A REMARK ON THE PAPER OF M. SCHLESSINGER

by David Mumford

In the conference itself, I spoke on a theorem asserting the existence of "semi-stable" reductions for analytic families of varieties over a disc, smooth outside the origin. This talk turned out to be difficult to transcribe into a paper of moderate size and instead will be incorporated into the notes of a seminar which I am running together with G. Kempf, B. SaintDonat, and Tai, which we will publish in the Springer Lecture Notes.

Here I would like to add a footnote to Schlessinger's calculations of versal deformations. ${ }^{1}$ He studied the situation: $V=$ complex $n+1$-dimensional vector space; $\mathbf{P}(V)=n$-dimensional projective space of 1 -dimensional subspaces of $V ; Y \subset \mathbf{P}(V)$ a smooth r-dimensional variety, $r \geqq 1 ; C \subset V$ the cone over Y.

Let $L=\mathcal{O}_{\gamma}(1)$. Assume:

$$
H^{0}\left(\mathbf{P}(V), \mathcal{O}_{P(V)}(k)\right) \rightarrow H^{0}\left(Y, L^{k}\right) \text { is surjective, } k \geqq 1
$$

(We may also assume by replacing $\mathbf{P}(V)$ by a linear space that it is an isomorphism for $k=1$). Then he proved:
a) There is a natural injection of functors:

$$
\bar{H}=\left\{\begin{array}{c}
\text { Deformations } \\
\text { of } Y \text { in } \mathbf{P}(V)
\end{array}\right\} / \begin{gathered}
\text { projective } \\
\text { automorphisms }
\end{gathered} \rightarrow\left\{\begin{array}{c}
\text { Deformations } \\
\text { of } C
\end{array}\right\}
$$

b) T_{c}^{1} has a natural graded structure

$$
T_{C}^{1}=\stackrel{+\infty}{\oplus}\left(T_{c}^{1}\right)_{k}
$$

such that $\left(T_{C}^{1}\right)_{0} \cong$ image of Zariski tangent space to \bar{H},
c) If $\left(T_{c}^{1}\right)_{k}=(0)$ for $k \neq 0$, then \bar{H} is isomorphic to the functor of deformations of C, i.e., all deformations of C remain conical.
d) If $r \geqq 2$ and L is sufficiently ample on Y, then the condition in (c) is satisfied.
What I would like to show here is:
d^{\prime}) If $r=1, L$ is sufficiently ample on Y and Y has genus $\geqq 2$ and is not hyperelliptic, then again the condition in (c) is satisfied.

This gives:
Corollary. There exist normal singularities of surfaces with no nonsingular deformation!

To prove $\left(\mathrm{d}^{\prime}\right)$, we let $U=C-(0)$ and use the exact sequences:

Now \mathbf{C}^{*} acts in a natural way on both θ_{V} and N_{C}, and if $\pi: V-(0) \rightarrow \mathbf{P}(V)$ is the projection, then both $\pi_{*} \theta_{V}$ and $\pi_{*} N_{C}$ decompose into direct sums of their eigenspaces for the various characters of \mathbf{C}^{*}. Moreover, the \mathbf{C}^{*} invariant sections are:

$$
\begin{aligned}
& \left(\pi_{*} \theta_{V}\right)^{\mathbf{C}^{*}} \cong \mathcal{O}_{\mathbf{P}(V)}(1) \otimes_{\mathbf{C}} V \\
& \left(\pi_{*} N_{C}\right)^{\mathbf{C}^{*}} \cong N_{Y}
\end{aligned}
$$

and α induces the map $\alpha^{\prime}=\gamma \circ \beta$

$$
\alpha^{\prime}: \theta_{\mathbf{P}(V)}(1) \otimes_{C} V \xrightarrow{\beta} 0_{\mathbf{P}(V)} \xrightarrow{\gamma} N_{Y}
$$

($\beta=$ standard map).
Thus we get:

\[

\]

