-RVD technique offers

a latency reduction compared to the conventional real-valued

decomposition.

A. FPGA Synthesis Results

The System Generator FPGA implementation results of

the MIMO detector on a Xilinx Virtex-5 FPGA, xc5vsx95t-

3ff1136 for 16-bits precision and MT = 4 are presented in

Table I. The maximum achievable clock frequency is 285.71

MHz. The folding factor of the design is F = 8, thus, the

maximum achievable data rate is

D =
MT · log w

F
· fmax = 857.1 [Mbps] (11)

for MT = 4 and wi = 64.

TABLE I
FPGA RESOURCE UTILIZATION SUMMARY OF THE PROPOSED

FLEX-SPHERE FOR THE XILINX VIRTEX-5, XC5VSX95T-2FF1136,
DEVICE.

Number of Slices 11,604/14,720 (78 %)
Number of Slice Registers 27,115/58,880 (46 %)

Number of Slice LUTs 33,427/58,880 (56 %)
Number of DSP48E 321/640 (50 %)

Max. Freq. 285.71 MHz
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Fig. 2. BER plots comparing the performance of the floating-point maximum
likelihood (ML) with the FPGA implementation.

B. Simulation Results

In this section, we present the simulation results for the

Flex-Sphere, and compare the performance of the FPGA fixed-

point implementation with that of the optimum floating-point

maximum-likelihood (ML) results. Prior to the M-RVD, we

employ the channel ordering of [14] to further close the gap

to ML. Also, we make the assumption that all the streams

are using the same modulation scheme. We assume complex-

valued channel matrices, with the real and imaginary parts of

each element drawn from the normal distribution.

In order to ensure that all the antennas in the receiver have

similar average received SNR, and none of the users messages

are suppressed with other messages, a power control scheme is

employed. Figure 2 shows the simulation results for the maxi-

mal 4×4 configuration. As can be seen, the proposed hardware

architecture implementation performs within, at most, 1 dB of

the optimum maximum-likelihood detection.

V. SOFT DETECTION/DECODING

The list of candidates generated at the last level of the

MIMO detector can be used to generate soft values, i.e.

LLRs, using Eq. (8). Those LLRs will be, then, used by

the channel decoder to decode the information bits. Figure 3

provides a schematic representation of Eq. (8). The inputs to

the computation is the length MT Mc vector of bit-level APP

probabilities computed by the outer channel decoder, a list of

P candidate output vectors from the MIMO sphere detector,

each bit vector is of length MT Mc and finally a P -vector of

distance metrics, or costs, for each of the P candidates in the

sphere detectors output symbol list.

To determine the cost, in terms of time initially, for comput-

ing the soft outputs from the list of candidates generated by

the Sphere Detector, first consider the number of clock cycles

required to compute Eq. (12) for a single candidate using a

sequential approach.{
− 1

σ2
||ỹ − H̃s̃||2 + xT

[k] · LA,[k]

}
(12)
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TABLE II
CYCLE COUNT COST Tsoft FOR VARIOUS MIMO CONFIGURATIONS.

Modulation MT K Cycles

QPSK 2 5 3132
QPSK 2 10 6252
16-QAM 2 5 12492
16-QAM 2 10 24972
64-QAM 2 5 49932
64-QAM 2 10 99852
QPSK 4 5 12024
QPSK 4 10 24024
16-QAM 4 5 48024
16-QAM 4 10 96024
64-QAM 4 5 192024
64-QAM 4 10 384024

Since both x[k] and LA,[k] exclude the k’th bit of the hard-

decision bit-vectors in the list of candidates generated by the

sphere detector, and further that each entry of x[k] takes on the

values of only ±1, the inner product x[k] ·LA,[k] is computed

in MT ·Mc − 1 clock cycles using only a single adder. One

further addition is required to form the sum ‖y −H · s‖2 +
x[k] · LA,[k]. This component of the calculation is completed

by taking a Jacobian logarithm. All of the candidates in the

list need to be processed, and assuming that there are K ·
|Λ| such candidates, where |Λ| denotes the cardinality of the

constellation, results in the time required to compute the soft

value for a single bit in the length MT ·Mc output bit vector

is K · |Λ| · (MT ·Mc + Tjacln) where Tjacln is the time to

compute a Jacobian logarithm. The difference between the two

primary terms in Eq. (8) corresponding to x ∈ Xk,+1 and

x ∈ Xk,−1 requires one subtraction, and there are MT ·Mc

such calculations. Combining this cost gives the final workload

T1 for computing the soft value for a single bit as MT ·Mc

bits

T1 = K · |Λ| · (MT ·Mc + Tjacln) + 1 (13)

The hard decision bit vector contains MT ·Mc entries, for each

of which a soft value needs to be computed, giving the total

time Tsoft for computing the soft output for all of the bits as

Tsoft = MT ·Mc · (K · |Λ| · (MT ·Mc + Tjacln) + 1) (14)

Scaling by the noise variance term −1/σ2 in Eq. (8) can

be handled as a pre-processing phase to computing the soft-

outputs. That is, prior to engaging the soft-output generation

circuit the K·|Λ| length list of cost metrics is scaled by −1/σ2.

The cost of the scaling by 1/2 in Eq. (8) is also not included

in the calculations as this is realized in hardware as a simple

bit shift that is accommodated in the circuit wiring and does

not incur any compute fabric cost in an FPGA.

