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a b s t r a c t

A list sphere decoder (LSD) can be used to approximate the optimal maximum a

posteriori (MAP) detector for the detection of multiple-input multiple-output (MIMO)

signals. In this paper, we consider two LSD algorithms with different search methods

and study some algorithm design choices which relate to the performance and

computational complexity of the algorithm. We show that by limiting the dynamic

range of log-likelihood ratio, the required LSD list size can be lowered, and, thus, the

complexity of the LSD algorithm is decreased. We compare the real and the complex-

valued signal models and their impact on the complexity of the algorithms. We show

that the real-valued signal model is clearly the less complex choice and a better

alternative for implementation. We also show the complexity of the sequential search

LSD algorithm can be reduced by limiting the maximum number of checked nodes

without sacrificing the performance of the system. Finally, we study the complexity and

performance of an iterative receiver, analyze the tradeoff choices between complexity

and performance, and show that the additional computational cost in LSD is justified to

get better soft-output approximation.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Multiple-input multiple-output (MIMO) techniques in
combination with orthogonal frequency-division multi-
plexing (MIMO-OFDM) have been identified as a promis-
ing approach for high spectral efficiency wideband
systems and has been included to many upcoming
wireless standards such as (3GPP) long term evolution
(LTE), and IEEE 802.16e WiMAX and IEEE 802.11n.

Practical communication systems apply forward error
control (FEC) coding in order to achieve near capacity
performance. The optimal way to decode the MIMO-
OFDM signal with FEC would be to use a joint detector
ll rights reserved.
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and decoder for the whole coded data block, which is
computationally very complex and not feasible with the
current technology. However, the optimal receiver can be
approximated by using an iterative receiver with a
separate soft-input soft-output (SISO) detector and deco-
der, which exchange reliability information between the
units [1]. The optimal SISO detector would be the
maximum a posteriori (MAP) detector, which is often too
complex for systems with a large number of transmitted
spatial streams and high order modulation. Suboptimal
linear detectors [2] offer low complexity solutions with
adequate performance in low correlated channels, but
suffer from rather poor performance in correlated fading
channels especially with high coding rate [3,4]. The
ordered serial interference cancellation (OSIC) detector
[5,6] offers better performance compared to linear
detectors, but still suffers a loss in performance in poor
channel conditions compared to the MAP detector.
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A sphere decoder (SD) [7,8] calculates the hard output
maximum likelihood (ML) solution with reduced
complexity compared to the full-complexity ML detector.
We focus our interest on the list sphere decoder (LSD) [1],
which is a variant of the sphere decoder that can be
efficiently used to approximate a soft output MAP
detector. The practical feasibility of various SD versions
is further supported recently by practical implementa-
tions reported in the literature [9–13].

Contribution: In this paper, we identify and study some
key implementation challenges encountered while im-
plementing the LSD algorithms in practical wireless
systems. We concentrate our study on two LSD algorithm
variants with different search strategies and focus on four
significant challenges, namely, limiting the dynamic range
of the soft output log-likelihood ratio (LLR) values to the
decoder, comparing the real and complex-valued signal
models in the LSD, limiting the search complexity of the
LSD algorithm, and analyzing the complexity and perfor-
mance tradeoffs of an iterative receiver. The paper is an
extension of our earlier conference contributions [14–16]
and provides a more systematic and uniform treatment as
well as deeper analysis and more numerical results.

The paper is organized as follows. The MIMO signal
detection is discussed in Section 2. The SD and the LSD
algorithms are presented in Section 3. The LLR clipping is
presented in Section 4, and the real and complex-valued
signal models are compared and analyzed in Section 5.
The effects of limits on the number of nodes search by the
LSD algorithms is discussed in Section 6, and the
performance and complexity of the iterative receiver is
analyzed in Section 7. Conclusions are drawn in Section 8.

2. MIMO signal detection

A coded MIMO-OFDM system is considered with NT

transmit (TX) antennas and NR receive (RX) antennas. A
spatial multiplexing (SM) transmission with NT spatial
streams is used with quadrature amplitude modulation
constellation (QAM) and with the assumption NR ZNT.
QAM
ModS/PIFFT

FFT LSD
detector

Channel

x

y

LA1

Fig. 1. A MIMO-OFDM system with NT t
The received signal at baseband can be expressed for each
OFDM subcarrier in terms of code symbol interval as

y¼Hxþg, ð1Þ

where y 2 CNR�1 is the received signal vector, x 2 CNT�1 is
the transmit symbol vector with symbol power of ES and
g 2 CNR�1 is the noise vector with independent and
complex zero-mean Gaussian elements with power N0.
The channel matrix H 2 CNR�NT contains complex Gaus-
sian fading coefficients with unit variance. The entries of x
are chosen independently from a complex QAM constella-
tion O with sets of Q transmitted coded binary informa-
tion bits b=[b1,y,bQ] per symbol, i.e., jOj ¼ 2Q .

