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Let (X, x,) be an isolated singularity of a complex space with resolution 
2 and exceptional analytic subvariety E c 2. If E :  2 -+ S is a (flat) defor- 
mation of 5-'(so) z 2, S,OE S fixed, with nonsingular base space S ,  then 
there exists (locally with respect to so and &?) a blowing down map 

z & z  

z is proper and surjective, z,, = z 1%-'(so) maps ,!? c I?-'(so) = 

a point 2, EZ,, = nTC-'(so) and z,, I f - E": 2 - El -+ Z,, - z, is 
olomorphic (Theorem I). However, the isolated singularity (Z,,, 2,) is 

ral not isomorphic to  the singularity (X, x,) we started with (cf. [13], 
ung p. 242) and r :  Z -t S will not be a deformation of (X, x,). 

a rational singularity, (Z,,,z,) is always equal to (X,x,). Hence, 
t case, every deformation 5: 2 -, S of a resolution 2 of (X, xo) gives 
o a deformation 7 ~ :  2-+S of the rational singularity (X,x,) itself. 
over, all singularities in fibers Z, = nm'(s) near so are rational 

a second part of this note we apply Theorem 2 to special cases. Using 
stence of a resolution for the versal family of a Kleinian singularity 

rina, Brieskorn), we obtain that every (local) deformation of a Kleinian 
ularity is again Kleinian, a Corollary which also follows from Bries- 

deep theory about connections between subregular elements in 
complex Lie groups and versal deformations of the corresponding 

singularities (cf. [6]). As a second application we blow down the 
family of a Hirzebruch manifold. 

ish to thank all my colleagues who made my stay at Rice University 
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during Spring 1972 possible or pleasant, especially those who made it pos- 
sible and pleasant. 

$1. Proof:. of TIieorems 1 and 2 

Theorem 1. Let 2:  2 -+ S be a regular family of complex manifolds 
with nonsingular base space S. Suppose there exists a point so ES such 
that zso = it- '(so) Izas an exceptional subvariety Eso. Then there exist 
neighborhoods 8 = D(E) c 2 and V = V(s0) c S such that 5 can be 
factorized as follo\vs: 

In  this diagram, Z is a normal complex space with a subvariety Efinite 
over V, such that z is proper, surjective and bilzoloinorphic on 8 - J!? 
where E = T-'(E) and E n  2-'(so) = &,,. 

Remark. In case d i m s  = 1 it can be easily shown that the family 
n: Z -t V is flat. I do not know whether this is true in general. 

Proof. All we have to show is that the map it is 1-convex in the sense 
of Knorr-Schneider-Markoe-Rossi-Siu ([13], [Id], [IS]) in a neighborhood 
of Eso. That foIlows from the fact that Tso carries a C" fitnction a, with the 
following properties (eventually after shrinking of 2): 

i) cp 2 0, (cp = 0) = Eso, 
ii) cp is strongly pIurisubharmonic on ( cp  > 01, 
iii) { q ~  < c) c c Zs, for all c e R ,  

an immediate consequence of 2, being exceptional, and Richberg's ex- 
tension theorem for strongly plurisubharmonic functions: . 

Choose real numbers 0 = co < c, < c, < c, < c, < c, < c,, and denote 
by Xjk the set { c j  < p < c,) c zso for 0 5 j < k 6. Since a regular 
holomorphic family of manifolds is IocalIy trivial there exists a neigh- 
borhood 0, = O(Eso), a neighborhood V = V(so) and a diffeomorphism 
6: 0, -+ T6 x v which preserves the fibration of 0,; here 2% 3: uEs0 
= (p < c,) (for a proof cf. [I], Remark 2, p. 220). By Richberg's result 
([15], Satz 3.3) p can be extended to a function @ which is strongly pluri- 
subharmonic on a neighborhood of x t .  Hence, if V is small enough, 
( p  is strongly pIurisubharmonic on 6-'(X: x V). If we extend tjj arbitrarily 
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into 6-'(T2 x V) and glue both extensions together, we may assume that 
p has a Cm extension @ into 0, = 6- ' (2 '  x V) such that @ is strongly 
pl~~risubharmonic on 6-'(2; x V). After shrinking V again we can achieve 
that c? is strongly pl~~risubharmonic on ( 2 ~ 0 ~ :  cp(z")>c,) and 
j? ( ( 2 ~  0': @(?) 2 c) is proper for every c 5 c4 ,. This means that it re- 
stricted to 0 = ((P(2) < c,) is a I-convex holomorphic map (with exhaustion 
function I$ = l/(c, - (7) and convexity bound (c, - c,)-I). 

