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a1 structures of normal two-dimensional sin- 
nown. Given a singularity, one considers its 

tion [ I l l ,  [10]. Normal singularities are determined by their re- 
is lost. In dimension two, all possible resolutions 

nt modifications have been described by Mumford [I81 and 
[a]. Their criterion, that the intersection matrix of the irreducible 

a1 set be negative definite, is purely topological. 
escribing the different singularities which have 

ically equivalent resolutions. Examples given in [8], [4], and [ZZ] 
at a given topological type may come from exactly one singularity 
come from a complex family of analytically distinct singularities. 

ted as follows, via the Kodaira-Spencer [15] 

dimensional singularity. Let n :  M + V be a 
of V such that the irreducible components Ai. 1 i $ n, of 

gular and have only normal crossings. Associated to 
aph r (e.g., see [12] or [16]) which, along with the 
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the topological and differentiable nature of the embedding of A 
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o nonsingular and have only normal crossings. 
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d graph F' for A' is the same as r and that the corresponding Af 
us. Let rn' and A(n1') be defined as above. Then 

m 6.20, p. 1321, depending solely on and the genera, I-,, ...,1;, 
sen so that if A(m) x A'(mJ) ,  then A and A' have biholo- 
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morphically equivalent neighborhoods via a map taking A to A'. Thus, 
rather than deforming A and its embedding in M, it suffices to deform 
A(m) with (rl,. . a ,  r,,) appropriately chosen. Moreover, by choosing n to be 
the canonical minimal resolution with nonsingular irreducible components 
and normal crossings, we can insure that p z p' if and only if A(m) z AA'(m'). 

Section 2 presents the needed reformulation of the Kodaira-Spencer 
theory for nonreduced spaces. For use in later proofs it is necessary to 
consider deformations which fix subspaces. The definitions and proof's in, 
say, Morrow and Kodaira [l7] generalize readily from the manifold case 
to the case of spaces. 

Section 3 discusses the deformations of the A(m) above in a slightly more 
general setting. Every abstractly given A(m) can be realized as a subspace 
of a 2-manifold (Proposition 3.8) so every abstractly given A(m) corresponds 
to a singularity. Any deformation of A(m) has the same d ~ ~ a l  weighted 
graph (Lemma 3.1). There exists a locally unique, locally complete family 
of deformations of A(m) which is eflectively parametrized at the distinguished 
point 0 in the parameter space. The parameter space is a manifold of di- 
mension dim H1(A, ,O), where ,,O is the tangent sheaf to A(w) introduced 
by Grauert [8, p. 3571 (Theorems 3.4, 2.1 and 2.3), There is a neighborhood 
U of 0 such that the fiber above q is isomorphic to A(m) for only at most 
countably many q in U (Theorem 3.6). Suppose that A and A' are topolo- 
gically the same and have the same weights. Then A(nz) may be deformed 
into A1(m') via a finite series of complex analytic deformations (Theorem 
3.2). Finally, we give an algorithm (Theorems 3.9 and 3.10) to determine 
whether or not a singularity with a given weighted graph is taut in the sense 
of Brieskorn [4], Tjurina [22], and Wagreich [23], i.e., there is exactly 
one singularity with the given weighted graph and given genera. 

We also show that the automorphism group of A(m) is a complex Lie 
group with Ho(A,,O) as its Lie algebra (Theorem 3.4). 

Section 4 consists of discussion, problems, and examples. 

$2. Deformation Theory for Analytic Spaces 

All spaces in this section will be nonreduced unless otherwise speci 
(e.g., manifolds are reduced). 

Let B be a compact analytic space and let C be a closed, possibly e 
subspace of B. B and C will frequently have the same underlying re 
space. 

Definition 2.1. A deformation of B, fixing C, consists of the followin 

i) There is an analytic space $8 and a proper morphism o: 93 
where Q is a manifold containing a distinguished point 0. 
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ii) Let t = ( t , , - . . , t k )  be coordinates near a point q E Q with q the 
origin. The fiber B, over q E Q is the subspace of .@I whose ideal sheaf is 

nerated by w*(t,), - . a ,  w*(tk). There is an isomorphism i: B + B,. We 
all usually identify B with B,. 

w is a trivial deformation of C. That is, there is a closed subspace 
and inclusion morphism L :  594 93 such that 

%' is a product having C and Q as factors, i.e., there is an isomorphism 
+ C x Q with w o L :  V? 4 Q equal, via I), to projection onto the second 

1 , :  C ,  -t B, is the inclusion map for C as a subspace of B. 
is locally trivial in a way which extends the triviality expressed 

. That is, for every b E g ,  w ( b )  = q,  there exists a neighborhoodYf of 
, a neighborhood U of q in Q, a neighborhood S of b in B, and an 

orphism 4: 9f -+ S x U with w equal to projection onto the second 
r, U .  With the appropriate restrictions, 4 o i = (L,  x id)  o I). 

ppose that B is locally embedded as a subspace of a polydisc A and 
is the ideal sheaf of 3. Let O be the structure sheaf of A and let SZ be 
af of germs of holomorphic 1-forms on A. Recall 17, p, 3571 that 
is the sheaf generated at x E A by f,dg, + dlz,, where g, E 0, and 

n,. ,Q = ,,Q = Q/Q1 is the sheaf of germs of holomorphic 1-forms 
Let ,O be the structure sheaf for B. 

ion 2.2. Let B be an analytic space with C a closed subspace 
Let m be the ideal sheaf for C. Then ,,,O = ,7/LmB,(,C2, m)  is the 

of germs of vector fields on 3 which vanish on C. 

en C = (21, B,C$ is the tangent sheaf ,,O of Grauert. We shall denote 
by ,O. The sheaf ,,,,O = cY&Pv~,(~Q, m )  of Grauert is in general 

ill be useful later to represent ,,,O in terms of coordinates on A, 
se 0 E B c A and ( z , ,  -.., z , )  are coordinates for A, with 0 the origin. 
er V E , . ~ O , .  v induces an element U ' E ~ Y ~ V , ( Q , W ) , .  Let m + n 

eal sheaf of C in A. Since SZ is a locally free 8-sheaf, v' may be 
ncanonically to v" E~Y~I~~, , , (SZ,  nz+ n), c IY&Iv,(Q, O), z To. 9- is 

eaf on A. Thus v can be represented by an ambient germ of a 
, v" = Cf i  a/dzi with fi E ( m  + n),. Any v" = Zfi a/az, with 

n), will induce an element of ,,,O, if and only if vu(dg0) E no for 

deformation of B, fixing C, as in Definition 2.1, we let O be that 
of ,,,O given by germs of vector fields along the fibers. That is, 
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an element w E B,,8 is in O if, via the local product structure in Definition 
2.1 iv), 14 vanishes on dt,,  a * . ,  dt,. There is a canonical map of O I Bo onto 

B. c0. 
Let F be the tangent sheaf to Q. Let U, be a neighborhood of 0 in Q and 

V E  T(U, ,F) .  By Definition 2.1 iv), for II, s~tfficiently small, we can find a 
finite cover {YY i )  of u-'(u,) with local product maps 4,: 'Yi -+ Si x U,. 
Via 4i and the cartesian product structure, v generates an element 
vi E r($fi, &). vi may be locally represented by some ambient vector field 
involving only t = (t,,...,t,) . Since the deformation of C is trivial, the 
extensions of u to T(YY,, ,O) and r(Wj, coincide in ,Ifi n Y f j .  Let 
v i j  = vi - vj be defined on 9, n V j .  Then (uiJ) represents a cocycle for 

B. ,Q. However, for b E 93, u,(dt,), = v(dt,),(,). Thus uiJ(rltv), = 0 and 
v i j  E T ( W i n Y y j ,  (3). Different choices of (pi will change (vij)  by a co- 
boundary. Thus there is a canonical map p,: T (U , ,F )  -+ HI(@-'(U,),@). 
Letting U ,  decrease through a fundamental system of neighborhoods of 0 
and letting R 1 o ( 0 )  be the first direct image sheaf, we get 

(2.1) p :  r ( o , ~ ) - ,  R ~ W ( O ) ~ .  

