
J Sign Process Syst (2011) 64:123–136
DOI 10.1007/s11265-010-0523-4

Implementation of a High Throughput Soft MIMO
Detector on GPU

Michael Wu · Yang Sun · Siddharth Gupta ·
Joseph R. Cavallaro

Received: 1 February 2010 / Revised: 13 August 2010 / Accepted: 18 August 2010 / Published online: 4 September 2010
© Springer Science+Business Media, LLC 2010

Abstract Multiple-input multiple-output (MIMO) sig-
nificantly increases the throughput of a communication
system by employing multiple antennas at the transmit-
ter and the receiver. To extract maximum performance
from a MIMO system, a computationally intensive
search based detector is needed. To meet the challenge
of MIMO detection, typical suboptimal MIMO detec-
tors are ASIC or FPGA designs. We aim to show that
a MIMO detector on Graphic processor unit (GPU),
a low-cost parallel programmable co-processor, can
achieve high throughput and can serve as an alternative
to ASIC/FPGA designs. However, careful architecture
aware software design is needed to leverage the per-
formance offered by GPU. We propose a novel soft
MIMO detection algorithm, multi-pass trellis traver-
sal (MTT), and show that we can achieve ASIC/FPGA-
like performance and handle different configurations
in software on GPU. The proposed design can be used
to accelerate wireless physical layer simulations and to
offload MIMO detection processing in wireless testbed
platforms.

Keywords GPU · Soft output detection · MIMO ·
Wireless baseband architecture

M. Wu (B) · Y. Sun · S. Gupta · J. R. Cavallaro
Electrical and Computer Engineering, Rice University,
Houston, TX 77005, USA
e-mail: mbw2@rice.edu

Y. Sun
e-mail: ysun@rice.edu

S. Gupta
e-mail: sgupta@rice.edu

J. R. Cavallaro
e-mail: cavallar@rice.edu

1 Introduction

Wireless communication systems enable higher data
rate services by providing higher spectral efficiency.
Wireless physical layers for high data rate wireless stan-
dards such as WiMAX and 3GPP LTE downlink of-
ten use multiple-input multiple-output combined with
orthogonal frequency division multiplexing (MIMO-
OFDM). MIMO increases spectral efficiency by em-
ploying multiple antennas at the transmitter and at the
receiver. OFDM divides the available bandwidth into a
set of orthogonal subchannels or subcarriers. To com-
bat errors due to channel noise and fading, a channel
decoder such as low density parity code (LDPC) is
combined with a soft output MIMO detector at the
receiver to maximize performance gain. As the signal
received at each antenna for each subcarrier consists of
a combination of multiple data streams from multiple
transmit antennas, a higher complexity detector is re-
quired to recover the transmitted vector compared to
single antenna systems. Although an exhaustive search-
based MIMO detector would be optimal, complexity
would be prohibitive. Fortunately, a suboptimal MIMO
detector can provide close to optimal performance with
significantly lower complexity.

There are two main approaches to MIMO detection,
depth-first tree-search algorithms such as sphere detec-
tion algorithm and breadth-first tree-search algorithms
such as K-Best. The soft sphere detector suffers from
non-deterministic complexity and variable throughput,
and the signal-to-noise ratio (SNR) must be accurately
estimated so that an initial radius can be determined.
The inherent sequential nature of the depth-first search
process significantly limits the throughput of the detec-
tor, especially when SNR is low. The K-Best algorithm

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Rice University

https://core.ac.uk/display/4467200?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

124 J Sign Process Syst (2011) 64:123–136

is a fixed-complexity algorithm with fixed throughput.
But this algorithm has a high sorting complexity which
significantly limits the throughput of the detector, espe-
cially when K is large.

To meet the challenge of MIMO detection, typical
suboptimal MIMO detectors are ASIC designs. For
example, Burg et al. [3] implemented a depth-first 4 × 4
16-QAM detector in ASIC with an average throughput
of 73 Mbps at an SNR of 20 dB. Wong et al. [19] first
introduced a K-best (with K = 10) 4 × 4 16-QAM
detector in ASIC achieving 10 Mbps. Later on Guo
and Nilsson [9] developed a K-best Schnorr–Euchner
(KSE) 4 × 4 16-QAM detector (with K = 5) in ASIC
with a higher throughput of 53.3 Mbps. FPGA is an-
other popular platform that can meet high data rate
requirements. Huang et al. [11] prototyped a 4 × 4
16-QAM detector on a Xilinx FPGA device with a
throughput of 81.5 Mbps and 36.1 Mbps based on
Schnorr–Euchner (SE) and Viterbo-Boutros (VB) al-
gorithm respectively. Software based designs are an-
other viable alternative but typically do not meet
performance requirements. Qi and Chakrabarti [15]
mapped a depth-first detector on a multi-core soft-
ware radio architecture (SDR), but did not include the
throughput of the implementation. Antikainen et al.
[2] presented a software defined implementation of
a 4 × 4 16-QAM K-best detector (with K = 7) on a
parallel transport triggered architecture (TTA) proces-
sor with a throughput of 5.3 Mbps. Janhunen et al.
[12] implemented a 2 × 2 64-QAM K-best detector
(with K = 16) on a programmable Sandbridge SB3500
processor which achieved a throughput of 32.0 Mbps,
but requires an additional hardware sorter not in the
original processor.

Programmable graphics processing units (GPU) de-
liver extremely high computation throughput by em-
ploying many cores working on a large set of data in
parallel. As GPUs become increasingly more flexible,
they can accelerate other tasks beyond the realm of
graphics. For example, researchers have found that
GPUs can perform very fast LDPC decoding [6]. Al-
though the power consumption of GPU is higher than
ASICs and FPGAs, GPU as an alternative to the tra-
ditional ASIC and FPGA solutions for wireless ap-
plications, especically in the realm of simulation and
software defined wireless test-beds, remains attractive
for several reasons. Since Communication algorithms
typically are very parallel and can take advantage of the
inherently parallel structure of GPUs, they can create
a platform that is capable very high throughput. Un-
like ASICs, GPUs can be reconfigured dynamically to
handle different workloads. These types of processors
are extremely cost-effective and ubiquitous in mobile

and desktop devices. Combined with a short learning
curve, GPUs reduce barriers to entry for academic
and industrial research groups and enable very fast
physical layer simulations as well as replacing custom
ASICs or FPGAs on wireless testbed platforms such as
WARPLab [1].