The optimal way to decode the coded signal would be to
use a joint detector and decoder for the whole coded data
block. This, however, is computationally very complex and
not feasible with the current technology. A suboptimal way
is to have a separate soft-input soft-output (SISO) detector
and channel decoder at the receiver. The turbo principle [1]
can be applied in the receiver so that the detector and
decoder exchange the information in an iterative fashion as
illustrated in the block diagram of the system in Fig. 1. The
detector generates soft output information LD1 from
received data y and a priori information LA1, and
calculates extrinsic information LE1. This information is
fed as a priori information LA2 to the decoder after
interleaving. The decoder output information LD2 can then
be fed back to detector. The a posteriori log-likelihood ratio
(LLR) LD(bk) of the k th transmitted bit bk, conditioned on
the received signal vector y, is defined as

LDðbkÞ ¼ ln
Pðbk ¼ þ1jyÞ

Pðbk ¼�1jyÞ
: ð2Þ

By using the Bayes’ theorem, the probability can be written
as [1,17]

LDðbkÞ ¼ ln
pðyjbk ¼ þ1Þ

pðyjbk ¼�1Þ

Pðbk ¼ þ1Þ

Pðbk ¼�1Þ

� �

¼ ln
Pðbk ¼ þ1Þ

Pðbk ¼�1Þ
þ ln

pðyjbk ¼ þ1Þ

pðyjbk ¼�1Þ
¼ LAðbkÞþLEðbkjyÞ, ð3Þ
EncoderInt

DeInt Decoder
LD1 LA2 LD2

+
LE1

-
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where LA(bk) is the a priori information and LE(bk) is the
extrinsic information of the bits provided by the detector or
decoder.

3. Sphere decoding

The SD algorithms achieve the ML solution with a
reduced number of considered candidate symbol vectors
in the search. This is done by limiting the search to points
that lie inside a NR-dimensional hyper-sphere Sðy,

ffiffiffiffiffi
C0

p
Þ

centered at y with a sphere radius
ffiffiffiffiffi
C0

p
. After QR

decomposition (QRD) of the channel matrix H, the
condition can be written as [8]

J ~y�RxJ2
2rC0, ð4Þ

where R 2 CNR�NT is an upper triangular matrix with
positive diagonal elements, Q 2 CNR�NR is an orthogonal
matrix, ~y ¼Q Hy, and C0 is the squared radius of the
sphere. Due to the upper triangular form of R the values of
x can be solved from (4) level by level using the back-
substitution algorithm. Let xNT

i ¼ ðxi,xiþ1, . . . ,xNT
Þ
T denote

the last NT� i+1 components of the vector x. The sphere
search can be illustrated with a tree structure, where the
algorithm aims at finding the shortest path between
the root layer and the leaf layer. First, the last elements of
the possible symbol vectors are calculated, i.e., xNT

and
then xNT�1 and so on. The squared partial Euclidean
distance (PED) of xNT

i can be calculated as [9]

dðxNT

i Þ ¼ dðxNT

iþ1Þþ
~yi�

XNT

j ¼ i

ri,jxj

������
������
2

, ð5Þ

where dðxNT

NT
Þ ¼ 0, ri,j is the (i,j)th term of R and i=NT,y,1.

Depending on the search strategy and the channel
realization, the SD searches a variable number of nodes
in the tree structure, and aims to find the point x¼ xNT

1 ,
also called a leaf node, for which the Euclidean distance
(ED) dðxNT

1 Þ is minimum. It has been shown that the SD
algorithm complexity, i.e., the number of visited nodes,
can be decreased by applying proper preprocessing of the
detection order [8,10], e.g., sorted QRD (SQRD) [18], which
we also apply in the simulation results in the paper.

The ML solution that is given as an output by the SD
may cause significant performance degradation compared
to the optimal soft output MAP detection in a commu-
nication system with FEC. The more appropriate detector
is the list sphere decoder (LSD) [1] that can be used for
obtaining a list of candidate symbol vectors
and the corresponding EDs L 2 ZNcand�NT as an output,
where Ncand is the size of the candidate list so that
1rNcandr2QNT . The output candidate list can then be
used to approximate the MAP solution LD(bk). The list
sphere decoder algorithms can often be composed from
the sphere decoder algorithms with minor modifications.
The LSD algorithm is the most complex part of the
detector, and the complexity is very much dependent on
the applied search method. The tree search algorithms in
the literature are often divided into three categories
according to the search strategy, the breadth-first, the
depth-first, and the metric-first [19,20]. In this paper, we
consider two different LSD algorithms based on different
search strategies, the breadth-first search based K-best-
LSD [12,21] and the metric-first search based increasing
radius (IR)-LSD [22,23].

3.1. K-best-LSD algorithm

The K-best-LSD algorithm listed as Algorithm 1 is a
modification from the K-best-SD algorithm [12,21] to the
LSD algorithm. The algorithm is based on the breadth-first
strategy, i.e., the search proceeds one layer at a time in the
search tree by extending the partial candidates s with
admissible nodes and calculating the PEDs d(s). The K-
best-LSD algorithm search goes through a fixed number of
nodes in the tree structure if no enumeration method and
sphere radius C0 is introduced, which makes the algorithm
very suitable for implementation. However, it should be
noted that the output candidate list L of the algorithm
does not necessarily contain the candidates with the
lowest EDs, which may result in inaccurate likelihood
information approximation and performance loss.