The infinitesimal deformation is derived from (2.1) by restricting elements 
of T ( 0 , F )  to their tangent vectors at 0 and mapping O 1 Bo to ,,,O. Letting 
QT be the tangent bundle to Q, we have 

(2.2) P o :  ,To -+H1(B, ,,,o>. 
Definition 2.3. A deformation of B, fixing C, is effectively parametrized 

at 0 if (2.2) is injective. 

Let o :  93 -, Q be a deformation of B, fixing C. Suppose that f : R + Q ,  
f(O)=O, is a holomorphic map between manifolds. f induces the following 
deformation f *a: 9 -+ R. 9 c .@ x R is defined as follows. 2 is locally 
of the form S x U .  In S x U x R,  the ideal sheaf of 9 is generated by the 
condition f ( r )  = u,  r. E R, u E U. f "W is just projection onto R. 

Definition 2.4. A deformation o: 2-t Q of B, fixing C, is complete 
at 0 if, given any deformation z: .P -+R of B fixing C, there is a neigh- 
borhood R'  of 0 in R and a holomorphic map f :  Rt  -+ Q such that z re- 
stricted to 7-'(R') is the deformation f * o .  o is complete if it is complete 
at each q E Q. 

Throughout the rest of this paper we will restrict ourselves to the very 
special B and C that occur in resolutions of two-dimensional singularities. 
Namely, B will have an underlying reduced space of piire dimension one. 
Locally, B can be embedded in a two-dimensional polydisc A = {(x, y) 1 
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I x  / < E ,  I y I < E }  w i t h - a  B = ( x a y  ') and -& C = (xcyd) .  x and y are, of 
urse, complex variables. Necessarily, c 5 a and d =( b. By a change of 
riables, we can assume that 6 = 1. 

e adopt the following notation. If S is an analytic space, let I S I denote 
e underlying reduced space of S. I S I is called the reduction of S. 

Theorem 2.1. Let B and C be as above. Let w :  98 -+ Q be a defo~,mation 
 fixing C. l f p ,  of(2.2) is surjective, then w is co~nplete at 0. 

oof. We essentially mimic the proof of Theorem, p. 56 of [17].  Some 
fications are needed because B is not reduced. When convenient, we 
omit subscripts and superscripts in local coordinate systems. 
9 -+ R is the given deformation. ( x j ,  y,) are local ambient coordinates 
B. Let t = (t,,...,tpo) be local coordinates near O E  R and let 
z,, . . . ,z,,) be local coordinates near 0 E Q. 

sufficiently small E > 0 ,  we can cover A - ' ( A ~ ,  A, = { t  1 I t,, I < E )  

mbient coordinate patches 

U j  = { ( x j , y j , t ) ]  I x j I <  l , ] y j I  < 1, l t p I  < E ) .  

the same { ( x j ,  y j ) )  we can cover a neighborhood of 0 - ' ( 0 )  by 

v j = { ( ~ j , ~ j J ) (  I x j I < 1 , I Y j I < 1 , I z 7 I < E ) .  

e the singularities ,of I B ] are isolated, we may assume that for j # k, 
U ,  n 9 I and I V j  n I/, n 98 1 are manifolds. On U j  n U,, let 

X j  = f j l k ( ~ , , ~ k ,  t ) ,  Y j  = h t ( ~ , ,  YX. ,  I ) ,  t = t 

transition functions. If on U j  n u,,,&B = (yg), then we may assume 
divides f 2.  Similarly, on 'Vj n V,, 

1 2 
= g j k ( x k , ~ k , ~ ) ,  Yj  = g j k ( ~ k , ~ k , ~ ) ,  = 7 

, divides g2. When r = z = 0 ,  we just get the transition functions 
SO 

G ( x ~  ~ k r  O) = g7dxkr Y k ,  O), CC = 1,2. 

need to construct holomorphic functions 4 i ( x j ,  y,, t )  and 4f ( x j ,  y j ,  f) 
holomorphic map z = @(t)  such that 

$ ? ( f ; . k ( ~ k , ~ k ,  t), t )  = g:k($k(~k, yk, t),@(f)), = 122 

X j  = $ f ( x j j Y j l 0 )  Y j  = $'?(xj,~j,O). 

in (2.4) need only hold modulo ,,&8 and we require that y j  
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Let 2 denote the subspace of 9 which is a trivial deformation of C. 
Since 9 and i?i? are trivial deformations of C, f a  and ga may be chosen 
independently of t and z, modulo the ideaIs of %' and 9 respectively. So 
y,d, the generator of-g/V and-c /2  should divide f j~(sk, j1, ,  t )  - f i ( x L ,  jl,,O) 

and g7k(x,, Y , , ~ )  - g;k(xk,~/;, O)- 
Later, to insure convergence, we shall need similar covers 

u,O=' , (xJ,y j , r ) I  I x j I < ~ + v , l y , I < l + v , I t / , I < c )  

for some v > 0, and similar V: with V; 3 V, . 
We expand the f lk,gyh,(jg and the coordinate functions OY of cf, into 

power series in t  or z. 

where each f j " , l s l , gJ41 rn ,~~~k I I , l  and D;, has the appropriate number of com- 
ponents to be coefficients for t "' or T ~ ,  a~ needed. Also, y, divides 

2 
fJ:/rn,!?:klrn alld $hlnrr m- 

If P(f )  = CPI l fn  and Q(t) = CQ,,tU are two power series, P(t)  r,,, Q(t) 
means that Q,, = P, for n 5 in. Let 4~11"(x j ,  y j ,  f )  = 24 + . . +  + d)JSrll(xj, ~l,)f '" ,  
z1 = x, z 2  = 11, and @ y l m  = a);t + ... + 6),1),f" 

We must solve, omitting the superscript a, 

(2.7)m $y(fik(xh? ~r 9 t ) ,  t )  g J , ( $ ; " ( ~ ~ ,  11, Qn'(f)). 

First consider nz = 1 in (2.7),,, . 

but we must verify that the partial derivatives do not make the induced 
functions on the nonreduced subspaces noncanonical. d g j L l o / d ~ r  is not 
changed if g jk  is modified by an element of-gd'G9, dg,kl,/ayk is changed 
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by a function divisible by yt-'. However, yk divides + ~ l l ( x k ,  yk) so the 
is unchanged. 