However, the underlying hardware of a GPU is
fixed. Careful architecture-aware algorithm design and
mapping are required to achieve good performance.
Much of the mapping and optimization are left to
the programmer. For example, the programmer needs
to specify how to use the limited resources on the
GPU, such as on-chip shared memory. Furthermore,
the programmer needs to specify how computation is
partitioned on GPU by partitioning threads among the
cores to handle the workload. Designing a detection
algorithm that scales well, while keeping the cores fully
utilized to achieve peak throughput across different
combinations of number of antennas and different
modulations, is a difficult task. To the best of our
knowledge, there are no existing implementations of
a soft MIMO detector on a GPU besides our recent
work [20, 21]. In this paper, we propose a MIMO soft
detection algorithm, multi-pass trellis traversal (MTT),
which is well suited for this architecture. We show that
this MIMO detector implementation can achieve good
performance while maintaining flexibility offered by
programmable hardware. We also compare the perfor-
mance of MTT against K-best and our previous GPU
implementation [21]. We measure the efficiency of our
implementation by measuring how well the hardware
executes our code as well as the quality of the compiled
code.

We give an overview of the CUDA architecture in
Section 2 followed by an overview of MIMO detec-
tion in Section 3. Section 4 gives a description of the
proposed detection algorithm. In Section 5, we present
the major software blocks of our implementation. We
present the performance results and provide an analysis
of the performance results in Section 6. Finally, we
conclude our investigation in Section 7.

2 Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture [13] is an
NVIDIA GPU software programming model that al-
lows the programmer to take advantage of the massive
computation ability of a NVIDIA GPU. The program-
ming model, which is shown in Fig. 1, is explicitly paral-
lel. A programmer defines a kernel which specifies the
series of computation steps on a data set. At runtime,
the kernel spawns a large number of thread blocks, each

J Sign Process Syst (2011) 64:123–136 125

Thread Thread

Reg Reg

Shared Memory

Constant Memory

Texture Memory

Thread Block

Stream Multiprocessors

Global Memory

Figure 1 CUDA thread.

of which consists of up to 512 threads. Each thread can
select a set of data using its own unique ID and executes
the set of operations defined by the kernel on the data
set. Threads within a block execute independently in
this model but can synchronize through a low overhead
barrier and can share data through shared memory.
By contrast thread blocks are completely independent
and can be synchronized by terminating the kernel and
writing to global memory, which is expensive.

The massive computation ability of a NVIDIA GPU
is due to the presence of multiple stream multiproces-
sors (SM). The overall architecture of an SM is eight
ALU-wide single instruction multiple data (SIMD).
At runtime, the architecture spawns multiple threads
as defined by the kernel across multiple processors.
Specifically, each thread block is mapped onto an SM.
During execution, the kernel divides the threads into
groups of 32. As the overall architecture is single in-
struction multiple data, if all 32 threads perform the
same instruction, they share the same warp instruction
which is executed over four cycles. Otherwise, threads
execute serially. However, stalls can occur which lead
to low core utilization. For example, global memory
accesses lead to data stalls and register to register de-
pendencies cause pipeline stalls.

To keep core utilization high, a SM can switch and
issue an independent warp instruction from the same
block or another thread block with zero-overhead.
By executing multiple thread blocks on a SM concur-
rently, stalls can be kept to a minimum as the SM
has multiple independent warps to choose from. Beside
zero-overhead thread switching, local resources such as
registers, shared memory and constant memory are
local and provide faster memory access times. The char-
acteristics of each memory type are shown in Table 1.
On-chip memory is especially useful since reducing

Table 1 Available resources for each memory.

Type Speed Access Size

Register Fast RW 8,192 per SM
Shared memory Fast RW 16 KB per SM
Constant memory Fast RO 8 KB per SM
Texture memory Fast RO 8 KB per SM
Global memory Slow RW >512 MB per SM

memory access time is crucial for efficient implementa-
tion. For example, shared memory, which can be as fast
as a register, can reduce memory access time by keep-
ing data on-chip and reducing redundant calculations
by allowing data sharing among independent threads.
However, shared memory on each SM is banked 16
ways. If 16 threads, half of a warp, are scheduled to
access shared memory at the same time, they must meet
certain conditions to allow the instruction to execute in
one cycle. It takes one cycle if all threads within half
of a warp access the same memory location (broadcast)
or if none of them accesses the same bank. However,
random layout with some broadcast and some one-to-
one accesses will be serialized and cause a stall.

There are several other limitations to shared mem-
ory. First, only threads within a block can share data
among themselves and threads between blocks can
not share data through shared memory. Second, there
are only 16 KB of shared memory on each stream
multiprocessor and shared memory is divided among
the thread blocks on a SM. Using too much shared
memory can reduce the number of concurrent thread
blocks mapped onto a SM. As a result, to keep the
multiprocessor from idling, designing an algorithm that
effectively partitions shared memory, has an efficient
memory access pattern, and does not require synchro-
nization between blocks and needs few global memory
accesses is a non-trivial task.

3 System Model

For an M × N MIMO configuration, the transmitter
sends different signals on M antennas and the receiver
receives N different signals, one per receiver antenna.
An M × N MIMO system can be modeled as:

y = Hs + w (1)

where y = [y0, y1, ..., yM−1]T is the received vector. H
is the M × N channel matrix, where each element,
hi, j, is an independent zero mean circularly symmet-
ric complex Gaussian random variable with unit vari-
ance. Noise at the receiver is w = [w0, w1, ...wN−1]T ,
where wi is an independent zero mean circularly sym-

126 J Sign Process Syst (2011) 64:123–136

metric complex Gaussian random variable with σ 2

variance per dimension. The transmit vector is s =
[s0, s1, ..., sM−1], where si is drawn from a finite com-
plex constellation alphabet, �, of cardinality Q. For
example, the constellation alphabet for QPSK is {−1 −
j, −1 + j, 1 − j, 1 + j} and Q = 4 for this particular
case.

After complex QR decomposition of the channel
matrix, H, we can model the M × N MIMO system with
an equivalent model:

y = QRs + w (2)

ŷ = Rs + ŵ (3)

where R is an M × N complex upper triangular matrix.
The vector ŷ = [ŷ0, ŷ1, ..., ŷN−1] is the effective com-
plex receive vector.

Each symbol sm is obtained using the mapping func-
tion s = map(x), where x = {x0, x1, ..., xMc−1}, an Mc ×
1 vector (block) of transmitted binary bits. Mc = log2 Q
is the number of bits per constellation symbol.