Algorithm 1½L� ¼ K-best-LSDð ~y ,R,C0,K ,O,NTÞ
1:
 Initialize set fLg0 with N ðs0 ¼ xNT

NT
,dðsÞ ¼ 0Þ and empty set S
2:
 for Layer i=NT�1 to 0 do

3:
 for k=0 to jLj�1 do

4:
 Remove N ðs¼ xNT

iþ1 ,dðsÞÞ from fLgk

5:
 for j=1 to jOj do

6:
 Determine sc=(xi,s)T, where xi ¼ fOgj and calculate d(sc)
7:
 if dðscÞoC0 then

8:
 Store N cðsc ,dðscÞÞ to S

9:
 end if

10:
 end for

11:
 end for

12:
 Sort S according to the PED if jSj4K
13:
 Move K candidates with smallest PED from S to L and empty S

14:
 end for
3.2. IR-LSD algorithm

The increasing radius (IR)-LSD is listed as Algorithm 2.
The increasing radius (IR)-SD algorithm [23] is a mod-
ification of Dijkstra’s algorithm [22], which uses the
metric-first search strategy [20,24,25]. The IR-LSD
algorithm is optimal in the sense of visited number of
nodes in the tree structure [23,25] and always extends the
partial candidate with the lowest PED in one extend loop,
but requires that the visited nodes are maintained in
metric order to ensure the optimality, which requires the
usage of memory and sorting [19]. The output candidate
list L includes the candidates with lowest EDs.

Algorithm 2½L� ¼ IR-LSDð ~y ,R,Ncand,O,NTÞ
1:
 Initialize sets S and L, and set C0 ¼1, m=0, n1=1
2:
 Initialize N ðs¼ xNT

NT
,dðsÞ ¼ 0,n2 ¼ 2,i¼NTÞ�1
3:
 while C0 odðsÞ do

4:
 Determine the n1th best node xi for sc ¼ ðxi ,x

NT

iþ1Þ
T and

calculate d(sc)
5:
 Determine the n2th best node xi + 1 for father candidate

sf ¼ ðxiþ1 ,xNT

iþ2Þ
T and calculate d(sf) if n2 r jOj
6:
 if dðscÞoC0 then

7:
 if sc is a leaf node, i.e., i=0 then

8:
 Store N Fðsc ,dðscÞÞ in fLgm
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9:
 Set m=m+1 or, if L is full, set m according to fLgm with

max ED and C0=d(s)m
10:
 Continue withN ðs¼ xNT

iþ1 ,dðsÞ,n1 ¼ n1þ1,1Þ if n1þ1r jOj

11:
 else

12:
 Store N cðsc ,dðscÞ,n2 ¼ 2,i¼ i�1Þ in S

13:
 end if

14:
 end if

15:
 if N f calculated and dðsf ÞoC0 then
16:
 Store N f ðsf ,dðsÞf ,n2 ¼ n2þ1,iÞ in S

17:
 end if

18:
 Continue with N with min PED from S and set n1=1
19:
 end while
Fig. 2. A graphical illustration of the LLR clipping methods. (a) Method 1

and (b) Method 2.
4. Limiting the dynamic range of LLR

The soft output information LD(bk) is summed from the
extrinsic information LEðbkjyÞ, which is generated by
the LSD, and the a priori information LA(bk) as in (3). The
extrinsic information LEðbkjyÞ can be calculated for a system
containing additive white Gaussian noise (AWGN) directly
from the cost information known about the candidates as

LEðbkjyÞ ¼ ln

P
x2wk, þ 1

e�dðxÞ=N0P
x2wk,�1

e�dðxÞ=N0
¼ ln

X
x2wk, þ 1

e�dðxÞ=N0�ln
X

x2wk,�1

e�dðxÞ=N0 ,

ð6Þ

where wk,þ1 ¼ fxjbk ¼ þ1g is the set of ONT�1 bit vectors x
having bk= +1, and d(x) is the squared Euclidean distance
between received vector y and lattice points Hx. Eq. (6) can
then be computed using the well-known Jacobian loga-
rithm and a small look-up table [26].

The list sphere decoder uses a limited number of
elements in the considered sets wk,þ1 \ L and wk,�1 \ L by
using the LSD output candidate list L to approximate the
likelihood information LD(bk) in (6), which decreases the
complexity of the calculation of (6) significantly com-
pared to the full set of candidates. The accuracy of the
approximation depends on the quality of the candidate
list L and the list size Ncand. The IR-LSD algorithm
provides a list L including the most probable candidates,
while the K-best-LSD algorithm does not guarantee that.
This typically leads to a better approximation with the
IR-LSD compared to the K-best-LSD with the same list
size. If the size Ncand of the candidate list L is large enough
so that both sets wk,þ1 \ L and wk,�1 \ L include candi-
dates for the bit bk, the approximation of the LD(bk) is
typically accurate enough for adequate performance.
However, the performance of the LSD may suffer due to
too small a list size, and, thus, inaccurate LD(bk) values.
The error in the approximation of the LD(bk) is especially
large in the case where all the candidates in L for the bit
bk belong to either wk,þ1 \ L and wk,�1 \ L. In that case the
approximation of one of the conditional probabilities
pðyjbk ¼ 71Þ goes to zero, which leads to an infinite value
in (6). As the information is used as a priori information in
the decoder, the decoder is most likely not able to correct
the falsely detected signals.