Lrlo and gjk lo  are equal by (2.3). In (2.7), we thus need 

We are operating, just in different coordinate systems, in the sheaf .,,8. 
d/azg and C g $ ,  ajaz;,  c( = 1,2, lie in ,,,B since y" divides f j k l  and 

g j k l l .  f i l l  and g;",ll are vector valued with as many components as are 
needed to provide coefficients for t and z. Each component of f j h l l  then 
determines a cohomology class in H1(B,  , , ,O), pa of (2.2) is surjective so, 
by restricting to a submanifold, we may in fact assume that pa is bijective. 
The g j k l l  determine the cohomology classes of the image of p,. Hence 
there is a uniquely determined at,  depending on f i k l l ,  SO that the co- 
homology classes on both sides of (2.8) coincide. We then choose 9, and 
$ j  to give equality in (2.8). We shall do the size estimates later. 

Suppose that +jal"'and Qyl"' have been determined so that (2.7),, holds. 

(2.7),,+1 may be written 

+jm(fik(~k,.~k,t), t )  + + i l m +  t(fjk(xli, yli,t))tm+' 

- =nz+1  gjk(+km(~k,yk, t, + $klttt+ l ( x k , ~ k ) t m f  

( ~ ~ ( t )  +@,I+ltn2+1). 

s equivalent to 
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Ti, is a cocycle by the computation of Lemma 3.4, p. 48, of Morrow and 
K0daira .A~ with nz = 1, the choice of @,,+, depends on Tj,. We then choose 

(Pk[rn+l and ~ ~ [ I I I +  l . 
This gives us the formal power series and it is now necessary to insure 

convergence. We shall use the following norm on sections of ,O and thus 
also on sections of .,,O c ,O. Near a nonsingtilar point,  let.%^ = (yb). 
Represent a section w of ,O over some open set U as 

(2.10) 11 w \ I L I  = max sup 
i +  j s b -  1 r E U n i B l  

We shall omit the subscript U when it is clear which open set we are 
considering. This norm is changed to an equivalent norm under a change 
of coordinates. Near singular points, which are normal crossings with 
.&B = (xayb) ,  restrict w to a section of the tangent sheaf for each of the 
two components, {xa = 0 )  and {yb  = 0).  Then take the maximum of the 
two norms. 6, the coboundary operator for covers, is continuous in the 
topology defined by 11 11 . 

Suppose that t,b(z,t) = X$,,ltlr', 0 g m < cx, is a power series with 
t = ( t , ,  ..., f , )  and $,, vector valued with each component ,,bit of t,b,,, an 
element of T(U,.,,O). Suppose that a(T )  = Za,,,Tn1, 0 g In < co with a, 
real and non-negative. Then, following Kodaira, we write $(z, I) 4 a ( T )  
and say that a(T)  dominates $(z, t) if Xpll $111 5 aIll for all m. We have a 
similar notion for cD(t)= C@,tm. Let A(Tj (bo/16c,) X(coT)"/m2, 1s 111 i co 
with b, and co constants to be determined Iater. For convergence, it suffices 
to prove that 
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TO satisfy (2.11),, since all the norms will turn out to be finite, it just 
suffices for bo to be large enough. We now proceed by induction on nz, 
assuming (2.1 1),,,. 

Recall that % c v ' .  If g!klp is a component of g j k l p ,  then I / g ; k , p  11 
= 1 1  g$ /p (~k ,  ~ k )  a / a x j  + g$!$p(xk, yk) a / a ~ j  / I  and / gjklp 1 = xJl/ 8$cln 1 .  

Since gj ,  can be assumed to be holomorphic for (x,, y , , z ) ~  V '  n I/':, 
x S j L , p ( ~ n  + rk, yk + 5,)tP and its derivatives with respect to x, converge 
for ( xk ,  y 3  E Vj n V, n I B  ] and 7,  qk and 5, sufficiently small. Expand 
9 .  (x, + q,, yk + 5,) into a power series in q, and 5, .  In (2.12) below, J ~ I P  
domination means the following: Compare coefficients for each v]','<,'. 

1f C,v(~k ,  yk)zP is the coefficient of qct,' on the left side of (2.12) and C,,,TP is 
the coefficient of qit,' on the right side of (2.12), then 

) will hold for appropriate C and K because only a finite number of 
atives are used in computing norms on the left side. 
r $(t)  = C$,,,t"', let [ $ ( t ) ] , n + l  = $,,l+,tn'+l. We first estimate 

(xk, Yk, t ) ,  @nl(t>)I~n+~ = x p [ ~ j k ~ p ( ' $ k m ( ~ k , ~ k ,  t ) )  (@m(t))P]nt+~ , by (2.6). 
porarily, let $,(xk, yk,  t )  = '$?(X,, y,, t )  - 2,. For p = 0, since the 

onents of $,(x,, y,, t )  are polynomials of degree at most m in t ,  

. - 

let q, = $: (x,, y,, t )  and 5, = $;(xk,  yk,  t ) .  Apply (2-11),,, . 
$k2(x,, yk ,  t )  SO that the norm preceding (2.12) with its factor of y," 

riate. When multiplying two functions F and G and using our 11 1 1  
sections of .,,O, 11 F G  / I  D 1 1  F 11 1 1  G 1 1 ,  where D comes from 

erivatives and is independent of F and G. (2.14) and (2.13) thus 
g Corollary, Morrow and Kodaira, p. 50, 
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Choose r, so large that (2Dr<b,/r,) < 1 .  Then 

For p > 0, more directly from (2.12) 

For p = 1, the summations belov: start at I .  = 1 since OU'(t) is of degree nt. 

For p 3 2, 

(I.9 jhlp(~k f kbk(~~,~~h,  t ) )  (@f17(t))PIlIt + I 

Hence for rn 3 1, by a straightforward summation over p, 

We now wish to estimate the size of rjr(xr, Y,)t7n+1, which from (2.9) 
satisfies 

rjk(xk,~k)t7'1f1 = [ $ ~ ( f j k ( ~ k , y k ? ~ ) > ~ ) ] t t t + l  

Since r is a cocycle and the norm /I I/ is eqilivalent in all coordinate 
systems, as in Morrow and Kodaira, we can choose 

with y sufficiently smalI so that in estimating 11 rjh all,, k,"t suffices 
to  make estimates only at points xj in I U? n U ,  n B I  . 
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Since fjk can be assumed to be holomorphic for (x, ,y , , t )~ U y  n U: 
there are suitable constants b,  and c, so that 

Our induction hypothesis is 

t )  E U,. The Q't,,,, are initially defined only on Uj n B rather than 
mbient space Uj  n ( t  = 0). Let q5jl,, also denote any holomorphic 
sion of (PjlP to the ambient space. Our estimates below will be in- 

ndent of the choice of extension. Since is holomorphic 

'/'Jl,l("J + '1,4'J + - $J1l l(xJ>~j)  
V I  r v z  

= CcvIv2(xj>.Pj)~ c 

in 11 y J Z ~ v l v " ~ j ,  yj) I / U ;  if xJ = yj  = 0 is not a singular 
e cvlv, comes from (2.17), these norms are independent 

of 4Jla to the ambient space. The case of x, = yj  = 0 
point rediices to the nonsing~~lar case after $jl,l is restricted 

of the two components of B. 11 yJ2cv,,,(xj, y,) I/ may be estimated 
ating ZPf  4 / ~ ~ P ~ y 1 ~ ~ v 1 v Z ( x J , 0 )  for appropriate p and q. In (2.18), we 
rentiate under the integral sign to get formulae for these derivatives. 

can be represented as a polynomial of degree O - 1 in 
/ gives the needed estimates of the coefficients and their 

tives. With E a constant depending on b, 

Using (2.19) in (2.17), 
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Summing over p, 

(2.20) 4y(xj V, Y j  5, t )  - $:(xi, Y j ,  t) 

Since 4T(xj, yj, t) has only terms of degree at most rn in t, 

- [4y(xj, ~j,t)Irn+ I 

Thus, from (2.20) and (2.16), 

DA (T) 
= EDA(T)([ v = ~  x (+)'I2 - I ) .  