The soft MIMO detector calculates the a posteri-
ori probability (APP) in terms of log likelihood ratio
(LLR) for each transmitted bit, xk. Assuming no extrin-
sic probability, using the max-log approximation, the
LLR can be expressed as [10]:

L(xk|ŷ) ≈ 1

2σ 2

(
min

x∈Xk,−1

�(s, y) − min
x∈Xk,+1

�(s, y)

)
, (4)

where the set Xk,+1 = {x|xk = +1} and set Xk,−1 =
{x|xk = −1} and

�(s, ŷ) = ‖ŷ − Rs‖2
2 (5)

4 Proposed MIMO Detection

One way we can solve the detection problem is through
exhaustive search. However, searching through all pos-
sible transmit vectors is a time intensive process. For
a 4 × 4 MIMO point to point link, if the transmitter
utilizes 16 QAM, the total number of possible transmit
vectors is 164 = 66,534. If the transmitter utilizes 64
QAM, the total number of possible transmit vectors is
644 = 16,777,216. To reduce complexity, there are two
classes of search-based MIMO detection algorithms
to find the candidate lists, the set Xk,+1 and Xk,−1,
for the soft decision MIMO detector, K-best MIMO
detection [7] and depth-first sphere detection [19]. In
both cases, the algorithms view the search space, the
set of all possible transmit vectors, as a tree. Sphere-
detection is a depth-first tree search algorithm. In this
case, we traverse the tree depth first. Each time we
reach the last level of the tree of a transmit vector, we

use the Euclidean distance to prune all nodes with par-
tial distance bigger than the current Euclidean distance.
The drawback of this algorithm is that it is essentially
sequential, we search for candidates depth first one at a
time. The runtime is not deterministic and in the worse
case the detector needs to traverse through the entire
tree. K-best detection algorithm is a breadth-first tree
search algorithm, a greedy MIMO detection algorithm.
It reduces the number of candidates we search through
in the detection process by detecting input symbols
antenna by antenna, keeping at most K candidates per
level. There are a few drawbacks to this algorithm.
First, to find the K-best candidates per level, the al-
gorithm requires expansion and sorting of KM candi-
dates. Authors in [12] explored an implementation of
the K-best MIMO detector in software and proposed
a hybrid scheme, where a software processor is com-
bined with a hardware sorter to meet the performance
requirements. Furthermore, sorting across a tree level
requires storing KM candidates, which can outstrip the
amount of shared memory on a GPU. As such, we
look for an alternative search algorithm, a sort-free
algorithm that is very data parallel and efficiently uses
shared memory.

Without loss of generality, we use a simple 3 × 3
QPSK system to explain our proposed algorithm in
this section. In Sections 5 and 6, we will use common
2 × 2 and 4 × 4 configurations with various modulation
orders up to 64 QAM.

4.1 MIMO Trellis

To generate LLR values for each transmitted bit xk

based on (4), the soft MIMO detector needs to compute
the minimum Euclidean distance

� =
∥∥∥∥∥∥
⎡
⎣ŷ0

ŷ1

ŷ2

⎤
⎦ −

⎡
⎣R00 R01 R02

0 R11 R12

0 0 R22

⎤
⎦

⎡
⎣s0

s1

s2

⎤
⎦

∥∥∥∥∥∥
2

, (6)

over sets Xk,+1 and Xk,−1. The calculation of � can be
decomposed as: � = w<0> + w<1> + w<2>, where w<t>

is the 1-D Euclidean distance and is calculated as

w<0> = ‖ŷ2 − R22s2‖2,

w<1> = ‖ŷ1 − (R11s1 + R12s2)‖2,

w<2> = ‖ŷ0 − (R00s0 + R01s1 + R02s2)‖2. (7)

This process can be illustrated using a MIMO flow
graph as shown in Fig. 2. There are 3 trellis stages,
one stage per antenna. In each stage, there are Q
vertices, one per constellation point. The edge be-
tween v(t − 1, i) and v(t, j) has a weight of w<t>

i, j . The
weight function depends on its current stage and all its

J Sign Process Syst (2011) 64:123–136 127

0

1

2

3

0

1

2

3

0

1

2

3

(Antenna 2)

C
on

st
el

la
tio

n
S

iz
e

ToorRoot

Weight

(Antenna 1) (Antenna 0)

Weight=0Weight

><2
, jiw

><
−

0
, jw

Stage 0 Stage 1 Stage 2

Number of Antenna

Figure 2 MIMO detection flow graph.

predecessors. For example, w<2>
i, j depends on the ver-

tices in stages 2, 1, and 0.

4.2 Soft MIMO Detection

To compute the LLR value for each transmitted bit xk,
we first generate a candidate list for each trellis stage.
For each vertex i (0 ≤ i ≤ Q − 1) in the stage t (0 ≤ t ≤
M − 1), the detector finds the shortest path, which must
contain this vertex, from the root to the toor. The Q
conditioning shortest paths found at every stage t make
a candidate list Lt.

We then use the lists to compute the LLR for each
bit in a straight forward manner

L(x<t>
i |y) = 1

2σ 2

(
min

x∈Lt,−1

� − min
x∈Lt,+1

�

)
. (8)

4.3 Candidate List Generation

In this section, we introduce a trellis based shortest path
algorithm to approximately solve the soft detection
problem. There are two ways of reducing the number
of paths in the trellis. We can either prune the incoming
paths or outgoing paths at each vertex.

4.3.1 Edge Reduction

Edge reduction reduces the number of paths by pruning
incoming paths. Figure 3a shows that each vertex i at
each stage t has Q incoming subpaths h0, ..., hQ−1.

Let the partial distance be dk, which is the cumu-
lative weight of the subpath hk from the root to this

i

Best incoming
subpath

Best outgoingsubpath

i

(a) Edge reduction (b) Path extension

......

0 th

1 st

2 nd

Q-1
th

ith

0
th

...
Q-1 th

1
st

Figure 3 Data flow at vertex v(t, i).

vertex i. Among the Q incoming subpaths, we select the
best subpath hm with the the smallest partial distance,

m = argmin dm
m∈{0,...,Q−1}

, (9)

and discard the other Q − 1 subpaths.

4.3.2 Path Extension

Given one incoming path and multiple outgoing paths,
path extension reduces the number of paths by pruning
outgoing paths. Figure 3b shows that each node i at
each stage t has Q outgoing subpaths. The outgoing
path weight from node v(t, i) to node v(t + 1, k) is
updated as

d′
k = dm + w<t+1>

i,k , 0 ≤ k ≤ Q − 1. (10)

Among the Q outgoing subpaths we find the shortest
outgoing subpath h′

n where

n = argmin d′
n

n∈{0,...,Q−1}
. (11)

4.3.3 Shortest Path Algorithm

The goal is to find the shortest path through the trellis
for each node i. The search process can be expressed
as a series of edge reductions followed by a series of
path extensions. To generate Lt, the candidate list for
antenna N − t − 1, we first perform edge reductions
stage by stage at each vertex until there is one path
per vertex at stage t. If we perform edge reductions
after this stage, we can not guarantee that the candidate
list has a path from the root to each vertex in stage
t. Therefore, after stage t, we perform path extensions
stage by stage at each vertex until we have completely
traversed the trellis.

Figure 4 illustrates an example of the search process
for L1. We start at the root node and perform edge
reduction at each vertex in stage 0. To prune the edges
between stage 0 and stage 1, we perform edge reduction
at each vertex in stage 1. At this point, there is a path
from the root node to each vertex in stage 1 as shown in

128 J Sign Process Syst (2011) 64:123–136

0

1

2

3

0

1

2

3

0

1

2

3

ToorRoot

Stage 0 Stage 1 Stage 2

0

1

2

3

0

1

2

3

0

1

2

3

ToorRoot

Stage 0 Stage 1 Stage 2

(a) Result after two stages of edge reduction

(b) Result after one stage of path extension

Figure 4 Search process for generating L1.

