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ABSTRACT 

We review a model relativistic quantum field theory of the 
nuclear many-body problem containing baryons and vector and 
scalar mesons. We also review the properties of nuclear and 
neutron matter at all temperatures and densities and of finite nuclei 
computed in the mean-field approximation. The justification for 
this approximation is discussed. The model is then used as a basis 
for discussing the hydrodynamic flow of nuclear matter. This is of 
interest in heavy-ion reactions, in nuclear spectroscopy, and in 
astrophysics. The mean-field equations obtained by minimizing the 
energy functional at fixed baryon and momentum densities are 
derived and used to study the hydrodynamic mass at all densities 
and flow velocities, The limiting cases of non-relativistic and ex- 
treme-relativistic motion are examined in detail. The model is 
explicitly covarianf, and the results are shown to be equivalent to 
those obtained with appropriate Lorentz transformations. 

I .  INTRODUCTION 

In 1933 Felix Bloch used the linearized equations for hydrodynamic 
flow to describe the electron cloud in the atom and to carry out his calcu- 
lation of the energy loss of a charged particle in matter.' His elegant treat- 
ment of the collective dipole excitations about the mean-field ground state 
is a major contribution to the quantum theory of many-particle systems. 
Bloch's approach can be extended to describe collective charge oscillations 
of any multipolarity in atoms,2 and also collective spin-waves.3 If the 
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electron cloud in an atom is divided into a set of core electrons treated 
collectively with Bloch's approach and a set of loosely bound valence 
electrons, then a reasonable picture is obtained of real neutral atoms in- 
cluding binding energies, charge densities, and photoionization cross 
sections.' 

There are many reasons why it is desirabIe also to have a model for the 
hydrodynamic flow of nuclear matter. The study of collective excitations of 
nuclei about the mean-field ground state is central to nuclear physics. 
Furthermore, heavy-ion reactions where large aggregates of nuclear matter 
are fired into contact offer the possibility of directly observing nuclear 
hydrodynamics. In addition, the hydrodynamics of nuclear matter forms an 
essential ingredient in astrophysics in the discussion of supernovae and the 
formation of neutron stars. 

Consider first the case of a static neutron star, which is nothing more 
than an enormous nucleus held together by gravitational attraction. The 
interior density in a neutron star can be a factor of 10-20 higher than in the 
interior of observed terrestrial nuclei. To discuss the properties of cold, con- 
densed stellar objects such as neutron stars, it is necessary to know the stress 
tensor T p ,  the source in Einstein's field equations, from nuclear matter 
densities upwards. For a uniform fluid at rest, which locally describes the 
situation in a static neutron star, the stress tensor takes the form 

where P is the pressure, g the mass density, and u,=(o,ic) is the four 
velocity of the fluid. What is thus required at the outset is P(Q), or the 
equation of state of nuclear matter at high density. 

Any description of nuclear matter under extreme conditions of density, 
flow, and temperature requires a more general starting point than the usuaI 
theory of nuclear structure based on non-relativistic nucleons interacting 
through static two-body potentials. There are several reasons for this. For 
example: 

I )  At nuclear densities, the velocity is already v / c -  1/4 for the fastest 
nucleons at the Fermi surface. As the density is raised the velocities in- 
crease, and the relativistic propagation of the baryons, and relativistic 
propagation and retardation of the mesons generating the interactions, 
must be taken into account. 

2) It is an approximation to  describe nuclei in terms of only nucleon 
coordinates, and a proper description, particularly at high densities where 
real mesons may be present, must explicitly take into account the meson 
degrees of freedom. 

3) Correct, causal restrictions on the propagation of the modes of 
excitation of the interacting system must be contained in the theory, 
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The only consistent theoretical framework for dealing with this nuclear 
system that I am aware of is a relativistic quantum field theory. Given an 
appropriate Lagrangian density, we in principle have a complete calcula- 
tional framework with which to answer any physical question that can be 
asked about the system. With a relativistic theory that explicitly includes the 
meson degrees of freedom, we can in principle make reliable extrapolations 
away from the narrow window on the equation of state of nuclear matter 
provided by observed nuclei. We must, of course, work with a renormaliz- 
able quantum field theory in order to obtain finite results for physical 
quantities. 