So if

$$
\left(T_{C}^{1}\right)_{v}=\operatorname{coker}\left[\Gamma\left(\mathbf{P}^{n},\left(v(v+1) \otimes_{\mathrm{C}} V\right) \xrightarrow{\alpha_{v}^{\prime}} \Gamma\left(Y, N_{Y}(v)\right)\right],\right.
$$

then $T_{C}^{1}=\oplus_{v=-\infty}^{+\infty}\left(T_{C}^{1}\right)_{v}$. We must compute these groups.
The idea is to determine N_{Y} explicitly on Y without actually using the embedding of Y defined by L. Consider in fact $N_{Y}^{*}(1)$ via the dual of α^{\prime} as a subbundle of $\mathcal{O}_{Y} \otimes_{C} V^{*}$

$$
\left.N_{Y}^{*}(\mathrm{I}) \subset \theta_{\mathbf{P}(V)}^{*}(1)\right|_{Y} \subset \mathcal{O}_{Y} \otimes_{\mathbf{C}} V^{*}
$$

hence for every $x \in Y$:

$$
\left[N_{Y}^{*}(1) \otimes \theta_{x} / m_{x}\right] \subset\left[\theta_{P(V)}^{*}(1) \otimes \theta_{x} / m_{x}\right] \subset V^{*}
$$

It is easy to see that under these inclusions, if $x^{\prime} \in C$ lies over x :

$$
\begin{aligned}
\theta_{P(V)}^{*}(1) \otimes \theta_{x} / m_{x} & =\left\{\begin{array}{l}
\text { space of linear forms } l \text { on } V \\
\text { such that } l\left(x^{\prime}\right)=0
\end{array}\right\} \\
N_{Y}^{*}(1) \otimes \theta_{x} / m_{x} & =\left\{\begin{array}{l}
\text { space of linear forms } l \text { on } V \\
\text { such that } l\left(x^{\prime}\right)=0 \text { and } \\
l=0 \text { is tangent to } Y \text { at } x
\end{array}\right\}
\end{aligned}
$$

But now by assumption:

$$
V^{*} \cong \Gamma\left(\mathbf{P}(V),\left({ }^{(1)}(V)(1)\right) \xrightarrow{\approx} \Gamma(Y, L)\right.
$$

and under this isomorphism, the linear forms I such that $I=0$ and is tangent to Y at x go over to the sections of L vanishing at x to 2 nd order, i.e. $\Gamma\left(Y, m_{x}^{2} \cdot L\right)$. Now consider

$$
\Delta \subset Y \times Y \text { with } p_{1}^{*} L(-2 \Delta)
$$

Y with $p_{2}, ~\left[p_{1}^{*} L(-2 \Delta)\right]$.
Then it is easily seen that $p_{2},\left[p_{1}^{*} L(-2 \Delta)\right]$ is a locally free sheaf on Y and that

$$
\begin{aligned}
p_{2, *}\left[p_{1}^{*} L(-2 \Lambda)\right] \otimes{ }_{x}{ }_{x} / m_{x} & \cong \Gamma\left(Y \otimes\{y\}, p_{1}^{*} L(-2 \Delta) \otimes_{\theta_{r}}\left(\vartheta_{x} / m_{x}\right)\right. \\
& \cong \Gamma\left(Y, m_{x}^{2} \cdot L\right) .
\end{aligned}
$$

Thus the two sub-bundles:
a) $p_{2, *}\left[p_{1}^{*} L(-2 \Delta)\right] \subset p_{2}, *\left[p_{1}^{*} L\right]=\Gamma(Y, L) \otimes_{C^{(}{ }^{(}{ }_{Y}}$
b) $N_{Y}^{*}(1) \subset V^{*} \otimes_{C^{(0)}}^{Y}$ $\cong \Gamma(Y, L) \otimes_{\mathrm{C}}{ }^{()_{Y}}$
are equal. Now assume $r=1$, so that Y is a curve and $\mathscr{O}(-2 \Delta)$ is an invertible sheaf on $Y \times Y$. Then by Serre duality for the morphism p_{2}, we can identify $N_{Y}(-1)$ as a quotient of $V \otimes_{C}{ }^{\left({ }^{(}\right)}{ }_{Y}$ or $\Gamma(Y, L)^{*} \otimes_{C}{ }^{\left({ }^{(}\right.}{ }_{Y}$:

$$
\begin{aligned}
& V \otimes_{C^{(}{ }_{Y}} \quad \xrightarrow{\alpha^{\prime}(-1)} \quad N_{Y}(-1) \quad \rightarrow 0 \\
& 211 \\
& \text { ใII } \\
& \Gamma(Y, L)^{*} \otimes_{\mathrm{C}}{ }^{(0}{ }_{Y} \longrightarrow \operatorname{Hom}\left(p_{2, *}\left[p_{1}^{*} L(-2 \Delta)\right], \mathcal{O}_{Y}\right) \quad \rightarrow 0 \\
& \text { 2II } \\
& \text { ว॥ } \\
& R^{1} p_{2, *}\left(\operatorname{Hom}\left(p_{1}^{*} L, \Omega Y \times Y / Y\right)\right) \rightarrow R^{1} p_{2, *}\left(\operatorname{Hom}\left(p_{1}^{*} L(-2 \Delta), \Omega_{Y \times Y / Y}\right)\right) \rightarrow 0 \\
& \text { 2II } \\
& \text { ว॥ } \\
& R^{1} p_{2, *}\left(p_{1}^{*}\left(\Omega_{Y} \otimes L^{-1}\right)\right) \longrightarrow R^{1} p_{2, *}\left(p_{1}^{*}\left(\Omega_{Y} \otimes L^{-1}\right)(2 \Delta)\right) \quad \rightarrow 0 .
\end{aligned}
$$

We want to show that $\left(T_{C}^{1}\right)_{v}=(0)$ if $v \neq 0$, i.e.,

$$
\Gamma\left(Y, R^{1} p_{2 .} \cdot\left[p_{1}^{*}\left(\Omega_{Y} \otimes L^{-1}\right)\right] \otimes L^{\nu}\right) \rightarrow \Gamma\left(Y, R^{1} p_{2}, *\left[p_{1}^{*}\left(\Omega_{Y} \otimes L^{-1}\right)(2 \Delta)\right] \otimes L^{\nu}\right)
$$

is surjective if $v \neq 1$. If $\operatorname{deg} L>2 g$, then p_{2}, of the two sheaves in square brackets is zero, hence by the Leray spectral sequence for p_{2}, the above map is the same as:

$$
\begin{aligned}
& H^{1}\left(Y \times Y, p_{1}^{*}\left(\Omega_{Y} \otimes L^{-1}\right) \otimes p_{2}^{*} L^{\nu}\right) \\
& \quad \rightarrow H^{1}\left(Y \times Y, p_{1}^{*}\left(\Omega_{Y} \otimes L^{-1}\right) \otimes p_{2}^{*} L^{\nu} \otimes \mathcal{O}(2 \Delta)\right)
\end{aligned}
$$

We treat the surjectivity in threc cases:
Case I. $v \geqq 2$: Consider the sheaf cokernel

$$
p_{1}^{*}\left(\Omega_{Y} \otimes L^{-1}\right) \otimes p_{2}^{*} L^{v} \rightarrow p_{1}^{*}\left(\Omega_{Y} \otimes L^{-1}\right) \otimes p_{2}^{*} L^{\nu} \otimes \mathcal{O}(2 \Delta) \rightarrow K_{v} \rightarrow 0 .
$$

It is a sheaf of $\mathcal{O}_{2 \Delta^{-}}$-modules so it lies in an exact sequence between $\mathcal{O}_{\Delta} \cong \mathcal{O}_{Y^{-}}$ modules

$$
\begin{gathered}
0 \rightarrow\left(\mathcal{O}(\Delta) \otimes \mathcal{O}_{\Lambda}\right) \otimes L^{v-1} \otimes \Omega_{Y} \rightarrow K_{v} \rightarrow\left(\mathcal{O}(2 \Delta) \otimes \mathcal{O}_{\Delta}\right) \otimes L^{v-1} \otimes \Omega_{Y} \rightarrow 0 \\
2 \| \\
I^{y-1} \\
\text { थ\| } \\
L^{v-1} \otimes\left(\Omega_{Y}\right)^{-1} .
\end{gathered}
$$