Calculating as in Morrow and Kodaira, we use (2.21) and (2.15) to find a 
constant K2 such that 

Since rjk is a cocycle, there is, again as in Morrow and Kodaira, a constant 
K ,  such that 

4klrn+l, and djln,+ , depended on r,,. Thus, to complete the proof 
of Theorem 2.1, we only need to bound / @ n i t 1  1, 1 Qi,/n,+L 11, and 11 djlrrrtlll 

in terms of 11 Tjk 11, for then we just follow the calculations of Morrow and 
Kodaira. This bound is the analogue of Lemma 3.7 of [ l7 ,  p. 541 on B. 
It follows from the open mapping theorem and the following lemma. 

Lemma 2.2. Let H;(N(%), ,,,O) be the first cohomology group for 
the cover ?l = ( U i  n B )  in the sheaf ,,,% using cochains with finite norm. 
Then the natural map L :  H: (N(?l), ,,,O) -+ H1(B, ,,,B) is an isomorphism. 
In particular, H,'(N(%),,,,~) is finite dimensional and 6: C: -+ C: has 
dosed range. 
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Proof. Since % is a Leray cover, H1(N(%), ,*,8) e Hi(B, ,, ,8). L is onto, 
ce we may restrict representatives of the cohomology classes from 
On B}. We just need to show that L is injective. But if (wij) is a bounded 
ycle with (wij) = S(ui), then vi is in fact bounded for the following 
son. ~ e t  p ~ a I ~ i n ~ I .  T ~ ~ ~ ~ E I u ~ ~ B I ,  some j # i. wij = vi-vj. 
is bounded near p since it is defined in a neighborhood of p. wij is 
nded near p by hypothesis. Hence vi is bounded near p. Since IBI 

compact, I Ui n B I  has compact closure and thus ui is bounded. 

The next theorem is the expected existence and uniqueness theorem. 

heorem 2.3. Let B and C be as in Theorem 2.1. There exists w: L$? + Q, 
rmation of B, fixing C, such that p, of (2.2) is bijective. Any two 

are isomorphic near 0, i.e., if to': W' -+ Q' has pd bijective, then 
re are neighborhoods U and U' of 0 and 0' respectively with isomor- 

s f :  U + U' and g :  w-'(u) + (w')-'(u') such that f o w = w' o g. 

roof. Let us first prove existence. The singular points {pi}, 1 I i 5 m, 
B I  are isolated. Let {Ui), 1 i I m, be neighborhoods of the pi in B 
ch are the intersection of B with ambient polydiscs, B locally having 

as generator of its ideal. We can take {Ui) so that Ui n Uj = a, 
. Let be defined similarly to Ui with & c c Ui. Let U,= B - Uy='=,V,. 

I u ,  I is Stein [9, Theorem 1X.B. 10, p. 2701 and % = {U,}, 0 g i m, 
eray cover for any coherent sheaf over B f7, Satz 3, p. 171. 3 has the 
property that there are no 2-simplices. The cocycIe condition on 1- 
s is then vacuous. H1(B,,, ,8) is finite dimensional. Let el, an., 8, be 

es in Z1(N(21),,,,8) whose images in H1(B,,, ,8) form a basis. Let 
(Uf), 0 S i S m, be defined similarly to (U with U/c c Ui . The 

er space Q is {t = (t,,..., t,,) I I ti I < E }  with E to be later chosen 
tly small. We wish to integrate along 0 = t,O, + . . a  + t,8, for a 

(cf. [19]). E is to be sufficiently small so that under this integration 
UII remains within I U, n Ui 1 .  The integration will not necessarily 

fined for points in I U, n Ui I - I UA n Uf I .  We now verify that 
on along 0 can be done in a canonical manner. Since the integration 
anonical it will suffice to do things localIy. Near b E B, represent B 

n a polydisc A of dimension rand let w be a vector field on A which 
8. That is, for arbitrary g , ~  ,Ox, w(dg,) = 6(dgx),  mod.&^,. 

ose that o = Zwi(z)a/aiti, 1 5 i g I-. Integrating along w means 
the simultaneous ordinary differential equations 
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with initial conditions z(0) = z,. We denote the solution by z,(z). Given 
any relatively compact subset A' c c A, there is a z, such that for z T,, 

the map a, : z, + z,(z) is a biholomorphic map of A' to another subset & 
of A. We want a, to induce an isomorphism from A' n B to A" n B. We 
first need to show that $2; :. QB +-$/B. SO suppose f (2) E.@B. 

8 1  
g(z) = w(d f )  = Cwi(z) ;--. OZ, E - ~ G B .  

Let z = z,(-c) and regard both z ,  and z as variables. 

Expand f(z,(z)) in a power series in r about z = 0. 

By induction, dY/2zh~.$/B for all k.  Choosing a z, within the radius of 
convergence of (2.22), we get f(z) E.@B, z g zO. TO get a common z, for 
all f E . ~ / B ,  Z,E A', observe t h a t . g / ~  is coherent on A, and A' has com- 
pact closure in A. Thus a finite number o f f  will generate.J??~. It  suffice^ 
to take z, within the radius of convergence of these f. 

To check that the induced rnap on B is canonical, we must check what 
happens when a vector field 1- with ?.(dh,)e.@B,, all h , ~  .Ox, is added 
t o  w, As before, (w + 3,) (dlt) = ah(z,(z))/a~ = O(dh) + ?.(dh). Since 
;l(dh)~.g$B, the power series expansion in (2.22) is just changed by an 
element of.$/B. 

The inverse map to a, is given by integrating - w, so the induced m 
on B is an isomorphism. Also, a, is the identity on C if 8  E F(A', ,, 

Returning to our proof, we construct 98 via coordinate patches. S 
with (Uf x Q), 0 5 i 5 m. We must give the g,,, the transition morphis 
Let (x,, yo) = 2, be local coordinates in U;. For each t  E Q,  integrat 
along t , 8 ,  + ... + t,O, for time 1 gives a morphism (x0,yo) -t (@:(z 
@:(z0)). As t varies, @P(z,), a = 1,2, gives a function on ((x,, yo)) x 
g,, is defined by xi = @: (z,), y i  = @,'(z,), t = t .  There are no compatibil 
conditions to verify since no three patches intersect. I t  is necessary, howe 
to slightly modify the (Uf x Q), 1 =< i m, so that the map of gio on 
underlying topological spaces is well-defined. g,, maps I U& n U :  1 x 
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ub / x Q to an open subset Si of I Ui I x Q. Si lies "near" I Ub n of I x Q 
u;I x Q for Q small. Let Uf' be defined as was Ui  and Ui, with 

"IcIu;I and a l ~ ; l  x Q c S , .  Replace { U i x Q } , l  g i S rn, by 
;x Q) u S,), 1 j i g m. Retain Ub x Q in our cove1 for 9. 
: I U;  n u;[ x Q - Si is a well-defined change of coordinates. From 

ture of our construction, p, of (2.2) is an isomorphism. 
w for uniqueness. Given w and w', by Theorem 2.1, there is a holo- 

rphic f: U- U' and a g such that J'o o = w' o g. We only need to demon- 
t f and g are isomorphisms. But iff, represents the induced map 
t spaces at the origin, po = pb o f,. Hence f, is an isomorphism 

f has a holomorphic inverse near the origin. g also induces an iso- 
phism on the tangent spaces. Hence g can be induced locally by an 

bient isomorphism and thus has a local inverse. go : I Bo ( --+ I B i  I is a 
eomorphism and I Bo I is compact. Hence there is some neighborhood 
in 2 where g is an isomorphism. This neighborhood contains o - ' ( U )  
sufficiently small. 