4.1. Clipping methods

The effect of unreliable LD(bk) may be reduced by
limiting the LD(bk) range, which is often called LLR
clipping. Several LLR clipping methods for different
algorithms have been proposed, e.g., in [10,27–29]. All
the methods aim at reducing the detector algorithm
complexity required to achieve certain performance. The
LLR clipping in [10,27] is used to control the search effort
used in the bit counterpart search. The method cannot be
applied as such for LSD algorithms due to the differences
in the algorithms. The LLR clipping in [28,29] is based on
the reliability information and the channel state informa-
tion (CSI) to determine close to optimal LLR clipping
values with additional complexity. We introduce and
study two simple methods to process LD(bk) information
and the impact of the methods on the performance of a
coded system. Importantly, both presented methods are
simple to implement and are suitable for VLSI implemen-
tation. The LD1(bk) calculated in the detector is given as
LA2(bk) input to the decoder as illustrated in Fig. 1. By
limiting the dynamic range of the variable, the decoder
can overcome the wrong information given as LA2(bk)
in (3).

Method 1: A very simple way to prevent very large
LD(bk) values is to limit the dynamic range of LD(bk) value
as [1]

LDclip
ðbkÞ ¼

LDðbkÞ if jLDðbkÞjrLmax,

sgnðLDðbkÞÞLmax if jLDðbkÞj4Lmax,

(
ð7Þ

where LDclip
ðbkÞ is the clipped likelihood information and

Lmax is the selected maximum value for jLðbkÞj.
Method 2: The other method is slightly different

compared to the first one. The LD(bk) values are clipped
to Lmax if a threshold value of Llimit4Lmax is exceeded as

LDclip
ðbkÞ ¼

LDðbkÞ if jLDðbkÞjrLlimit,

sgnðLDðbkÞÞLmax if jLDðbkÞj4Llimit:

(
ð8Þ

The main idea of Method 2 is to clip only the very large
LD(bk) values, which are due to small LSD list size, and
bypass the LD(bk) values where both bit values are present
in (6). This is achieved by setting the Llimit value large
enough. Graphical illustrations of both methods are
shown in Figs. 2(a) and (b).

4.2. Numerical examples

We studied the impact of the two different LLR
clipping methods on the performance of the system via
Monte Carlo simulations. A MIMO-OFDM system model
was assumed with 512 subcarriers (Nsub=300 used)
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according to the 3G long term evolution (LTE) parameters
[30]. A bit-interleaved coded modulation (BICM) [4,31]
with 1/2 rate [13o,15o] turbo code was applied in a high
correlated (CORR) typical urban (TU) 6 tap channel with a
user velocity of 120 kmph. The system was operating with
5 MHz bandwidth at a carrier frequency of 2.4 GHz. The
K-best-LSD and the IR-LSD with the SQRD [18] preproces-
sing were considered for detection and a max-log-MAP
turbo decoder with 8 decoder iterations (DI) was used for
decoding. The K-best-LSD was applied with C0 ¼1.

We illustrate the distribution behavior of the calcu-
lated LLR values with SNR and a histogram of the IR-LSD
soft-output LLR with Ncand=1024 and 8 and with different
SNR values are shown in Fig. 3. The studied ES/N0=18 and
26 dB cases reflect to the low and high throughput
operating points of the system, respectively. The LLR
values were limited to Lmax=100 to show the very large
and infinite values. It can be seen that with increasing SNR
the deviation of LLR widens and we can see more high LLR
values, but the probability of jLDj440 and jLDj420 is
fairly low with the higher and lower SNR values,
respectively. The effect of the small list size results as a
large amount of Lmax values in the histogram as the
probability of empty set wk,þ1 \ L and wk,�1 \ L in the
calculation of L(bk) is significantly higher, which can be
seen as peaks in 7100 values in 3D plot.

We also studied the impact of different clipping
methods and Lmax values on the performance of the
system to determine the optimal clipping method and the
threshold value to be used for clipping. It should be noted
that while too low a value for Lmax prevents the detector
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Fig. 3. A histogram of the resulted LLR values with IR-LSD with differen
to give any significant a priori information to the decoder,
too high a value for Lmax enables the possibility for too
high a priori information caused by unreliable or too small
L which the decoder cannot correct in the case of a wrong
decision. Performance of the IR-LSD with Ncand=8 and real
K-best-LSD with Ncand=64 with both clipping methods
applied are shown for a 4�4 16-QAM system in Fig. 4.
The horizontal axis is the SNR as ES/N0 and the vertical
axis is the throughput in bits per second, i.e., equal to
1�FER multiplied by the number of bits per channel use.
Method 2 is applied with Llimit=100 to clip only the very
large LD(bk) values. The results show that the performance
of a system is clearly improved by applying LLR clipping
to limit the effect of the moderate LLR approximation
compared to the system without clipping. We also notice
that there is no significant performance difference
between the two clipping methods with the IR-LSD.
However, we noticed from the results that Method 1 is
clearly better with the K-best-LSD. The reason for this is
the different outputs from IR-LSD and K-best-LSD. The IR-
LSD gives the most probable candidates as an output, and,
thus, the LLR approximation is rather good and reliable in
the cases where both bits are present in (6). The K-best-
LSD output, however, may result in a poor LLR
approximation also when candidates for both bits are
present in (6). Thus, we conclude that Method 1 is a good
choice to be applied as it requires less dynamic range for
the L(bk) before clipping. The simulation results show that
Lmax=8 gives the best performance, which means that the
dynamic range of probability Pðbk ¼ 71jyÞ is limited
between [0.0003,0.9997].
−20 0 20 40 60 80 100

AM, IR−LSD, TU channel

LLR value

t list sizes and SNR values in 4�4 antenna system with 16-QAM.
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1 The real and complex versions are rigorously defined and

considered in more detail in Section 5.
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We also studied if and how the code rate possibly
inter-plays with the optimal Lmax value at the detector.
The performance of a IR-LSD based system with code rates
1/3 and 4/5 and with different Method 1 clipping values is
shown in Fig. 5. We can see that with a lower code rate
1/3 the value Lmax=6 gives the best performance with a
difference of 0.1 dB compared to Lmax=8. The performance
of the system with a higher code rate 4/5 is maximized
with the value Lmax=10, but the difference from the value
Lmax=8 is approximately 0.05 dB. The results indicate that
as the decoder has more parity bits to be used in the
decoding, the decoder should rely less on the a priori

information LA2(bk) from the detector and the Lmax can be
set to be a lower value. However, the differences are
rather small, and in practice, Lmax=8 gives good results.