1-convex mappings are holomorphically convex; hence 0 may be 
assumed to be holomorphically convex (if V is Stein). The canonical map 
7 of 0 onto its Remmert-quotient Q(0)  = Z has the properties stated in 
the theorem. (The Remmert-quotient Q ( 0 )  of a holomorphically convex 
complex space 0 is the [uniquely determined] Stein space ~ ( 0 )  together 
with a proper, surjective holomorphic map z: U - + Q ( ~ )  such that 
ROT,@, = OQ,o,. The last property implies that Q(0) is normal if 0 is 
normal; in our case 0 is even nonsingular.) Q.E.D. 

Recall the definition of a rational singularity ( [ Z ] ) :  That is a 2-dimen- 
sional normal singularity (X, xo) such that for a certain resolution p: W - t  X 
the first direct image R1p,Ox vanishes on X. This property is known to be 
independent of the resolution p :  2-t X. We now prove: 

Theorem 2. If, under. the assumptions of Theorem 1 ,  the exceptional 
variety Eso in zs, can be blown down to a rational singularity (X,xo), 

TC:  Z 4 V is a (flat) deformation of n-'(so) z (X,xo). All  singularities 
tlte fibers Z,, s near. so, are rational. 

Proof. Let us assume that 2 is holomorphically convex and 

is the factorization of it as in Theorem 1. By assumption there exists a 
proper map p: zso -+ X, where X is Stein and R1p,Bzso = 0. This implies 
H1(Zs,, 02,J = T(X, R1psBzJ = 0. Since it is 1-convex and Bz is flat 
over P, the f~lnction 

is upper semicontinuous on S ([16], [MI); nt ,7 denotes the maximal ideal 
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sheaf of local holomorphic functions on S vanishing at s. Hence we may 
assume that 

H'(Z,,  BZ,) = 0 
for all s E S. 

For every Stein open subset V c S and every coherent analytic sheaf $ 
on 2 one has canonical isomorphisms (cf. for instance [ l a ] ) :  

Taking the ind~tctive litnit over all Stein open neighborhoods of a point 
s E S we obtain for 5 = (9,-: 

where z, is the restriction of -c to 2,. By construction z, is a resolution of the 
singularities n-'(s) n E of Z, = n-'(s), and we proved R1z,,0Z7 = 0. 
The proof is completed if we show that each fiber Z, is the Remmert- 
quotient of z,, since then Z,, = ~ ( 2 ~ ~ )  = X and all singularities of Z,, 
s E S ,  are in particular normal and hence rational. 

Take z ~ n - ' ( s )  n E and assume without loss of generality that 
n-'(s) n E = (2). n: Z -+ S is a t-complete (i.e., a Stein) mapping and 
possesses a strongly plurisubharmonic nonnegative exhaustion function I// 

with $(z)  = 0. The lifted function rJ = $07  is an exhaustion function for 
the I-convex mapping it: 2 3 S. Define 7, = z 1 ( $  < c), c E R. We claim 
then that the canonical restriction mapping 

is surjective for every c > 0. Fix c > 0 ;  then there exists a Stein open 
neighborhood V = V(s) c S such that E n  n-'(V) c (11 c c0 = c/2) and 
IJ is an exhaustion function on it-'(V) with convexity bound co. By (118, 
Proposition 1.21 there exists a constant k E N such that 

