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Let (X, x,) be an isolated singularity of a complex space with resolution
X and exceptional analytic subvariety £ < X. If #: Z > S is a (flat) defor-
mation of 7#-1(sy) = X, soe S fixed, with nonsingular base space S, then
there exists (locally with respect to s, and E) a blowing down map

i, t is proper and surjective, 7, = t[ﬁ"(so) maps £ < #~(sp) = X
onto a point zgeZ,, =n"'(s,) and to | X — E: X — E—» 2, — z, is
biholomorphic (Theorem 1). However, the isolated singularity (Z,,, z,) is
in general not isomorphic to the singularity (X, x,) we started with (cf. [13],
Bemerkung p. 242) and n: Z — S will not be a deformation of (X, xg).

For a rational singularity, (Z,z,) is always equal to (X,x,). Hence,
in that case, every deformation #: Z — S of a resolution X of (X, x,) gives
rise to a deformation n: Z—S of the rational singularity (X,x,) itself.
Moreover, all singularities in fibers Z, = n~'(s) near s, are rational
(Theorem 2).

In a second part of this note we apply Theorem 2 to special cases. Using
the existence of a resolution for the versal family of a Kleinian singularity
(Tjurina, Brieskorn), we obtain that every (local) deformation of a Kleinian
singularity is again Kleinian, a Corollary which also follows from Bries-
korn’s deep theory about connections between subregular elements in
simple complex Lie groups and versal deformations of the corresponding
Kleinian singularities (cf. [67]). As a second application we blow down the
complete family of a Hirzebruch manifold,
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§1. Proofs of Theorems 1 and 2

Theorem 1. Let :Z — S be a regular family of complex manifolds
with nonsingular base space S. Suppose there exists a point sye S such
that Z, = 7i='(s,) has an exceptional subvariety E,. Then there exist
neighborhoods U = O(EY<Z and V = V(s,) < S such that % can be
factorized as follows:

IF—tiy
ﬁ\' /R
4 ;
In this diagram, Z is a normal complex space with a subvariety E finite

over V, such that © is proper, surjective and biholomorphic on U — E
where E = t=Y(E) and EN#~(sy) = E,.

Remark. In case dimS = 1 it can be easily shown that the family
n: Z — V is flat. I do not know whether this is true in general.

Proof. All we have to show is that the map 7 is l-convex in the sense
of Knorr-Schneider-Markoe-Rossi-Siu ([13], [14], [18]) in a neighborhood
of E . That follows from the fact that Z,, carries a C* function ¢ with the
following properties (eventually after shrinking of Z):

i) 20, {(P=0}=Eso:

ii) ¢ is strongly plurisubharmonic on {¢ > 0},

iii) {p<c}ccZ, forall ceR,
an immediate consequence of E,, being exceptional, and Richberg’s ex-
tension theorem for strongly plurisubharmonic functions: )

Choose real numbers 0 = ¢y < ¢, < ¢, <¢3 < ¢y <5 < g, and denote
by X¥ the set {c;<p<qg}cZ, for 0 <j <k <6. Since a regular
holomorphic family of manifolds is locally trivial there exists a neigh-
borhood U, = U(E,), a neighborhood ¥ = V(s,) and a diffeomorphism
8: Ug— X° x V which preserves the fibration of Ug; here X* = X§ U E,,
= {p < ¢} (for a proof cf. [I], Remark 2, p. 220). By Richberg’s result
([15], Satz 3.3) p can be extended to a function @ which is strongly pluri-
subharmonic on a neighborhood of X§. Hence, if ¥ is small enough,
@ is strongly plurisubharmonic on 61X} x V). If we extend @ arbitrarily
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into 6~*(X? x V) and glue both extensions together, we may assume that
@ has a C* extension ¢ into Us = 6~*(X°x V) such that @ is strongly
plurisubharmonic on 6~'(X3 x V). After shrinking V again we can achieve
that ¢ is strongly plurisubharmonic on {Ze Us: @(2)>c;} and
ﬁ|{'z‘e Us: 3(2) < ¢} is proper for every ¢ < ¢4. This means that # re-
stricted to U = {¢(Z) < ¢,} is a I-convex holomorphic map (with exhaustion
function § = 1/(cq — @) and convexity bound (¢, — ¢5)~").