Fig. 4a. We then perform edge extension at each vertex
in stage 1 to prune the outgoing paths between stage 1
and stage 2. We then have a complete path from root to
toor for each vertex in stage 1 as shown in Fig. 4b.

There are common steps when generating candidate
lists for each stage. For example, all search processes
start with a path reduction at stage 0. The search
processes can be represented with a data flow diagram,
shown by Fig. 5.

R E E

R E

R

,R

Stage 0 Stage 1 Stage 2

Figure 5 Data-flow diagram for generating candidate lists.

5 Implementing Soft MIMO Detector on CUDA

We implemented the algorithm described in the pre-
vious section on GPU. In our implementation, a sin-
gle kernel generates the candidate lists and computes
LLRs for a large number of symbols at a time. At run-
time, the kernel spawns a large number of independent
soft MIMO detector thread blocks, one thread block
for each channel matrix and the corresponding receive
vector. Each thread block generates a candidate list for
each trellis level and calculates the LLR for each bit
using the candidate lists. Effectively the kernel creates
a large array of soft MIMO detectors that operate on
an array of data in parallel. This reduces overhead since
synchronization across different stream multiprocessor
is not needed.

Given a receive vector, the corresponding channel
matrix and the complex constellation alphabet, a soft
MIMO detector block generates the candidate lists
through a combination of edge reductions and path
extension steps. Given the incoming subpaths and the
associated partial distances, each step prunes the num-
ber of possible subpaths and outputs the updated sub-
paths and path partial distances. Both reduction and
extension are extremely regular and can be efficiently
implemented on the GPU. At each stage, the detector
does either Q path reductions or Q edge extensions.
Therefore, we can handle the computation by spawning
Q threads per thread block, one per each vertex. We
use log2(Q) threads out of Q threads to perform LLR
computation. This section is less parallel than path
reduction and path extension. This method does not
require terminating a kernel or reading and writing
from slower global memory.

We attempt to keep our detector operating at peak
utilization by minimizing stall time. This algorithm has
a regular memory access pattern which reduces the
number of stalls. Furthermore, by using an efficient
traversal, we reduce the amount of memory required
and allow more concurrent thread blocks to mask stalls.
We also improve the performance of the detector by
reducing the number of instructions required to per-
form MIMO detection by sharing computation across
threads within a thread block. We unroll loops when
possible to reduce instruction count.

We took several additional steps to reduce the over-
all complexity of the algorithm. Since a reduction step
and the edge reduction directly above prune the same
set of edges between stage i and stage i + 1 and have
the same set of incoming subpaths, both steps compute
the same Q2 weights. Computation can be reduced by
allowing these two steps to share computation.

J Sign Process Syst (2011) 64:123–136 129

R E E A

R E A

R A

,R LLR0

LLR1

LLR2

Stage 0 Stage 1 Stage 2

Figure 6 CUDA MIMO detector data flow.

Figure 6 illustrates the steps for a 3 × 3 MIMO
detector. The algorithm generates L0, L1, L2 and L3

using a series of path reduction and path extension
steps followed by LLR computation steps. We will
now describe the implementation of each step of the
detection algorithm, path extension, path reduction and
LLR computation.

5.1 Extension

The inputs to the extension step are the outputs from
the previous step. There are Q incoming subpath and
Q incoming path partial distances, one subpath and a
partial distance per vertex. Since we have Q threads,
each thread handles one incoming path by searching
for the best path among Q outgoing paths. Particularly,
thread k, assigned to vertex k, evaluates all Q outgoing
paths for path k. For the path extension corresponding
to stage t, the computation for the path weight between
vertex k (in stage t − 1) and vertex q (in stage t) is:

w<t>
k,q =

∥∥∥∥∥∥ŷN−t−1 −
N−1∑

j=N−t−1

R(N−k−1, j)s j

∥∥∥∥∥∥
2

2

(12)

where h′
k is kth subpath and s j is the jth element of

{h′
k, q}.
The calculation above is done in two steps to reduce

required computation. Thread k first calculates δk, the
kth intermediate partial distance vector:

δk =
N−2∑

j=N−1−k

R(N−1−k, j)s j (13)

where s j is the jth element of a kth subpath h′
k.

Thread k now evaluates Q outgoing paths by evalu-
ating each qk in our complex constellation alphabet �.

w<t>
k,q = ∥∥ŷN−t−1 − δk − R(N−1,N−1)qk

∥∥2
2 (14)

Thread k picks the smallest outgoing path by evalu-
ating the outgoing paths one by one. The path selected

is the new kth path. We update the partial distances as
well.

Algorithm 1 summarizes steps taken to find the path
with the smallest partial distances. Line 2 calculates δk

using Eq. 13. Lines 4–17 evaluate Q outgoing paths
by evaluating all constellation points in our complex
constellation alphabet �. Line 12 computes edge weight
w<t>

k,q and line 13 computes the partial distance, dk.
Lines 14–17 search outgoing paths for the smallest
partial distance serially. The path selected is the new
kth path.

Algorithm 1 The kth thread searches for the best out-
going path

1: //Calculate intermediate PD vectors
2: Calculate δk

3: //Search for the path with minimum partial dis-
tance serially

4: w = 0
5: Fetch d′

k from shared memory
6: Fetch �0 from shared memory
7: Calculate w<t>

k,0 using δk and �0

8: Update dk

9: dw = dk

10: for q = 1 to Q − 1 do
11: Fetch �q from constant memory
12: Calculate w<t>

k,q using δk and �q

13: Update dk

14: if (dk) < (dw) then
15: dw = dk

16: end if
17: end for
18: Store wth path into kth path history in shared

memory
19: Store wth path’s partial distance in shared memory
20: Sync Barrier

For the extension step right above a reduction step,
thread k also saves δk into shared memory to speed up
the next reduction step.

5.2 Reduction

For each iteration of the edge reduction, thread q needs
to pick the best path out of Q paths connected to vertex
q. For the iteration corresponding to stage t, the path
weight between vertex k in stage t − 1 and vertex q in
stage t also can be computed using Eq. 12.

Similar to path extension, each weight calculation
can be done in two steps to reduce complexity. How-
ever, the extension step above each reduction step al-
ready computed all δk. The values can be reused which

130 J Sign Process Syst (2011) 64:123–136

reduce complexity significantly. The search process is
similar to path extension except each thread evaluates
the incoming path, not each outgoing path. Each thread
computes Q partial distances serially and finds the best
incoming path with the minimum partial distance. At
the end of the iteration, there are Q paths, one path per
thread. The paths are written to the shared memory for
the next iteration.

The steps in the algorithm are summarized in Algo-
rithm 2. The algorithm works as follows. Each thread
calculates Q partial distances serially and finds the path
with the minimum partial distance. At the end of the
iteration, there are Q paths, one path per thread. The
paths and the partial distances are written to the shared
memory for the next iteration.

