DEFORMATIONS OF RESOLUTIONS OF
TWO-DIMENSIONAL SINGULARITIES

by Henry B. Laufer

§1. Introduction

The possible topological structures of normal two-dimensional sin-
gularities are essentially known. Given a singularity, one considers its
resolution [11], [10]. Normal singularities are determined by their re-
solutions so no information is lost. In dimension two, all possible resolutions
and point modifications have been described by Mumford [18] and
Grauert [8]. Their criterion, that the intersection matrix of the irreducible
components of the exceptional set be negative definite, is purely topological.
_ This paper is devoted to describing the different singularities which have
topologically equivalent resolutions. Examples given in [&], [4], and [22]
‘show that a given topological type may come from exactly one singularity
or may come from a complex family of analytically distinct singularities,
Here, the general case is treated as follows, via the Kodaira-Spencer [15]
deformation approach.

Let pe V be a normal two-dimensional singularity. Let n: M — V be a
resolution of V such that the irreducible components 4;, 1 £ i < n, of
A = 1~ '(p) are nonsingular and have only normal crossings. Associated to
A is a weighted dual graph I (e.g., see [12] or [16]) which, along with the
genera of the A;, fully describes the topology and differentiable structure
of 4 and the topological and differentiable nature of the embedding of 4
in M. Let #; be the ideal sheaf of 4;. Let m = I}, 1 £ i < n, where
each r; is a positive integer. Let A(m) be the nonreduced space given by
(4,0 |m | A). Let n': M’ — V'3 p’ be a resolution of another normal two-
dimensional singularity p’. Suppose that the irreducible components for
A' = (n")"!(p’) are also nonsingular and have only normal crossings.
Suppose also that 4 and A’ are topologically the same, i.e., that the dual
weighted graph I'” for A’ is the same as I and that the corresponding A/
and 4; have the same genus. Let m’ and A(m’) be defined as above. Then
[16, Theorem 6.20, p. 132], depending solely on I" and the genera, ry, 1,
may be chosen so that if A(m)= A4’(m’), then 4 and A4’ have biholo-
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morphically equivalent neighborhoods via a map taking A to A’. Thus,
rather than deforming A4 and its embedding in M, it suffices to deform
A(m) with (ry,---,r,) appropriately chosen. Moreover, by choosing 7 to be
the canonical minimal resolution with nonsingular irreducible components
and normal crossings, we can insure that p &~ p’if and only if A(m) =~ A'(m"),

Section 2 presents the needed reformulation of the Kodaira-Spencer
theory for nonreduced spaces. For use in later proofs it is necessary to
consider deformations which fix subspaces. The definitions and proofs in,
say, Morrow and Kodaira [17] generalize readily from the manifold case
to the case of spaces.

Section 3 discusses the deformations of the A(m) above in a slightly more
general setting. Every abstractly given A(m) can be realized as a subspace
of a 2-manifold (Proposition 3.8) so every abstractly given A(m) corresponds
to a singularity. Any deformation of A(m) has the same dual weighted
graph (Lemma 3.1). There exists a locally unique, locally complete family
of deformations of A(m)which is effectively parametrized at the distinguished
point 0 in the parameter space. The parameter space is 2 manifold of di-
mension dim H1(4, ,©), where ,,® is the tangent sheaf to A(m) introduced
by Grauert [8, p. 357] (Theorems 3.4, 2.1 and 2.3). There is a neighborhood
U of 0 such that the fiber above q is isomorphic to A(m) for only at most
countably many g in U (Theorem 3.6). Suppose that A and A’ are topolo-
gically the same and have the same weights. Then A(m) may be deformed
into A’(m’) via a finite series of complex analytic deformations (Theorem
3.2). Finally, we give an algorithm (Theorems 3.9 and 3.10) to determine
whether or not a singularity with a given weighted graph is taut in the sense
of Brieskorn [4], Tjurina [22], and Wagreich [23], i.e., there is exactly
one singularity with the given weighted graph and given genera.

We also show that the automorphism group of A(m) is a complex Li¢
group with H°%(4,,®) as its Lie algebra (Theorem 3.4).

Section 4 consists of discussion, problems, and examples.

§2. Deformation Theory for Analytic Spaces

All spaces in this section will be nonreduced unless otherwise specified
(e.g., manifolds are reduced).

Let B be a compact analytic space and let C be a closed, possibly empty,
subspace of B. B and C will frequently have the same underlying reduced
space.

Definition 2.1. A deformation of B, fixing C, consists of the following.
i) There is an analytic space # and a proper morphism w: %4~ @
where Q is a manifold containing a distinguished point 0.
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if) Let t = (t;,--, %) be coordinates near a point ge Q with g the
origin. The fiber B, over ge Q is the subspace of # whose ideal sheaf is
generated by w*(ty), -, w*(t,). There is an isomorphism i: B —+ B,. We
shall usually identify B with By,

iii) wisa trivial deformation of C. That is, there is a closed subspace
¢ of @ and inclusion morphism ¢: €— & such that

a) % isaproduct having C and Q as factors, i.e., there is an isomorphism
Y:%€—C xQ withwo ¢: € — Q equal, via i, to projection onto the second
factor, Q.

b) t5: Co— By is the inclusion map for C as a subspace of B.

iv) o is locally trivial in a way which extends the triviality expressed
by ¥. That is, for every be %, w(b) = g, there exists a neighborhood #” of
b in &, a neighborhood U of ¢ in Q, a neighborhood S of b in B, and an
isomorphism ¢: # — Sx U with w equal to projection onto the second
factor, U. With the appropriate restrictions, ¢ 0 ¢ = (¢, X id) o ¥.

Suppose that B is locally embedded as a subspace of a polydisc A and
that » is the ideal sheaf of B. Let @ be the structure sheaf of A and let Q be
the sheaf of germs of holomorphic 1-forms on A, Recall [7, p. 357] that
Q' = Q is the sheaf generated at xe A by f.dg, + dh,, where g, €0, and
fohen, 5Q=,0=Q/Q" is the sheaf of germs of holomorphic 1-forms
on B. Let ;0 be the structure sheaf for B.

Definition 2.2. Let B be an analytic space with C a closed subspace
of B. Let m be the ideal sheaf for C. Then 5,0 = r//'{/xf;mng(BQ, m) is the
sheaf of germs of vector fields on B which vanish on C.

When C = @, p,c0 is the tangent sheaf ,© of Grauert. We shall denote
2© = 5,0 by 40. The sheaf @ = v, Q,m) of Grauert is in general
different from p (0.

It will be useful later to represent pf in terms of coordinates on A.
Suppose 0e B < A and (z,, -, z,) are coordinates for A, with O the origin.
Consider ve g 0,. v induces an element v' € Merrg(Q,m)y. Let m+n
be the ideal sheaf of C in A. Since  is a locally free @-sheaf, v’ may be
lifted noncanonically to v” € Hrwe(Q, m+ n)g © Homg(Q,0) & To. T is
the tangent sheaf on A. Thus v can be represented by an ambient germ of a
vector field, v" = X f; 8/dz; with fie(m + n),. Any v" = X f; 8/0z, with
Jie (m + n), will induce an element of 8, if and only if v"(dg,) € no for
g0 € .

For a deformation of B, fixing C, as in Definition 2.1, we let ® be that
Subsheaf of , .0 given by germs of vector fields along the fibers. That is,
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an element we 4 40 is in @ if, via the local product structure in Definition
2.1 iv), w vanishes on dt;,-++,dt,. There is a canonical map of @ | B, onto
s

Let 7 be the tangent sheaf to Q. Let U, be a neighborhood of 0 in Q and
veI'(U,,Z). By Definition 2.1 iv), for U, sufficiently small, we can find a
finite cover {#/;} of @™ '(U,) with local product maps ¢;: #;— S; x U,.
Via ¢; and the cartesian product structure, v generates an element
v, e (W 40). v; may be locally represented by some ambient vector field
involving only t = (¢,,--,1,). Since the deformation of C is trivial, the
extensions of v to I'(#', (0) and I'(¥; 40) coincide in W ;N W;. Let
v;; = v;— v; be defined on #7; N ;. Then (v;) represents a cocycle for
a.¢0. However, for bed, v(dt), = v(dl,),py. Thus v;(dt), =0 and
v,; e (W ;nW; ©). Different choices of ¢; will change (v;;) by a co-
boundary. Thus there is a canonical map p,: ['(U,,7) - H (o~ '(U,),©).
Letting U, decrease through a fundamental system of neighborhoods of 0
and letting R*w(®) be the first direct image sheaf, we get

2.1) p: T(0,7) - R'o(®),.

The infinitesimal deformation is derived from (2.1) by restricting elements
of T'(0,7") to their tangent vectors at 0 and mapping @ IBO to p c0. Letting
oT be the tangent bundle to Q, we have

(2.2) po: @To ~H' (B, 5,c0).

Definition 2.3. A deformation of B, fixing C, is effectively parametrized
at 0 if (2.2) is injective,

Let w: & — Q be a deformation of B, fixing C. Suppose that /: R— 0,
f(0)=0, is a holomorphic map between manifolds. f induces the following
deformation f*w: #?—R. ? = # x R is defined as follows. & is locally
of the form § x U. In S x U x R, the ideal sheaf of 2 is generated by the
condition f(r) = u, re R, ue U. f*o is just projection onto R.

Definition 2.4. A deformation w: 2 — Q of B, fixing C, is complete
at 0 if, given any deformation 7: 2 — R of B fixing C, there is a neigh-
borhood R’ of 0 in R and a holomorphic map f: R’ — Q such that 7 re-
stricted to " *(R’) is the deformation f*w. w is complete if it is complete
at each ge Q.

Throughout the rest of this paper we will restrict ourselves to the very
special B and C that occur in resolutions of two-dimensional singularities,
Namely, B will have an underlying reduced space of pure dimension one,
Locally, B can be embedded in a two-dimensional polydisc A = {(x, y)l
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x| < 6| y| <&} withZ/B = (xy") and 4/ C = (xy%). x and y are, of
course, complex variables. Necessarily, ¢ = a and d < b. By a change of
variables, we can assume that ¢ = 1.

We adopt the following notation. If S is an analytic space, let | S| denote
the underlying reduced space of S. [S| is called the reduction of S.

Theorem 2.1. Let B and C be as above. Let w: # — Q be a deformation
of B, fixing C. If po of (2.2) is surjective, then w is complete at 0.

Proof. We essentially mimic the proof of Theorem, p. 56 of [17]. Some
modifications are needed because B is not reduced. When convenient, we
shall omit subscripts and superscripts in local coordinate systems.

J: @ — R is the given deformation. (x;, y;) are local ambient coordinates
for B. Let t = (t;,---,t;,) be local coordinates near 0eR and let
7 = (14,°*»T,,) be local coordinates near Oe Q.

For sufficiently small & >0, we can cover 17 '(A,), A, = {i| |fﬂ| < e}
with ambient coordinate patches

Uj = {Geypd)] 3] <1 || <1, | ] <.
Using the same {(x;,y;)} we can cover a neighborhood of &~ 1(0) by

Vi= {3y %] <Ly <17, | <eh

Since the singularities of |B| are isolated, we may assume that for j # k,

|U;n Uyn 2| and | V; A Vi, N B | are manifolds. On U; N U, let

xj =f;}ir.(xk!yk! t)} yj =.f}i(xk’ Yis t)’ t=t
be the transition functions. If on U; N U, I B =( %), then we may assume
that y, divides f2. Similarly, on V;n ¥,

X; = g}k(xk: Viol)s Vi = gjzk(xk’yk: 1), T=1
and y, divides g2. When t = t = 0, we just get the transition functions
for B, so

(23) fﬁ(xk. Vi 0) = g?k(xk’ Yis O)a o= 1’ 2.
We need to construct holomorphic functions ¢;(x;, y;,1) and ¢?(x;,»;, 1)
and a holomorphic map t = ®(f) such that

(2'4) ¢j(f}k(xk’ Vs t)s t) = gj'ck(()bk(xk) Yis I),(D(I)), o= 1’ 2
and
(2.5) = 6/(pY0) ¥y = 93(x;,0).

'Equality in (2.4) need only hold modulo .%/% and we require that y;
divide ¢3.
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Let 2 denote the subspace of 2 which is a trivial deformation of C,
Since 2 and # are trivial deformations of C, f* and ¢g* may be chosen
independently of ¢ and 7, modulo the ideals of € and 2 respectively. So
yg the generator of %/ % and-%/2 should divide Fie(%is Yis 1) — (X, ¥i, 0)

and gfk(xka}’ka ) — g%k Vis 0).
Later, to insure convergence, we shall need similar covers

Uj = {0y || < 4w [y]<t 4, [15] <e}

for some v > 0, and similar ¥ with ¥’ > V;.
We expand the fj},g%.¢7 and the coordinate functions ®” of ® into
power series in t or T,

JikCxis o 1) = Fiqolxis yi) + L (i ¥t + =+ + fiiu yt™ + -
(2.6)gjk(xk!yk’f) = Gio(¥s Y&) + @1 (Xps YT + -+ Fhpun(Xa )T + o
Gi(xpypt) = X;4 iyt + -+ Gfialx " + o
$iCeisyist) = v+ iyt + oo
Q1) = Ot 4+ + D" + -

Il

where each £, 5> Pk and @}, has the appropriate number of com-
ponents to be coefficients for 1" or ", as needed. Also, y, divides
Sepm> 9m and . all m.