I-convex mappings are holomorphically convex; hence U may be
assumed to be holomorphically convex (if ¥ is Stein). The canonical map
7 of U onto its Remmert-quotient Q(U) = Z has the properties stated in
the theorem. (The Remmert-quotient Q(J) of a holomorphically convex
complex space U is the [uniquely determined] Stein space Q(U) together
with a proper, surjective holomorphic map t: U — Q(J) such that
R°7,05 = Oy, The last property implies that Q(J) is normal if T is
normal; in our case U is even nonsingular.) Q.E.D.

Recall the definition of a rational singularity ([2]): That is a 2-dimen-
sional normal singularity (X, x,) such that for a certain resolution p: ¥ - X
the first direct image R'p, @ vanishes on X. This property is known to be
independent of the resolution p: X — X. We now prove:

Theorem 2. If, under the assumptions of Theorem 1, the exceptional
subvariety E;, in Z,, can be blown down to a rational singularity (X, x,),
then n: Z — V is a ( flat) deformation of n="(s,) = (X, x,). All singularities
of the fibers Z., s near sq, are rational,

Proof. Let us assume that Z is holomorphically convex and

A/

is the factorization of # as in Theorem 1. By assumption there exists a
proper map p: Z,, — X, where X is Stein and R‘p*ﬂf’z = 0. This implies

HYZ,., Oz,) = T(X,R'p, 0y ) = 0. Since & is {-convex and 0y is flat
over (g the function

Sk dimc H I(Zs, @zs), mz‘_ =@z}rnls @z "

is upper semicontinuous on S ([16], [19]): m, denotes the maximal ideal
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sheaf of local holomorphic functions on S vanishing at s. Hence we may
assume that
HY(Z, 0;) =0
for all se S.
For every Stein open subset V' < S and every coherent analytic sheaf {?
on Z one has canonical isomorphisms (c¢f. for instance [ 18]):

H'G'(V),§) = T(V, R'%,5) = T(x~'(V) 1 E, R'7, ).

Taking the inductive limit over all Stein open neighborhoods of a point
se S we obtain for §§ = 0y :
®  (R'tu0y). = H'(Z,,0,) =0,
rer~ (s)nE

where 7 is the restriction of 7 to Z,. By construction 7, is a resolution of the
singularities n='(s) N E of Z; = n~'(s), and we proved R't, 0z =0,
The proof is completed if we show that each fiber Z, is the Remmert-
quotient of Z,, since then Z, = Q(Z,) = X and all singularities of Z,,
se S, are in particular normal and hence rational.

Take zen~'(s)NE and assume without loss of generality that
= (s)NE = {z}. n: Z— S is a l-complete (i.e., a Stein) mapping and
possesses a strongly plurisubharmonic nonnegative exhaustion function i
with y(z) = 0. The lifted function i = o7 is an exhaustion function for
the [-convex mapping #:Z — S. Define 7, = | {{ <c}, ceR. We claim
then that the canonical restriction mapping

($) (RG'E‘.* mZ).\'_‘} (ROTC$ @2,).\'

is surjective for every ¢ > 0. Fix ¢ > 0; then there exists a Stein open
neighborhood V= V(s) = S such that Enn~'(V) = {¢ < ¢y =¢/2} and

Y is an exhaustion function on #~'(V) with convexity bound ¢,. By [18,
Proposition 1.2] there exists a constant k e N such that

iM((R%Te4 02); = (R%704. 02 ))) = im((R°T.402/M502)— (R%7.4 02),).

If we shrink Z once more taking Z = {{y<c} and Z = {§ <c}, it is
enough to prove that for all k > | the canonical mapping

HYZ,,0/m} 03) > HY(Z,,O5fmi ™" 05)
is surjective. This will be derived from the exact sequence

and the canonical isomorphism
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M1 0s/mi0; = 07 @ (mh™" /mf)

which is a consequence of the flatness of @, over ¢g. Applying the co-
homology sequence we get exactness of

HY(Z,,02/mt02) » H(Z,,02/mt ™ 03) » H'(Z,,05, ® (m}™ ' mb)).
But
HYZ,05 ® c(mt™ ' my) = HY(Z,05 ) ® c(mf™'/mf) =0

and (*) is established.