So if $\operatorname{deg} L>4 g-4, H^{1}\left(K_{v}\right)=(0)$ when $v \geqq 2$.
Case II. $v=0$: Consider the Leray spectral sequence for p_{1}. Since we have assumed Y is not hyperelliptic
a) $p_{1}, \mathcal{\theta}_{Y \times Y}(2 \Delta) \cong p_{1}, \cdot \Theta_{Y \times Y}$
and
b) $R^{\mathrm{t}} p_{1},{ }^{()_{Y \times Y}}(2 \Delta)$ is a locally free sheaf \mathscr{E} of rank $g-2$. Now we have: $0 \rightarrow H^{1}\left(Y, \Omega_{Y} \otimes L^{-1}\right) \rightarrow H^{1}\left(Y \times Y, p_{1}^{*} \Omega_{Y} \otimes L^{-1}\right) \rightarrow H^{0}\left(Y, \Omega_{Y} \otimes L^{-1} \otimes R^{1} p_{1, *}\left(\mathcal{O}_{Y \times Y}\right) \rightarrow C\right.$

Note that \mathscr{E} does not depend on L. So by (b) there is an integer n_{0} depending only on Y such that if $\operatorname{deg} L>n_{0}$, then $\left(\Omega_{Y} \otimes \mathscr{E}\right) \otimes L^{-1}$ has no sections.
Case 111: v§-1: Surjectivity in this case always follows from surjectivity when $v=0$. In fact, if we know that

$$
V \rightarrow \Gamma\left(Y, N_{Y} \otimes L^{-1}\right) \rightarrow 0
$$

is surjective, I claim $\Gamma\left(Y, N_{Y} \otimes L^{-v}\right)=(0), v \geqq 2$. If not, $N_{Y} \otimes L^{-2}$ has
a non-zero section s. Then for all $t \in \Gamma(Y, L) \cong V^{*}, t \otimes s$ is a non-zero section of $N_{Y} \otimes L^{-1}$. Thus we must get all sections of $N_{Y} \otimes L^{-1}$ in this way. But this means that all these sections are proportional, hence do not generate $N_{Y} \otimes L^{-1}$. But since

$$
V \otimes \mathscr{C}_{Y} \rightarrow N_{Y} \otimes L^{-1}
$$

is surjective and $V \otimes \Theta_{Y}$ is generated by its sections, so is $N_{Y} \otimes L^{-1}$. This is a contradiction, so $s=0$.

This completes the proof of (d^{\prime}). Finally two remarks:
(A) If you look at the case $Y=\mathbf{P}^{\mathbf{1}}, L=O_{\mathbf{P}^{\prime}}(k)$, then $C=$ cone over the rational curve of degree n in \mathbf{P}^{n} and the sequences we have used enable us to compute T_{C}^{1} easily. In fact it turns out that if $k \geqq 3$,

$$
\begin{aligned}
\left(T_{C}^{1}\right)_{l} & =(0), \quad \text { if } \quad l \neq-1 \\
\operatorname{dim}\left(T_{C}^{1}\right)_{-1} & =2 k-4
\end{aligned}
$$

It seems most reasonable to conjecture that the versal deformation space of this C is a non-singular k - 1 -dimensional space but with a 0 -dimensional embedded component at the origin if $k \geqq 4$. 2
(B) What happens in the hyperelliptic case? If, for instance, $\pi: Y \rightarrow \mathbf{P}^{1}$ is the double covering and $L=\pi^{*}\left({ }^{(1)}{ }^{\prime}(k)\right.$, then C is itself a double covering of the rational cone considered in (A) which is known to have non-singular deformations. Do these lift to deformations of this C ?

NOTES

1. M. Schlessinger, "On Rigid Singularities," in this volume, pp. 147-162.
2. H. Pinkham has recently proved that this is true if $k \geqq 5$, but if $k-4$, the versal deformation space has two components, a smooth 3-dimensional one and a smooth 1-dimensional one crossing normally at the origin! (Cf. "Deformations of cones with negative grading," J. of Algebra, to appear.)

Harvard University