If P(t) = ZP,t" and Q(f) = £ Q,t" are two power series, P({) =,, O(1)
means that 0, = P, forn < m. Let (,b}""‘(xj,yj, 1) = zj+ =+ Xy "
2! = x,z2 = y, and O™ = Ot + - + O™,

We must solve, omitting the superscript 2,

(2'7):11 _r;l(.f;'k(xk’ )’ka I): t) Em gjk((ﬁ;{“(xk’ Yis r)& (I)m(r))'
First consider m = 1 in (2.7),,.
S0 2 + fep (o yidt + ¢y I(Jﬁ':ﬂo(xk: Jv’k):fj:w(xk’h))‘
(2.7)4 =1 gl + bip i 2t Vi + Pia (X YO, @11)

ag;km

Ax (xkaJ’k)‘i’klu(xk-.Vk)f
Xk

=1 GixjoX yi) +

(7ij|0
O
but we must verify that the partial derivatives do not make the induced
functions on the nonreduced subspaces noncanonical. dg ;,o/0x; is not
changed if g is modified by an element of Y 3. 9 jxjol0yy 1s changed

& (s yk)‘;bk“[’l(xk,yk)[ + g1 (%0 V) Py 1,
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by a function divisible by y2~!. However, y, divides ¢f|1(xm i) so the
product is unchanged.
fixjo @nd g0 are equal by (2.3). In (2.7),; we thus need

a

d giklﬂ(x ) ) S
£ ' Vi ¢a|1( o Vi)

S s Vi) = g;klo(xksh)‘ﬁkl; 1%k 5 Y1) +
(2.8) ,

= (;bj]l(xjayj) + gjkll(xk:yk)q)l-

We are operating, just in different coordinate systems, in the sheaf ;..
X fj410/0z5 and 29510/025, @ = 1,2, lie in 4 0 since y* divides fj, and
i1+ Fin and gji are vector valued with as many components as are
needed to provide coefficients for ¢ and 7. Each component of Sixy1 then
determines a cohomology class in H'(B, 5 c0). p, of (2.2) is surjective so,
by restricting to a submanifold, we may in fact assume that p, is bijective.
The gy determine the cohomology classes of the image of p,. Hence
there is a uniquely determined ®,, depending on fj, so that the co-
homology classes on both sides of (2.8) coincide. We then choose ¢, and
¢, to give equality in (2.8). We shall do the size estimates later.

Suppose that ¢ /1" and ®"!" have been determined so that (2.7),, holds.
That is,

(29) {}5?(]}&()(1‘;: yk: I)’O o gjk(‘nb?(xka yks I): (Dm(l)) Em+ 1 ijtm+1-
(2.7),,+, may be written
A7 VisD)s 1) + @ jms 1 (a5 I290)
=t 19350k ks Vieo ) + Prgyms 1 (%o ™™ T
O"(1) + @y ™).

This is equivalent to

T (fi1(%ks Vies 1, 1) + it 1 (g0 (Kies VD e
S+ gjk(‘ib:rcn(xks Vi 1), @™(1))

da;
g;::o (X Yk)‘pkli m+1(Xes Vi)t

m+1

-+

ag;
a.rkl_lg (% J"k)‘if’fm +1(%k Vi)
Vi

tm+1

-+

+ g1 Ko V)P 1™
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or
Séis
Tplx p) = g;::o (%> yk)¢:|m+ 1(%ks i)

ag:kl{}

+ =t yk)‘nbk[m—t (X6 Vi) = Pjime 1%, 95)

+ gjk| l(xk’ yk)q)m-i- 2

I'; is a cocycle by the computation of Lemma 3.4, p. 48, of Morrow and

Kodaira.As with m=1, the choice of @, , depends on I';;. We then choose
Prgm+1 20d Pty

This gives us the formal power series and it is now necessary to insure
convergence. We shall use the following norm on sections of g0 and thus
also on sections of ;.0 = z0. Near a nonsingular point, let.Z/B = (y").
Represent a section w of zf) over some open set U as

2 d
w = [ho(x) + yhy(x) + - + y* 7y 4(x)] s

+ D+ + (9] 55

(2.10) |w|o= max sup (| 2], o))
i+j5b=1 xelUn|B|

We shall omit the subscript U when it is clear which open set we are
considering, This norm is changed to an equivalent norm under a change
of coordinates. Near singular points, which are normal crossings with
JB = (x°y%), restrict w to a section of the tangent sheaf for each of the
two components, {x* = 0} and {y” = 0}. Then take the maximum of the
two norms. §, the coboundary operator for covers, is continuous in the
topology defined by | |.

Suppose that W(z,t) = Zy,t", 0 < m< o is a power series with
t = (ty,+, 1) and y,, vector valued with each component % of i, an
element of T'(U, 4, ¢0). Suppose that a(T) = 2a,T",0 £ m < oo with a,
real and non-negative. Then, following Kodaira, we write (z,1) < a(T)
and say that a(T) dominates y(z, 1) if ;| y4| < a,, for all m. We have a
similar notion for ®(f) = X®,1". Let A(T) : (bo/16¢o) Z(coT)"Im*, 1Sm<®
with b, and ¢, constants to be determined later. For convergence, it suffices
to prove that

(2.11),, “l"'(xj,yJ,t) — 27 < A(T), z = Xj, zj = y;
DF() < A(T).
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To satisfy (2.11),, since all the norms will turn out to be finite, it just
suffices for b, to be large enough. We now proceed by induction on m,
assuming (2.11),,.

Recall that V; = V. If g%, is a component of Ginps then [ g, |
= | fils i 1) 010, + GGl Ceir v 0/0y; || and | gy, | = il 951 |-

Since g, can be assumed to be holomorphic for (x;, y, 1) e VP n V2,
2 (% + Moo Vi + &Je? and its derivafives with respect to x, converge
for (xuy)€V;NVin |B| and 7, n, and &, sufficiently small. Expand
(% + M Vi + £,) into a power series in . and &,. In (2.12) below,
domination means the following: Compare coefficients for each n{&}.
If ¢, (x> )77 is the coefficient of &y on the left side of (2.12)and C,,T? is
the coefficient of #i&} on the right side of (2.12), then

ny

| »2e.(xes 0 “VmV., = Cis
[+ 4]
(2.12) w1 o+ s Vi + &) < C 2" P + &) TP
r=0

(2.12) will hold for appropriate C and x because only a finite number of
derivatives are used in computing norms on the left side.
FO‘I' lib(t) === }:wmtmf IEt [‘b(l)]m-ri = !il/m+1tm+]' WG ﬁl'St estimate

[gjk((b;f(xka Vi I), (I)m(t))]m+l == zp[gjﬂp(‘i’r(xka yk! I)) ((Dm(t))p]nw 12 by (26)
Temporarily, let Y, (x., i, t) = ¢p' (X, Y1) — 2. For p = 0, since the
components of Y, (x;, ¥, t) are polynomials of degree at most m in ¢,

(2.13) Lgiu10(z + Vialxi Vs D+ 1 = [9010(2k + YalXps Vi )

aa;
- Zp — _g-@(xk: }’k)lhi (%> Yir 1)
X

a9 ;
= 282 (0 YW Ok Yoo Ol 1.
Vi
From (2.12)
. g
(2.‘14) Fikjo(Xie + s i + &) — 23 — %; o (X Vit
k

99 - ur r
= ajklo (o y) &< C X &P + &)
Vi r=2

In (2.14), let 5, = Yl (xy0f) and & = Y2(xwyet). Apply (2.11),.
Y divides ¥7(x,, y, 7) so that the norm preceding (2.12) with its factor of y}
1S appropriate. When multiplying two functions F and G and using our " |
norm on sections of o6, |FG| < D|F| |G|, where D comes from
-tafkmg derivatives and is independent of F and G. (2.14) and (2.13) thus
Yield, using Corollary, Morrow and Kodaira, p. 50,
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[gjkjo(zk + (X Vs D) Jma1 < C ;a K" D'[2A(T)]

< A(T)C Z (2DK)(bolce) ™"

r=2

~ (2Dic)?b, 1
=AM — = 1= ODais"

Choose ¢, so large that (2Drbgy/cy) < 4. Then
[gjk|0(¢;'"(xk= Yis r))]m-ﬁ- 1 < (.2(‘(20"\‘)2 b(l.h"l’))A( T)-
For p > 0, more directly from (2.12)

9oz + Yi(Xg, Yis 1)) < € _zt;] K"TPDT24(T)]".

For p = 1, the summations below start at r = 1 since ®"(1) is of degree m.
Forp = 2,
[gjk!p(zk = 'ybk(xk Vs I)} ((Dm(r))p]nﬁ 1
£C X «TDYTA(TY]*

r=0

‘<C i Kr+p(2D)r(bnlcu)r+p—IA{T)

r=0

= A(T)CK®(bofee)*~" —ms

< (2CKP(boeo)”™ "A(T).
Hence for m = 1, by a straightforward summation over p,
(2.15) (9D ki yis 1), @"(1)) )41 < (16C D2 bolco) A(T) .

We now wish to estimate the size of T'j(x,, y)t™" ', which from (2.9)
satisfies

rjk(xk’J’k)me = [@7 (f(xs Vs 15 3]
= [g(Di s yis 0, O™ (D) Lt 1 -

Since T is a cocycle and the norm | | is equivalent in all coordinate
systems, as in Morrow and Kodaira, we can choose

U= {(xi’y:"t)l |xi]<1_?’lyi1{l_?’ Irﬂ| <&

with y sufficiently small so that in estimating | T |y v, » all j, kit suffices
to make estimates only at points x; in [UJ* NULN B| .
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Since fj can be assumed to be holomorphic for (x,y,,10)e Uj N Uy
there are suitable constants by and ¢, so that

(2.16) D'jk(x:c-.l’k: ) = Jidxes v )— z; € A(T)
_ b 2 o
~ 16¢, ,,,E:, m?

Our induction hypothesis is

m

B (xjs¥1) — 2; = > Pj1ulxp y 1"

=1

Il

"
gt
2 a T,

u=1

< A(T)

(x;,ysDeEU; The ¢;, are initially defined only on U; n B rather than

the ambient space U;N {t = 0}. Let ¢;, also denote any holomorphic

extension of ¢, to the ambient space. Our estimates below will be in-

dependent of the choice of extension. Since ¢;,, is holomorphic

(2.17) X5+ 055+ &) — diu(x5¥5)
= Ly, (x5 y 0" E

€] < B.

@18)  Cylx0)) = (_IJJJ s 2B )
[ =5

with vy + v, 2 1, (x;,p)e UL, |n

2mi 0ot 1“’2'1

‘We are interested in |[y‘-”c,“,z(xj,yj) ||U; if x; = y; = 0 is not a singular
point of iB| Since ¢, ,, comes from (2.17), these norms are independent
of the extension of ¢, to the ambient space. The case of x; = y; =0
bemg a singular point reduces to the nonsingular case after ¢, is restricted
Yy%,,.(x;¥;) | may be estimated
by estimating ¢”*9/dxPdy’c, ,,(x;,0) f01 appropnatc pand ¢g. In (2.18), we
can differentiate under the integral sign to get formulae for these derivatives.
®j1u(x; + 1, y; + &) can be represented as a polynomial of degree b — | in
_(y,— + &) and " 'beln” gives the needed estimates of the coefficients and their
derivatives. With E a constant depending on b,

@19 7wy

‘Using (2.19) in (2.17),

Ea

“
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?_ﬂg(xj +n,y; + Ot — (;bjh.l(xjsyj)l#

<Ea, STE gk 5 au 21
o DVt va { ] 1 2 = .

ﬁv,+v2
Summing over u,
(2.20) T + 1,95+ &0 — ¢T(xj p),1)
< EZXa,T" Eg';;f::’ =1, v,+vy, = 1.

Since ¢7'(x;,y;,t) has only terms of degree at most m in ¢,
(2.21) L7 (X Yis s D]ms1 = [z + 05(%s Yies 1)s ) Ims 1

=" [(lb?(xj) yj) r)]m-{— 1
Thus, from (2.20) and (2.16),

1+vyy+vz vitwa
[ f1(es Vist)sD)Ims1 € EA(T) T D [4,(T)]

vitva21 gt
-] 542 T -

Calculating as in Morrow and Kodaira, we use (2.21) and (2.15) to find a
constant K, such that

I (% Y™ < Ky (b [€)A(T), (X, Vi, 0) € Uin U,
Since I'j, is a cocycle, there is, again as in Morrow and Kodaira, a constant
K, such that
T (X yt™ 1 < K K (bg o) A(T), (X4 Y, 0) € U; N U

@i 15 Prjm+1> and @y, depended on I'jy. Thus, to complete the proof
of Theorem 2.1, we only need to bound | @11 |, | Gxjms 1 || and || 4]
in terms of | I';, ||, for then we just follow the calculations of Morrow and
Kodaira. This bound is the analogue of Lemma 3.7 of [17, p. 54] on B.
It follows from the open mapping theorem and the following lemma.