The proof of Z, = Q(Z,) is now trivial. We only have to show that
ROz, 03, = 0. Let f,beaholomorphic function on Z, in a neighborhood
U, of t71(2); assume U, = {§ < ¢} = Z; without loss of generality. Since
the mapping (*) is surjective, /. can be holomorphically extended to a
neighborhood of U in Z. Let f be such an extension, then f = fo t with a
holomorphic function f on a neighborhood of Z, in Z because of Z = Q(Z).
This implies /, = f,0 7, /, = | Z,€(Z,, 02).

It remains to prove that n: Z — S is flat. This follows from [11, Satz I]
since 7 is open (because 7 is open) and Z— S is a reduced family (the
fibers being even normal). Q.E.D.

§2. Application to special singularities

Let n: Z—T be a flat morphism in the category of complex spaces.
A resolution of m is a commutative diagram

1

S —=T

T
—_—

where 7: Z — Z is proper and surjective, ¢: S — T is finite and surjective,
:Z— S is a regular family of complex manifolds and t,: Z,— Z,, is a
resolution of singularities for all se S.

We first prove

‘Theorem 3. Let n: Z— T be a deformation of a rational singularity
n(ty) = (X, o). If © admits a resolution with nonsingular base S, then
there exists a neighborhood V = V(t,) = T such that Z, has only rational
singularities for all te V.

Proof. By lifting Z to S we may assume that S = T and ¢ = id since ¢

Is an open mapping as a ramified surjective covering. We shall show that
the diagram
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Gty
ﬁ\ ‘/n
S
is that of Theorem 1; our assertion is then an immediate Corollary of

Theorem 2.

We assume moreover that Z and S are Stein and Z is holomorphically
convex, Hence we only have to prove that Z is the Remmert-quotient of Z,
i.e., R°t, 0, = @, a trivial consequence of the following statements:

i) Z is normal

ii) there exists a 2-codimensional analytic subvariety E = Z such that

7= 1(E) = E is nowhere dense in Z and 7 is biholomorphic on Z — £.

To prove i) remark that == '(s,) is normal and we have more generally:

If n: Z—>S is a flat morphism with normal fiber Z and nonsingular
base S then Z is normal (in a neighborhood of Z,)).

This is proved by induction over m = dimS, m = | being Corollaire

(5.12.7) in EGA [9]. If m > 1, let 5,,...,5, be a coordinate system of S
about s,, let i be the embedding {s,, = 0} = S,,_, " S and p the projection

S_’Sl e {Si e SJII—I b= 0}. zm_.l = Z x SSI’.I"I—I lS a ﬂat fam]]y
over S,,_, with normal fiber Z_ ; hence Z, _, is normal by induction
hypothesis. Since p is flat, po = is a flat family of complex spaces over S

with normal fiber Z,,_;. By the case m = 1, Z is normal.

To prove ii), define E as the singular set of =, i.e., the set of points ze Z
which are singular in Z,.,. This is an analytic subvariety of Z such that
?I'E is discrete at s,. Thus E is finite over S and hence at least 2-codimen-
sional in Z (since all fibers Z, are 2-dimensional). Obviously all fibers
E, are l-codimensional in Z, such that £ is nowhere dense in Z.

Outside £ the map 7 is biholomorphic on the fibers and respects the
local product structure of Z and Z. This implies that 7 is locally biholo-
morphic on Z — E. Since 1: Z — E—Z — E is bijective and Z — E and
Z— E are complex manifolds, t|Z — £ is biholomorphic. Q.E.D.

It is known that the versal family Z— T of a Kleinian singularity
(i.e., a rational double point) admits a resolution with nonsingular base
S ([21], [6], [10]; cf. also [3], [£]). By Theorem 3 any (local) deformation
of such a singularity (X,x,) is rational. Since (X,x,) has embedding
dimension 3, any deformation has embedding dimension < 3 (that
follows easily from [7, Satz 2.2]). Using Brieskorn’s classification [3]
we obtain
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Corollary. Any (local) deformation of a Kleinian singularity is
Kleinian (or nonsingular).