The purpose of the present paper is to calculate the properties of 
hydrodynamic flow of cold nuclear matter within the framework of a model 
relativistic quantum field theory under study at Stanford for the past few 

Many of the ideas in the model are similar in spirit to those of 
Johnson and TellerI5 as developed by Duerr,16 and important recent ap- 
plications of the present model and similar ones""' to the nuclear surface 
and properties of finite nuclei have also been made by Kerman and Miller," 
Boguta and B ~ d m e r , ~ "  and Boguta and Ra fe l~k i .~ '  

11. T H E  MODEL 

As a model, consider the fields in table 1. We assume that the neutral 
scalar meson couples to the scalar baryon density through a coupling g,$$b, 
and that the vector meson couples to the conserved baryon current through 

$ vx. 

TABLE 1 

FIELDS IN T H E  MODEL 
- - - -  

Field Description (Particles) Mass x (c /h)  

4 baryon @.n,.  . .) 
@ neutral scalar meson (6) 

Vx neutral vector meson (w)  

As motivation for this model, we observe that in the limit of heavy, 
static baryons the one-meson exchange graphs give rise to an effective 
nucleon-nucleon potentiaI of the form 
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and for appropriate choices of the coupling constants and masses, this 
potential can be made attractive at  large separations and repulsive a t  short 
distances in accord with the observed nucleon-nucleon force. The reader 
will ask, "where are the pions?" In fact, the effects of the pion interaction 
with baryons largely average out in the description of the bulk properties of 
nuclear matter because of the strong spin dependence of the coupling. Even- 
tually we must include additional fields for (.A, e ,  etc.) if we hope to achieve 
a truly quantitative description of the nuclear system. 

The field equations for this model are  

Here F K v ~ d V y / a ~ p - a V p / a ~ v  is the antisymmetric field tensor. Equation 
(2.2) is simply the Klein-Gordon equation with a scalar source; Eq. (2.3) 
looks like massive QED with the conserved baryon current 

rather than the (conserved) electromagnetic current as source; and Eq.  (2.4) 
is the Dirac equation with the scalar and vector fields introduced in a 
"minimal" fashion. The free field Lagrangians for this system are con- 
tained in any text, and the interaction Lagrangian density is just 

Knowing the Lagrangian density, we can construct the stress tensor T,, in 
the canonical fashion, and from this the four-momentum operators for the 
system (P, iH/c); from the expectation value of T p y  for a uniform system, 
we have the equation of state through Eq. ( I .  1). 

The theory is Lorentz covariant, and the procedure for quantizing to 
get the quantum field theory is well known. The theory is renormalizable, 
for it is similar to massive Q E D  with a conserved current and an additional 
scalar interaction. Since the dimensionless coupling constants C? = 
(g:/Ac) (M2/m:) and C: = (g:/h~3) (Mz/mf) are large, we have a strong- 
coupling theory and have not really made much progress unless a sensible 
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starting solution to the theory can be found. The main point of the present 
work is that we can find a simple solution to the field equations that 
becomes increasingly valid as the density of the system increases, and which 
thus provides a meaningful starting point for computing modifications of 
the equation of state through the relativistic quantum field theory and 
standard many-body techniques" in a consistent fashion. 

Consider a uniform system of baryons in a box of volume Q .  As the 
baryon density increases, so do the source terms on the right-hand sides of 
Eqs. (2.2,2.3). When the sources are large, the meson fields can be replaced 
by their expectation values, which are then classical fields. 

and Eqs. (2.2,2.3) can be immediately solved for a static, uniform system to 
give 

When these cIassical fields are substituted into the Dirac equation (2.4), this 
equation is linearized and may be solved exactly. The stationary state 
solutions for a uniform system $ = exp( - icct + ikox)  U (k,X) satisfy a modi- 
fied Dirac equation with effective mass 

and energy spectrum 

The solutions satisfy the relation 

The scalar density is reduced relative to the baryon density by Lorentz con- 
traction. The Dirac fields may be expanded in terms of the solutions to the 
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Dirac equation with coefficients A I i ,  B L ~  in standard fashion, and the 
Hamiltonian density becomes 

The new normal-mode amplitudes can be interpreted as creation and 
destruction operators and the system quantized in the canonical manner. 
Here we have chosen to define the mean field theory (MFT) by normal 
ordering in these creation and destruction operators. Since the Hamiltonian 
density in Eq. (2.14) is diagonal, the exact solution for the mean fieId theory 
is known and all properties of the system can be computed within this 
exactly solvable model. 