Lemma 2.2. Let H}(N(2), pcl) be the first cohomology group for
the cover A = {U; N B} in the sheaf p 0 using cochains with finite norm.
Then the natural map ¢: Hy(N(), 5 0) > H'(B, s,c¥) is an isomorphism.
In particular, Hy(N(),pc0) is finite dimensional and §: Cj — C} has
closed range.
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Proof. Since U is a Leray cover, H'(N(X), 5 c0) ~ H'(B, 5, 0). ¢ is onto,
since we may resirict representatives of the cohomology classes from
{U? n B}. We just need to show that ¢ is injective. But if (w;;) is a bounded
cocycle with (w;;) = é(v;), then v; is in fact bounded for the following
reason. Let pe@[UinBl. Then pe[Ujr\B|, some j # i. wy; = v;— v}
v; is bounded near p since it is defined in a neighborhood of p. wy; is
bounded near p by hypothesis. Hence v; is bounded near p, Since |B|
is compact, |U;n B| has compact closure and thus v, is bounded.

The next theorem is the expected existence and uniqueness theorem.

Theorem 2.3. Let B and C be as in Theorem 2.1. There exists w: B — Q,
a deformation of B, fixing C, such that p, of (2.2) is bijective. Any two
such @ are isomorphic near 0, i.e., if w': B'— Q' has py bijective, then
there are neighborhoods U and U’ of 0 and 0’ respectively with isomor-
phisms f: U—U'and g: @~ *(U)—= (0') " (U") such that f o w = w' 0 g.

Proof. Let us first prove existence. The singular points {p;}, 1 £i < m,
of | B are isolated. Let {U;}, 1 < i < m, be neighborhoods of the p; in B
which are the intersection of B with ambient polydiscs, B locally having
x{'y!" as generator of its ideal. We can take {U,} so that U;NU; = &,
i # j. Let V; be defined similarly to U; with ¥;c < U,. Let Uy=B — U™, ¥,.
Then |U, | is Stein [9, Theorem IX.B. 10, p. 270] and A = {U;},0<i < m,
is a Leray cover for any coherent sheaf over B [7, Satz 3, p. 17]. U has the
useful property that there are no 2-simplices. The cocycle condition on 1-
cochains is then vacuous. H'(B, 0) is finite dimensional, Let 6, ---, 6, be
cocycles in Z*(N(U),5 c0) whose images in H'(B, g, c0) form a basis. Let
Y = {Uj}, 0= i< m be defined similarly to A with U/c < U,. The
parameter space Q is {t = (t;,-,1,)| |t;| <&} with & to be later chosen
sufficiently small. We wish to integrate along 6 = t,0, +--- + .0, for a
time 1 (cf. [19]). ¢ is to be sufficiently small so that under this integration
[U{,n U,f| remains within |U0 N U; | The integration will not necessarily
F:lc defined for points in |U00 U;| - [U{,(‘\ U,f]. We now verify that
Integration along @ can be done in a canonical manner. Since the integration
will be canonical it will suffice to do things locally. Near b e B, represent B
locally in a polydisc A of dimension r and let e be a vector field on A which
induces 0. That is, for arbitrary g, € ,0,, w(dg,) = 6(dg.), mod. %/B, .

Suppose that w = Lw(2)d/dz;, 1 < i £ r. Integrating along @ means
solving the simultaneous ordinary differential equations
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with initial conditions z(0) = z,. We denote the solution by zy(z). Given
any relatively compact subset A’ = < A, there is a 7, such that for v < ¢,
the map Q, : zy — z(7) is a biholomorphic map of A’ to another subset A”
of A. We want Q, to induce an isomorphism from A’ n B to A" N B. We
first need to show that QX :-%/B —.%/B. So suppose f(z)e J/B.

f

g(2) = w(df) =
Let z = zy(r) and regard both z, and 7 as variables.
8(zo®) = Zo(ze®) 5L (z0(0)

dz Cl |(1-)

= E ( o(7) f( zo(17)).

Expand f(z4(t)) in a power series in t about 7 = 0.
C2) ) = Ty L eont = 2 otan et

By induction, 8%//0t*e.%/B for all k. Choosing a 7, within the radius of
convergence of (2.22), we get f(z)e- Ji/B, © < 1. To get a common 7, for
all fe»%/B, zo€A’, observe that. %/B is coherent on A, and A’ has com-
pact closure in A. Thus a finite number of f will generate. %/B. It suffices
to take 7, within the radius of convergence of these f.

To check that the induced map on B is canonical, we must check what
happens when a vector field ) with A(dh)e %/B,, all h.e ,0,, is added
to w. As before, (w + 1) (dh) = éh(zo(v))/ér = 6(dh) + A(dh). Since
Mdh)e.7/B, the power series expansion in (2.22) is just changed by an
element of. %/B.

The inverse map to Q. is given by integrating — w, so the induced map
on B is an isomorphism. Also, Q, is the identity on C if e I(A’, pc0).

Returning to our proof, we construct # via coordinate patches. Start
with {U/ x 0}, 0 £ i £ m. We must give the g,,, the transition morphisms.
Let (xg,y0) = zo be local coordinates in Ug. For each te Q, integration
along 1,0, + --- + 1,0, for time 1 gives a morphism (xg, yo) = (@;(zo),
®2(zo)). As t varies, ®F(z,), o = 1,2, gives a function on {(xg, yo)} % @
Gio 1s defined by x; = @] (z,), y; = ®7(2,), t = t. There are no compatibility
conditions to verify since no three patches intersect. It is necessary, however,
to slightly modify the {U/ x Q}, 1 < i < m, so that the map of g;, on the
underlying topological spaces is well-defined. g,, maps |Uf;ﬂ UEL x 0
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c |Us| x Q to an open subset S; of | U;| x Q. S; lies “near”’ | UgnU;[x Q
c|U/|x @ for Q small. Let U/ be defined as was U{ and U;, with
|U[f’| c I U{l and a] U;’l xQcS;. Replace {U/xQ},1<i<m, by
{(UixQUS}, 1=i<m Retain UyxQ in our cover for .
gio: [Ua N U{|x Q—S; is a well-defined change of coordinates. From
the nature of our construction, p, of (2.2) is an isomorphism.

Now for uniqueness. Given w and w’, by Theorem 2.1, there is a holo-
morphic f: U-U’ and a g such that fo w=w' o g. We only need to demon-
strate that f and g are isomorphisms. But if f, represents the induced map
on tangent spaces at the origin, po= p o fi. Hence f is an isomorphism
and f has a holomorphic inverse near the origin. g also induces an iso-
morphism on the tangent spaces. Hence g can be induced locally by an
ambient isomorphism and thus has a local inverse. g, : ]Bo | — ’B(;] is a
homeomorphism and | B, | is compact. Hence there is some neighborhood
of Byin & where g is an isomorphism. This neighborhood contains w™ ' (U)
for U sufficiently small.

§3. Non-Local Theory

As in Section 2, we shall only be considering analytic spaces B with
subspaces C such that B can be expressed locally as {x°® = 0} and
C = {xy* = 0}. Let |B;| be an irreducible component of |B|. Let B
be that subspace of B given locally by { = 0} having fBi| as its reduction.
Such a B; will be called a component of B. If B, is not reduced, then it has
an associated ‘‘topological’’ invariant c;, the Chern class of the normal
bundle of the embedding of |B;| in any 2-dimensional ambient space
containing B;. ¢; may be intrinsically defined as follows: Let #; be the
ideal sheaf lBa|- J,|F is an invertible sheaf over ]B,-[. ¢; equals the
Chern class of the dual line bundle for #,/#?. We shall sometimes write
¢ as |Bi| < ] B; | , the self-intersection number.

- Lemma 3.1. Suppose that B is not reduced. Then ¢; is invariant under
connected deformations of B.

Proof. The deformation of B restricts to a deformation of (| B; |, 50/ 77).
This in turn induces a deformation of both | B;| and the dual line bundle
for #,/#7. The coordinate transition functions depend holomorphically
on the parameter space coordinates t. In computing ¢;(¢) from the transition
functions as in, say, [9, p. 249] we may use the local triviality of the de-
formation to see that the cocycles representing c;(t) depend holomorphically
on £. Since the cocycles are integer valued they are constant, i.e., independent
of . Any deformation of |Bi| as a differentiable manifold is trivial. Thus
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the image of ¢(t) in H*(| B;|o ; Z) is well-defined and depends continuously
on . Hence, ¢;(1) is independent of t.

Definition 3.1. lLet B and B’ be compact one-dimensional analytic
spaces which can be expressed locally as {x°y* = 0} and as {x*y"" = 0}
respectively. B and B’ are difftomorphic as nonreduced spaces if there is
a diffeomorphism ¢: IBl—» |B’| such that ¢ preserves the ¢;, if defined,
and the (a,b). That is, |B;| - |B;| = ¢(|B;|) - &(|B;|) and if locally
B = {x")* = 0} with |B,| = {y = 0} and locally B’ = {x*')*" = 0} with
| Bi| = ¢(|B:) = {y = 0}, then b = b’. It B; = |B;|, there is no ¢; to
preserve,

Theorem 3.2. Let (B,C) and (B',C') be pairs of analytic spaces.
C and C' are closed subspaces of B and B’ respectively. Let f: C— C’ be
an isomorphism suc:1 that |q‘1 » |61 ->|C’| can be extended to a diffeo-
morphism ¢: ]B| - |B’| such that ¢ is a diffeomorphism of B and B’ gs
nonreduced spaces, as in Definition 3.1. Then there is a finite sequence
of pairs of analytic spaces (B,,C), (B;,C),,(B,-1,C), (B,, C) such that
there is a deformation of B; into B, 4, fixing C,0 £ i < n—1, and such
that (B, C) is isomorphic to (B,C) and (B,,C) is isomorphic to (B,C).
C and C’' have been identified via .

Proof. Fixing C will cause no real difficulties. Mention of C will be
omitted during this proof except for those few steps where a little special
care is required. Otherwise, it will be assumed that C = @ . The reader may
find it helpful to look at the proof of Theorem 3.4 below as he reads this
proof.

Let |B1],---,]B,,| be the irreducible components of |B| Let Ty, T,
be the corresponding Teichmiiller spaces. (If C # f and !Bt! < C, replace
T, by some point in T; which corresponds to [B,-|.) Each T; is a connected
parameter space with projection map m;: ¥, — T; [6]. The fibers of
comprise all Riemann surfaces having the genus g; of B;. n; is complete at
each of the points in T;. We now put the ¥7, together to give all possible
analytic spaces diffeomorphic to | B|. The deformation space will be com-
plete at all points. We first ““mark”’ the singular points appearing in each
| B;|. Let m be the number of singular points in | B;|. Start with m = L.
Let %' = {(v1,0,)€ ¥ x ¥|m(vy) = m(v,)}. Let o, be the projection
onto the second factor in the cartesian product. w, : #°, — ¥7; is a defor-
mation space with Riemann surfaces as fibers. Let A: ¥, — %", be the
diagonal map. Each fiber F in # , now has a marked point, namely
A(w,(F)). Each Riemann surface of genus g; with each of its points as the
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marked point appears as a fiber in %";. The deformation of | B; I, fixing the
marked point, is complete at each point. For m = 2, let #", = {(v, w)
eV KWy I n(v) = ;0 w;(w)}. Let w,: W, - %, be projection onto
the second factor. Again, the fibers are Riemann surfaces. Two points are
marked as follows. A(w) = (w,(w), w) marks one point and A, (w) = (w,(w),
Ao w,(w)) marks another. To insure that the marked points are distinct,
we just let % *= {w lw # Ao wy(w)} be the parameter space, instead of
#°,. W'§ is connected since we have just removed a proper subvariety
from the connected manifold #7,. Continuing this construction, we even-
tually reach m marked points for arbitrary m. Let w; = #7; — P; be this
deformation for | B; | . Let Ay, -, A,, = P, =% be the m; marking maps.

We can locally put the #; together as follows. Each w; is locally trivial.
Hence, we can find neighborhoods U;,; in #7; of the distinguished points
in some fiber F; such that U, ; = {(w,p;) [ iw [< e, |p; | <eg}withw=0
giving distinguished points on all fibers, | p;| <. We can also cover the rest
of F; by neighborhoods S; ; where w; is similarly trivial, but where there
are no distinguished points, and again ]pi I < & We put the %7, together
near the F; as follows. Let P = x { (pi | < g}, the cartesian product. Let
P =(py,+p,). Instead of S;, = {(w.p)| |w|<e |p|<e we have
R, = {(w,p)| ]w] —4 |p| <g. If Uy = {(w',pi’)] ]w’|<£,
I pi’| < &} has its distinguished points to be identified with those of U, j
we form Uj; = {(w,w’,p)|ww’ = () |w| <g, |w’l <&, |p| <e}. The
changes of coordinates among the {R;,} and {U/}, all i, are extensions
of those for the %7, all i, Since each P, is connected, given two points in
x P;, we can connect them by a path, and using compactness of the path,
deform along this path via a finite sequence of analytic deformations.
This finishes the proof of Theorem 3.2 when B is reduced.