The LLR clipping enhances the performance of LSD
based systems with low list size and, thus, impacts on the
required list size, which leads to algorithm complexity
reduction as observed also in [1,10]. We applied Method 1
with Lmax=8 for LLR clipping and the performance was
studied in two channel models, a highly correlated and an
uncorrelated (UNC) TU channel, in order to study the
effect of the channel correlation and also compared to a
soft output LMMSE detector [2]. Performance examples of
a 4�4 16-QAM system with the IR-LSD is shown in Fig. 6.
It can be seen that the required list size with the IR-LSD
decreases significantly with LLR clipping applied and, e.g.,
the required list size of IR-LSD decreases from 64 to 8 in a
4�4 16-QAM system. Also the performance of the soft
output LMMSE detector suffers significantly compared to
the IR-LSD in the highly correlated channel. We also
noticed that the required list size with the K-best-LSD
does not decrease as significantly as with IR-LSD. The
benefit of the LLR clipping with the real and complex1

K-best-LSD is smaller than that with the IR-LSD, because
of the breadth-first search strategy which usually leads to
having both bk= +1 or bk=�1 candidates in the LLR
calculation, but does not provide the most probable
candidates. Thus, K-best-LSD requires a larger list size
compared to the IR-LSD to obtain as accurate LLR
approximation and performance. However, it can be
noted that the quality of the obtained list increases as
the channel is uncorrelated, i.e., the tree search is easier.
The required list sizes were determined for 2�2 and 4�4
antenna cases with 4-QAM, 16-QAM, and 64-QAM, and
the results are concluded in Table 1.
5. Comparison of real and complex-valued signal model

The SD and LSD algorithms are often assumed to apply
a real equivalent system model [8,12,32,33] especially in
the implementation of the algorithms. However, complex-
valued signal models are also applied in the literature
[1,9,10]. The definition of the signal model does not affect
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Table 1

List sizes for IR-LSDa, real K-best-LSDb and complex K-best-LSDc with

LLR clipping.

2�2 4�4

4-QAM Not studied Ncand ¼ 8a=32b=32c

16-QAM Ncand ¼ 8a=16b=16c Ncand ¼ 8a=64b=128c

64-QAM Ncand ¼ 16a=64b=64c Ncand ¼ 16a=128b=256c

Table 2
The number of real operations used for PED calculation in (5).

Real-valued signal model Complex-valued signal model

MUL 2NT� i+1 3(NT� i+1)

ADD 2NT� i+1 7(NT� i+1)

Table 3

Number of visited nodes with the reala K-best-LSD and the complexb

K-best-LSD with the list sizes given in Table 1.

2�2 4�4

4-QAM not studied 254a=212b

16-QAM 148a=272b 1364a=4368b

64-QAM 1096a=4160b 5704a=36928b
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the mathematical equivalence of the expressions, but it
affects on the lattice definition where the LSD algorithm
search is executed. Thus, there is a need to justify the
selection of the signal model by studying the effect of it on
the LSD search and on the total complexity of the search.
The complex MIMO system model in (1) can be presented
as an equivalent real model as follows:

ReðrÞ

ImðrÞ

" #
¼

ReðHÞ �ImðHÞ

ImðHÞ ReðHÞ

" #
ReðxÞ

ImðxÞ

" #
þ

ReðgÞ

ImðgÞ

" #
: ð9Þ

Then the new real dimensions are defined as MT=2NT,
MR=2NR, and the real symbol alphabet is now OR � Z, e.g.,
OR 2 f�3,�1,1,3g in the case of 16-QAM.

The complexity of the LSD algorithms is relative to the
number of visited nodes in the search tree and the size of
the search tree, and, as already mentioned, the size of the
search tree depends on the applied signal model. The use
of a real system model doubles the depth of the search
tree, i.e., MT=2NT, but decreases the number of branches
at each level compared to the complex-valued signal
model, i.e., jORj ¼ jOj1=2. Thus, the total number of
branches in the search tree with real-valued signal model
is given as BR ¼

PMT

i ¼ 1 jORj
i, and with complex-valued

signal model as BC ¼
PNT

i ¼ 1 jOj
i. The sizes of the real and

complex search trees approach each other as the number
of transmit antennas NT and the constellation size jOj
increase, but the search tree size is larger with real-valued
signal model with moderate NT and jOj, e.g., in a 4�4
system with 16-QAM BR=87 380 and BC=69 904. Thus, it is
likely that the number of visited nodes by the LSD
algorithm increases somewhat with the real-valued signal
model.