Consider uniform nuclear matter. The ground state of Eq. (2.14) is 
obtained by filling the states with wave number I and spin-isospin 
degeneracy y up to the Fermi level I F .  Here we choose to measure all 
lengths in units of 1/M=A/mpc=.2I03F and all energies in units of 
mbc2 =rn,c2 = 938.3 MeV. The equation of state computed from Eqs. (2.14, 
1.1) in the MFT is 

where e, p, and n~ are the dimensionless energy density, pressure, and 
baryon density. Here 

x = M  * / M  (2.18) 

is the effective mass. The first two terms in Eqs. (2.15, 2.16) arise from the 
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mass terms for the vector and scalar fields. The final two terms are those of 
a relativistic Fermi gas of baryons of mass x.  The equation of state is given 
in ~arametr ic  form e(nB), p(nB). It remains to determine the effective mass. 
This can be done by minimizing e(x)  with respect to the parameter x 
(equivalently, with respect to +o), which leads to the self-consistency 
relation 

This is identical to the scalar meson field equation (2.9) where relation 
(2.13) has been used in the computation of the scalar density. It is evident 
that at high density /,--a, the effective mass goes to zero and the energy 
density is dominated by the vector repulsion, as is the pressure. In this limit 
p-e, implying that the thermodynamic speed of sound approaches the 
velocity of light from below. This property of a pure vector interaction at 
high density was first pointed out by Zel'dovich." At lower densities, the 
attractive scalar interaction can be made to dominate if the coupling 
constants are chosen properly. The nuclear medium then saturates. The 
coupling constants can be chosen to reproduce the equilibrium properties of 
nuclear matterz2: 

(y = 4,  (E-Bmbc2) /B  = - 15.75 MeV, kF = 1.42F-l) . 

Accordingly, 

Note that only the ratios of coupling constants to meson masses enter here. 
The resulting saturation curve is shown in figure 1 . ' r 6  The corresponding 
curve for neutron matter obtained by simply replacing y = 2  is aIso shown in 
figure 1. Many other properties of nuclear matter are now predicted from 
the two determined constants in Eqs. (2.20, 2.21). These are the only two 
parameters in the MFT of nuclear matter, and all other properties may now 
be calculated. The calculated properties are compared with experiment in 
table 2. The quantity a4 is the coefficient in the symmetry energy of the 
semi-empirical mass formula, and K, is the bulk If the scalar 
field is identified as the 0 meson (a broad two-pion resonance at 
m, /Mr  .59) and the vector field with the w meson (m, /M= .835), then we 
obtain from Eqs. (2.20, 2.21) the coupling constants in table 2. These are 
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FIG 1. SATURATION C U R V E  I O R  N U C L E ~ R  VIZTTLR. Couphng constants chosen to h t  value and 
posir~on of minimum. Pred~ction for neutron matter (y = 2) also shown." 

TABLE 2 

CALCULATED PROPERTIES OF NUCLEAR MATTER AND BASIC COUPLINGS~ 

Theory 22.0MeV 0.56 550 MeV 7.39 10.8 

Experiment 23.5 MeV (0.6) (200-300 MeV) 8.2(0) 17.3(w) 
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LOG ,, p c ( ~ / c m 3 )  

FIG 2. CALCULATED \tns5 or NEUTRON STAR as function of central denglty-curve 11. Curve I 
comes from integrat~ng theequat~on of state of Baym et 

compared with values obtained from a phase-shift analysis of N-N scat- 
tering .6 

The equation of state for neutron matter gives the stress tensor through 
Eq. (1.1). The Tolman-Oppenheimer-Volkoff equations for the metric in 
general relativity can now be integrated to  give the mass of a static neutron 
star as a function of central density. The result is shown in figure 2.6 The 
MFT gives a maximum mass for a neutron star of M =  2.57 M, There are 
arguments that the x ray binary pulsar in Vela XI has a mass M >  1.4M0 