We can realize the above sequence of deformations as a sequence of
deformations of nonreduced spaces as follows. Replace one U;; on each
’Bil by Ufj = {(w,w’, p) |ww’ = 0, ]w]<2e/3, |w’] <e, |p] < ¢} and
Uil_.i = {(w, p) 18;‘3 < lw[ <&, |pl < g}. We may assume that U?j does not
meet any other coordinate patch on | B; | except for U;';. Look at {R;, x C},
{Ui; xC}, {U?; x €}, {U}; x C} with y a variable for C. If C is to be
fixed and some of its components are not reduced, use the change of vari-
ables which define C to define the change of coordinates involving y.
Otherwise, if ¢; = |B;| - | B;|, let the change of variables from U’; x C
to Ufjx C be given by p = p, w = w, y, = w'y,. For the other patches,
let y = y be the change of variables for y. This creates line bundles over
the fibers. {y, = 1} = {y, = w®'} extends to a section of this line bundle
over |B;| which has c; zeros, counting multiplicities. Hence the line bundle
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has Chern class ¢; above | B; | . The constructed deformations of the (reduced)
total space of the line bundle induce a deformation of the nonreduced
spaces carried on the 0-section of the line bundle. Thus, given two diffeo-
morphic pairs (B,C) and (B’,C), we have constructed a finite sequence of
holomorphic deformations, fixing C, deforming (B,, C) into (B,,C), (B3, C)
into (B4,C),+, (B3,-,C) into (B,,,C), ,(B,,_1,C) into (B,;,C), such
that (|B|,|C|) is isomorphic to (|B,|,|C|), (| B’|.|C|) is isomorphic to
(|B22],| €]s (| B2o|-| €]) is isomorphic to (| B4y |,|C]y 1 S0 S A —1,
and such that (B,C), (B’,C) and all the (B,,_,,C), (B,,,C) are diffeo-
morphic to each other. This reduces Theorem 3.2 to the case where ¢ is
an analytic, rather than a differentiable isomorphism. Because C is not
necessarily reduced, ¢ may be an extension of || without ¢ having an
extension which induces . Now we give the needed special argument to
reduce Theorem 3.2 to the case where ¢ does have an extension which
induces ¥, i.e., to the case where |B| = |C |

Let | By |-+, | B | be the irreducible components of | B| which are not
subsets of | C | We shall write down a connected deformation of B, fixing C,
which has as fibers all possible analytic spaces S of the differentiable type of
CU|B,|u -+ U|B,| and having C,|B,|,---,| B,| as subspaces. Namely,
to specify an S it suffices to specify the map ¢+ of C N |B,v| as a nonreduced
subspace of C to Cn [B,-l as a nonreduced subspace of |B,-|, I1ist
Let (x,y) be local coordinates for C,-Z/C = y% (0,0)e lC[ ﬁ| B|.
Let (y;) be local coordinates for |Bi|, Oe |C|n |Bi|. Then ¢ is given
precisely by maps of the type y; = a,y + asp* + - + @z, """ with
a, # 0. The set of (d — 1)-tuples (a,, a,,*+,d,-,), a, # 0, serves as the
connected parameter space for the deformation.

Thus, finally, we may assume that |B| = |C | It now becomes possible
to apply the results of Grauert [8, p. 357] on extending isomorphisms of
spaces. Let m and m’ be the ideal sheaves for the analytic spaces B(m) and
B(m') respectively. Let n and n’ be the ideal sheaves for B(n) and B(n’)
respectively, with B(n) and B(n’) diffeomorphic, aside from the ¢;, as non-
reduced spaces. Suppose that B(m) and B(m') are subspaces of B(n) and
B(n') respectively.

Lemma 3.3 (Grauert). Given ¢: B(m)— B(m’), an isomorphism,
there is a well-defined obstruction cls[&]e H(|B|, #s(n:m)) to ex-
tending ¢ to ¥: B(n)— B(n’). cls[&] is the distinguished element x in
H‘(lB |,§_ﬁf«d{n: m)) if and only if ¥ exists. Moreover, if ¢: B(m) — B() is
a similar isomorphism, B(#) < B(fi), then there is an isomorphism
¥: B(f) - B(n") which extends ¢o ¢ ~' if and only if cls[¢] = cls[£].
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Lemma 3.3 is slightly stronger than [8, Satz 3, p. 358], but its proof is
the same.

It follows from Lemma 3.3 that in order to construct all possible spaces
B(n) with a given subspace B(m), it suffices to construct B(n’) and ¢ for
each element of H ‘(f B |,<2’/fz£(n: m)). We do this in a step-wise fashion. Let
£, =4/|Bi|. Let m=TS%, r, 21 and n =I5 with s, = r,, all
i #j,and s; = r;+ 1 for one value j. We may assume that m <. 4/C.
We start with »; = 1. ¢; is given.

From [&, p. 359], (3.1) below is exact.

(3.1) 1 = .ut(n, m) St (n: m) 2(n,my— 1.

Recall that -.I%o(n, m) = 02‘, where tDs* 1s that subsheaf of @* on |Bj‘ whose
sections near B; N B; are given by exp(#]"). H'(|B|,0}) is an abelian group
whose elements determine the normal bundle of the embedding of | B j(n’){,
taking into account the other B;. p(cls[£]) is the difference of the normal
bundles for | B;(n’)| and | By(n)|.

Dop2r b s ¥ o

is an exact sequence of sheaves of abelian groups. @, is the ideal sheaf of
functions on | B;| which vanish to order r; at | B;| N |B;|. Z is that sub-
sheaf of the constant sheaf of integers which has a 0 stalk at the IBi | N | B; |
H(|B,|,Z") ~ H*(| B;|,2). dp(cls[¢])e H*(| B;|, Z) is the difference of
¢; and ¢;, which we are assuming is 0. Hence in order to achieve all possible
images of p(cls[£]), it suffices to look at the image of H‘(]le,(ﬁs), the
Picard variety. As in the proof of Theorem 2.3, since ]B j| is one-dimensional
we can cover B; by a Leray cover W = {U,, U,}. For use in the proof of
Theorem 3.4 below it will be useful to assume that U, is a small disc
neighborhood of a point in | B;| N |B|, i # j. Then |U,| = | B;| — | o],
where V, =V, = U, is a smaller disc neighborhood. Let wy,-:+,w, be
cocycles in CYHNQ),0,) whose cohomology classes are a basis in
H'(|B;|,0)). Let (x,y) be coordinates for U, with (y) =#|B;|. Let
(x;,»,) be ambient coordinates on U, near U,. Thus (y,) =€ﬁ—@/l BJ-| and
y =y, x = x, are the transition functions for B. With C* = (¢,,-+-,1;) as
parameter space, deform B by making x = x;, y = exp(t;w; + - + ,w)y,
the transition functions. This deformation, of course, changes the normal
bundle but retains the ¢ ;. However, we do achieve all possible bundles
Wwith the given Chern class c;.

Let ®; be the tangent sheaf for |B,- } In (3.1), by [&, p. 358],%&(31, m)
® ©; ®@m/n, an invertible sheaf. We modify our current cover U of B; to
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create additional 1-simplices which, like U, N U,, are annuli about the
point in |B;|N|B;|. Let U_, c =V, be a disk neighborhood of the
point in |B;|n |B Let V.yccU.y. Let A = {U_,, Uy, U;} with
Uy=Uy—V_,.Then Uyn U, = U, N U,, so our previous deformation
may be defined using U*. {U_,,Us U U,} is a Leray cover for B;. Essen-
tially, we want to choose a basis of of H ‘(|Bj | JAnt(n, m)) represented by
cocycles supported on U_, n U, and deform as above for H‘([Bj|,@"s).
But m/n affects Jﬁzl(n,m) and the m/n changes as we vary using
H‘(]Bjt,(ﬁs). For the proof of Theorem 3.4 below, it will be necessary
to insure that the deformation using H‘([Bj|,._§/«4(n,m)) is complete
vis-a-vis H!(| B; |, (n, m)) for all m/n. We proceed as follows. Let «
be the canonical sheaf on |B;|. Let & = k® [©;® m/n]*. By Serre
duality, [20], Hl(lBJ-|,J7’/(;&(n,m)) = [F(|BJ-|,5”)]*. For the cover
{U_,,Us U U,}, the dual pairing is defined by multiplying (tensoring)
the section of & with a 1-cocycle and then integrating the resulting I-form
about a homology basis. A basis for I“(|BJ- ,-%) can always be chosen so
that different elements of the basis have different order zeros at the point
in Ile N |Bi|. ¢, the Chern class of the line bundle corresponding to %,
depends only on topological information. ¢ gives an upper bound on the
possible order of the zero of a section of .% at le|“ |Bi | Recalling that
r; is the exponent of .#; in m and n, we see that the 1-cocycleson U_, N U,
given by X" 9/0x ® y,x" 2 0/0x ® y, -+, x" T T 0/Ax ® y, will yield a
matrix of maximal rank when evaluated against a basis of 1"(|BJ-],.9"}.
Hence these cocycles project onto a basis of H'(| B;|,©; ® m/n). To realize
the deformations in these ‘‘directions,”” let (x,y) be coordinates in U
and (x,, y;) be coordinates in U_,. Create a deformation with C°*'
= (84,*,S.41) @s parameter space via transition rules

ct+l
(::c1 =XF BTy P = )
k=1
This mapping is biholomorphic on the ambient space for sufficiently small
values of y and thus on the nonreduced subspace carried on [BJ-] 3
Observe that the construction of the previous paragraph could have
been used to construct cocycles for H‘(l BJ-|,@"S) which were determined
solely by topological information and which map onto (rather than bi-
jectively to) a basis of Hl(lel’@s)' The deformation with C* as parameter
space for H( i B; |, 0,) and the deformation with C°*! as parameter space
for H1(| B; [,G)j ® mfn) may be combined to construct a deformation with
C* x C°*' as parameter space. Suppose a B’ is given which is diffeo-
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morphic to B and B’(m’) = B(im). Then B'(n’) must appear as a fiber in
this deformation. Indeed, apply Lemma 3.3, but first look at p(cls[&])
EH‘([BJI,.C}&-(H,IH))‘ By construction, there is a (t;,--,1,)e C* such
that any fiber F above a point in (ty,---,1,) x C°"* has an obstruction
cls[£'] such that p(cls[£]) = p(cls[£']). The obstruction cls[{] to ex-
tending the initial isomorphism between F(m) and B’(m) then has
p(els[{]) = 0. From (3.1),

HY(| B; |, Aut (n,m)) 4 HY(| B; |, %t (n: m)) & H(| B, |,-%. (n, m))

is an exact sequence of sets. Then cls[{] is in the image of ¢. By construction,
we may choose (sy,---,$.4;) such that the obstruction to extending the
initial isomorphism between F(m) and G(m), where G is the fiber for
(tys 51580, Ses 1), 18 cls[{]. Then G(n) and B'(n’) are isomorphic.

To go from r; = 1 to r; = 2 and so on, we just mimic the above con-
struction, deforming again on small annuli lying within U_;n Uy, In all,
this gives a deformation with some C* as a parameter space such that the
fibers include all spaces which are ditffeomorphic to B and have the same
underlying reduced space. C' is connected, so this concludes the proof of
Theorem 3.2.

The following proof of Theorem 3.4 includes another, much more
complicated, proof of Theorem 2.3.

Theorem 3.4, Let n: # — Q be a deformation of B, fixing C. If p, is
surjective, then p, is surjective for all q sufficiently near to 0.

Proof. We first verify the theorem for the deformation obtained by
combining, locally, the deformations used in the proof of Theorem 3.3.
Let us review the proof of Theorem 3.3 in terms of the image of p in
HY(B, p c0). Temporarily, let 8(B, C) denote 0.

Recall that |Bl !,---,|B‘-|,---,]B,| are the irreducible components of |Bl
which are not subsets of | C|.

(3.2) 0—0(B,|B,| V- U|B,|UC)—0(B,C)
—~0(B,|V--U|B|UCC)-0

Is an exact sheaf sequence. The proof of Theorem 3.3 up to Lemma 3.3 is
really concerned with showing that the image of p, in H'(| B|,|B, |V U
|Br| U C, C) is everything.

(33) o(B,|v--U|B|U-U|B,C)
~ @0(B;|,|B|n{|By| U U|B|uU-U|B|UC),
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where |Ei| means that |Bi| is omitted from the union and we have gen-
eralized our notation by considering vector fields which vanish on the
zero-dimensional space | B;| N {|B;| vV |B|u--U|B|UC).
(3.3) is readily verified by writing down the sheaves in local coordinates,
as in (2.10).

There is a sheaf &, supported on the set | B,| N {|B,| U U|B| U-..
V) | B,| V) | Cl} such that (3.4) is exact. .% is independent of the point g in
the parameter space.

(3.4) 0—)0(|B;|,|B‘-ln{|Bl|U--- U|B|u-u|B|uch
~0(|B|. @)~ & ~0.