Algorithm 2 The qth thread searches for the best in-
coming path

1: //Search for the path with minimum partial dis-
tance serially

2: w = 0
3: Fetch δ0 from shared memory
4: Fetch d′

0 from shared memory
5: Fetch �q from constant memory
6: Calculate w<t>

0,q using δ0 and �q

7: Update d0

8: dw = dk

9: for k = 1 to Q − 1 do
10: Fetch d′

k from shared memory
11: Fetch δk from shared memory
12: Calculate w<t>

k,q using δk and �q

13: Update dk

14: if (dk) < (dw) then
15: dw = dk

16: end if
17: end for
18: Sync Barrier
19: Store wth path into qth path history in shared

memory
20: Store wth path’s partial distance in shared memory
21: Sync Barrier

5.3 LLR Computation

The algorithm generates an LLR for each bit. There
are log2(Q) parallel LLR computations for each can-
didate list. The thread block spawns Q threads for the
reduction steps and extension steps. The complexity of
LLR computation is smaller than the reduction and
the extension step. Therefore, we propose a simple
linear search. Thread k computes LLR for bit k, where
k < log2(Q). This method is less efficient than path

extension or path reduction as only log2(Q) threads are
doing useful work.

The Q partial distances from previous steps is the
candidate list. We will call these values cumulative
distances. To compute the LLR for the kth bit, the kth
thread looks at the kth bit, searches for the two smallest
cumulative distances, one minimal cumulative distance
where the kth bit is 0 and one minimal cumulative
distance where the kth bit is 1. The difference between
the two cumulative distances is the LLR. The steps in
LLR computation are summarized in Algorithm 3.

Algorithm 3 The kth thread compute the kth LLR
1: m0 = 999
2: m1 = 999
3: if k < log2(Q) then
4: for k = 0 to Q − 1 do
5: if kth bit is 0 and m0 > dk then
6: m0 = dk

7: else if kth bit is 1 and m1 > dk then
8: m1 = dk

9: end if
10: end for
11: LLRt,k = (m0−m1)

σ

12: end if
13: Sync Barriers

5.4 Memory Transport Scheduling
and Code Optimization

Since the GPU is connected to the host through the
PCI-express bus, transport time results in a measur-
able penalty. If synchronous memory copy is used to
copy data in and out of the GPU, reading from host
memory to global memory, writing from global memory
to host memory, and kernel execution can not happen
concurrently. However, GPUs support asynchronous
memory copy which allows global memory access to
overlap with kernel execution. This is accomplished by
breaking data into sections and creating a stream per
data chuck. By using asynchronous memory copy, while
the kernel is performing computation for one stream,
memory operations, both reading from host memory
to global memory and writing from global memory to
host memory can happen in parallel. This minimizes the
performance penalty due to transport overhead.

The algorithm described maps efficiently onto a
single multiprocessor. The data parallelism of this al-
gorithm is Q. There are Q edge reductions or Q exten-
sions we can do at each stage. Therefore, computations
can be balanced evenly across Q threads. However, the

J Sign Process Syst (2011) 64:123–136 131

minimum number of threads within a warp is 32. When
Q = 4 or Q = 16, a warp is not completely occupied, re-
ducing the effective throughput. To increase efficiency
of the detector, we allow each thread block to consist
of more than one MIMO detector, which in turn allows
each thread block to have 32 threads and fully occupy
one warp.

6 Performance Results

Throughout rest of the paper we will refer to
our configurable multi-pass trellis traversal real-time
MIMO detector on a GPU simply as the “MTT”. To
evaluate the performance of MTT, we tested our de-
tector on a Linux platform with 8GB DDR2 memory
running at 800 MHz and an Intel Core 2 Quad Q6600
running at 2.4 GHz. The GPU used in our experiment
is a NVIDIA Telsa C1060 graphic card, which has
240 stream processors running at 1.3 GHz and 4 GB
of GDDR3 memory running at 1600 MHz. The host
computer first generates the random input symbols and
a random channel. After passing the input symbols
through the random channel, the host performs sorted
QR-decomposition on the channel matrix H to gener-
ate R and ŷ, which are fed into the detection kernel
running on the GPU.

6.1 MTT Detector Performance

We first evaluate the performance of this detector
by comparing the bit error rate (BER) performance
against other detectors. We compare MTT against the
optimal exhaustive solution which is an exhaustive
search. We also compare MTT against the performance
of K-Best, a well-known breadth-first algorithm. Fi-
nally, to measure how much improvement our MMT
detector gains from the additional extension steps, we
compared MTT against our first GPU MIMO detector,
a one-pass trellis detector (OT), which does only reduc-
tion steps through the trellis once to perform detection.
To mitigate inaccuracies in LLR computation due to
the small list, we apply the LLR clipping technique to
the K-Best detector [5] and OT. It should be noted that
in the K-Best and one-pass trellis detector algorithm
the cumulative distance for a particular bit can be
missing due to the small list, so the LLR clipping is
necessary in the K-Best algorithm. The LLR clipping is
not needed in MTT because each node in the trellis has
an associated full Euclidean path. Thus, we can always
find a cumulative distance for any bit required in the bit
LLR computation.

We run BER simulations using 2 × 2 and 4 × 4
4-QAM/16-QAM/64-QAM MIMO systems. The soft
output of the detector is fed to a length 2304, rate 1/2
WiMAX layered LDPC decoder [17], which performs
up to 15 LDPC iterations. Figure 7(a), (c), and (e) com-
pare the BER performance of the 2 × 2 MTT with the
K-Best detectors. Figure 7(b), (d), and (f) compare the
BER performance of the proposed 4 × 4 detector with
the K-Best detectors. As can be seen, MTT performs
better than the K-Best detector with K = Q and OT for
2 × 2 MIMO receiver. This is expected as MTT is the
optimal detector for 2 × 2 as MTT enumerates all pos-
sible paths through each trellis vertex. For 4 × 4 MIMO
receiver, MTT performs close to the K-Best detector
with K = Q. Compared to BER performance of the
simple one-pass trellis detector where the trellis is only
visited once from left to right, MTT performs better
since it evaluates more paths per trellis vertice and is
able to compute more accurate LLRs for the decoder.

6.2 MTT Detector Throughput

We now look at the throughput of MTT detector on the
GPU. To keep utilization high, a thread block detects
multiple symbols in parallel. Each thread block detects
eight symbols for 4-QAM, two symbols for 16-QAM,
and one symbol for 64-QAM. In our benchmark, both
2 × 2 and 4 × 4 MIMO configurations are tested. The
detector kernel detects 8 streams of 16,384 symbols
for 2 × 2 and 8 streams of 8,192 symbols for 4 × 4.
Execution time of the detector is averaged over 1,000
runs. We compared both asynchronous memory copy
and synchronous memory copy implementations of this
MIMO detector.