53. Non-Local TIzeory 

ion 2, we shall only be considering analytic spaces B with 
uch that B can be expressed locally as { x a y b  = 0 )  and 

'y" = O}. Let 1 B, I be an irreducible component of I B  I .  Let Bi 
subspace of B given locally by { y  = 0 )  having 1 Bi I as its reduction. 
B. will be called a component of B. If B, is not reduced, then it has 

ated "topological" invariant ci, the Chern class of the normal 
of the embedding of 1 Bi 1 in any 2-dimensional ambient space 

Bi. ci may be intrinsically defined as follows: Let 9, be the 
I B, I . 9i / 9: is an invertible sheaf over I Bi I . c, equals the 

ass of the dual line bundle for 9i/9f. We shall sometimes write 
I . [ Bi I, the self-intersection number. 

a 3.1. Suppose that Bi is not reduced. Then ci is invariant under 
ed deformations of B. 

The deformation of 3 restricts to a deformation of ( 1  Bi I ,  .0/9;). 
n induces a deformation of both I Bi I and the dual line bundle 
. The coordinate transition functions depend holomorphically 
meter space coordinates t. In computing c,(t) from the transition 
s in, say, [9, p. 2491 we may use the local triviality of the de- 

n to see that the cocycles representing ci(t) depend holomorphically 
he cocycles are integer valued they are constant, i.e., independent 

rmation of I B, 1 as a differentiable manifold is trivial. Thus 
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the image of ci(t) in HZ( 1 Bi 1 ,  ; 2) is well-defined and depends continuously 
on t. Hence, ci(t) is independent of t. 

Definition 3.1. Let B and B' be compact one-dimensional analytic 
spaces which can be expressed locally as {xayb  = 0 )  and as ( x " ' ~ ~ '  = 0) 
respectively. B and B' are diffeomorphic as nonreduced spaces if there is 
a diifeomorphism 4:  I B ]  + I B' I such that 4 preserves the ci, if defined, 
and the (a,b). That is, 1 ~~l . 1 Bi 1 = 4 ( l  B i l l  . 4[l Bi 1) and if locally 
B = ( xayb  = 0 )  with I B , ]  = { y  = 0 )  and locally B' = (xa'yb'  = 0 )  with 
I B;] = $(I B, I )  = ( y  = 0 )  , then b = b'. If Bi = I B, 1 ,  there is no c, to 
preserve. 

Theorem 3.2. Let (B ,  C )  and (B1,C')  be pairs of analytic spaces. 
C and C' are closed subspaces of B and B' respectively. Let $: C -t C' be 
an isomorphism suc.'r that I I : I C I -, 1 C' 1 can be extended to a (iiffeeo- 
morphism 4 :  1 B I -+ I B '  I such that 4 is a diffeomorplzism of B and B' as 
nonreduced spaces, as in Definition 3.1. Then there is a finite sequence 
of pairs of analytic spaces (Bo,C) ,  (B,,  C),.-.,(B,-,, C) ,  (B,, C )  stlclz that 
there is a deformation of Bi into Bi+,,fixing C ,  0 2 i 2 n - 1, and suclt 
that (B,, C )  is isomorphic to (B ,C)  and (B,,, C )  is isomorphic fo  (B,C). 
C and C' have been identified via I). 

Proof. Fixing C will cause no  real difficulties. Mention of C will be 
omitted during this proof except for those few steps where a little special 
care is required. Otherwise, it will be assumed that C = @. The reader may 
find it helpful to look at the proof of Theorem 3.4 below as he reads this 
proof. 

Let I B ,  I ,..., I B, I be the irreducible components of I B  1 .  Let T I ,  -.., 
be the corresponding Teichmiiller spaces. (If C # @ and I B,  I c C,  repla 
T, by some point in Ti which corresponds to I Bi I.) Each Ti is a connect 
parameter space with projection map x i :  Ti-+ T, [5 ] .  The fibers of 
comprise all Riemann surfaces having the genus gi of Bi .  ni is complete 
each of the points in 7;. We now put the V ;  together to give a11 pos 
analytic spaces diReomorphic to I B 1 ,  The deformation space will be 
plete at all points. We first "mark" the singular points appearing in e 
I Bi 1 . Let m be the number of singular points in ] Bi I . Start with m 
Let ' Y f ,  = {(v,, v,) E Vi x Vi  1 ni(vl) = ni(v2)). Let w, be the projec 
onto the second factor in the cartesian product. w,  : 'YY, -t Vi is a de 
mation space with Riemann surfaces as fibers. Let A :  Ti -t I f ,  be 
diagonal map. Each fiber P in W ,  now has a marked point, na 
A(o,(F)). Each Riemann surface of genus gi with each of its points as 
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marked point appears as a fiber in YF,. The deformation of ( Bi I, fixing the 
marked point, is complete at each point. For m = 2, let YY", = {(v, w) 
E Y 1  x Yfl I xi(v) = xi o wl(w)). Let w,: V,  +?TI be projection onto 
the second factor. Again, the fibers are Riemann surfaces. Two points are 
marked as follows. A(w) = (w,(w), w) marks one point and A,(w) = (w,(w), 
A o o,(w)) marks another. To insure that the marked points are distinct, 
we just let Y f P =  {w I w # A o w,(w)) be the parameter space, instead of 
YF,. Y f T  is connected since we have just removed a proper subvariety 
from the connected manifoId YF, .  Continuing this construction, we even- 
tually reach in marked points for arbitrary nz. Let wi = ?Ti -+ Pi be this 
deformation for I B, 1 . Let A,, ..., A,, = Pi -++Ti be the mi marking maps. 