The LSD algorithms considered were described in
detail in Section 3. The main complexity of the LSD
algorithm comes from the PED calculation in (5), which is
executed for each studied node. When considering the
choice of the signal model, we should notice that the
complexity of the PED calculation in (5) includes different
operations with real and complex valued signals. The
numbers of operations required to calculate (5) depend on
the number of transmit antennas NT and the current layer
i in the search tree and they are listed as real operations in
Table 2 given that one complex multiplication (MUL) is
equal to three real MULs and five real additions (ADD) and
one complex ADD is equal to two real ADDs. As a
numerical example, we assume that NT=4 and the
average studied node in both the real and the complex
tree is in the middle of the tree depth, i.e., E[iR]=MT/2=4
and E[iC]=NT/2=2. Then the number of required real
operations on average for the PED calculation is 9 MULs
and 21 ADDs for the complex-valued signal model, and 5
MULs and 5 ADDs for the real-valued signal model. Thus,
we can say that on average the complexity of one LSD
algorithm node check in a system with NT=4 is
approximately double with the complex-valued signal
model compared to the real-valued signal model.
5.1. Numerical examples

We studied the impact of the real and the complex-
valued signal models on the number of visited nodes by
considered LSD algorithms via Monte Carlo simulations.
The simulations were executed with the same parameters
as those in Section 4.2.

The number of visited nodes by the K-best-LSD
algorithm depends on the signal model and the applied
list size K=Ncand. The K-best-LSD algorithm visits a fixed
number of nodes given the list size and the fact that no
sphere radius is introduced, i.e., C0 ¼1. The number of
visited nodes by the real K-best-LSD and the complex K-
best-LSD algorithms are determined as VR ¼

PMT

i ¼ 1 jSj jORj

and VC ¼
PNT

i ¼ 1 jSj jOj, where jSj is the number of stored
candidates at each layer as in Algorithm 1. The numbers of
visited nodes in different antenna and constellation cases
with list sizes determined in Table 1 are listed in Table 3.
It can be seen that the K-best-LSD with the real-valued
signal model visits less nodes in all the cases except the
4�4 with QPSK case compared to the complex-valued
signal model with the same performance. The reason for
this is the difference in possible signal points in one layer
between the real and the complex-valued signal model,
i.e., jORj ¼ jOj1=2. As the algorithm visits all the possible
child nodes of the stored partial candidates at each layer,
the search with the real-valued signal model is done with
less visited nodes in total even though visiting double the
number of layers.

The number of visited nodes by the metric-first search
LSD algorithm varies with channel realization and SNR. We
studied the number of visited nodes by the IR-LSD
algorithm with both the real and the complex-valued
signal model by collecting data from the Monte Carlo
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M. Myllylä et al. / Signal Processing 90 (2010) 2863–2876 2871
simulations. The data are then plotted as a histogram to
illustrate the distribution of the number of visited nodes by
the LSD algorithm. The number of visited nodes was
studied in a high correlated and uncorrelated TU channels
to also examine the effect of the channel realization. The
number of visited nodes by the IR-LSD algorithm with
SQRD preprocessing in a 4�4 system with 16-QAM is
shown in Fig. 7. The results show that the algorithm with
real and complex-valued signal model visits approximately
the same amount of nodes. It can also be noted that the
channel realization and correlation properties of the
channel have an effect on the distribution of the visited
nodes with the IR-LSD algorithm. The Monte Carlo results
also confirmed that the distribution of the number of
visited nodes of the real and complex-valued signal model
is similar also as the NT and O increase.

The results clearly show that there is a difference in
terms of complexity whether the real valued or the
complex valued signal model is used and that the channel
scenario affects the distribution of the number of visited
nodes by the metric first search IR-LSD algorithm. The
real-valued signal model is clearly the better choice to be
applied with the LSD algorithms given the similar
distribution in the number of visited nodes with both
the real and the complex-valued signal model and that the
complexity of the real-valued signal model in required
operations is much less complex compared to the
complex-valued signal model. Also it should be noted
that if the LSD algorithm search is highly limited to lower
the latency, the use of complex valued signal model might
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Fig. 7. Histogram of the number of visited nodes per symbol vector with
lead to higher detector throughput as in [9]. However, in
order to achieve close to max-log-MAP performance, the
LSD algorithm search cannot be limited too much as we
will show in Section 6.
6. Limited search

In the hardware implementation of an algorithm for a
practical system, there is usually a predetermined time to
execute the process that the algorithm carries out. In
order to reserve the hardware resources for the algorithm
to meet the given timing constraints, we need to
determine the so-called worst case scenario and deter-
mine the complexity accordingly. From the LSD algo-
rithms considered, the K-best-LSD checks a fixed number
of nodes when C0 ¼1 and, thus, the complexity of the
algorithm is fixed. The IR-LSD, however, visits a variable
number of nodes depending on the channel realization,
and the hardware implementation of algorithms as such is
not feasible in a system with a fixed latency requirement.