T o  extend the previous analysis to finite systems with a fixed number of 
baryons, we allow spatial variations in the mean fields + o ( j x [ ) ,  V o ( [ x [ ) .  
This adds the terms (c2m,2/2) @+o)2 - (mT/2) ( V V O ) ~  t o  the Hamiltonian 
density. If it is assumed that these fields vary slowly enough so  that at each 
point the  baryons can be treated as moving in locally constant fields, then 
the previous analysis from nuclear matter applies. The ground-state of the 
system is obtained by minimizing the total energy E as a function of the 
local Fermi wave number kF(IxI).  The constraint of a fixed number of 
baryons B can be incorporated through a Lagrange multiplier p .  Thus we set 
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Since do and Vo satisfy the field equations 

the variations with respect to these quantities vanish and they may be held 
constant during the variation. The result of the variational principle is that 
kF(r) must satisfy the equation 

g,,Vo + fic(k: + M*2)1'2 = P = const. (2.25) 

which can be used to find kF($O,VOrp;r) .  The local baryon and scalar 
densities are expressed in terms of kF(r) and M*(r)  as 

Since in this Thomas-Fermi MFT the baryon and scalar densities vanish 
identically past a certain radius ro, the asymptotic form of the solution is 
known, and hence (Vo'/Vo)ro and (dd /dO)po  are determined. The coupled, 
non-linear, differential Eqs. (2.23, 2.24) can be integrated in from ro, and ,U 

and Vo(ro) (or do(ro)) varied until a solution is found that satisfies the in- 
terior boundary conditions Vd(0) = dd(0) = 0. The total number of baryons 
is determined at the end of the calculation by integrating Eq. (2.26). This 
has been carried out by Serr and Walecka." There are now two additional 
parameters in the theory, since rn, and m ,  must be specified independently. 
In Serr and Walecka" it is assumed that the properties of nuclear matter are 
described as in the previous discussion and that Eqs. (2.20, 2.21) hold; 
m,/M is then chosen to fit the observed surface thickness of nucIei t s 2.4F. 
The dependence on rn,/m, is not strong, and a value m,/rn, = 1.5 is chosen 
in rough accord with the observed meson masses (m,/m,r  1.42). CaIculated 
nuclear properties for the system with B =40 are shown in table 3." (Here 
the Coulomb interaction is neglected so that in equilibrium N = Z = B/2).  a2 
is the coefficient in the surface energy in the semi-empirical mass f ~ r m u l a ' ~  
and is obtained by fitting the calculated energy to an expression 
E - ( r n b c 2 ) ~ =  (- 15.75MeV)B+a2~2'3. Ro is the parameter in the half- 
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TABLE 3 
CALCULATED QUANTITIES FOR B = 40. l 3  Here N= Z. 

a d 1  Ro ffmax tn,/M 

Theory 13.1 MeV/F 1.03F 1.91 MeV .518 

Experiment 7.4 MeV/F 1.07F 1.80 MeV* .59 

*Obtained from < a(r)> in sc4'. 

FlC, 3. C ~ L C U I  ,%TED A N D  EYPERIVILNTAL F O R Z ~  I ACTOR F O R  2oca4', Dot-dashed curve Includes 
s~ngle-nucleon form factor. Dashed curve lncludes vacuum fluctuat~ons." 
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density radius R1,2 = R ~ B ' / ~ .  TO test the quality of the calculated charge 
density, the Fourier transform of the calculated density is compared with 
the experimental values of the elastic electron-scattering form factor 
[do/dQ] ,~/ [d~/dQ]~~, , , , , ,  for 2 0 ~ a 4 0  in figure 3. Also shown is the result of 
folding in the internal electromagnetic structure of the nucleons through the 
experimental single-nucleon form factor. The model evidently provides a 
decent description of the nuclear form factor excepr for the highest 
momentum transfers, which probe short-distance spatial variations of the 
charge density. 

The Foldy-Wouthuysen reduction of the single-particle Dirac equation 
for non-relativistic nucleons moving in the potential generated by the scalar 
and vector fields rbo(r) and Vo(r) allows us to identify the effective single- 
particIe spin-orbit interacfion 

The maximum value a,,, is compared in table 3 with <aso(r)> obtained 
from the experimental spin-orbit splitting of the f7/2-f5/2 levels in Sc4'. 
Note that whereas the effects of Vo and q50 cancel in the binding energy, they 
add in the spin-orbit interaction which, of course, forms the basis of the 
nuclear shell model. 