To get more information about all possible deformations of a Kleinian
singularity we prove the following upper semicontinuity theorem:

Lemma. Let n:Z— S be a reduced family of complex spaces with
nonsingular base space and isolated hypersurface singularity z, over
sq€S. Then

Y  dimeExt}(Z,Q(Z) < dimCExtio(ZsD,Q(Zm)),
zesingZ,
where sing Z, denotes the singular set of Z, = n~'(s) and Q(Z,) is the sheaf
of germs of holomorphic 1-forms on Z,.

Proof. The set E = U, gsingZ, is analytic and finite over a neigh-
borhood of s, (proof of Theorem 3). Suppose (S,s,) = (C%0) with co-
ordinates f,,...,1; about 0 and that Z,, = (X, z,) is described by f(z, ...,2,)
=0, z, = 0 C". Then Z can be realized by a holomorphic equation

d
F(Z) I) :f(zli "')Zr) e E tigi(z‘b'"!zr) =0
p=1
inC" x C%and n: Z - Sis induced by the canonical projection C" x C¢ — C¢
(¢f. [7]). Define now

oOF  OF
& = @C..xcd;(F, 07."02_)

& is a coherent analytic sheaf with supp § < E, hence the direct image
R°m, & is coherent on S, and we have

cg (R, 8)s = cg (R, §)s,

in a neighborhood of 54 (cg(R°n,), denotes the minimal number of
generators of (R°m, ), over e, ).
But obviously

cg (ROR:& E})\ == dim(} (Ron*g)ﬂfnis(Rui‘l’#i})_\-
_ 2 dime F./mF.

zer~l{s)nE
and §./m,&. = Ext!(Z,,Q(Z,)) since (Z,,z) is an isolated reduced hyper-
surface singularity. Q.E.D.
If we denote the Kleinian singularities as usual by A,, n = 1,D,, n
Eg, E;, and Eg, we have

3%

4,
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dimeBExt'(4,,Q(4,)) =n, n2z1
dimcExt'(D,,QD,)) = n, nz4é
dim ExtY(E,,QE,)) = n, n=6,738.

(These numbers are the numbers of moduli, i.e., the dimension of the — non-
singular — base space of the versal family of the corresponding singularity).
So our Lemma says for instance that 4, can not be deformed into 4, ,, etc.

Unfortunately, not all impossible cases are excluded by that Lemma.
Since Kleinian singularities are hypersurface singularities (whose equations
can be found in Klein’s textbook [12]) it is easy to write down the versal

families (cf. [21], [20]):

A A+ +28" w5 e 23+, =0, n2

v

D,: 2} +z3z3+ 23 '+ 1,28 2 oty + 1,2, =0, nz4

Eg: 24+ 23+ 25 + 1125 + tyzs + 13 + 25(taz3 + 1523+ 16) = 0
Eq:zi + 23+ 223 + 25(t 23 + 1) + 1325 + oo + 1ez3 + 1, = 0
Eg: 28 + 234+ 23+ z5(t 23 + -+ + 1) + tsz3 + o + 15 = 0.

With some pain one computes all deformations of 4, and D, and obtains
the following diagram (arrows indicating all actually occurring deformations
of a given singularity):

=D =D, - DDy

l i |

= Ay Ay o Ay A3 > Ay A o Ay,

where A, is a symbol for the “‘regular’ singularity.

In order to understand this diagram it seems to be necessary not only
to assume the existence of a resolution for the versal family of a Kleinian
singularity but also to consider a concrete description of such a resolution
like Brieskorn’s beautiful construction [6].