Table 2 shows the execution time and the through-
put performance for the 2 × 2 MTT MIMO detector.
Table 3 shows the execution time and the throughput
performance for the 4 × 4 MTT MIMO detector. The
table includes performance of our synchronous imple-
mentation, our asynchronous implementation, as well
as performance of the kernel of the MIMO detector.

For both 2 × 2 and 4 × 4 MIMO configurations,
asynchronous memory transfer is an effective way of
hiding data transfer latency. By breaking incoming data
into eight streams and overlapping transfer and com-
putation, our MIMO detector performs very close to
kernel running time.

Figures 8 and 9 compare the throughput of the
proposed MTT detector with asynchronous memory
transfer to the performance requirement of a 5 MHz
LTE downlink MIMO configuration.

To meet the LTE requirement, our detector needs
to meet both throughput and latency requirements of

132 J Sign Process Syst (2011) 64:123–136

Figure 7 Simulation results
for an LDPC-coded MIMO
system.

3 3.5 4 4.5 5 5.5 6
10

6

10
5

10
4

10
3

10
2

10
1

Eb/N0 (dB)

B
it

E
rr

or
 R

at
e

(B
E

R
)

OT
KBest, K=4
MTT (Exhaustive)

(a) 2 × 2 4-QAM MIMO

3 4 5 6 7 8
10

6

10
5

10
4

10
3

10
2

10
1

Eb/N0 (dB)

B
it

E
rr

or
 R

at
e

(B
E

R
)

OT
MTT
KBest, K=4
Exhaustive

(b) 4 × 4 4-QAM MIMO

6.5 7 7.5 8 8.5 9 9.5
10

5

10
4

10
3

10
2

10
1

Eb/N0 (dB)

B
it

E
rr

or
 R

at
e

(B
E

R
)

OT
KBest, K=16
MTT(Exhaustive)

(c) 2 × 2 16-QAM MIMO

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
10

6

10
5

10
4

10
3

10
2

10
1

Eb/N0 (dB)

B
it

E
rr

or
 R

at
e

(B
E

R
)

OT
KBest, K=10
MTT
KBest, K=16
Exhaustive

(d) 4 × 4 16-QAM MIMO

10 10.5 11 11.5 12 12.5 13
10

5

10
4

10
3

10
2

10
1

Eb/N0 (dB)

B
it

E
rr

or
 R

at
e

(B
E

R
)

KBest, K=64
OT
MTT(Exhaustive)

(e) 2 × 2 64-QAM MIMO

12.5 13 13.5 14 14.5 15 15.5
10

5

10
4

10
3

10
2

10
1

Eb/N0 (dB)

B
it

E
rr

or
 R

at
e

(B
E

R
)

OT
KBest, K=48
MTT
KBest, K=64
Exhaustive

(f) 4 × 4 64-QAM MIMO

this standard. Although the current LTE specification
does not define the exact end to end latency require-
ment, the specification aims to enable <5 ms latency
for small packets. Using 5 ms as the maximum latency

required between a mobile device and the base-station,
our detector can handle 4 and 16 QAM for 2 × 2 and
4 × 4 5 MHz LTE MIMO systems. Since the detector
can achieve more than four times the performance

J Sign Process Syst (2011) 64:123–136 133

Table 2 Average runtime for 2 × 2 MIMO detection.

Runtime (ms)/throughput (Mbps)

Q Synchronous Asynchronous Kernel

4 5.05/99.10 0.75/663.65 0.61/822.59
16 9.49/105.27 3.70/269.89 3.57/280.08
64 46.85/37.35 39.97/43.91 39.80/43.86

requirement of 5 MHz LTE MIMO configuration for
4 and 16-QAM for 2 × 2 and for 4 QAM 4 × 4 LTE
MIMO system, our detector can also handle the larger
20 MHz LTE MIMO configuration for these cases.
Furthermore, for these cases, our detector can meet the
latency requirement in asynchronous mode as well.

6.3 Detector Instruction Throughput Ratio

The current implementation attempts to maximize
efficiency by ensuring each thread block is a multiple
of 32 threads. By employing a regular algorithm that
allows regular memory access, stall time can be re-
duced. CUDA Visual Profiler provides the instruction
throughput ratio in the summary table. This metric
measures efficiency of the mapping as it is the ratio of
achieved instruction rate to peak single issue instruc-
tion rate [14]. Accordingly, the achieved instruction
rate is I/T, where I is the number of executed warp
instructions and T is the actual time in ms it takes
to run the algorithm. The peak single instruction rate
is Fc/CPI, where Fc is clock frequency and CPI is
the average number of cycles per instruction, There-
fore, the instruction throughput ratio can be calcu-
lated as:

R = I/T
Fc/CPI

= I × CPI × F−1
c

T
(15)

In CUDA, the average CPI is 4 cycles per instruction
and each SM is clocked at 1.3 GHz. The estimated
runtime is shown in Table 4.

The ratio, R, is smaller than 1 since an instruction
throughput ratio of 1 corresponds to the maximum
instruction throughput. Instruction throughput ratio is

Table 3 Average runtime for 4 × 4 MIMO detection.

Runtime (ms)/throughput (Mbps)

Q Synchronous Asynchronous Kernel

4 12.52/39.90 1.76/284.75 1.62/308.40
16 19.85/50.35 8.31/120.25 8.19/122.03
64 138.17/10.85 124.62/12.04 124.52/12.05

200

300

400

500

600

700

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

5mhz LTE

0

100

4 16 64

Modulation Order

MTT

Figure 8 Performance compared to 5 MHz LTE 2 × 2 MIMO.

lowest for 4 QAM since the detector does a smaller
number of computations per global memory fetch. Con-
versely, instruction throughput ratio is close to 1 for
16 and 64 QAM as the numbers of stalls due to long
device memory access for the computation intensive
cases decreases as the detector does more computations
per each global memory fetch.

6.4 Detector Instruction Mix

Instruction throughput ratio measures how well in-
structions for our MIMO detector execute on the hard-
ware. However, it does not measure how well these
instructions solve our problem. We use decuda [18],
a disassembler, to study the quality of detector code
generated by the CUDA compiler. The main steps
of the algorithm are edge reductions, path extensions
and LLR computations. We measure the quality of the
instructions that make up our detector by looking at
the loop body within these three functions. Using the
disassembler, we see that path extensions, path reduc-
tions, and LLR computations are completely unrolled
for all cases except for 4 × 4 64-QAM. Particularly,
path extension and path reduction are essentially the

100

150

200

250

300

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

5mhz LTE

0

50

4 16 64

Modulation Order

MTT

Figure 9 Performance compared to 5 MHz LTE 4 × 4 MIMO.

134 J Sign Process Syst (2011) 64:123–136

Table 4 Instruction throughput ratio for 2 × 2, 16,800
subcarriers.