Table II provides a tabulation of the cost for computing

soft output values, as defined by Eq. (14), for several MIMO

configurations.

VI. CONCLUSION

In this paper, we presented a configurable architecture for

MIMO detection. The proposed architecture enhances the

performance of MIMO systems for next generation wireless

standards, and can support a wide range of different scenarios.

Moreover, the FPGA synthesis results demonstrated achieving

high data rates. Finally, we presented a scalable architecture to

generate soft values using the list of the candidates generated

at the last level of the MIMO detector.

VII. ACKNOWLEDGEMENT

This work was supported in part by Xilinx Inc., and by NSF

under grants EIA-0321266, CCF-0541363, CNS-0551692, and

CNS-0619767.

REFERENCES

[1] G. Foschini, “Layered space-time architecture for wireless communica-
tion in a fading environment when using multiple antennas,” Bell Labs.
Tech. Journal, vol. 2, 1996.

[2] U. Fincke and M. Pohst, “Improved methods for calculating vectors
of short length in a lattice, including a complexity analysis,” Math.
Computat., vol. 44, no. 170, pp. 463–471, Apr. 1985.

[3] E. Viterbo and J. Boutros, “A universal lattice decoder for fading
channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1639–1642, Jul.
1999.

[4] B. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-
antenna channel,” IEEE Trans. on Comm., vol. 51, pp. 389–399, Mar.
2003.

[5] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, “VLSI implementation of MIMO detection using the sphere
decoding algorithm,” IEEE Journal of Solid-State Circuits, vol. 40, no. 7,
pp. 1566–1577, July 2005.

[6] L. G. Barbero and J. S. Thompson, “Performance analysis of a fixed-
complexity sphere decoder in high-dimensional MIMO systems,” IEEE
Conference on Acoustics, Speech and Signal Processing, vol. 4, May
2006.

[7] K. Amiri and J. R. Cavallaro, “FPGA implementation of dynamic
threshold sphere detection for MIMO systems,” 40th Asilomar Conf on
Signals, Systems and Computers, Nov 2006.

[8] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-Best
sphere decoding for MIMO detection,” IEEE JSAC, vol. 24, no. 3, pp.
491–503, Mar. 2006.

[9] K. Wong, C. Tsui, R. S. Cheng and W. Mow, “A VLSI architecture
of a K-best lattice decoding algorithm for MIMO channels,” IEEE Int.
Symp. Circuits Syst., vol. 3, pp. 273–276, May 2002.

[10] M. O. Damen, H. E. Gamal and G. Caire, “On maximum likelihood
detection and the search for the closest lattice point,” IEEE Trans. on
Inf. Theory, vol. 49, no. 10, pp. 2389–2402, Oct. 2003.

[11] K. Amiri, C. Dick, R. Rao and J. R. Cavallaro, “Novel sort-free detector
with modified real-valued decomposition (M-RVD) ordering in MIMO
systems,” Proc. of IEEE Globecom, Dec. 2008.

[12] ——, “Flex-Sphere: An FPGA Configurable Sort-Free Sphere Detector
for Multi-user MIMO Wireless Systems,” Proc. of SDR Forum, Oct.
2008.

[13] C. P. Schnorr and M. Euchner, “Lattice basis reduction: improved prac-
tical algorithms and solving subset sum problems,” Math. Programming,
vol. 66, no. 2, pp. 181–191, Sep. 1994.

[14] L. G. Barbero and J. S. Thompson, “A fixed-complexity MIMO detector
based on the complex sphere decoder,” IEEE 7th Workshop on Signal
Processing Advances in Wireless Communications, 2006. SPAWC ’06,
Jul. 2006.

163

Authorized licensed use limited to: Rice University. Downloaded on June 30, 2009 at 16:58 from IEEE Xplore.  Restrictions apply.



Distance
Metrics

a priori 
prababilities

LA

 Hard 
decisions

x

z-1

add/sub 
control input

max()

z-1

==0

max()

z-1

==-1

±
F1: inner-product

engine

enable enable

[ ]kx,[ ]A kL kx

, 1 , 1

2 2
[ ] ,[ ] [ ] ,[ ]2 2

1 1 1 1( | ) max max
2 2k k

T T
E k k A k k A kL x L L

σ σ+ −∈ ∈

− −⎧ ⎫ ⎧ ⎫≈ − − ⋅ − − − ⋅⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭x X x X

y y Hs x y Hs x

1/2

fclk

1
clk

T c

f
M M −

F2

,[ ][ ] A k

T
kx L⋅

2

1
σ
−

2−y Hs

F3: max-log 
approximation to 

Jacobian logarithm

F4: max-log 
approximation to 

Jacobian logarithm

bit-level reliability 
information from 

outer channel 
decoder

Hard 
Outputs from 

Sphere 
Detector

bit-vector cost 
as computed by 

sphere 
detector

M1 M2

M3

key

Mn: memory element n
Fn: functional unit n
MPYn: multiplier n
An: adder n
Cn: comparitor n
Rn: register n

A1

A2MPY1

MPY2

A3

C1 C2

p Process candidate p from the list of P 
candidates generated by the sphere 

detector

R1

R2 R3

Fig. 3. Soft-output generation for sphere detector.

164

Authorized licensed use limited to: Rice University. Downloaded on June 30, 2009 at 16:58 from IEEE Xplore.  Restrictions apply.


