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Generation of nearly nondiffracting Bessel beams
with a Fabry–Perot interferometer
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A new concept for generating zero-order Bessel beams was studied theoretically. The spatial intensity dis-
tribution was calculated numerically using a wave optics model. Approximate analytical expressions were
derived to describe the radial intensity distribution in planes perpendicular to the optical axis of an imaging
lens. © 1997 Optical Society of America [S0740-3232(97)00311-6]
1. INTRODUCTION
An ideal zero-order Bessel beam consists of a superposi-
tion of monochromatic plane waves with wave vectors ly-
ing on a conical surface having the same magnitude.
Several experiments have been reported that achieve
such a superposition of plane waves. For example, this
type of angular spectrum can be obtained by applying an
annular slit in the focal plane of a lens1 or by the use of an
axicon,2 a holographic process,3,4 a Fabry–Perot
interferometer,5,6 or a special type of laser cavity.7,8

A novel concept for the generation of nearly nondif-
fracting Bessel beams as applied to microlithography was
described in Ref. 9. The experimental arrangement is
shown in Fig. 1. A pointlike source was formed by focus-
ing a He–Ne laser beam (l 5 632.8 nm). Such a point
source illuminated a scanning Fabry–Perot interferom-
eter, which produced a concentric ring system in front of a
lens. The image produced by the lens was magnified by
two microscope objectives, and the intensity distribution
was observed with a CCD camera. The lens aperture
was adjusted so that it transmitted only the first Fabry–
Perot ring and blocked all other rings.

The measured intensity distribution in planes perpen-
dicular to the optical axis is given by the J0 function.
This result was expected because a century ago10–12 it
was recognized that the diffraction pattern of a narrow
annular aperture can be described by the zero-order
Bessel function. Because of the annular illumination of
the lens, the depth of focus increased and the transverse
resolution could be improved by a factor of 1.6. This pa-
per reports on an analytical wave optics description of ex-
perimental results obtained in Ref. 9.

2. THEORY
Figure 2 depicts a monochromatic spherical wave gener-
ated by a point source that illuminates a Fabry–Perot in-
terferometer; the light passing through the interferom-
eter is incident on a thin lens with focal length f at
0740-3232/97/113009-05$10.00 ©
wavelength l. Because of multiple reflections in the in-
terferometer, the electric field in front of the lens is the
same as the field generated by a sequence of point sources
I0 , I1 , ..., Im , ... . The separation between two adja-
cent sources is 2d and their intensity ratio is R2, where d
is the separation of the etalon of mirrors and R is the re-
flectivity of the mirrors. The lens transforms the incom-
ing spherical wave front generated by the mth source into
a spherical wave front. The radius (qm) of the wave front
immediately after the exit surface of the lens is given by

1/qm 5 1/f 2 1/pm , (1)

where pm is the radius of the incoming spherical wave
front at the entrance surface of the lens. The lens aper-
ture truncates the outgoing spherical wave so that the
wave front is a spherical calotte (a segment of a spherical
surface). The electric field produced by the mth source
beyond the lens at point P can be obtained by calculating
the diffraction integral13 over the spherical calotte SC
(see Fig. 2):
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where r and z are the cylindrical coordinates of point P,
Am /pm is the amplitude, and kpm is the phase of the in-
coming wave generated by the mth source, k is the wave
number, and knD is the phase shift caused by the lens
(n is the refractive index, and D is the axial thickness).
The integral between the brackets has already been cal-
culated in Ref. 13, and it leads to the well-known three-
dimensional Airy pattern,
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where a is the radius of the lens aperture, C and S func-
tions can be calculated by the Lommel functions,13 and
um and vm are dimensionless variables given by

um 5 k~a/qm!2~ f 1 z 2 qm!,

vm 5 k~a/qm!r. (4)

Inserting Eq. (3) and Eq. (4) into Eq. (2), we obtain
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Since Am 5 RmA0 and pm 5 p0 1 m2d, Eq. (5) may be
written as

Em~r, z !

5 2
ikRmA0

a2
exp@ik~ p0 1 nD 1 f 1 z 1 m2d !#

2pmqm

3 @C~um , vm! 2 iS~um , vm!#. (6)

Fig. 1. Schematic diagram of the experimental setup for gener-
ating zero-order Bessel beams. A pointlike source illuminates a
Fabry–Perot interferometer, which produces a concentric ring
system in front of an imaging lens. If the aperture is adjusted
so that it transmits the first Fabry–Perot ring only and blocks all
others, a zero-order Bessel beam is generated beyond the lens.