We want to discuss finally a second example. Let ,, be the Hirzebruch
manifold of degree m = 0.X, is a projective algebraic manifold constructed
as follows:

Let C have coordinate z and P have inhomogeneous coordinate {. Then
%, = Cx PUC x P, where (z,,{,) and (z,,{,)e C x P are identified if
and only if
1

Za2

m
{y = z3 23 2y, =
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For m even the manifolds X, are the only known different complex structures
on P x P. Let ® denote the sheaf of germs of holomorphic vector fields
on Z,,, then

0, m=20

dimcH'Y(Z,,,0) ={

m— 1, m > 0.
Hence, by the stability theorem of Frohlicher and Nijenhuis, £, = P x P
with canonical product structure and Z, are rigid. If m = 2 there exists
a complete and effectively parametrized family #: Z — S with S = C" ' and
Z, = Z,, (complete and effectively parametrized means that the canonical
Kodaira-Spencer mapping p of the tangent space of C™™' at 0 into
HY(Z,,©) is an isomorphism). Z,, can be deformed precisely into manifolds
T2 k=0,1,.., m—=2k 20,and Z, 2 Z, for all s # 0.

It is known that £, contains an exceptional subvariety E,, = P of self-
intersection number — m for m = 2. By blowing down E,, one obtains
an isolated rational singularity (X,,x,) and hence by Theorem 2 a com-
mutative diagram

r

 JERLIPRY -
ﬁ\ /:r’
S

where Z' 5 S is a deformation of the rational singularity (X,,, xg).

At first glance one will expect that all singularities X,,_,, will occur in
fibers of n" near 0eS. However, the fibers Z’,, s # 0, are nonsingular.
This can be proved in the following way:

By [5] (X, X0) is a quotient singularity C2/G, where G = GL(2,C) is
generated by

bn O
( ) {,, @ primitive mth root of unity.
0 Cm

If C{u, vy denotes the C-algebra of holomorphic functions of C? at 0,

0X,,+, 1s the subalgebra of C{u, v) generated by

m=i

z; =" i=0,--,m,

(cf. for instance [&], p. 162). It is then easy to see that the embedding-
dimension of (X,,,X,) is m+1 and (X,,, x,) will be described by m(m—1)/2
equations

il N ... . )

Zr  Ha z

m
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at 0e C"*! with coordinates z,, ...,z,. Although X, is never a complete
intersection for m> 2, it turns out that

Ext2(X;,Q(X3)) = 0.

Hence the singularity X, has a versal family n: Z - T with nonsingular
base T (cf. [20]). Since

dimcExtio(X3, Q(ij) =2,
we will have dim T = 2. If ¢, ¢, denote complex coordinates of T about 0,

Z can be described as follows:

Zo _ zZyt+l _ Z+ 1,

2 Z3 Z3

3

and it is easy to see that all fibers Z,, t # 0, are nonsingular,

Since mn: Z— T is versal there exists a map o:S— T such that
Z' = Z % ¢S, and fibers Z; near 0 can only have singularities of type
(XmXo). But Z, % Z, for s # 0 and hence Z!= Q(Z) 2 Q(Z,) = Z,
such that Z, has no singularities at all, if s # 0.

This consideration shows moreover that ¢~'(g(0)) = 0. Hence ¢ is
discrete at 0e S. Since dim § = dimT = 2, ¢ is finite and surjective in.a
neighborhood of 0 e S; this means: the canonical diagram

L Z
et
S ———> S —-s,- T

is a resolution for the versal family n: Z — T of the singularity (X5, x,).

For m = 4 we cannot follow the same pattern of reasoning since in that
case X, is obstructed with

ll?

—

=h
—— \i

dimgExt} (X,..X,)) = 2m —4
C 0

(¢f. D. Mumford, ‘A remark on the paper of M. Schlessinger”’, pp. 113-117
in this volume). Hence the corresponding formula
é _ Z 1 tl — s — zm—l+ zm—-l

3
2y Z3 Zm

given by Tjurina ([20], Example 2), does not describe the versal family of
X,,- Hovever, one can prove by direct computation — as was pointed out
to me by F. Huikeshoven in Géttingen — that this is precisely the de-
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formation of X, m = 2, obtained by blowing down the complete family
of the Hirzebruch manifold Z,,.

We finally remark that our examples are not only rational singularities
but moreover are contained in the subclass of quotient singularities and
their local deformations also turn out to be in that subclass, This might
be a general principle. In higher dimensions it is even true that isolated
quotient singularities are rigid (Schlessinger [177).
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