We can locally put the YYi together as follows. Each wi is locally trivial. 
Hence, we can find neighborhoods UiPj in W i  of the distinguished points 
in some fiber Fi such that Ui,j = {(w, pi) I I w I < E, I pi ( < E) with w = 0 
giving distinguished points on all fibers, I pi I < E .  We can also cover the rest 
of Fi by neighborhoods Si,, where wi is similarIy trivial, but where there 
are no distinguished points, and again I pi I < E. We put the $Ti together 
near the Fi as follows. Let P = x { I pi ( < E) , the cartesian product. Let 
p = (p,, - a ,  pa). Instead of Si,, = {(w, Pi) / 1 w / < E, I P i  1 < E, we have 
R i , k  = {(w, P) 1 I I < 6, 1 p 1 < E) . If Ui'.j' = {(w', pi') 1 1 W' ] < I pir I < E) has its distinguished points to be identified with those of UiVj, 
we form ULj= {(w,wl,p)Iwwf = 0, I w I < E ,  ( W ' ~ < E ,  / P I < & ) .  The 
changes of coordinates among the {R,,,) and {U,',j), all i, are extensions 
of those for the Y f i ,  all i. Since each Pi  is connected, given two points in 
x Pi, we can connect them by a path, and using compactness of the path, 
deform along this path via a finite sequence of analytic deformations. 
This finishes the proof of Theorem 3.2 when B is reduced. 

We can realize the above sequence of deformations as a sequence of 
deformations of nonreduced spaces as folIows. Replace one UiIj on each 
/ Bi / by UP, = {(w, w', p) 1 ew'  = 0, 1 w 1 < 2 ~ /  3, 1 w' 1 < E, 1 p 1 c a) and 
U: = {(w, p) (e l3  < ( w / < E, 1 p I < E}. We may assume that upj does not 
meet any other coordinate patch on I Bi ( except for u,'~. Look at {Ri,, x C), 
{UAj x C), {u,:~ x C), {u,:~ x C) with y a variable for C. If C is to be 
fixed and some of its components are not reduced, use the change of vari- 
ables which define C to define the change of coordinates involving y. 
Otherwise, if ci = IB,] - I Bi 1, let the change of variables from uiqj x C 
to U'j x C be given by p = p, w = w, yo = wcly,. For the other patches, 
let y = y be the change of variables for y. This creates line bundles over 
the fibers. {y, = 1) = {yo = wC') extends to a section of this line bundle 
over IB, 1 which has ci zeros, counting multiplicities. Hence the line bundle 
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has Chern class ci above I Bi I . The constructed deformations of the (reduced) 
total space of the line bundle induce a deformation of the nonreduced 
spaces carried on the 0-section of the line bundle. Thus, given two diffeo- 
morphic pairs (B, C) and (B', C), we have constructed a finite sequence of 
holomorphic deformations, fixing C, deforming (B,, C) into (B,, C), (B,, C) 
into (B,,C), - . a ,  (Bz,- ,, C )  into (B,,, C), ..., (B2A-l, C) into (Bz,,C), such 

is isomorphic to ( I B, I, I C I), (I B' 1, I C I) is isomorphic to 
( 1 ~ ~ ~  that I,] C I), ( BzU ] , I  C 1) is isomorphic to (1 I,/ C I), 1 5 v 5 I. - 1, 
and such that (B, C), (B', C) and all the (Bz,- ,, C), (Bzu,C) are diffeo- 
morphic to  each other. This reduces Theorem 3.2 to the case where Sl, is 
an analytic, rather than a differentiable isomorphism. Because C is not 
necessarily reduced, $ may be an extension of I t,b I without 4 having an 
extension which induces $. Now we give the needed special argument to 
reduce Theorem 3.2 to the case where 4 does have an extension which 
induces $, i.e,, to the case where I B I = I C  I .  

Let 1 B, I, ...,I Bt I be the irreducible components of / B I which are not 
subsets of I C I. We shall write down a connected deformation of B, fixing C, 
which has as fibers all possible analytic spaces S of the differentiable type of 
C u I B, 1 u ..- V 1 B, I and having C, IB,  1, ..., I B, 1 as subspaces. Namely, 
to specify an S it suffices to specify the map ri of C n I Bi I as a nonreduced 
subspace of C to C n I B,I as a nonreduced subspace of I Bi 1, 1 <= i S t t .  

Let (x, y )  be local coordinates for C, -$LC = yd, (0,O) E I CI n B, I. 
Let (yi) be local coordinates for I Bi I, O E  I C In 1 Bi I. Then li is given 
precisely by maps of the type y i  = a,y +nzy2  + ... 4 ud-ly"l with 
a ,  # 0. The set of ((l- 1)-tuples (a l , az ,  ..., a,-,) ,  a ,  # 0, serves as the 
connected parameter space for the deformation. 

Thus, finally, we may assume that I B I = I C I .  It now becomes possible 
to apply the results of Grauert [8, p. 3571 on extending isomorphisms of 
spaces. Let nz and m' be the ideal sheaves for the analytic spaces B(m) and 
B(ml) respectively. Let n and n' be the ideal sheaves for B(n) and R(nl) 
respectively, with B(n) and B(nl) diffeomorphic, aside from the ci, as non- 
reduced spaces. Suppose that B(m) and B(ntl) are subspaces of B(n) and 
B(n') respectively. 

Lemma 3.3 (Grauert). Given $: B(nz)+ B(ml), an isomorphism, 
there is a well-defined obstruction cls[c] E ~ ' ( 1  B I , d ~ ( n :  m)) to ex- 
tending $ to $: B(n)+ B(nf). CIS[<] is the distinguished element * in 
~ ' ( 1  B I,Ldc(n: m)) if and only if @ exists. Moreover, if 6: B(m) -, B(f7,) is 
a similar isomorphism, B(6) c B(n"), then there is an isomorphism 
y: B(fi) -+ B(nl) which extends $0 4 - I  if and only if cls [(I = cls[E]. 
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Lemma 3.3 is slightly stronger than [8, Satz 3, p. 3581, but its proof is 
the same. 

It follows from Lemma 3.3 that in order to construct all possible spaces 
B(n) with a given subspace B(m), it suffices to construct B(nf) and q5 for 
each element of ~ ' ( 1  B lYcd&(n: m)). We do this in a step-wise fashion. Let 
y; =,$A I Bi 1 . Let m = n$;', ri 2 1 and n = II$qi with si = ri, all 
i # j, and sj = r j  + 1 for one value j. We may assume that rn C&C. 
We start with 5 = 1. cj is given. 

From [8, p. 3591, (3.1) below is exact. 

Recall thatdV(n, m) z O:, where 0: is that subsheaf of U* on I Bj  1 whose 
sections near Bi n Bj are given by exp (3;'). H'(IB~,O,*) is an abelian group 
whose elements determine the normal bundle of the embedding of I ~ ~ ( n ' ) ( ,  
taking into account the other Bi. p(cls[t]) is the difference of the normal 
bundles for ( Bj(nl) [ and I B,(n) 1. 

act sequence of sheaves of abelian groups. 0, is the ideal sheaf of 
n I Bj I which vanish to order r, at 1 B, I n 1 Bj 1. 2' is that sub- 

e constant sheaf of integers which has a 0 stalk at the 1 Bi I n I Bj I. 
B ~ J , Z O  z HZ()  Bj 1 , Z ) .  Gp(cls[(]) E HZ()  B, 1 ,  Z) is the difference of 
d cj, which we are assuming is 0. Hence in order to achieve all possible 

of p(cls[t]), it suffices to look at the image of H i ( )  Bj1,l9,), the 
variety.As in the proof of Theorem 2.3, since I Bj I is one-dimensional 
cover Bj by a Leray cover FLI = {U,, U,). For use in the proof of 

3.4 below it will be useful to assume that U, is a small disc 
hoodofapo in t in  I B ~ I ~ I B ~ ~ ,  i # j.   hen = ] B ~ I - I V ~ I ,  