Modulation I T R

4 QAM 13,894 0.08 0.549
16 QAM 137,712 0.45 0.940
64 QAM 1,601,220 4.98 0.996

same. Each loop iteration consists of two add, two ABS
and two additional add instructions, which is the min-
imum number of instructions needed to compute the
partial distance of each incoming path. The if statement
within these loops consists of three instructions, one
compare instruction that sets the predication register
and two predicated min for computing the minimum
cumulative weights thus far for the next iteration. For
both path extension and reduction, there are a total of
eight instruction per loop iteration. For 4 × 4, there is
an additional store to save the index of the best path.
For the LLR computation, each loop iteration consists
of one compare, one shared memory load and two
stores.

For the 2 × 2 configuration, there is one reduc-
tion step, one extension step and two LLR computa-
tion steps. After counting the number of instructions
outside of the loop, the number of instructions (I)
required for our MIMO detector is modeled as the
following:

I = 113 + 16Q + 8Q (16)

For the 4 × 4 configuration, there are three path
reductions, six path extensions and four LLR computa-
tions. After counting the number of instructions outside
of the loop, the number of instructions required for our
MIMO detector is modeled as the following:

I = 600 + 81Q + 16Q (17)

The constants for the 2 × 2 and 4 × 4 MIMO cases
are different since there are more computations outside
of the loops for 4 × 4 MIMO case. For example, there
are more intermediate partial distance vectors (Eq. 13)
for 4 × 4 MTT to compute. Table 5 compares our
model against the number of instruction reported by

Table 5 Number of instructions per threadblock.

2 × 2 4 × 4

Model Profiler Model Profiler

4 209 209 988 1,014
16 497 496 2,152 2,137
64 1,649 1,780 6,808 9,749

the NVIDIA profiler for one thread block. Note that
the result reported by the profiler is approximate as it
varies by a few instructions from run to run.

When Q is large, most instructions are loop itera-
tions. For example, for 2 × 2 MIMO configuration, 74
percent of the instructions are in loops for 16-QAM.
Similarly 93 percent of the instructions are loop itera-
tions for 64-QAM. This is also true for 4 × 4 16-QAM.
The model does not accurately predict the number of
instructions executed for 4 × 4 64-QAM since loops
are not completely unrolled. This is due to the trade-
off between code unrolling and code expansion. Nev-
ertheless, mapping is efficient since the code structure
matches the computation required and the instruc-
tion throughput ratio shows few stalls, which implies
efficient memory accesses.

6.5 ASIC/FPGA/ASIP Comparisons

Although a conventional MIMO ASIC detector could
achieve higher throughput with fewer silicon resources,
it lacks the necessary flexibility to support different
modulation orders and different number of antennas.
Moreover, the fixed-point arithmetic employed by the
ASIC has to be designed very carefully to avoid large
performance degradation. For example, the internal
bit width could be large due to the correlation of the
channel matrices and the “colored noise". This is not a
concern for GPU since GPU executes all computations
in floating-point.

Table 6 compares our GPU design with state-of-the-
art ASIC/FPGA/ASIP designs in terms of throughput.
Compared to our previous work [20], this work is a
more complete comparison since it is also a soft de-
tector. In [8], a depth-first search detector with 256
searches per level is implemented. In [9], a K-best
detector with K = 5 and real decomposition is imple-
mented. In [4], a relaxed K-best detector with K = 48
is implemented. In [2], a K-best with K = 7 detec-
tor is implemented. We also list our early ASIC de-
sign [16] based on the same trellis detection algorithm
described above. As can be seen, the proposed detec-
tion algorithm is not only suitable for parallel ASIC
implementation but also suitable for GPU-based par-
allel software implementation. Compared to ASIC/
FPGA/ASIP solutions from [2, 4, 8, 9] for 4 × 4 MIMO
systems, our GPU design can achieve comparable or
even higher throughput. In summary, the GPU design
has more flexibility to support different MIMO sys-
tem configurations and has the capability to support
floating-point signal processing which can eliminate the
need for fixed-point design analysis.

J Sign Process Syst (2011) 64:123–136 135

Table 6 Throughput
comparison with
ASIC/FPGA/ASIP solutions
for 4 × 4 system.

4 × 4 QPSK 4 × 4 16-QAM 4 × 4 64-QAM Output type

GPU 284.7 Mbps 120.0 Mbps 12.0 Mbps Soft decision
FPGA [4] N/A N/A 8.57 Mbps Soft decision
ASIP [2] N/A 5.3 Mbps N/A Hard decision
ASIC [8] 19.2 Mbps 38.4 Mbps N/A Soft decision
ASIC [9] N/A 53.3 Mbps N/A Soft decision
ASIC [16] 300 Mbps 600 Mbps N/A Soft decision

7 Conclusion

This paper presented a soft MIMO detector imple-
mentation on GPU. We show our proposed multi-pass
trellis traversal performs similarly to soft K-best MIMO
detector with clipping and out-performs one-pass trellis
traversal with LLR clipping. By using the NVIDIA
profiler to measure how well the compiled code runs
on GPU and the disassembler to study the quality of
detector code generated by the CUDA compiler, we
show that this algorithm is well-suited to the GPU.
Our detector performs at least as well as the conven-
tional fixed-point VLSI and FPGA implementations
while maintaining support for different MIMO system
configurations, allowing the fast yet flexible wireless
physical layer simulation as well as high throughput
MIMO enabled software defined radio.

Acknowledgements This work was supported in part by Nokia,
NSN, Texas Instruments, Xilinx, and by NSF under grants CCF-
0541363, CNS-0551692, CNS-0619767, EECS-0925942 and CNS-
0923479.

References

1. Amiri, K., Sun. Y., Murphy, P., Hunter, C., Cavallaro, J. R.,
et al. (2007). Warp, a unified wireless network testbed for
education and research. In MSE ’07: Proceedings of the 2007
IEEE international conference on microelectronic systems
education.

2. Antikainen, J., Salmela, P., Silven, O., Juntti, M., Takala,
J., & Myllyla, M. (2007). Application-specif ic instruction set
processor implementation of list sphere detector. EURASIP
Journal on Embedded Systems.

3. Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner,
W., & Bolcskei, H. (2005). VLSI implementation of MIMO
detection using the sphere decoding algorithm. IEEE Journal
Solid-State Circuit, 40, 1566–1577.

4. Chen, S., Zhang, T., & Xin, Y. (2007). Relaxed K-best
MIMO signal detector design and VLSI implementation.
IEEE Transactions on Very Large Scale Integration (VLSI)
System, 15, 328–337.

5. de Jong, Y. L. C. , & Willink, T. J. (2002). Iterative tree search
detection for MIMO wireless systems. IEEE Transactions on
Communications, 53(6), 930–935.

6. Falcão, G., Silva, V., & Sousa, L. (2009). How GPUs can out-
perform ASICs for fast LDPC decoding. In ICS ’09: Proceed-
ings of the 23rd international conference on supercomputing.

7. Fincke, U., & Pohst, M. (1985). Improved methods for calcu-
lating vectors of short length in a lattice, including a complex-
ity analysis. Mathematics of Computation, 44(170),463–471.