In order to fix the complexity of the IR-LSD algorithms,
we propose a simple way to modify the algorithms to
limit the maximum number of visited nodes by the LSD
algorithm, which we call limited search (LS). The while

loop in the algorithm description of the IR-LSD in
Algorithm 2 can be replaced with a for loop, which means
that a predefined maximum number of loop runs Lnode is
set. If the sphere search is not completed within the
defined maximum limit Lnode, the algorithm is stopped
800 1000 1200
ited nodes

M, IR−LSD with list=8

Real LSD, SNR=18dB
Real LSD, SNR=34dB
Complex LSD, SNR=18dB
Complex LSD, SNR=34dB

el

real and complex IR-LSD in TU channel with 4�4 16-QAM system.
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and the current final candidate list L is given as an output.
Another more sophisticated alternative is to use a
scheduling algorithm as, e.g., in [10,34]. We modified
the scheduling algorithm in [10] to be more suitable for
the IR-LSD and call it as scheduled search (SS). We use the
algorithm to determine the search limit Lnode(n) for n th
subcarrier in OFDM symbol as

LnodeðnÞ ¼NsubLavg�
Xn�1

i ¼ 1

LnodeðiÞ�ðNsub�nÞLmin, ð10Þ

where NsubLavg is the total node run-time constraint for
the whole OFDM symbol and Lmin is minimum number of
studied nodes reserved for each subcarrier. The Lnode(n) is
also upper limited to maximum of DLavg nodes, where D is
a node coefficient, to prevent too much resources to be
used in one subcarrier. The idea behind the scheduled
search is that the algorithm is able to allocate higher
maximum limits Lnode(n) for subcarriers that have a
channel realization resulting in low SNR while subcarriers
with easier channel realization can be allocated with
lower limits Lnode(n).

6.1. Numerical examples

We studied the effect of limited search and scheduling
algorithm via Monte Carlo simulations to determine the
performance of the method. The numerical examples
were executed with the same parameters as in Sections
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Fig. 8. Throughput vs SNR: performance of the real-valued IR-LSD wit
4.2 and 5.1, and including LLR clipping with Lmax=8 and
the real-valued signal model. First we studied the number
of visited nodes in the search tree by the IR-LSD algorithm
to determine the initial values for limit parameters. The
histograms of the number of visited nodes in a 4�4
system with 16-QAM and the IR-LSD with list size Ncand=8
in TU channels are shown in Fig. 7. It can be noted that the
channel realization and especially the correlation proper-
ties of the channel affect to the distribution of the number
of visited nodes by the LSD algorithms and it should be
taken into account when determining the proper limit
parameter values for the search.

Then the impact of limiting the IR-LSD algorithm
search with both LS and SS methods was studied on the
performance of the system. Numerical examples of the
performance with different limited search parameter
values in a 4�4 system with 16-QAM and in TU channels
are shown in Fig. 8. It can be seen that there is no
performance loss with the real-valued IR-LSD algorithm
as the LS method limit Lnode is set high enough, i.e.,
Lnode=200/500 in UNC/CORR channel. The performance
degradation of the system with the LSD search limit set to
Lnode=500 nodes, which is a rather low limit compared to
the determined distribution of visited nodes XIR

(CORR,18 dB), is
about 0.2–0.3 dB at maximum compared to the LSD with
unlimited search. The CDF with determined Lnode equals
to 80.6%, i.e., Pr½XðCORR,18 dBÞ

IR rLnode ¼ 500� ¼ 0:806. The
corresponding value in uncorrelated channel, Lnode=160,
equals to 79.5% of the CDF. As a comparison, the common
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 (dB)
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depth-first search LSD [16] requires the Lnode to be set to
98% in CDF according to our studies. However, the depth-
first search LSD is a less complex compared to the IR-LSD,
and does not require any sorting operations. The good
tolerance of the IR-LSD algorithm to the LS method is due
to the metric-first search strategy, where the algorithm
proceeds uniformly in the search tree. A more
sophisticated SS method was applied with Lavg=200/400
and with different Lmin and D values for UNC/CORR
channel. The SS method can outperform the simple LS
method slightly, i.e., by � 0:1 dB, with proper parameter
configuration when the same resources are applied
Lnode=Lavg. In practice, Lmin has to be set high enough
and D not too large to guarantee enough nodes for each
subcarrier detection.

The simulation results show clearly that the metric
search IR-LSD algorithm works fine with limited search
with only minor performance loss. A minor performance
gain can be achieved with more complex SS method
compared to less complex LS method, but both methods
are feasible for implementation. The results indicate that
Table 4
Determined maximum node limits for the real IR-LSD with LLR clipping

in highly correlated TU channel.

2�2 4�4

16-QAM 80 500

64-QAM 200 1000

10 10.5 11 11.5 1

10−2

10−1

100

SNR

FE
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4x4 16−QAM, IR−LSD and Turbo decode

1GI 8DI Lnode=300 nodes

1GI 8DI Lnode=150 nodes

2GI 4DI Lnode=300 nodes

2GI 4DI Lnode=150 nodes

2GI 8DI Lnode=300 nodes

2GI 8DI Lnode=150 nodes

3GI 4DI Lnode=300 nodes

3GI 8DI Lnode=300 nodes

Fig. 9. FER vs SNR: performance of the real IR-LSD
the CDF of the visited nodes can be used as a guideline for
determining the proper Lnode value. We determined the
proper search limits Lnode for the algorithms for high
correlated TU channels and they are listed in Table 4. It
should be noted that the highly correlated channel
scenario is difficult for the sphere search, and the listed
results can be thought as the so-called worst case scenario
limits. The results show that the channel correlation
properties affect the distribution of nodes in the
algorithm, and a feasible search limit Lnode can be set
lower in an uncorrelated channel.
7. Complexity and performance of an iterative receiver