The Teichmiiller space deformation in the proof of Theorem 3.3 insures
that the image of p, is onto H'(| B;|,,0(| B;|,, @)) for all g. The marking
process and the separate argument for C # (J two paragraphs before
Lemma 3.3 insure that, for all sufficiently small g, the image of p, con-
tains 8(I'(| B;|,, ). Since (3.4) is exact, the image of p, is onto

Hl(lBi}mg(lBi |a’|Bi |qﬁ {!Bl |4U"' Ulgilq v "'U!Bfiq ch}))'

Thus from (3.3) and (3.2) it suffices to show that the deformation has the
image of p, onto H'(B,,0(B,,|B, |,V U|B,|, U C,) for all sufficiently
small g. This is accomplished after the proof of Lemma 3.3 as follows.
Let | B;|* be subspace of B with ideal sheaf .#;. Then

0 - 6(B,|By| U+ U|B;|* V- U|B,|UC)
— O(B,|B, |V U |B;|U- U|B|UC)
- 8(|By| U U|B;|2u - U|B|UGC|B| U U|B]
U U|B|U0)
=0
is an exact sheaf sequence. Let m and n be the ideal sheaves for
|By|U U |B;| U U|B|UCand |Bj|u- U|B;|2U- U|B|UC
respectively. Then M&A(n, m) ~ ®;® m[n and Ll n, m) = 0F. Also, with
the obvious notation

0-0;®m/n—06(nm)—0;,-0

is an exact sheaf sequence. The construction in the proof of Theorem 3.2
used only topological information and gave p, onto H'(B,(0,),) and
H'(B,,(©; ®m/[n),) for all g sufficiently near to 0.

The rest of the proof proceeds similarly. In going from |BJ-12 to lB;lﬁ,
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(n,m) = 1. Let A be the sheaf of germs of sections of the normal
bundle to | B;|. Then

0-0;®m/n—0(n,m)—>A";@m/n—0

is an exact sequence. ©; ®@ m/n and A4; @ m/n are sheaves of germs of
sections of line bundles whose Chern classes are independent of ¢g. Hence
again it is possible to construct a deformation such that p, is onto
H‘(Bq,(ﬂ(n,m))q) for all sufficiently small g. Let @ denote this specially
constructed deformation such that p,: T, H'(B,,0(B,, C,) is surjective
for all sufficiently small g.

Now look at the 7 of the theorem’s hypothesis. Since 7 is complete at 0
by Theorem 2.1, » may be induced from 7. The induced map on the para-
meter spaces, which are manifolds, is a submersion since the induced
tangent map is surjective at the origin. Since the maps for p to the tangent
spaces of the fibers commute with the inducing map, p, is surjective for =,
all sufficiently small g.

Recall from the proof of Theorem 2.3 that if weI'(B, 5,c0) then we can
canonically integrate along w to get an automorphism of B which induces
the identity on C. Let exp w be that automorphism obtained by integrating
for a time t = 1. The action on functions is given by (2.22), with ¢t = 1. In
I(B,p, c0), the Lie bracket operation [w, A](df) = w(d(Adf)) — Ad(w(df)))
is canonically defined.

Lemma 3.5. Let B be a compact analytic space and C a closed subspace.
There are arbitrarily small neighborhoods U and V of the origin in
I'(B, p ¢0) such that given w, A€ U, there is o€ V such that expw o exp A
= expo.

Proof. The proof is essentially a matter of checking convergence of the
Campell-Hausdorff formula [13, pp. 111-112].

[(B,p, ¢0) is finite dimensional since B is compact and , . is a coherent
sheaf. Thus the topology on I'(B,g #) is that of a finite dimensional
Euclidean space. Suppose that w and A have suitably small norm. Let ¢ be
given by the Campell-Hausdorff formula. By [13, p. 112] this series for o
converges for all sufficiently small @ and A. We must verify that indeed
expwo expA = expo. Consider some ambient polydisc A in which B is
locally embedded. Let © be the tangent sheaf to A. Since I'(B, ¢ g0) is finite
dimensional, there is a linear, bounded map p from I'(B, ¢ z0) to I'(A, ®)
such that p(e) is an ambient vector field which locally induces «. Thus in
inducing ¢ from an ambient vector field, use p(o), rather than applying the
Campell-Hausdorff formula to p(w) and p(4) (which need not converge).
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Theorem 3.6. Let B and C be as in Theorem 2.1. Then the group
Aut(B:C) of automorphisms of B, fixing C, is a Lie group with at most
countably many connected components, I'(B, 3 c0) is the Lie algebra for
Aut(B: C) with exp given by integrating along a vector field for time
t = 1. Let Def(B:C) be the parameter space for some deformation of B,
fixing C, which has p, an isomorphism. Then in some sufficiently smal|
neighborhood U of 0 in Def(B:C), only at most countably many fibers
(B,,C), q€ U, are isomorphic to the pair (B, C).

Proof. When B is reduced, these results are classical or known from
Teichmiiller space theory [4]. The results also follow easily from classical
information when C is not reduced but B differs from C only in that B has
some additional reduced components.

Let .Z/B = N4}, Z/C = T195, s < r;. Fix (sy,-+,8,). Our proof
will be an induction on the multi-index (i, — 8,51, —85,). As
stated in the previous paragraph, we may start the induction with
r; = max(l,s;), all i.

The sheaf.cZ./(n: m) of Grauert [8] plays the crucial role.

First consider r; — s; = 1, r; = 5;,j # i. We are assuming, by induction,
that r; = 2. Let n =J/B, m =%/C. T(B,(n: m)) = Aut(B:C),
There are two cases. Fors; = 2, (0~ ,, ,0 ~.0%(n: m) and the second
isomorphism is given by exp. Thus exp: I'(B, p c0) =~ Aut(B:C). By Lemma
3.3, the elements of H!(B,%%#(n: m)) correspond in a one-to-one manner
to the analytically distinct pairs (B’,C), with B and B’ diffeomorphic,
Construct Def (B: C) via a coordinate cover as in the proof of Theorem 2.3,
Because for s; =2 and we g0, (exp w)*(f) =f + w(df), Def(B: ()
may be identified with H(B,#.«(n: m)). Thus all of the fibers above
Def(B: C) are distinct.

For s; = 1, r; = 2, a different argument is needed. Recall from (3.1) and
its following paragraph the maps p: H'(B,-?/ﬂzf(n: m)) — H'(B,(n,m))
and 6: HY(B, 0F) —» H*(B,Z'). “%.(n, m) = 0,5 The elements of
HY(B,“«/(n: m)) whose image under do p is trivial correspond in a
one-to-one manner to the analytically distinct pairs (B’, C) with B and B'
diffeomorphic, The rest of the proof will be similar to the general induction
step. Some simplifications for this proof have been omitted so that, with
minor modification, this proof may be used for the general induction
step.

Recall (3.1). Consider diagram (3.5) below. The top and bottom rows are
exact.
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(35) 0 —> T(B.,.0) ‘s T(B,d 2> I'go) 5

lexpl l exXp2 l €XPs

0 —> T (B, ul(n,m)) —sAut(B:C)—25T (B, A(n,m)) —>>

s HYB,,.0) —> HY(B,pc0) <> HYB,0) —> 0
Def(B: C)

A PR

25 HN(B,flut(n,m)) —> HY(B;Aut(n: m))—2x H(By“%u(n, m)).

7 is the map taking g € Def(B: C) to that element of H'(B,.%/(n: m))
‘which corresponds to the analytic type of the fiber above g. Def(B: C)
may be constructed as in the proof of Theorem 2.3. Using the same cover,
we may also integrate along cocycles for ,,© which give a basis of
HY(B,, .©). This constructs a deformation of B, fixing C. (", not canonical,
is the map induced by the completeness property, Theorem 2.1, of Def(B: C).
In particular, ¢" is only defined in some suitably small neighborhood of the
origin. t = wo ¢ and ¢/, which is canonical, is the tangent map at the
origin for ¢".

exp, is an isomorphism, exp; is an isomorphism for some neighborhoods
of the origins. ¢’ is the tangent map at the origin for 8. Also, p’ is the tangent
map for p” = po m at the origin.

Aut(B: C) receives its topology as a subset of Aut(B: @) = Aut(B).
Aut(B) is a topological group with a neighborhood of the identity given by
elements which induce elements lying within some neighborhood of the
identity in Aut([B[) and whose induced map on the structure sheaves
‘takes local coordinates (over |B|) to nearby local coordinates (over the
image of |B]). Topologize H(B,.c%/(n: m)) by the strongest topology that
makes n continuous for all B' diffeomorphic to B. By Theorem 3.4, fora
suitably small neighborhood of 0e Def(B: C), this corresponds to taking
the quotient topology on Def(B: C) via the equivalence relation of having
isomorphic fibers, = is an open mapping near each point where Def(B: C)
is complete. p” is holomorphic so p is continuous. All the other maps in (3.5)
are also continuous.

p’s the tangent map for p”, is surjective so that p” is locally a sub-
mersion. Let x denote the distinguished elements in HY(B,%%(n,m)),
HY(B,.“%(n: m)) and H'(B;7n(n,m)). (p”")~'(x) is a submanifold M in
Def(B: C). We want to show that =~ !( % ) is countable. n~!( x ) = M, so
that it suffices to show that only countably many elements of M project
onto x. im ¢" = M by exactness and commutativity. Since the tangent map,
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¢', for /" has maximal rank, HN(B,o4ut(n, m)) locally fibers as a submersion

onto M. The dimension of the fibers is the dimension of ker ¢’ = im§’,

We must show that only countably many of these fibers project onto =,
The proof of the following lemma is straightforward and will be omitted,

o

Lemma 3.7. Let1 > L9 5 — 1 be an exact sequence of sheaves
of non-abelian groups over a paracompact HausdoriT space X. Let % be a
sheaf of abelian groups, Then # operates on .# via conjugation in %, i.e.,
if hest,, feZ,, h(f) = (p " (ho «f)o [p~"(h)]™") is well defined,
d: I'(X, #) - HY(X,#) satisfies d(co d) = o(c) + ¢(5(d)). Hence
h: b— h(b) + 6h is a group action of ['(X,#) on H'(X,#). Let 1.
HYX,%)— HY(X,%). Then ¢,(a) = ¢,(b) if and only if there is an element
heT(X,#) such that a = h(b) + 5h.

Return now to the proof of Theorem 3.6. The map ¢ is given by mapping
points of HY(B,%(n,m)) into their orbits under the group action of
Lemma 3.7. But given any Lie group action on a manifold, each orbit,
while not necessarily closed, is the image of a one-to-one immersion of a
manifold S. The orbit of % in H'(B,%%n,m)) is the image of
I"(B,Jifn(n, m)) under &, by exactness. Let G be the isotropy subgroup for
*eHl(B,&%.J(n,m)). G=06""(%)by Lemma 3.7. S = F(B,&%u(n,m))m
and & induces the immersion having the orbit of » as the image of S. Since
&' is the tangent map for & at the identity element in F(B,.f/J,'z,(n,m],
ker 6’ = ®, the Lie algebra for G. Also, the dimension of S equals the
dimension of the image of §’. But the dimension of the image of &' is also
the dimension of the fibers of the map ¢”. Points within the same fiber lie
in the same orbit since the points have the same image in H‘(B,-&%J(n: m)j).
Thus the fibers above 7~ '( %) correspond to disjoint open subsets of S,
Since I'(B,.%(n, m)) has a countable topology, S has a countable topology
and only countably many fibers may appear in the orbit of %, as was to be
shown. We also know that G has at most countably many components
and that (3.6) below is exact and commutative.

36 00— IByw® S TBst) L5 6 — 0

l €XpP; l CXPp2 l €XP3

0 —> D[(B,ud(n,m)) > Aut(B:C) £5 G —> 1.
We must show that exp, is an isomorphism for suitably small neighborhoods
of 0eI'(B, 5 c0) and of 1eAut(B: C) and that Aut(B: C) has countably
many connected components. We know these facts for exp; and exps
Let ae ¥, V to be a suitably small neighborhood of 1eAut(B: C). Then
b = p(a) = exp;(B) for some B near 0e . B = p'(y) for some y near 0
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since p’ is a linear map. Let ¢ = exp,(y). plac™) = 1. ac™* = d) and d
will be near 1. d = exp,(8). Then exp,(1'(§)) = ac ~' = alexp,(»)]~*.
By Lemma 3.5, there is an « near 0eI'(B, pc0) such that a = exp, ().
Thus exp, is onto some neighborhood of the identity and Aut(B: C) is a
finite-dimensional Lie group. Exactness in the bottom row gives that
Aut(B: C) has countably many components.

Now for the general induction step. Let n =-%/B = L7, n' = 2/B
=7 m=2/C =15 with 5; < r < r; and r, = 7} for all but one
value, j, of i and r; = r/+ 1. By induction, we may assume the theorem
proved for the pairs (B’,C) and (B, B') and that | B| = |B’|.

Label the |B;I by their indices i, 1 < i < n. Let Aut,(B: C) be that subset
of Aut(B: C) which preserves the labeling. Aut;(B: C) is an open and
closed normal subgroup of Aut(B: C). Aut,(B: C)/Aut(B: C) can be
thought of as a subgroup of the (finite) group of permutations on »n letters.
Let S(B: C) denote the set of analytically distinct pairs (B”,C) with B”
diffeomorphic to B as in Definition 3.1 and Theorem 3.2. Let S,(B: C)
denote the set of analytically distinct pairs (B”, C) with B” labeled and B”
diffeomorphic to B. That is, (B”,C) and (B”,C) are the same element of
S/(B: C) if there is an isomorphism ®; B” — B" such that ¢ = |(I>| |B”;f
—>|B;” and ® extends the identity map on C. By disregarding the labeling,
we get a canonical map w: S,(B: C)— S(B: C). w ™ '(a) has at most n!
elements. w is one-to-one if | B| = | C|.