V, c To c U0 is a smaller disc neighborhood. Let w,,-..,w, be 
es in C1(N(U),Os) whose cohomology classes are a basis in 

I, Us). Let (x,y) be coordinates for U, with (y) =&I Bj 1 .  Let 
be ambient coordinates on U1 near U,. Thus (y,) =&I Bj 1 and 
x = x, are the transition functions for B. With C" (t,, .--, t,) as 

ter space, deform B by making x = x , ,  y = exp(t,wl + -.- + tIwA)y, 
nsition functions. This deformation, of course, changes the normal 
but retains the cj. However, we do achieve all possible bundles 

e given Chern class cj. 
be the tangent sheaf for 1 ~ ~ 1 .  In (3.1), by 18, p, 358],&(n,m) 
In, an invertible sheaf. We modify our current cover % of Bj to 
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create additional 1-simplices which, like U o  n U,, are annuli about the 
point in Bj n Bi . Let U-, r c Vo be a disk neighborhood of the 
point in 1 1 1 1  Bj n B, . Let V - ,  c c U-, . Let '111 = {U-,, Ub, U,} with 
UI, = Uo - P- ,. Then Ub n U, = U, A U, , so our previous deformation 
may be defined using B1. {U-,, Ub u U,) is a Leray cover for Bj. Essen- 
tially, we want to choose a basis of of H1(I Bj I ,,&(n, nt)) represented by 
cocycles supported on U-, n Ub and deform as above for H1(I Bj I,@,). 
But m/n affects -d/t(n,nz) and the n?/n changes as we vary using 
H'(IB~~,O,). For the proof of Theorem 3.4 below, it will be necessary 
to insure that the deformation using H1( I Bj I,.d~(n, 171)) is complete 
vis-A-vis H1( I Bj I ,&c(n, nz)) for all m/n. We proceed as follows. Let K 

be the canonical sheaf on I Bj 1. Let Y = K @ [Oj @ ~n/ii]*. By Serre 
duality, [20],  H1(IBjl,,r~~(n,m))%[r(lBjl,Y)]*. For the cover 
{U- ,, UI, U U,), the dual pairing is defined by inultiplying (tensoring) 
the section of Y with a 1-cocycle and then integrating the resulting 1-form 
about a homology basis. A basis for T(I Bj], 9') can always be chosen so 
that different elements of the basis have different order zeros at the point 
in I Bj I n I Bi I .  c ,  the Chern class of the line bundle corresponding to .Y, 
depends only on topological information. c gives an upper bound on the 
possible order of the zero of a section of 9' at I Bj I n I B, I .  Recalling that 
ri is the exponent of Yi in m and n, we see that the 1-cocycles on U-, n Ud 
given by xrt -' a/8x @ y, x r t A 2  a/dx @ y, ..., xrl- '-"a/ax @ y ,  will yield a 
matrix of maximal rank when evaluated against a basis of r ( l  BjI, 9"). 
Hence these cocycles project onto a basis of H1( I Bj @ ?n/n). To realize 
the deformations in these "directions," let (x, y) be coordinates in UA 
and (x,, y,) be coordinates in U-,. Create a deformation with C C f l  
= ( s , , .  +.,s,, ,) as parameter space via transition rules 

This mapping is biholomorphic on the ambient space for sufficiently small 
values of y and thus on the nonreduced subspace carried on I B, I .  

Observe that the construction of the previous paragraph could have 
been used to construct cocycles for ~ ' ( 1  B,.[,@,) which were determined 
solely by topological information and which map onto (rather than bi- 
jectively to) a basis of HI( ]  B ~ ] ,  @$). The deformation with C" as parameter 
space for H1(] Bj  1,OJ and the deformation with CCi as parameter space 
for HI([ Bj O m/n) may be combined to construct a deformation with 
C" CCtl as parameter space. Suppose a B' is given which is diffeo- 
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morphic to B and B1(m') % B(nz). Then B7(11') must appear as a fiber in 
this deformation, Indeed, apply Lemma 3.3, b ~ ~ t  first look at p(cls[t]) 
E H1(I Bj 1, .fAr (n, HZ)). By construction, there is a (t,,  ..., r,) E C% such 
that any fiber F above a point in (t, , . . . ,  t , )  x C C k '  has an obstruction 
cls[tl] such that p(c1s [S]) = p(cls[t']). The obstruction CIS[[] to ex- 
tending the initial isomorphism between F(17z) and B1(m) then has 
p(cls [(I) = 0. From (3.1), 

is an exact sequence of sets. Then CIS[[] is in the image of L. By construction, 
we may choose (s,, ..., s,,,) such that the obstr~~ction to extending the 
initial isomorphism between F(nz) and C ( ~ I ) ,  where C is the fiber for 
( t , ,  .-., tL ,  s,, ..., sc+ is CIS [(I. Then G(n) and B'(Iz') are isomorphic. 

To go from r j  = 1 to I., = 2 and so on, we just mimic the above con- 
struction, deforming again on small annuli lying within U -  ,n UL. In all, 
this gives a deformation with some Cv as a parameter space such that the 
fibers include all spaces which are diReomorphic to B and have the same 
underlying reduced space. C v  is connected, SO this concludes the proof of 
Theorem 3.2. 

The following proof of Theorem 3.4 includes another, much more 
complicated, proof of Theorem 2.3. 

Theorem 3.4. Let n: B -t Q be a defor.l~?atioil of B,  fixirzg C. I f  p, i s  
surjective, the11 p, is surjectiuefor all q s~rficiently ileal. to  0. 

Proof. We first verify the theorem for the deformation obtained by 
combining, locally, the deformations used in the proof of Theorem 3.3. 
Let us review the proof of Theorem 3.3 in terns of the image of p in 
H1(B, ,,,O). Temporarily, let O(B, C) denote ,-,0. 

Recall that I B, 1, ..., I Bi 1, .-., I B, I are the irreducible components of 1 B I  
which are not subsets of I C 1. 

is an exact sheaf sequence. The proof of Theorem 3.3 up to Lemma 3.3 is 
really concerned with showing that the image of p, in H1(I B I, 1 B, [U -.. u 
I B, I U C, C) is everything. 
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where 18, I means that I Bi / is omitted from the union and we have gen- 
eralized our notation by considering vector fields which vanish on the 
zero-dimensional space I Bi I n { 1 B ,  I U U I Bi 1 u ... u ] B, I U C) . 
(3.3) is readily verified by writing down the sheaves in local coordinates, 
as in (2.10). 

Thereis a sheaf 9, supported on the set I B i I n  { I B , ~  U... uIBiI U... 

u I B, I u I C 1) such that (3.4) is exact. -Y is independent of the point q in 
the parameter space. 