The optimal joint receiver can be approximated by
using an iterative receiver and soft-input soft-output
(SISO) detector and decoder [1]. The performance of the
system can be increased to a certain extent by executing
global iterations (GIs), where the soft reliability informa-
tion is fed back to detector from the decoder. However,
the iterative receiver structure also increases the compu-
tational complexity of the receiver with each GI as more
signal processing is done. The effect of the receiver
convergence properties depends on multiple variables
such as decoder iterations, channel code properties and
channel realization [35]. Thus, it is not straightforward to
determine the optimal receiver configuration and how
much computing effort should be used in detector,
decoder and global iterations in total.
2 12.5 13 13.5 14
 (dB)

r with list 15 with Max−Log, UNC channel

based receiver in 4�4 system with 16-QAM.
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We studied the performance of the iterative receiver
with variable GIs and their effect on the computational
complexity by numerical examples. The numerical exam-
ples were executed for a 4�4 MIMO-OFDM system with
16-QAM and with the same typical system model
parameters as in earlier sections with the following
details. The LLR clipping was applied with Lmax=8, the
IR-LSD was operating with variable Lnode, the max-log
turbo decoder was operating with 4 or 8 decoder
iterations (DI) and iterative receiver was operating with
1–3 GIs. Performance examples of a real IR-LSD based
receiver are shown in Fig. 9. We can see that the 2nd GI
improves the performance approximately 0.5 dB at FER
10�2 and there is not much performance gain with 3rd GI.
It can be also noted that 4 DIs are sufficient with 2 or more
GIs and the increase in the IR-LSD Lnode from 150 nodes to
300 nodes improves performance by approximately
0.7 dB. Similar performance behavior could also be seen
from the numerical examples with the K-best-LSD based
receiver.

Typically, the performance and the complexity of the
receiver are both important measures in system design.
Therefore, we also calculated the required computational
Table 5
The number of 1-bit NAND2 gates used for corresponding 1-bit

arithmetic operation.

Operation MUL ADD COMP DIV

Required NAND2’s 12 5 4 30
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Fig. 10. Required SNR for 4% target FER vs. required operation c
complexity for different receiver configurations to com-
pare and determine the most efficient configuration. The
complexity calculation includes the required arithmetic
operations of LSDs and max-log turbo decoder, which are
MUL, ADD, comparison (COMP) and division (DIV), with
given number of iterations for reception of one OFDM
frame, i.e., 2400 transmitted bits. The memory require-
ments and word length requirements were omitted from
the calculations. In order to get an explicit complexity
description, we approximated the computational com-
plexity of the required arithmetic operations according to
their relative complexity units (CU) to NAND2 operation,
i.e., according to how many 1-bit NAND2 gates are
required for corresponding 1-bit operation. The approx-
imations used are listed in Table 5 and are based on
authors’ experience and on [36].

The performance and complexity of K-best-LSD based
receiver with different configurations is shown in Fig. 10.
The curves describe the required SNR for 4% target FER
and the corresponding complexity of the receiver with
variable LSD Lnode or list size Ncand in calculated
complexity units. We noted with both K-best-LSD and
IR-LSD based receivers that the complexity from the
decoder iterations dominates the total complexity and
that there is only a minor performance gain with 8 DI
compared to 4 DI when 2 or more GIs are executed. Also
the performance gain of the 3rd GI with the given system
configuration is minor compared to the required
additional computational complexity. The cost of the
increased number of visited nodes by the LSD is minor
compared to the additional performance gain with both
13.4 13.6 13.8 14 14.2 14.414.5
% FER

rbo decoder, UNC channel

1GI 4DI list 7,15 and 31
1GI 8DI list 7,15 and 31
2GI 4DI list 7,15 and 31
2GI 8DI list 7,15 and 31
3GI 4DI list 7,15 and 31
3GI 8DI list 7,15 and 31

omplexity with different K-best-LSD based configurations.
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IR-LSD and K-best-LSD. Thus, we can say that the
additional GIs, especially the 2nd GI, are justified in
terms of complexity and performance tradeoff and they
should be considered in receiver design. Also it is justified
to use lower amount of decoder resources (4DI) per GI
when additional GIs are executed. The numerical
examples should be taken as design guidelines and the
exact setup depends on system configuration [35].

8. Conclusions

We considered two different LSD algorithms and the
algorithm design aspects related to the implementation.
We showed that the use of LLR clipping enables the use of
lower list sizes with LSD, and, thus, decreases the required
algorithm complexity. The simple clipping introduced as
Method 1 with Lmax=8 value is a good choice to be applied
in practice. We compared the use of real and complex-
valued signal models in the LSD algorithm, and showed
the real valued signal model to be less complex and a
better choice for LSD algorithms. The complexity of the
metric first search IR-LSD algorithm can be constrained by
limiting the maximum number of visited nodes in the
sphere search without sacrificing the performance of the
system. It was noted that the channel realization affects
the CDF of the visited nodes, and the IR-LSD is much less
sensitive to limited search compared to the common
depth first algorithm. We also studied the complexity and
performance of an iterative receiver, analyzed the tradeoff
choices between complexity and performance, and
showed that the additional computational cost in LSD is
justified to get better soft-output approximation.

The results presented clarify some LSD algorithm
design choices in implementation and give general
guidelines to the implementation aspects of the tree
search algorithm design. Future research will address the
architecture design and the implementation of the LSD
algorithms in hardware and verification of the perfor-
mance in an FPGA based test bed to get a fair comparison
of LSD algorithms’ true costs.
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