As before, for r; =2, H'(B.Zn:n"))~ S(B:B'). For r;=1,
S(B: B') is isomorphic to that subset of Hi(B,e.f?Z,,&(n: n')) whose elements
have trivial image under the 6 o p of (3.1) and its following paragraph.

In (3.7) below, the upper row is an exact sequence of abelian groups.
The lower row is an exact sequence of pointed sets. The given structure

and labeling on (B, B, C) determine the distinguished elements. Exactness
will be verified below.

3.7) 0 = T(B,ppb) > T(B,pcd) % I(B.pc0) %

—
lexp 1 lexpz \I(CXPJ V

0 — Aut(B:B’) & Aut.(B:C) & Aut,(B': C) %

% H'(B,pp0) > HYB,5c0) S HYB,g.c0) — 0
Def(B: B’) & Def(B: C) & Def(B': C)
7ol |

% S(B:B) % S(B:C) & S(B:C).
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¢ and p are defined in the obvious way. Exactness at Aut(B: B'),
AutyB: C) and Sy(B: C) is immediate. For ¢ e Aut,(B': C), 8(¢) is the
obstruction of Lemma 3.3 to extending ¢ to an automorphism of B. Thus
we have exactness at Aut;(B’: C). More explicitly, 6 may be defined as
follows. ¢ extends to local isomorphisms ¢;: U; — V;, where U, and V; are
open subsets of B. ¢; ' o ¢; is an automorphism of U, n U; which is the
identity on B’. {¢; 'o ¢;} is a set of coordinate changes for &(¢),
{¢;: U; > V;} are compatible with the coordinate changes for &(¢) and
are the identity on C. Hence {¢,;} establishes an isomorphism between
to 8(¢) and =, the given structure on (B,C). Hence to é = *. Let
i = (B,B’) and suppose that «(i)) = %. Then there is an isomorphism
¢ B— B which is the identity on C. Since B’ < B, ¢ induces an isomor-
phism ¢: B’ — ¢(B’). In fact, $(B') = B’ since ¢ maps each | B{| to itself
by our definition of S,(B: C). 8(¢ ') = ¥ and we have exactness at S(B: B'),

Ty, My, and wy are like the = of (3.5). ¢” and p” are the (noncanonical)
induced maps of Theorem 2.1. " and p’ are the tangent maps for * and p”
at the distinguished points. " is (noncanonically) defined in some neigh-
borhood of 1 as follows: aeAut,(B’: C). a = exp;(x). « may be locally
extended to vector fields o;e€ [(U;, yc0). The map o — «; is chosen to be
linear. exp(— «;) o exp(a;) provides changes of coordinates which are the
identity on B’. Thus {«} provides a parameter space for a deformation of B,
fixing B’. " is the induced map of Theorem 2.1. §’ is the tangent map for §"
at 1 (compare with (3.16) below). Also 7, o §” = §. (3.7) is a commutative
diagram.

By Theorem 3.4, we may assume that Def(B: B'), Def(B: C) and
Def(B': C) are complete at each of their points. w,: S;(B: C) = S(B:C)
and w; : S(B': C)— S(B': C) forget about the labeling. It suffices to prove
that (w, 0 m,)"* () is countable. p’ is onto, so we may assume that p” isa
submersion. By the induction hypothesis, (w30 73)”" (*) is countable.
Thus it suffices to prove that for se (w3 o m3)”'(*), only countably many
points in (p”)"* (s) are isomorphic to % = (B, C). But if p"(f) = s and t is
isomorphic to (B, C), we may just change the labeling and regard ¢ as the
distinguished point in S,(B: C) and s as the distinguished point in S(B": C).
Def(B: C) and Def(B’: C) are effectively parametrized at t and s respec-
tively since they are complete there and have the smallést possible dimension.
Thus we may keep n, and 75, change base points and change the rest of
(3.7), and always take s = 0. It thus suffices to prove only that countably
many points in (p”)”*(0) are isomorphic (without labeling) to (B:C).
w5 *(*) is finite. Hence, by another change of base points, it suffices to
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prove only that countably many points in (p")"*(0) are isomorphic (with
labeling) to (B: C).

We may take Def(B: B') to be connected. Then p”o /“(Def(B: B'))
« 73 '(#) is connected. But 73 '(x) is countable by the induction hypothe-
sis. Hence p” o ¢ (Def(B: B')) = 0. That is, Def(B: B") is mapped by ¢"
into the fiber (p”)”'(0) = M of the submersion p”. By exactness of the top
row, ¢’ is a submersion onto M.

The needed analogue of Lemma 3.7 is given by the following group
action of Aut,(B':C) on S(B:B'). Let y =cls[¢]eS(B:B’) <
HY(B,“«¢(n: n")). Then is the obstruction to extending the identity iso-
morphism &: B’ — B’ to an isomorphism between B and B”; = (B", B’).
If aeAut,(B’: C), a(y) is the obstruction to extending the isomorphism
ao ¢ to an isomorphism between B and B”. Then da = a(1) and «(y) = (")
if and only if there is an a e Aut,(B’: C) such that ' = a(y,).

For rj = 2, m, is an isomorphism and the rest of the proof is just like the
proof using (3.5).

For rj = 1, m; is not necessarily an isomorphism. S(B: B') in fact need
not even be a manifold so special care is needed. We do know that =, is an
open mapping. |B| has at least two irreducible components because we
are at the second step at least in the induction process and r; = 1. Then
in (3.5), F(B,J—‘A(n,n’)) ~ I(B,0F) = 1. There is no group action and ¢ is
an injection. Def(B: B') may be constructed more explicitly as follows.
U = {U,, U,} isa Leray cover of B; with | U, | adiscand |U, | = | B;|— P,
Voo |Uq|. Let (x,y) be ambient local coordinates for U, with
]Bj| = {y = 0}. Let g,(x),--+,g,(x) be cocycles in C'(N(),0,) which
project onto a basis of H!(B,0,). Let yfi(x)d[dx, -+, yf,(x)@ [0x be cocycles
in C*(N(2), ,..» ©) which project onto a basis of H*(B, , - ©). Let (yf(x)d/ox,
¥9(x)2[0y) denote (3fy(x)3 /0, ++, yf,(x)2[0x, yg,(x)8 [0y, -+, yg,(x)3[0)).
Then (yf(x)0/ox, yg(x)é[dy) projects onto a basis of HY(B,p z0). Let
(1) =(ty,,1,,7y,"++,7,) be the parameter space for Def(B: B’). From
(2.22), the change of coordinates for the fiber above (t,7) is given by

9(x) | (gx)?

X = x4+ tyf(x) [1+ TR Y

2 ] , y—exp(zg(x))y.

Bound | r[ so that for fixed ¢, p” is an injection. Def (B: B) is complete near
(0,0). Suppose that Def(B: B’) is also effectively parametrized at g = (1, 7).
Think of 7 as fixed.

yf(x) [1 +Tg§";) + (ng’?)z s ---]gc—
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represents a u-tuple of cohomology classes in H ‘(Bq, 0 ®). Since Def (B: B')
is complete and effectively parametrized at g,

yf(x) [1 - ng(zx) + (ng)!c)) + ]-‘%

in fact represents a basis of H'(B,,,,©®) & Hi(Bq,(,Gﬁ;é(n,n')). But H'(B,,
Aut(n,n")), like H'(B,%n,n’)),is injected into S(B: B') = H'(B,o%/(n:n")),
Thus, if n(q) = n(g’), then g = q’. We have thus shown that = is injective
and hence a homeomorphism on that subset of Def(B:B’) where
Def(B: B') is effectively parametrized. Also, since the fibers of p” are closed
and (p”)~!(1) is embedded in H'(B,%«(n: n")) via & and since 7 is an open
map, each point in S(B: B') is closed.

Now return to (3.7) and the Lie group action of Aut,(B’: C) on S(B: B'),
We need to show that only countably many of the fibers of ¢” are mapped
by 7, to the orbit of %. Since each point in S(B: B’) is closed, 5 ~'(x)
= G< Aut,(B’: C), the isotropy subgroup of *, is closed. S = Aut(B’: C)/G
is then a manifold which is injected into S(B: B’). Let Orb( ) denote the
orbit of %. On U, a suitably small neighborhood of 1eAut,(B":C),
factors through §”, which has &’ as its tangent map. m,; o 6"(s) € Orb(*). All
points in Orb () are isomorphic so Def(B: B’) is effectively parametrized
at points of n; *(Orb(x)). As shown above, 7, : n; ' (Orb())— Orb (%)
is a homeomorphism onto its image. In particular, §” = n,”'o § is uniquely
determined. §”(G) = 0. Let & be the Lie algebra of G. Then ® < keré'".
Iftekerd’, t = p'(w) by exactness, § ¢ exp; (f) = d 0 p o exp,(w) = . Thus
G o T, the one-parameter subgroup generated by t. Then te &. G=kerd’.

Hence &” immerses U /G, an open subset of S, into 7 '(Orb(x)).

dim S = dim imé’. Changing the basepoint in S(B’: B), but keeping

Def(B: B'), we see that ;' (Orb(*)) is the image of a one-to-one immer-
sion of an open subset of S. (my0 ¢")"' (%) = m; '(Orb(*)) by exactness
of the bottom row of (3.7). But the fibers of ¢ have the dimension of
ker:’ = im§’, which is also the dimension of S. Hence the fibers of ¢
above 7; ‘(%) correspond to disjoint open subsets of S. Since S has a
countable topology, there are only countably many fibers,

The proof that Aut,(B: C) has countably many components is the same
as for (3.6).

Proposition 3.8. Let B be a compact analytic space which can locally |

be expressed via %/B = (x°y?). Then there is a two-dimensional manifold
M in which B can be embedded as a subspace.
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Proof. Let U be the cover of B constructed in the proof of Theorem 2.3.
]Uo] is a one-dimensional Stein manifold. All obstructions to extending
maps in [8, p. 357] vanish over U,. Thus U, can be realized as a subset
of |Uo| x C. The transition functions on B for going from U< |U,| x C to U;
are of the form y;=yf(x,y), x;=g(x,y) with f(x,0)5£0 and dg/dx(x,0)#0.
Then these coordinate changes on B are locally isomorphisms between
some ambient open sets in |Uy| x C and A,;> U,. Since the change
of coordinates is one-to-one on |B |, it is one-to-one on some ambient open
sets. Then the ambient neighborhoods patch together to form a manifold M.
There are no compatibility conditions to check since no three distinct U,
intersect.

Suppose that I' is a given weighted graph with specified genera for the
vertices. We can construct as follows a two-dimensional complex manifold
M with a reduced compact analytic subset 4 such that T is the weighted
graph for A. Let A,,-+, A4, be Riemann surfaces with the genera of the
vertices. Embed each 4; in a line bundle L; whose Chern class is given by
the weight of the vertex 4, in I'. If x is a local coordinate for 4; and y is a
fiber coordinate for L, L is locally {(x,y)| |x| < 1,|y| <1} and 4, ={y = 0}.
To achieve the appropriate graph, we plumb the L; together in the obvious
‘manner, i.e., if L; is locally (x;,y;) and L; is locally (x;,y;), we let y; = x,
xj = y; be the change of coordinates at a point of 4; A;. Locally 4 is
{x;y; = 0} = {x;y; = 0}. This construction is in general not canonical.
Call any suchembedding A « M an embedding obtained by plumbing fromI".

Theorem 3.9. Let B = (B, &) be as in Theorem 2.1. Let A< M be
obtained by plumbing from the weighted graph for B in the particular
manner to be described below. Suppose that all the weights are negative.
Let P be that nonreduced subspace of M such that |P| = A and P is
diffeomorphic to B. Then all B' diffeomorphic to B are analytically
equivalent to B if and only if H'(P,,0) = 0. There is an algorithm for
determining whether H'(P, ,0) = 0.

Proof. We will exhibit the algorithm in the course of the proof.
For the moment, P may be obtained from any plumbing construction.
If H(P, pf) # 0, then Theorem 3.6 shows that there is a B” diffeomorphic

w0 P (and hence to B) but such that B” is not analytically equivalent to P.

We must show that H}(P, p)) = 0 implies that P and B’ are analytically
equivalent. If H(P, p0) = 0, then necessarily, (3.2) and (3.3), each 4; has
genus 0 and may contain at most three points in U 4;, j # i. These prop-
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erties must also hold for B’, so [B’[ ~ [P| We can now omit the prime
in B’. Let V; be a small open neighborhood of B;, the nonreduced component
of B carried on |Bi | Then VN V;NV, = @&, i, ], k distinct. By a straight-
forward generalization of the Mayer-Vietoris sequence [1, p. 236]
(3.8) 0 - I'(B,0) > ®@I(V;,50) &> @L(ViNV;,50)

i i#j

S HY(B,50) & @ H' (Vs 40)

is an exact sequence. i is induced by the restriction maps and p( @ a))
vinv)=a;—aj.