The extension for nuclei with N;tZ is discussed by Walecka.I4 The 
calculation of the equation of state of nuclear matter at all temperatures as 
well as densities is presented in references 7 and 11. 

Corrections to  this mean-field theory coming from the effects of the 
mean meson fields on virtual baryon-antibaryon pairs can be taken into 
account through the addition of a "vacuum fluctuation" term, which 
provides a proper treatment of the vacuum energy remaining after extract- 
ing the normal-ordered part of the Hamiltonian in Eq. (2.14). This is 
carried out in references 8, 9, 1 1, 13, and 18. If the coupling constants are 
again required t o  fit the saturation properties of nuclear matter, the effect 
on the charge density for 2 0 ~ a 4 0 ,  although essential to the mathematical 
consistency of the theory, is not large and is illustrated in figure 3. The 
inclusion of exchange corrections to the MFT is investigated in references 8, 
9, 10, 11, and 13, and the effects of two-body correlations have been 
examined by Brittan."' Collective modes of the system in this model have 
been investigated by and the thermal conductivity has been calcu- 
lated recently by Freedman.lz 
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111. NUCLEAR HYDRODYNAMICS 

With this introduction, we proceed to the main purpose of the present 
paper, which is to calculate the flow properties of cold nuclear matter at 
various densities. The canonical stress tensor for the field theory in section 
I1 can be written as5 

This form is unsymmetrized, but that makes no difference for the present 
discussion of uniform systems. The stress tensor is conserved by construc- 
tion: 

The four-momentum operator for the system is defined by 

Differentiation with respect to time and the use of Eq. (3.2) shows that P, is 
a constant of the motion. Furthermore, the integral in Eq. (3.3) is inde- 
pendent of the particular space-like hypersurface because of Eq. (3.2) and 
Gauss's theorem in four dimensions. Hence P, transforms Iike a Lorentz 
four-vector. 

Consider now uniform nuclear matter in a state of unvorm flow. We 
again make the mean-field approximation discussed in section 11. The new 
features of the problem are a finite baryon current 
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B = const. 

and since there is now a direction in the problem, a finite spatial part to the 
vector field [cf. Eq. (2.8)] 

< V >  - V  = const. (3.5) 

These two quantities can be related through the use of the field equation 
(2.3), which implies 

g V = l B  . 2 rn, 

This relation now augments Eqs. (2.9, 2.10). The required modifications of 
Eqs. (2.12) and (2.13) are 

el') = (gi/Ac) Vo 2 [(k - ( g , / ~ c ) V ) ~  + M * ~ ] " ~  (3.7) 

The Hamiltonian density and momentum density in the MFT follow from 
Eqs. (3.1, 3.3)asinEq. (2.14). 

Note the modification of the baryon energy spectrum in Eq. (3.9) and the 
presence of the final mass term for the field V. 

Let us assume that the ground state of this uniform moving medium is 
obtained by filling the energy levels up to a Fermi surface kF = kf(dkr4k) 
whose shape remains to be determined. In this case the energy, momentum, 
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baryon, and scalar densities, and baryon current (calculated from Eq. (2.5) 
and the Dirac equation) become 

& = (AC/~~)C:'((~,/AC)VO + [(k - (gz , /hc )~)2  + M * ~ ] " ~ )  
X 

The Fermi surface enters as an unknown function in these equations 

The shape of this Fermi surface may be obtained by using the thermo- 
dynamic argument that at  a fixed baryon density Q ,  and momentum density 
9 (recall that both these quantities are  constants of the motion), the system 
in equilibrium will minimize the energy density. We may speak of densities, 
since for a uniform system the integral quantities involve only multipli- 
cation by the fixed volume D. This is now a straightforward variational 
problem. We minimize 6 and incorporate the constraints through 
Lagrange multipliers p and v [cf. Eq. (2.22)I 

Here the additional explicit dependence of 6 on the variables I$o, VO, V J  
has been noted; 6 ~ ,  and CY contain no explicit dependence on these 
quantities. The calculation is greatly simplified when it is realized that the 
mean field equations (2.9, 2.10, and 3.6) ensure that the variations of  the 
energy density with respect to these quantities vanish. 
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Thus they may be held constant during the variation of the surface 
6kF(ok,&). The remaining calculation using Eq. (3.16) is elementary and 
yields for the equation of the Fermi surface 

g,Vo + ~ c [ M * ~  + (kF - (g , /h~)~)2]1 '2  - hv-kF = p = const. (3.19) 

It is convenient now to introduce a new variable 

t = k - (g,/Ac)V (3.20) 

and again introduce dimensionless variables as in section 11. Equations 
(3.11, 3.12, 3.13,and 3,lS)canthen beput inthe form 

where b is now the dimensionless baryon current, The equation for the 
Fermi surface (3.19) becomes 
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and v=v/c in dimensionless units. The self-consistency equation for the 
effective mass x can be obtained from the minimization of the energy 
density with respect to that parameter. 