If we shrink Z once more taking Z = {I)< c )  and 2 = (5 < c), ~t is 
enough to prove that for a11 k > 1 the canonical mapping 

is surjective. This will be derived from the exact sequence 

and the canonical isomorphism 
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is a consequence of the flatness of LoZ over lo,. Applying the co- 
honlology sequence we get exactness of 

d (*) is established. 
roof of Z, = Q(Zs) is now trivial. We only have to show that 
= 0, T .  Let f;. be a holomorphic function on 2, in a neighborhood 

7 - ' ( z ) ;  assume os = {$ < C} = 2, without loss of generality. Since 
mapping (*) is surjective, f;. can be holornorphi~ally extended to a 
hborhood of Us in 2. Let f b e  s i~ch an extension, then j = fo z with a 
rnorphic function j on a neighborhood of Z, in Z because of Z = ~ ( 2 ) .  
implies f;. = fro s,, J, = j 1 2, ET(Z,,  8,). 

mains to prove that n: Z -+ S is flat. This follows from [ll, Satz I ]  
n is open (because 5 is open) and Z 4 S is a red~~ced  family (the 
being even normal). Q.E.D. 

$2. Applicatiotl to special sirrgu1aritie.s 

t n :  Z 4 T be a flat lnorphism in the category of complex spaces. 
solrrtion of n is a commutative diagram 

ere z: 2 -+ Z is proper and surjective, 0: S -, T is finite and surjective, 
-+ S is a regular family of complex manifolds and 7,: 2, -+ Z,(,, is a 
ution of singularities for all s G S. 

rst prove 

em 3. Let x :  Z 4 T be a defortnatiotz of a rational singularity 
= ( X ,  2,). I f  n admits a resolution with nonsingular base S ,  then 
ists a neighborhood V = V ( t o )  c T such that 2, has only rational 

arities for all t E V. 

f. By lifting Z to  S we may assume that S = T and o = id since o 
pen mapping as a ramified surjective covering. We shall show that 
gram 
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S 

is that of Theorem I ;  our assertion is then an immediate Corollary of 
Theorem 2. 

We assume moreover that Z and S are Stein and 2 is holomorphically 
convex. Hence we only have to prove that Z is the Remmert-quotient of 2, 
i.e., RO~,Bz  = OZ, a trivial consequence of the following statements: 

i) Z is normal 
ii) there exists a 2-codimensional analytic subvariety E c Z such that 

T-'(E) = ,!? is nowhere dense in 2 and z is biholomorphic on 2 - J. 
To prove i) remark that n-'(so) is normal and we have more generally: 
I f  n :  Z 4 S  is a $at morphism with normal fiber Z,*, and nonsingular 

base S then Z is normal ( in  a neighborhood clfZ,,). 
This is proved by induction over nz = dims,  m = 1 being Corollaire 

(5.12.7) in EGA,, [$I. Tf m > 1 ,  Jet s,, . . ., s,, be a coordinate system of S 
about so, let i be the embedding (s,,, = 0) = Sm-,  '-, S and p the projection 
S + S ,  = ( s ,  = ... = s ,,,- = 0). Zm- = Z x SSln-I is a flat family 
over Sf,,-, with normal fiber Z,, ; hence Z m - ,  is normal by induction 
hypothesis. Since p is flat, p o  n is a flat family of complex spaces over S 
with normal fiber Z,,-l. By the case n7 = I ,  Z is normal. 

To prove ii), define E as the singular set of n, i.e., the set of points 2 E Z 
which are singular in Z,(Z,. This is an analytic subvariety of Z such that 
n 1 E is discrete at so.  Thus E is finite over S and hence at least 2-codimen- 
sional in Z (since all fibers Z ,  are 2-dimensional). Obviously all fibers 
2, are I-codimensional in zs such that 2 is nowhere dense in z. 

Outside E the map T is biholomorphic on the fibers and respects the 
local product structure of 2 and Z.  This implies that T is locally biholo- 
morphic on 2 - X. Since z: 2 - B+ Z - E is bijective and 2 - ,!? and 
Z- E are complex manifolds, -t 12 - B is biholomorphic. Q.E.D. 