Let W; be a ¥V, for P, i.e., W; is an open subset of P which is a small
neighborhood of the image of |B;| under the isomorphism |B| =~ |P]|.
We now show that for suitably chosen V; and W, W, and ¥, are isomorphic,
Consider first the case 4;- 4; = — 1. Then ambient neighborhoods of
,B,—| in the manifold of Proposition 3.8 and of | P,-l in the manifold of the
plumbing construction can be achieved as a result of a quadratic trans-
formation [§, pp. 364-365]. Upon blowing down |B,-i and |Pl |, the other
irreducible components meeting IB,-' and |P‘-I become transversely inter-
secting submanifolds. There are at most three other irreducible components,
Any two plane curve singularities arising from three transversely inter-
secting manifolds are isomorphic, Thus suitable neighborhoods of the
blown down singularities are isomorphic via an ambient isomorphism,
Hence V; and W, can be made isomorphic,

For A4; ' A; £ — 2, we wish to apply the obstruction theory of Grauert
[8, p. 357] to extend the isomorphisms of the reduced spaces. Let
m= .ﬁ;f/f/‘ V}|, n= ff“._f,{f,’l V,[ Then H‘(Vi,&%;&(n: m))=0if s=1.
Also, since lV;|r‘1. |BJ-|, i#j, is a Stein manifold, the obstructions to
extending the isomorphism to (%] V;|)**" also vanish. Thus it suffices to
establish an isomorphism between the spaces Vi(#; 7/ Vi) = (| Vi,
y‘@f.ﬂ,j;’/] Vi|) and Wi(.ﬁi_,_,"é;fl W;I). Since we are only interested in V;
and W, as some neighborhoods of |B;| and |P,|, Vi(#£.%V;]), for our
purposes, differs only from | B;|* = (| B[, 5,0/#}) in specifying the inter-
section points of |Bi|ﬂ [B J-l, i # j, and the tangent direction in which
|B;| meets |B;|. In Wi(#;.%|W:|), the 4; = |P;| are fibers and the local
defining equation for a singular point is xy = 0, (y) = %/4,, (x) =,/‘:’5JA}.
Since A; is the Riemann sphere and A4; - 4; £ 0, the values of a section
s of T ® N*, where T is the tangent bundle of 4; and N is the normal
bundle of the embedding of A4;, can be specified at any three points. In par-
ticular, we can specify values at each point of {A; N A;}..Ls(FF,F) is
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jsomorphic to the sheaf of germs of sections of T ® N*. If (x, y) are local
ambient coordinates for 4;, then the automorphism specified by s is of the
form x — x + ys(x), y — y. Thus by a suitable choice of s, the fiber
{x = 0} = A; may be mapped to a submanifold with any tangent direction
different from that of 4; = {y = 0}. Thus W; and V¥; can be chosen to be
isomorphic.

Let us now show that HX(W,, p0) = 0. Let pQ be the sheaf of germs of holo-
morphic 1-forms and let 0 be the structure sheaf for P. 6 = f%ﬁw( pQ, p0).
Let 0, = Hero(pQ, F}), vZ 0. 00, may be identified with the sheaf 7
ol germs of sections of the tangent bundle to | P;| = 4; which vanish at the
points of {4; N A4}, i # j. Hence H(W,, p6/6,) = 0 and it suffices to show
that H'(W,,0,) = 0. Let A4~ be the sheaf of germs of sections of N, the
normal bundle of the embedding of A;. There is a canonical exact sequence,
v=1,

(3.9) 0T, £ F2 150,00, » 4 @FF' 0.

From Chern class considerations over 4;, H\(W,,7,® J}/#*") =
H‘(WI,JV®I;’;.JF}’“)=O. Thus it suffices to prove that HY(W,,0,)=0 for
some sufficiently large v. For v sufficiently large, 6, is supported on
U(W;n A)),j # i, whose underlying space is Stein. Hence [ 7, Satz 3, p. 17],
HY(W,,6,) = 0. Hence H'(W,, p0) = 0.

Thus in (3.8), the term @; H'(V;, s0) vanishes. In (3.8), let the V; decrease
through a fundamental sequence of neighborhoods of the B; and take the
direct limit. Taking direct limits preserves exactness, so
(3.10) H'(B, ) =~ <;B I'(B;n Bj, 0) [p (@ I'(B;, p9)) -

i#j i

Temporarily choose local coordinates at a point of | B;| N |B;| so that
JB = (x°y%), |B;| = {y = 0}. Let O(x,y) be the ring of convergent
power series in the two variables x and y. Modulo x°y®, I'(B; N B;, gf)) may
be represented near (0,0) as x0(x, y) d[dx @ y0(x, y) 8/dy. T(B;, z0) includes
all vector fields v of the following form. ve y®x 0(x,y)d/dx ® y*O(x, y)
8/dy for (x, y) near (0,0)€ |B;| n | B;| and v = 0 near other points in | B;|.
Thus in computing H(B, z0) from (3.10) it suffices to consider only those
elements in @ ;. ; I'(B; N B}, ) of the form

d G,
3.1 s.0 e
( 1) EI:x.!il'x y ax + Eﬂulix y ay!

1£s2£a—-1,0212b-1,0f2ua-1,1sv=b-1;

as,h Bu.u € C‘
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The elements of (3.11) form a finite dimensional vector space.

For the particular P we are about to construct, it is a simple matter
to list the elements of I'(P,,0) whose images in (3.11) are non-zero,
Namely, think of ]Pil as CU{w}. Put the (at most) three points of
{|P:|n| P;|}, J # i, successively at 0, oo, and 1. If |P;| - |P;| = —»,
the change of coordinates on W,, with (x, y) coordinates near Qe |Pi] and
(xy, y;) coordinates near co e] Pi] is chosen to be x = 1 /x,, y = x{y,.
The plumbing construction coordinates near | are to be (x — 1) and y,
There are three cases, corresponding to whether {|P;|N|P;|} has one,
two, or three points in it. (The case of no points corresponds to one vertex
in the graph and all obstructions to extending maps vanish.) With the only
point of {| P;,|N|P;|} at 0, the relevant basis of sections of ['(P;,,0) for
non-zero image in (3.11) is the appropriate finite subset of the following list.
The list is derived using the 0, from (3.9).

0 0 0
3,12 R s il
( ) xax, X Fog vxyay
J
g v+l v+2 ) 2,.v+1 0
yx %’ s V- (Tvx’ 3 Y tﬁ;
2 0 2y d 2, )
y ay!y ay! ,y < ay
2 _‘:_ - 2v+‘i£,‘p2x2v+2 E_ vygxhﬂ&_

X 5%
£ ot y Ox

ax ay

For two points in {| P;| N |P;|}, we have the following sublist of (3.12).
We also give the vector fields in (x;, y,) coordinates. The last element of
the odd numbered rows is lost because of the vanishing condition at x, = 0.

i) d d
(3.13) xé';: — —Xl E_l"l'vyl'aT{
o 0
y ay =" a"l,l
PX e = — Y x"“i+vy2x"u—
Ox T oy,

7 2
- v+l ¥ i e = S y 2
D2~ yixy B + vyq 5
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Finally, for three points, the odd numbered rows again have one fewer
element than in (3.13). In particular, there is no first row.

d d
(3.14) y - M1 3,
9 _ L 0 3yt 0
yx(x 1)5‘, = yixi(1 xl)a_x1+ vyixy (1 —xy) EE, y
. o i} 5 |
yx (x—l)a = J’le(l—xﬂa—;;“"”h(l—xﬂa—y—l

H'(P, p0) being O is equivalent to the condition that the elements of
(3.12)~(3.14) map onto a spanning set for the direct sum over all singular
points of |P[ of the elements of (3.11). This is the desired algorithm. It is
a finite process because the elements in (3.12)-(3.14) having factors y* may
be disregarded. .

Let-Z/B = T1#]". Let s = (s,+,5,), 1 £ 5; < r;, and B(s) = (|B[, ;0/TLF%).
Since p(;)0 is a quotient of »0, if H'(P, p0) = 0, then H'(P(s), p(y0) = 0 for
alls = r = (ry,++,1,). To prove that any B diffeomorphic to P is analyti-
cally equivalent to P, we will proceed by induction on the s, We induct
on the formally stronger statement that s(P(s)) = . We start our in-
duction at s = (2,---,2). To prove that if B(s), s = (2, --+,2), is diffeomorphic
to P(s), then B(s) is analytically equivalent to P(s) via an isomorphism
which preserves the labeling, it suffices by Theorem 2.1 and Theorem 3.2
to prove that H'(B(s), p(,0) = 0 for all B(s). We know that H*(P(s),p(,0)=0.
We use (3.10) to calculate H'(B(s), 5,,0) and see how the images of elements
of (3.12)-(3.14) differ in (3.11) for B(s) and P(s). For B(s), V; ~ W, in (3.8)
but the transition rule for ¥;N ¥; need not be given by the plumbing trans-
formation. However | B| = {x,;y; = 0} = {x;y,; = 0} because V; ~ W, and
V; & W,. Thus the change of coordinates for B(s) is of the form

(3.15) Xy = yi(ap +-++), Vi = Xi(bg + ), ag # 0, by # 0.

For P(s), the change of coordinates is x; = y;, y; = x;. The relevant terms
in (3.12)~(3.14) for B(s) are those with coefficients x, y, or xy. Look at the
linear terms. The change of coordinates in (3.15) may add higher order
terms to the linear terms, but the effect on the linear terms (interchanging x
and y) is exactly the same as the effect of the change of coordinates for P(s).
Therefore (3.12)-(3.14) produce the same linear terms in (3.11) for B(s)
and P(s). In P(s), the xy terms in (3.11) can only come from the first row in
(3.12) or the third row in (3.12)-(3.13) or the second grouping in (3.14).
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H'(P(s), pyt)) = 0 so the linear terms in (3.12)~(3.14) map onto the linear
terms in (3.11) and the xy-terms in (3.11) must be the image of the following
terms. An 4; = |P,-| = | B;| of the form (3.12) contributes both xy /3y
(from x?d/dx — vxy0[dy) and xy&/dx. Modulo the ideal (x?, y*), the B(s)
and P(s) change of coordinates just differ in effect on xy d/dy and xy 0/0x by
multiplication by a non-zero constant. Thus they do not affect the span of
the image. An A4; of the form (3.13) contributes xy d/éx, which equals 0 in
(3.11) in the (xy, y;) system, and x, y, d /dx,. Again, the span of these contri-
butions is the same for B(s) and P(s). For v = 3, (3.14) similarly contributes
xyd[éx, (x — 1)y /(8(x — 1)), x, y; 8/0x,, and each of these vector fields
may be chosen to vanish in the other coordinate systems, modulo (x?, y?).
v=1 and v =2 must be treated separately. For v =1, the one relevant
section in I'(4;, p,y0) has the following images in the (x, y), (x — 1, y), and
(xy, y1) systems, modulo second order terms besides xy:

~

5 _a.=(x....1) ._.i__=,._. t_.a_
"k Y ox—1) - gy

For H'(P(s),p0) to be zero, two more terms involving xyd/dx,
(x — Dydfé(x ~ 1), or x,y,8/dx, are needed and these can only come
from an A4; of the (3.12) type. The P(s) and B(s) change of coordinates just
differ in effect by multiplication by a non-zero constant. Thus if
HY(P(s), psyf) = 0, then also for B(s) the xyd[dx terms in (3.11) for the

three points in {4, N A;}, A;- A, = — 1, j #1i, are in the image of terms
from (3.12)—(3.14). Finally, if v= — A4;- 4; = — 2, there are two sections
d g d
. d = é
0=(x l)y%:—l)—=—xl.1’ia-

As for v = 1, for H*(P(s), p(s)0) to be zero, one more xy d/dx term is needed
and this can only come from an 4; of the (3.12) type. Again the xyd/dx terms
in (3.11) for the three points in {4;~ A;}, j # i, are in the span of terms
from (3.12)-(3.14) for B(s) as well as for P(s).

The linear terms for B(s) are, as noted, changed from those for P(s)
only by the addition of quadratic terms. Hence if H'(P(s), pyf) = 0, then
also H'(B(s), s) = 0. Furthermore, 5,(P(s)) has only one element.

This particular P achieved by plumbing has an important special property
that is independent of s. In computing H'(P(s), p(s)0), the linear terms act in-
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dependently of the higher order terms. Any linear terms in the kernel of p in
(3.10) and (3.8) give rise to an ambient vector field on M. Integration along
this field gives an automorphism of P(s) for all s, not just s = (2,---,2).
Locally, the automorphism is (x, y) —(aqx, byy), for appropriate non-zero
a, and by. These automorphisms form a subgroup L = L(s) < Aut,(P(s)).
Let Z(s) be the Lie algebra of L(s). Let # (s) = .#(s) be the Lie subalgebra
of I'(P(s),p(sy0) given by the higher order (i.e., non-linear) terms of
(3.12)-(3.14) which are in the kernel of p. .#(s) is the Lie algebra for the
closed normal subgroup M (s) <= Aut,(P(s)) whose induced map on |Pj | is
either the identity or a parabolic map with | P;| N | P;|, some necessarily
unique k # j, as its only fixed point. As vector spaces, I'(P(s), p)0) =~ Z(5)
@ A (3).