This is identical to the scalar meson field equation (2.9) where the right- 
hand side has been calculated with Eq.  (3.14). The previous results for 
uniform nuclear matter at rest in section I1 can be  recovered simply by 
setting v = O  in the expressions above, in which case the Fermi surface 
defined in Eq.  (3.25) becomes spherically symmetric, implying b=O and 
then P = 0 from Eqs. (3,24, 3.22). 

T o  examine the structure of these equations consider first the non- 
relativistic limit ( N R L )  where 

A simple change of variables 

with dt = ds then reduces Eq. (3.25) to  

and the Fermi surface is spherically symmetric in the variable s. Equation 
(3.23) then yields 

which expresses sF in terms of the baryon density. The baryon current is 
evaluated from Eq .  (3.24) in this limit to give 

where we here work to lowest order in u assuming v 2  << 1. We next define 
the hydrodynan~ic flow velociry through the relation 
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Equation (3.32) therefore relates the Lagrange multiplier v to the flow 
velocity vllbd according to 

The solution to the self-consistency Eq. (3.27) in this non-relativistic limit is 

The momentum density is obtained from Eq. (3.22) as 

We may use this relation to define the mass of the hydrodynamic flow 
according to 

P = X h d  RB vt1,d (3.37b) 

and a combination of Eqs. (3.34, 3.35, 3.36) then yields 

as the non-relativistic limit of the hydrodynamic mass. Note that the forma1 
expansion parameter is the baryon density [Eq. (3.31)l. 

The energy density of the system given by Eq. (3.21) differs only by 
terms of order u2 from that of nuclear matter at rest at the same baryon 
density, which can be written in this limit as 

1 
n, + - n$(cT - c:) ; NRL. (3.39) 

2 

We observe from Eqs. (3.38) and (3.39) that the hydrodynamic mass in 
this non-relativistic limit can be written as 
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where the subscript zero denotes the rest frame of the fluid, The pressure of 
nuclear matter at rest at the baryon density nB is obtained from Eq. (2.16) as 

; NRL. 

Thus an aIternative expression for the hydrodynamic mass is 

; NRL. (3.42) 

Consider next the extreme relativistic limit (ERL) of this theory where 
x--0 and v  is arbitrary (with v< 1). In this case the Fermi surface is given by 
Eq. (3.25) as 

I f  we choose v as the z-axis in momentum space, then the Fermi surface be- 
comes 

This is the equation of an ellipse. In the present dimensionless units Eq. 
(3.20) implies k = t +n&v and hence the focus of the ellipse is at the point 
n&?v in momentum space. The semi-minor axis is given by p,,,/(l - v 2 ) ' I 2  
and semi-major axis pefr/(l - v 2 ) .  The baryon density is obtained from Eq. 
(3.23) as [cf. Eq. (3.16)] 

which expresses pcfrin terms of n, at any v.  The baryon current in Eq. (3.24) 
is 
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which identifies the Lagrange multiplier v as the hydrodynamic flow 
velocity defined through Eq.  (3.33). The momentum density follows from 
Eq. (3.22): 

We again define the mass for hydrodynamic flow according to Eqs. (3.37) 
and hence can identify in this limit 

6'lr2nB 1 ) ' I 3  ; ERL. (3.48) 

Note in this case we are discussing the high-density expansion of the hydro- 
dynamic mass. It is just in this high-density regime that the present mean 
field theory is expected to become most valid. The solution to the self- 
consistency equation (3.27) in this limit is 

and indeed X-0 as 03 for any v ,  verifying our initial ERL assumption. 
Let us now try to relate the quantities above to corresponding quan- 

tities in the rest frame of the fluid (denoted with a superscript zero). First, 
since the number of baryons dNb,,,,,,, in a given element dxo of fluid is un- 
changed when the fluid is set into motion, we have (recall a11 lengths are in 
units of 1 / M )  