It is known that the versa1 family 2 4  T of a Kleinian singularity 
(i.e., a rational double point) admits a resolution with nonsingular base 
S ( [ Z l ] ,  [6] ,  [ l o ] ;  cf. also [3], [43). By Theorem 3 any (local) deformation 
of such a singularity (X,xo) is rational. Since (X,xo) has embedding 
dimension 3, any deformation has embedding dimension 5 3 (that 
follows easily from [ 7 ,  Satz 2.21). Using Brieskorn's classification [3] 
we obtain 
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Corollary. Any (local) (leforinalioi~ o f  a Kleinian s ingu la~ i t y  is 
Kleinian (or nonsingular). 

To get more information abo~lt  all possible deformations of a Kleinian 
singularity we prove the following upper semicontinuity theorem: 

Lemma. Let n :  Z-+ S be a reduced family of complex spaces with 
nonsingular base space and isolated hypersurface singularity z, over 
so E S.  Then  

where singZ, denotes the singular set of Z ,  = n- l ( .~ )  and R(Z,) is the sheaf 
of germs of holornorphic 1-forms on Z,. 

Proof. The set E = U,,,singZ, is analytic and finite over a neigh- 
borhood of s, (proof of Theorem 3). Suppose (S,s,) = ( ~ " 0 )  with co- 
ordinates t l ,  ..., td about 0 and that Z,, = (X,z , )  is described by . f (z , ,  ..., z,) 
= 0, z ,  = O E  Cr .  Then Z can be realized by a holomorphic equation 

d 

F(z ,  t )  = f (zl, . . . , z,) f C tigi(z . . . , z,) = 0 
j = 1  

in C r  x C%nd n :  Z -t S is induced by the canonical projection Cr x cd -+ Cd 
(cf. [7 ] ) .  Define now 

8 is a coherent analytic sheaf with supp 8 c E, hence the direct image 
Ron,% is coherent on S, and we have 

In a neighborhood of so (cg(ROn,%), denotes the minimal number of 
generators of (Ron,%), over OCqs). 
But obviously 

= C dim,. i - j , /n~,~g~ 
: ~ n - l ( s ) n E  

d 7j2/ms%z = E X ~ ~ ( Z , , R ( Z , ) )  since (Z,,z) is an isolated reduced hyper- 
ce singularity. Q.E.D. 
we denote the Kleinian singularities as ~ ls~ la l  by A,,, n 2 1, D,,, n 2 4, 

, E,, and E,, we have 
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(These numbers are the numbers of moduli, i.e., the dimension of the- non- 
singular - base space of the versal family of the corresponding singularity). 
So our Lemma says for instance that A,, can not be deformed into A,,+,, etc. 

Unfortunately, not all impossible cases are excluded by that Lemma. 
Since Kleinian singularities are hypersurface singularities (whose equations 
can be found in Klein's textbook [12]) it is easy to write down the versal 
families (cf. [21], [20]):  

2 2 A,,: zl + z 2  +z:+l +t,f';' + ... + t ,,-, z3 + t ,  = 0, t~ 2 1 

With some pain one comp~~tes  all deformations of A,, and Dl, and obtains 
the following diagram (arrows indicating all actually occurring deformations 
of a given singularity): 

. . . -.t D,,, -+ D,, -t ... -t Ds -t 0 4  

-1 I .1 J 
. . . -+A, , -+A ,,-, + . . . - , A 4 - + A 3 + A 2 4 A ~ - + A n ~  

where A, is a symbol for the "regular" singularity. 
In order to  understand this diagram it seems to be necessary not only 

to assume the existence of a resolution for the versal family of a Kleinian 
singularity but also to consider a concrete description of such a resolution 
like Brieskorn's beautiful construction [6].  