8. Garrett, D., Davis, L., ten Brink, S., Hochwald, B., & Knagge,
G. (2004). Silicon complexity for maximum likelihood MIMO
detection using spherical decoding. IEEE Journal of Solid-
State Circuit, 39, 1544–1552.

9. Guo, Z., & Nilsson, P. (2006). Algorithm and implementation
of the K-best sphere decoding for MIMO detection. IEEE
Journal on Selected Areas in Communication, 24, 491–503.

10. Hochwald, B., & Brink, S. (2003). Achieving near-capacity on
a multiple-antenna channel. IEEE Transactions on Commu-
nications, 51, 389–399.

11. Huang, X., Liang, C., & Ma, J. (2008). System architecture
and implementation of MIMO sphere decoders on FPGA.
IEEE Transactions on Very Large Scale Integration (VLSI)
System, 2, 188–197.

12. Janhunen, J., Silvn, O., & Juntti, M. (2010). Programmable
processor implementations of K-best list sphere detector for
MIMO receiver. Signal Processing, 90(1), 313–323.

13. NVIDIA Corporation (2008). CUDA compute unified de-
vice architecture programming guide. http://www.nvidia.
com/object/cuda_develop.html.

14. NVIDIA Corporation (2009). NVIDIA CUDA visual profi-
ler version 2.2 readme. http://developer.download.nvidia.com/
compute/cuda/2_2/toolkit/docs/cudaprof_1.2_readme.html.

15. Qi, Q., & Chakrabarti, C. (2007). Sphere decoding for multi-
processor architectures. In IEEE workshop on signal process-
ing systems (pp. 17–19).

16. Sun, Y., & Cavallaro, J. R. (2009). High throughput vlsi ar-
chitecture for soft-output mimo detection based on a greedy
graph algorithm. In GLSVLSI ’09: Proceedings of the 19th
ACM great lakes symposium on VLSI. ACM.

17. Sun, Y., & Cavallaro, J. R. (2008). A low-power 1-Gbps re-
configurable LDPC decoder design for multiple 4G wireless
standards. In IEEE international SOC conference (pp. 367–
370).

18. van der Laan, W. J. (2009). Decuda. http://wiki.github.com/
laanwj/decuda.

19. Wong, K., Tsui, C., Cheng, R., & Mow, W. (2002). A VLSI
architecture of a K-best lattice decoding algorithm for MIMO
channels. In IEEE int. symp. on circuits and syst. (Vol. 3, pp.
273–276).

20. Wu, M., Sun, Y., & Cavallaro, J. R. (2009). Reconfigurable
real-time MIMO detector on GPU. In IEEE 43rd asilo-
mar conference on signals, systems and computers (ASILO-
MAR’09).

21. Wu, M., Gupta, S., Sun, Y., & Cavallaro, J. R. (2009). A GPU
implementation of A real-time MIMO detector. In IEEE
workshop on signal processing systems (SiPS’09).

http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_develop.html
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/cudaprof_1.2_readme.html
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/cudaprof_1.2_readme.html
http://wiki.github.com/laanwj/decuda
http://wiki.github.com/laanwj/decuda

136 J Sign Process Syst (2011) 64:123–136

Michael Wu received his B.S. degree from Franklin W. Olin
College of Engineering in May of 2007 and his M.S. degree from
Rice University in May of 2010, both in Electrical and Computer
Engineering. He is currently a Ph.D candidate in the E.C.E
department at Rice University. His research interests are wireless
algorithms, software defined radio on GPGPU and other parallel
architectures, and high performance wireless receiver designs.

Yang Sun received the B.S. degree in Testing Technology &
Instrumentation in 2000, and the M.S. degree in Instrument
Science & Technology in 2003, both from Zhejiang University,
Hangzhou, China. From 2003 to 2004, he worked at S3 Graphics
Co. Ltd. as an ASIC design engineer, developing 3D Graphics
Processors (GPU) for computers. From 2004 to 2005, he worked
at Conexant Systems Inc. as an ASIC design engineer, develop-
ing Video Decoders for digital satellite-television set-top boxes
(STBs). He is currently a Ph.D student in the Department of
Electrical and Computer Engineering at Rice University, Hous-
ton, Texas. His research interests include parallel algorithms and
VLSI architectures for wireless communication systems, espe-
cially forward-error correction (FEC) systems. He received the
2008 IEEE SoC Conference Best Paper Award, the 2008 IEEE
Workshop on Signal Processing Systems Best Paper Award (Bob
Owens Memory Paper Award), and the 2009 ACM GLSVLSI
Best Student Paper Award.

Siddharth Gupta received his B.S. degree in Electrical Engi-
neering in 2007 and his M.S. degree in Electrical Engineering
in 2010, both from Rice University, Houston, TX. Since 2009,
he has been a Research Engineer at the Center for Multimedia
Communications at Rice University, Houston, TX. His research
interests are in platforms for wireless communications, low power
systems and sensor processing.

Joseph R. Cavallaro received the B.S. degree from the Univer-
sity of Pennsylvania, Philadelphia, Pa, in 1981, the M.S. degree
from Princeton University, Princeton, NJ, in 1982, and the Ph.D.
degree from Cornell University, Ithaca, NY, in 1988, all in elec-
trical engineering. From 1981 to 1983, he was with AT&T Bell
Laboratories, Holmdel, NJ. In 1988, he joined the faculty of
Rice University, Houston, TX, where he is currently a Professor
of electrical and computer engineering. His research interests
include computer arithmetic, VLSI design and microlithogra-
phy, and DSP and VLSI architectures for applications in wire-
less communications. During the 1996–1997 academic year, he
served at the National Science Foundation as Director of the
Prototyping Tools and Methodology Program. He was a Nokia
Foundation Fellow and a Visiting Professor at the University of
Oulu, Finland in 2005 and continues his affiliation there as an
Adjunct Professor. He is currently the Associate Director of the
Center for Multimedia Communication at Rice University. He
is a Senior Member of the IEEE. He was Co-chair of the 2004
Signal Processing for Communications Symposium at the IEEE
Global Communications Conference and General Co-chair of
the 2004 IEEE 15th International Conference on Application-
Specific Systems, Architectures and Processors (ASAP).

	Implementation of a High Throughput Soft MIMO Detector on GPU
	Abstract
	Introduction
	Compute Unified Device Architecture (CUDA)
	System Model
	Proposed MIMO Detection
	MIMO Trellis
	Soft MIMO Detection
	Candidate List Generation
	Edge Reduction
	Path Extension
	Shortest Path Algorithm

	Implementing Soft MIMO Detector on CUDA
	Extension
	Reduction
	LLR Computation
	Memory Transport Scheduling and Code Optimization

	Performance Results
	MTT Detector Performance
	MTT Detector Throughput
	Detector Instruction Throughput Ratio
	Detector Instruction Mix
	ASIC/FPGA/ASIP Comparisons

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