The Lorentz contraction of the longitudinal dimension of the volume tells 
us chat d x  =dxO( l  - v2) ' I 2  and hence the baryon density in the rest frame is 
related to the baryon density of the moving fluid by 

The hydrodynamic mass in Eq. (3.48) can thus be rewritten as 
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where the hydrodynamic rest mass is defined by 

67r2n: x t .  - + ( y ) ; ERL. (3.52b) 

It is evident from Eq. (3.52a) that this mass shows the correct relativistic 
increase with velocity. The energy and pressure of nuclear matter at rest 
with density ng are given by Eqs. (2.15,2.16) 

2 0 2 6x2n; 1/3  0 p0 --= - C,,(n,) t - - 
2 ( ) n13 ; ERL. (3.53b) 

Thus the hydrodynamic mass in Eq. (3.52b) can be expressed either as [cf. 
Eq. (3.40)] 

: ERL (3.54) 

or as [cf. Eq. (3.42)] 

e + p  
x k d  = ; ERL. (3.55) 

Equations (3.48) and (3.52) are the main results of the present work. The 
hydrodynamic mass gets very large, and hence the medium gets very stiff, 
either for high density (n,-co, any u)  or high velocity (fixed large n:, 
v- 1). This is the mass that enters into Newton's second law for the rate of 
change o f  momentum and the basic equations of hydrodynamics for the 
system. 

We may understand Eq.  (3.54) in the following manner: Suppose a few 
baryons are added to  a volume dxO of nuclear matter at rest so that the 
density in this region is changed by 6n; and the energy density by 
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The change in energy of the system 6e0is given as 

Now the energy and momentum of the system defined by Eqs. (3.3) form a 
four-vector 

where we henceforth denote the dimensionless stress tensor and four- 
momentum by t,, and p,=(p,i~) respectively. Thus for a Lorentz trans- 
formation in the z-direction (along v)  

after which the fluid appears to be moving with velocity u in the z-direction, 
the Lorentz transformed four-momentum 

is given with the aid of Eq. (3.50) by 

Therefore the additional momentum density in the moving fluid is obtained 
as 



NUCLEAR HYDRODYNAMICS 

and we recover our previous result for x h , d  in Eq. (3.54). 
Equation (3.55) may be understood as follows. The stress tensor in Eq. 

(3.1) forms a second-rank tensor. For a uniform fluid at rest, the stress 
tensor in Eq. (1.1) takes the form 

with up= (0,ic). After the Lorentz transformation (3.59), the stress tensor 
for the moving fluid is 

Since the medium is uniform before and after the Lorentz transformation, 
we need not worry about the point at which the tensor is evaluated. Explicit 
evaluation of the sum in Eq. (3.64) using Eqs. (3.59) and (3.63) yields 

The momentum is given by Eq. (3.3) as 

or equivalentIy , with the aid of Eq, (3.5 1) 

Thus the momentum density is 

and we recover Eq. (3 3 ) .  
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The equivalence of  Eqs. (3.54) and (3.55) is just thermodynamics, for if 
the number of baryons B is kept constant and the volume !2 is varied, we 
have 

ae a(&) - a2 a - - - - - - ( A )  
an, - a ( ~ / n )  B a~ fi 

by the definition of the pressure a s p  = - (df/aln)B. 
In summary, we have developed a general analysis for the uniform flow 

of nuclear matter in this mean field theory, and we have shown that the 
mass for hydrodynamic flow is given at  high densities by Eqs. (3.48) and 
(3.52). One can apply the present results to  non-uniform flow with the same 
approach as used in the discussion of  finite nuclei in section 11. Although 
the present field theory severely oversimplifies the actual meson degrees of 
freedom in the nucleus, it is interesting to have a model that (1) describes 
observed nuclear matter, ( 2 )  never introduces the concept of a static two- 
nucleon potential, ( 3 )  explicitly takes into account the meson degrees of 
freedom, and (4) exhibits Lorentz covariance at  every stage. The model 
thus, at  least in principle, allows an  extrapolation away from ordinary 
nuclear matter to regimes of very high density and very large flow velocities. 
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