We want to discuss finally a second example. Let C,, be the Hirzebruch 
manifold of degree in 2 0. C,,, is a projective algebraic manifold constructed 
as follows: 

Let C have coordinate z and P have inhomogeneo~~s coordinate (. Then 
C,, = C x P U C x P, where (z,,(,) and (z2,C2)e C x P are identified if 
and only if 
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r in even the manifolds C, are the only known different complex structures 
P x P. Let O denote the sheaf of germs of holomorphic vector fields 

C,,,, then 

ce, by the stability theorem of Frohlicher and Nijenhuis, Co = P x P 
h canonical product structure and C, are rigid. If rn 2 2 there exists 
mplete and effectively parametrized family i t :  2 4 S with S = C1"-l and 
= Z,, (complete and effectively parametrized means that the canonical 
daira-Spencer mapping p of the tangent space of C'"' at 0 into 

is an isomorphism). C,,, can be deformed precisely into manifolds 
,,, 1' = O,l, ..., m - 21c >= 0, and 2,g 2, for all s # 0. 

t is known that C,,, contains an exceptional subvariety En, z P of self- 
ection number - in  for m 2 2. By blowing down El, one obtains 
lated rational singularity (X,,,,xo) and hence by Theorem 2 a com- 

71' 
2' -. S is a deformation of the rational singularity (X,,,xo). 

first glance one will expect that all singularities will occur in 
of n' near O E  S.  However, the fibers Z' , ,  s # 0, are nonsingular. 
n be proved in the following way : 
51 (X,,,,x,) is a quotient singularity C2/G, where G c GL(2,C) is 
ed by (r En), a primitive mth root of unity, 

t l ,  v) denotes the C-algebra of holomorphic functions of CZ at 0, 
,,, is the subalgebra of C(u, u )  generated by 

Zi = u l p l - i  i v , i = 0, ..., in, 

instance [8], p. 162). It is then easy to see that the embedding- 
on of (X,,,, xo) is m + 1 and (XI,, xo) will be described by m(m - 1)/2 
s 

20 _ ;I - 
- 
"111- 1 - - - - _ . . .  =- 

ZI  2 2  Zn, 
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at 0 E c"'" with coordinates z,, .. ., 2,. Although X ,  is never a complete 
intersection for m> 2, it turns out that 

Hence the singularity X, has a versal family n: Z 4 T with nonsingular 
base T (cf. [ZO]). Since 

we will have dim T = 2. If t,, t2 denote complex coordinates of T about 0, 
Z can be described as follows: 

and it is easy to see that all fibers Z,, t f: 0, are nonsingular. 
Since z: Z + T is versal there exists a map o :  S -+ T such that 

Z' E Z x .S, and fibers 24 near 0 can only have singularities of type 
(X,,,x,). But zs g 2, for s # 0 and hence 2: = Q(Z&) g ~ ( 2 , )  = Zb 
such that Z: has no singularities at all, if s # 0. 

This consideration shows moreover that o-'(o(0)) = 0 .  Hence o is 
discrete at O E  S. Since dim S = dim T = 2, a is finite and surjective in a 
neighborhood of 0 E S; this means: the canonical diagram 

is a resolution for the versal family x :  Z + T of the singularity (X3,x0). 
For in 2 4 we cannot follow the same pattern of reasoning since in that 

case X,,, is obstructed with 

dim, ~ x t , ' ,  (X,,, O(X,,,)) = 2m - 4 

(cf. D. Mumford, "A remark on the paper of M. Schlessinger", pp. 113-117 
in this volume). Hence the corresponding formula 

given by Tjurina ([ZO], Example 21, does not describe the versal family of 
X,,,. Hovever, one can prove by direct computation -as was pointed out 
to me by F. Huikeshoven in Gottingen - that this is precisely the de- 
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formation of X,, m 2 2, obtained by blowing down the complete family 
of the Hirzebruch manifold C,. 

We finally remark that our examples are not only rational singularities 
but moreover are contained in the subclass of quotient singularities and 
their local deformations also turn out to be in that subclass. This might 
be a general principle. In higher dimensions it is even true that isolated 
qot ient  singularities are rigid (Schlessinger [ l 7 ] ) .  
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