Now for the general induction argument starting at s = (2,---,2). First
look at one 4; such that {4;NA;}, j # i, has only one point in it. Let
F =S I, =IHA. Aut(FH F2: FFF?) =0, all k 2 0. This means
that any diffeomorphic spaces with ideals of the form S/ #%, k = 0, are
analytically equivalent. Next look at another A4; such that {4;.nA4;},
j # i’, has only one point. If 4, A4; # &, then A = 4; U A4;. and the
following special argument suffices to finish the proof of the theorem. For
A;*4; £ —2, alternately extend isomorphisms to S5} P and to S5 Y
k=2,3,--. For A;- A; = —1, blow down A;. 4;. becomes a curve A4’
with A'- A’ £ 0. Again all obstructions to extending isomorphisms
vanish. By [16, Lemma 6.11, p. 113] we can perform a quadratic trans-
formation to restore 4; and obtain the desired analytic equivalence between
diffeomorphic spaces. We can thus assume that A4, A4; = &. Then
Al L IEF? S IEF?) = 0,allu 2 0, k 2 0. Thus any diffeomorphic
spaces with ideals of the form S #F#%, u =0, k = 0 are analytically
equivalent. Continuing similarly, we see that B(s’) and P(s’) are analytically
equivalent for any {s;}, so long as {4;n 4;}, j # i, has only one point.

Now let s = (sy,",s,) and s’ = (sy,-,s,) satisfy s; = s}, j # i, and
si+1 = s5;. We may assume by the previous paragraph that {4, 4},
J # i, has at least two points. We assume by induction that S(P(s")) = *.
We must prove that S,(P(s)) = *. Look at the bottom row in (3.7); B and
B' in (3.7) are replaced by P(s) and P(s’), C = @. By induction,
S)(P(s")) = = = P(s"). By exactness, it suffices to show that & is surjective.

We will in fact show that & o exp;(#(s")) = S(P(s): P(s")).
S(P(s): P(s")) ~ H ‘(P(s),-PZ:J(n: n")) & HY(P(s), psy,pisnf)

since s; > 2.
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The mapd o exp; may be given as follows. I'(P(s'), p(;-0) is the kernel
of the map p from (3.12)-(3.14) to (3.11). w e I'(P(s"), p(s0) corresponding
to {w;e (W}, pn)} from (3.12)-(3.14) is then locally represented as
follows. Suppose that (x, y) are local coordinates, as in (3.11), near a point
in |Pi| | P;|. A %P(s) = (v). JdP(s") = (y"). JP[s) =-FlPs')
= (x*/). w; is a linear combination of terms from (3.12)~(3.14). w; is a linear
combination of terms from (3.12)-(3.14) with the roles of x and y reversed,
(o} € ker p means that the terms in w; and w; with coefficients x"y", u <,
v < s;— | coincide. Let A;(s) be a small polydisc neighborhood of (0,0)
in Py(s) U P(s). Let Ry(s) be the open subset of Py(s) carried on the regular
points of |P l . A term in w; with coefficient x"y" with u = s; vanishes on
P(s"). w includes this term on Ry(s") and A;{(s") but not on Ry(s"). 6'(w) will
not include this term. A term in @; with v = 5; — | is included on P(s’)
and A;;(s") but not on Pi(s"). 6'(w) will include this term when v = s; — 1.
We thus have local extensions for w to sections of p,0. Denote these
extensions by w; € I(Ry(s), pyl)) and w;;€ [(A;(s), p()0). At least for w near
0e HY(P(s"), psy®), on Ri(s) N Ay (),

(3.16)  do exps(w) = exp( — w;;) o exp(w;)
= exp(w; — w;; + 3[ — o;;, w;] + (higher order brackets))

by the Campell-Hausdorff formula [/3, pp. [11-112].

Now look at H'(P(s), p(sy.p(sy!) and the top row of (3.7). In terms ol the
Leray cover U = {R;(s),A;;(s)}, on Ri(s) N Ai(s), 8'(w) = cls[w; — ay;].
Let .7 be the tangent sheaf to |P;| and let .4" be the sheaf of germs
of sections of the normal bundle of the embedding of |Pi|, Let
n =-%/P(s) and n’ =.%/P(s'). Recall the canonical exact sequence

0T @n'In=pg, psy 0 = A @n'In-0.
Thus
(3.17) HY(P(s),7 @ n'[n) %> HX(P(5). pesy pisn0)
L HY(P(s), V" @n'[n) >0

is an exact sequence. Now examine (3.16) more closely for we .#(s’) and
for our cover U. w;; differs from w; on R(s) N A;i(s) only by an expression
of the form
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d
ox

lsus5~1,02805,—1; g, 1,eC.

. d
b Tuy.s‘[ lxv____,

=1
Eo‘l!ys xu ay

Recall that {4, A;}, j # i, has at least two points. Thus w; comes from
terms from (3.13) or (3.14). w; has no terms of the form «x d/dx + By d/oy,
o, p e C, since w € .#(s). w; has no terms of the form eyx"éjoy, u = 1, since
no terms of this form appear in (3.13)-(3.14). Thus [ — w;;, w;] defines a
cohomology class cls[ — w;;,w;]ekerp, p from (3.17). The higher order
brackets of (3.16) all involve [ — w;;, @;]. Since [ — w;;, ;] is of the form
y*7 f(x)0/0x, with f a holomorphic function of x on |Ri(s)n Ay(s)|,
all the higher brackets vanish. Finally, cls[ — w;;, @;] = cls[w; — w;, ;]
=[po ¢'(w),w] in the following natural sense. §'(w) = cls[w; — w;;].
If w; and w; are both extensions of @ to I'(Ry(5), py0) and 4 is any cocycle
in CH(N(), p(sy,ps1yf) such that p(cls[1]) = po §'(w), then [}, /] and
[ — w;;,w;] are cohomologous in C'(N(), p(s),p(s)). Namely, for fixed 2,
[4 wi] depends only on the yx“d/dx terms of w; and these are the same for
both w; and w;. For fixed w{, changing (@;— w,;) by elements of
T'(Aij(9)s p(s).pisn?) 0F T(R(S), pesy.ps) changes [w; — w;j,wi] by elements
of I(Aij(8); pey,psy®) O T(Ri(S), pesy,pisny) respectively. Thus cls[2, wf]
depends only on cls[1]. Finally, changing cls[4] by an element in
ker p = im¢ of (3.17) corresponds to modifying . by a cochain of the
form yi~'f(x)8/éx, with f a holomorphic function of x on |Ri(s)n Au(s)[.
As before, this does not change [ 4, w;]. Thus, cls[ —w;;,w;] = [po §'(w),»]
as stated.

Under the isomorphism S(P(s): P(s")) & H(P(5), p(s),pisy?)s for we 4 (s"),
(3.16) thus becomes

(3.18) do exps(w) = §'(w) +4[po §'(w),w],
[po 8'(w),w]ekerp.

H'(P, ,0) = 0 by the theorem’s hypothesis. There is a natural surjective
map pl — p(,,0 with coherent kernel over P. Thus also H(P(s), p0) = 0.
Hence &' of (3.7) is surjective. Recall that #(s') c kerd’. Hence §':
M(s") = H(P(5), ps+y, poy®) is surjective. All the terms in an element of
J#(s') have coefficients of total degree at least two. Hence the Lie bracket
operation in #(s’) strictly increases the total degree. For fixed s, the
possible degrees occurring in (3.12)~(3.14) are bounded. Hence, any suf-
ficiently high number of successive Lie bracket operations results in 0 and
$0 #(s') is nilpotent. Then exps : #(s") = M(s') maps onto the connected
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component My(s’) of the identity in M(s"). In (3.7), 8: Aut, (P(s")) = S(P(s);
P(s")) is given by d(g) = g(*), the image of * under the action of g. ', the
tangent map for &, maps #(s') onto H'(P(s), pisr),p?)- Hence the orbit
of % under the action of My(s’) is an open subset of S(P(s): P(s")). Then
& o exps has an open image.

In (3.17), po 6o exp; = po &’ by (3.18). &' is surjective so po §
=po doexp; is surjective. Fix a class ae H'(P(s), # ® n'[n).
po 6o exps = po &' is alinear map so that (p o §o exps) ~'(a) is a non-
empty affine subspace of .#(s’). p~'(a) is an affine subspace of
HY(P(5), psy,psn0)- 60 expsi(po do exps) '(a)—p~'(a) is an affine
map by (3.18) and has an open image since d o exp,(# (s)) is open. Thus
b0 exps: (po 60 exps) '(a)— p~'(a) is surjective. Thus do exp; and
necessarily & is surjective.

Recall the following definition [4], [22], [23].

Definition 3.2. Let p be a normal two-dimensional singularity. Then
p is taut if all normal two-dimensional singularities having the same minimal
weighted dual graph as has p are isomorphic.

The following theorem provides an algorithm for determining whether
or not a weighted dual graph I' is the dual graph of a taut singularity.

Theorem 3.10. Let I” be a dual weighted graph which comes from a
negative definite intersection matrix and represents a minimal resolution
among resolutions such that the irreducible components A4, 1 < i < n,
of the exceptional set are non-singular and have only normal crossings.
Let v = (ry,---,1,) be chosen sufficiently large so that if B(r) is analytically
equivalent to B'(r), then B(r) and B'(r) determine isomorphic normal
singularities. Let A = M be the plumbing construction of Theorem 3.9.
ThenT isthe dual graphof a taut singularity if and only if H'(P(r),p0) =0.

Proof. Minimal resolutions of the type of this theorem are unique [ /4],
[3, Lemma, p. 81], [ 9, Theorem 5.12, p. 91]. r may be chosen by [9, Theorem
6.20, p. 132]. The theorem is now an immediate consequence of Theorem 3.9
and Proposition 3.8,

§4. Discussion, Problems, and Examples

Let A = M be the exceptional set in the resolution of a singularity p. Then
T, the weighted dual graph, and the genera of the A4; determine both the
topological and differentiable type of the embedding of A in M (where we
always assume non-singular embeddings of the A; and normal crossings).
In dealing with nonreduced spaces it seems more natural to use the dif-



DEFORMATIONS OF RESOLUTIONS 93

ferentiable category. The definition of diffeomorphism in Definition 3.1 is
equivalent to requiring that B and B’ be diffeomorphic under the natural
definitions of being nonreduced differentiable spaces. Reduced spaces
have been studied by Spallek [21] and Ephraim [6]. Section 3 can be
entirely rephrased in terms of putting complex analytic structures on non-
reduced spaces with differentiable structures. Theorem 3.9 gives a necessary
and sufficient condition for a differentiable structure of a certain type to
carry a unique analytic structure. One would like to relate this to the
singularity p itself. It is not known on just how much of the structure of p
I" depends. Certainly I' is determined by the analytic structure of p. I is
probably also determined by the differentiable structure on p. However,
this would still be much too strong a structure because Ephraim has shown
[6] that in many cases there are at most two analytic structures on a given
differentiable structure. I', on the other hand, is not determined by the
topological type of p, although counterexamples seem to be quite scarce.
The only examples known to the author come from homeomorphic lens
spaces. [ 4] has a fuller discussion.

The relationship between Def(A(r)), which preserves I', and the defor-
mation of p itself, which can change I', (as studied by Schlessinger, Tjurina,
Grauert, and Elhik) is not fully understood.

Perhaps “‘countable’” in Theorem 3.6 can be replaced by “‘finite.”

In all graphs to follow, each vertex has genus 0.

Tautness does not imply rationality (see [2] for rationality). The simplest
examples are singularities with dual weighted graphs like (4.1).

@.1)

with the w; large and negative; say, w; £ — 10. The corresponding sin-
gularities are taut but not rational.

~ Structure jumping is quite a common phenomenon. In fact, look at
(3.10). If the singularity obtained by plumbing has automorphisms arising
from the linear terms in (3.12)-(3.14), then a different change of coordinates
which destroys these automorphisms will usually lower the dimension of
H'(B, 30). For the weighted graph (4.2) with, say, w; < — 10, there are
exactly two distinct singularities. One is obtained by plumbing and
HY(P,,0) = C. The other singularity has H(B, z0) = 0. S(B) = {B,P}
has @5, B, and {B, P} as its open subsets.
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(4.2)

(4.3) is the dual graph of a cusp singularity, as defined by Hirzebruch,
(4.3) consists of a polygon with weights at the n vertices. The singularity
of (4.3) is taut.

v
“I

(4.3) B

Graphs of the form (4.3) are the only graphs which are not trees which
can possibly be graphs for taut singularities. In particular, using [1&], if
the first Betti number of a deleted good neighborhood of p is greater than [,
then p is not taut. For a first Betti number equal to 1, [23] contains a
characterization of the possible fundamental groups for taut singularities,
If the graph I' is a tree and the associated singularity is taut, then I' can
have at most two vertices of degree 3. More complete results will appear
in “Taut two-dimensional Singularities,”” to be published in the
M athematische Annalen.
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