Fig. 2. Notation used for the calculations. Because of multiple
reflections, the electric field in front of the lens is the same as the
field generated by a sequence of point sources
I0 , I1 , ..., Im , ... . Beyond the lens the electric field is the su-
perposition of the field produced by virtual point sources.
The total electric field behind the lens is the sum of the
fields of the individual sources,
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where F0 5 k( p0 1 nD 1 f ) is an unimportant phase
factor and

d 5 k2d 5 4pd/l (8)

is the phase shift introduced by the Fabry–Perot interfer-
ometer. In the derivation of Eq. (7), we assumed that the
phase change due to internal reflection in the etalon was
zero. This effect can be taken into account by substitut-
ing R exp(i2c) for the reflectivity R or increasing the eta-
lon separation with a distance of c/(2p)l, where c is the
phase change on internal reflection.

Eq. (8) yields the phase difference between two adja-
cent virtual sources. If L denotes the largest integral
value that is less than or equal to 2d/l, then one can de-
fine the reduced phase shift dr as

dr 5
4~d 2 d0!

l
p 5 Kp, (9)

where d0 5 Ll/2 and K is a newly introduced parameter
given by 4(d 2 d0)/l. Thus K varies from 0 to 2. A
variation of d of l/2 leads to a change of 2p in the phase
difference. For such a small variation of d, the position
of image points of the virtual sources remains practically
unchanged. Therefore dr and d can be regarded as inde-
pendent variables. This fact is important from the ex-
perimental point of view because it is difficult to measure
the etalon separation with an accuracy of l.

3. RESULTS AND DISCUSSION
If the lens is illuminated by a point source, the depth of
focus of the image (DOF) is given by

DOF 5
2l

NA2 ~1 1 M !2 (10)

and is defined as the distance between the principal in-
tensity maximum and the first intensity minimum on the
optical axis, where NA 5 a/f is the numerical aperture of
the lens and M is the magnification. The distance be-
tween the image points of the virtual sources approxi-
mately equals 2dM2. The relative image density defined
by

N 5
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2dM2 5
l

d S 1 1 M
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(11)

is an important quantity for determining the shape of the
axial intensity distribution.9

In the previously reported experiment,9 four different
cases were studied. The focal length and the numerical
aperture of the lens used in the experiment were 50 mm
and 0.08929, respectively. The measured value of DOF
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was 220 mm. For comparison these parameters are used.
In this case from Eq. (10), the magnification is M
5 0.1772 and the distance of source point I0 from the
lens is given by p0 5 f 1 f/M 5 332.17 mm.

Figure 3 shows the intensity distribution for various
values of image density N. The axial intensity distribu-
tions were fitted to the measured curves. The calcula-
tions were done by using Eq. (7) with the following pa-
rameters: (a) d 5 7431.6 mm (N 5 0.47), K 5 1.501;
(b) d 5 3100 mm (N 5 1.13), K 5 0.35; (c) d
5 1091 mm (N 5 3.21), K 5 0.22; (d) d 5 436.6 mm
(N 5 8.02), K 5 0.164. The reflectivity R was assumed
to be 0.963. These values of the parameters agree with
their measured values within the accuracy of the mea-
surement. The insets show the comparison of the mea-
sured (dots) and calculated (solid curves) intensity distri-
bution on the optical axis.

In case (a) the distance between the image points on
the optical axis is large compared with the DOF. Thus
separate sharp peaks are clearly evident. By increasing
the image density (i.e., decreasing d), we can make the os-
cillations on the optical axis disappear and the intensity
curves become smoother. The numbers adjacent to the
peaks show the value of the peak intensity. In agree-
ment with the law of conservation of energy, the peak in-
tensity increases with increasing N.

For certain circumstances the intensity distribution in
a plane perpendicular to the optical axis can be described
by a zero-order Bessel function. The radius of the inter-
ference rings is different for different cases and slightly
increases with increasing z, as shown in Fig. 3. The de-
tailed analysis shows that the radius of the interference
rings depends strongly on the phase difference. The in-
tensity distribution [calculated from Eq. (7)] is plotted for
various values of dr , assuming N 5 2 (d 5 1751.6 mm).
The values of coefficient K were 0, 0.15, 0.5, and 1.5 for
cases depicted in Fig. 4(a), (b), (c), and (d), respectively.
As in Fig. 3, the numbers adjacent to the peaks display
the value of the peak intensity. The insets in the top-
right corner show the intensity immediately in front of
the lens. For case (d) it should be noted that a different
scale was used because the intensity immediately in front
Fig. 3. The spatial intensity distribution as calculated from Eq. (7) for different values of image density N and reduced phase difference
dr [see Eqs. (11) and (9)]. The insets show a comparison of the measured and calculated axial intensity distribution. The numbers
adjacent to the peaks display the intensity maxima in arbitrary units.
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Fig. 4. The spatial intensity distribution, as calculated from Eq. (7), as a function of the reduced phase difference dr , assuming ap-
proximately constant image density (N 5 2). The numbers adjacent to the peaks display the intensity maxima in arbitrary units. The
insets on the right side show the illumination of the lens. The insets on the left display a comparison of the radial intensity distribution
calculated from Eq. (7) and from approximate analytical expressions [Eqs. (12) and (14)]. In case (d) the intensity is decreased consid-
erably, and therefore a different scale was used.
of the lens was much less than that for cases (a)–(c). The
electric field in front of the lens can be calculated as the
sum of the electric fields produced by point sources
I0 , I1 , ..., Im , ... . The insets in the top-left corner
show the radial intensity distribution in a plane perpen-
dicular to z. The solid curves indicate the radial inten-
sity distribution calculated from Eq. (7), and the dots dis-
play the result of the approximate analytical expressions
derived below. In case (a), where dr 5 0 (d is a multiple
of l/2), a small, nearly homogeneous bright spot can be
seen on the center of the lens, and the first Fabry–Perot
ring is beyond the lens aperture. The intensity distribu-
tion is like a top-hat profile; thus, the diffraction pattern
in a plane perpendicular to z is similar to an Airy-type
diffraction pattern given by Ref. 13,

IA~v ! 5 IA0S 2J1~v !

v D 2

, (12)

where IA0 is the intensity on the axis at a point z and
v 5
2p

l

lA

f 1 z
r. (13)

In Eq. (13) lA is the radius of the illuminated area. In
Fig. 4(a) the circles show an Airy-type diffraction pattern
calculated from Eq. (12) with lA 5 0.81 mm. This is the
distance at which the amplitude is one half of that on the
axis immediately in front of the lens. When dr is in-
creased, the center of the spot becomes dented, and finally
a ring is formed. When dr is further increased, the ra-
dius of the ring increases and therefore the interference
rings shrink in a plane perpendicular to the axis [see
Figs. 4(b) and 4(c)]. Then the radial intensity distribu-
tion can approximately be described by

IB~r ! 5 IB0J0
2S 2p

l

lB

z
r D , (14)

where IB0 is the intensity on the axis at point z and
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lB 5 fAS K

2L
1 1 D 2

2 1 5 f tan uL . (15)

Eq. (14) was plotted as dots in Fig. 4(b) and 4(c). The ra-
dial intensity distribution can be explained with a simple
model. The Fabry–Perot interferometer transmits the
light in directions um given by cos um 5 m/(2d/l), where m
is an integer between 1 and 2d/l. The integral value of
L corresponds to the smallest angle uL . The light inci-
dent on the lens in direction uL is collected by the lens to
a bright interference fringe in the focal plane. The ra-
dius of the fringe is given by lB 5 f tan uL . Using
tan2 uL 5 1/cos2 uL 2 1 and the definition of K, one can
obtain Eq. (15) for lB . Only one fringe is formed in the
focal plane because the lens aperture is adjusted so that it
transmits only the first Fabry–Perot ring and blocks all
others. At a point z the light arrives from a bright nar-
row ring lying in the focal plane. The radial intensity
distribution of the diffraction pattern of a narrow ring can
be described by Eq. (14).

When dr is further increased, the ring moves beyond
the lens aperture and the intensity in front of the lens de-
creases considerably. The illumination of the lens is
again homogeneous, and therefore the intensity distribu-
tion resembles a three-dimensional Airy pattern [Fig.
4(d)]. The inset on the left side of Fig. 4(d) shows a com-
parison of the radial intensity distribution calculated
from Eq. (7) (solid curve) and from Eq. (12) (dots) with
lA 5 a in a plane given by z 5 8914 mm, where the inten-
sity reaches its maximum on the axis.

4. CONCLUSION
A new concept for generating nearly nondiffracting Bessel
beams has been studied theoretically. The spatial inten-
sity distribution has been calculated with a wave optics
model for various values of the image density and phase
difference. Approximate analytical expressions have
been derived to describe the radial intensity distribution
in planes perpendicular to the optical axis.
ACKNOWLEDGMENTS
This work was supported in part by Texas Instruments,
by the National Science Foundation under grants DMI-
9202639 and INT-9020541, and by the OTKA Foundation
of the Hungarian Academy of Sciences (grants T20910,
F020889, and W015239).

The authors may be reached as follows: Z. L. Horváth,
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