The Teichmiiller space deformation in the proof of Theorem 3.3 insures 
that the image of p, is onto H I ( \  Bit,, o(I Bi I,, $3)) for all q. The marking 
process and the separate argument for C # @ two paragraphs before 
Lemma 3.3 insure that, for all sufficiently small y, the image of p, con- 
tains 6(l?(l Bi I,, 9)). Since (3.4) is exact, the image of p, is onto 

Thus from (3.3) and (3.2) it suffices to show that the deformation has the 
image of p, onto H1(Bq, f3(Bq, I B ,  1, U ..- u I B,  1 ,  U C,) for all sufficiently 
small q. This is accomplished after the proof of Lemma 3.3 as follows. 
Let ( B j  l 2  be subspace of B with ideal sheaf 9;. Then 

is an exact sheaf sequence. Let m and n be the ideal sheaves for 
I B 1 / u . . .  u / B j I u . - . u j B , /  U C a n d  I B , ~ u . . .  U I B ~ ] ~ U - . .  u I B , (  U C  
respectively, Then &(n, m )  z ;:O @ tn/n and A ( n ,  m )  z Qd. Also, with 
the obvious notation 

0 -+ O j  @ mln + O(n, m) 4 Lo, -+ 0 

is an exact sheaf sequence. The construction in the proof of Theorem 3.2 
used only topological information and gave p, onto H1(B,,(Q,),) and 
H1(B,,(Oj @m/n),) for all q sufficiently near to 0. 

The rest of the proof proceeds similarly. In going from / B j  1' to I Bj 1 3 7  
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-&,(n,m) = 1. Let J f r j  be the sheaf of germs of sections of the normal 
bundle to 1 Bj 1. Then 

0 -  O j  @m/n + O ( i ~ , r n )  -tNj @ m/n + O  

is an exact sequence. O j  @ m/n and J f r j  @ m/n are sheaves of germs of 
of line bundles whose Chern classes are independent of q. Hence 

again it is possible to construct a deformation such that pq is onto 
~'(~,,(B(n,rn)),) for all sufficiently small q. Let w denote this specially 

deformation such that p,: T,-+ H1(B,,B(Bq, C,,)) is surjective 
for all sufficiently small q. 

Now look at the n: of the theorem's hypothesis. Since n is complete at 0 
heorern 2.1, w may be induced from n. The induced map on the para- 
r spaces, which are manifolds, is a submersion since the induced 

at the origin. Since the maps for p to the tangent 
mmute with the inducing map, p, is surjective for n, 

f of Theorem 2.3 that if w~ T(B,,,,B) then we can 
ically integrate along w to get an automorphism of B which induces 

identity on C. Let expo be that automorphism obtained by integrating 
time t = 1. The action on functions is given by (2.22), with t = 1. In 

et operation [o,  /ZIj(d f )  = o(d(ld f)) - R(d(w(~l f ))) 

mma 3.5. Let B be a compact analytic space and C a closed subspace. 
are arbitrarily small neighborhoods U and V of the origin in 

, ,,,B) such that given w, A E U ,  there is a E V such that expo o exp A 

oof. The proof is essentially a matter of checking convergence of the 
11-Hausdorff formula [13, pp. 111-1121. 

,,,,B) is finite dimensional since B is compact and ,,,0 is a coherent 
Thus the topology on T(B, ,,,B) is that of a finite dimensional 
ean space. Suppose that w and I have suitably small norm. Let o be 
by the Campell-HausdorE formula. By [13, p. 1121 this series for o 
rges for all sufficiently small o and A. We must verify that indeed 
o exp A = exp a. Consider some ambient polydisc A in which B is 
embedded. Let O be the tangent sheaf to A. Since T(B, ,,,B) is finite 
ional, there is a linear, bounded map p from T(B,,,,B) to r(A, 0) 

p(a) is an ambient vector field which locally induces a. Thus in 
a from an ambient vector field, use p(o), rather than applying the 

ell-Hausdorff formula to p(w) and p(l) (which need not converge). 
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Theorem 3.6. Let B and C be as in Theoreni 2.1. Then the group 
Aut(B: C) of autonzorpltisnzs of B, fixing C, is a Lie group with at most 
countably rnany connected conzponents, T(B,,,,O) is the Lie algebra fop 
Ant@: C) with exp given by integrating along a vector field for time 
t = 1. Let Def(B:C) be the paranzeter space for sowe rleforlnation of B, 
fixing C, whicll lras p, a n  isonzorphi.sr~t. Then in some suficiently s~nalt 
neighborhood U of 0 in Def(B:C), only at most colrntnhly niaiiy fibers 
(B,, C), q E U, are isotnorphic to the pair (B, C). 

Proof. When B is reduced, these results are classical or known from 
Teichmiiller space theory [5 ] .  The results also follow easily from classical 
information when C is not reduced but B differs from C only in that B has 
some additional reduced components. 

Let . X ~ B  = IT$;[, &C = nY:s, si I - , .  Fix (s,, ...,s,,). Our proof 
will be an induction on the multi-index (r, - s,,...,r,,-s,,) . As 
stated in the previous paragraph, we may start the induction with 
r, = max(1, q), all i. 

The sheaf:h(n: nz) of Grauert [8] plays the crucial role. 

First consider ri - s i  = I ,  r j  = s j , j  # i. We are assuming, by induction, 
that r i  2 2. Let n =.$/B, m =.$/c. T(B,.&(~: 112)) = Aut(B:C). 
There are two cases. For si 2 2, ,,,0 z ,,, .,O z . d / ( n :  111) and the second 
isomorphism is given by exp. Thus exp: T(B, ,>,O) z Aut(B:C), By Lemma 
3.3, the elements of H ' ( B , . ~ / ( I I :  111)) correspond in a one-to-one manner 
to the analytically distinct pairs (B', C), with B and B' diffeomorphic, 
Construct Def (B: C) via a coordinate cover as in the proof of Theorem 2.3. 
Because for s, 2 2 and o E B , C t J p r  (exp ~ ) * ( f )  = f + o(d f) ,  Def(B: C) 
may be identified with H'(B,c:;:/,L(~: m)). Thus all of the fibers above 
Def (B: C) are distinct. 

For si = 1, ri = 2, a different argument is needed. Recall from (3. 
its following paragraph the maps p : H1(~ , .~L / ( r t  : m)) -+ H ' ( B , . ~ ?  ( n ,  
and 6 : H1(B, 9:) -+ HZ (B, 2'). (n, nz) z 9,: The elemen 
H'(~, .~d, / (n:  nz)) whose image under 6 0  p is trivial correspond 
one-to-one manner t o  the analytically distinct pairs (B', C) with B an 
diffeomorphic. The rest of the proof will be similar to the genera1 indu 
step. Some simplifications for this proof have been omitted so that, 
minor modification, this proof may be used for the general induct 
step. 

Recall (3.1). Consider diagram (3.5) below. The top and bottom rows 
exact. 
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0 -+ r ( ~ , . d q n ,  m)) 

5 H1(B ,,,,,,, O) -$ H1(B, ,,,O) -% H1(B, 0,) -+ 0 
Def (B : C) 

\L 
H' ( ~ , - d / ( n ,  in)) H1(B,.rh(n : m ) ) e  H ' ( B , . ~ ~ L ( R ,  w)). 

the map taking q~ Def(B: C) to that element of ~ ' ( ~ , . ~ d / ( r z :  in)) 
corresponds to the analytic type of the fiber above q. Def(B: C) 

e constructed as in the proof of Theorem 2.3. Using the same cover, 
ay also integrate along cocycles for ,,,,,@ which give a basis of 
,, ,,O). This constructs a deformation of B, fixing C. L", not canonical, 
map induced by the completeness property, Theorem 2.1, of Def(B: C). 
ticular, 1" is only defined in some suitably small neighborhood of the 

i = n o  1" and L ' ,  which is canonical, is the tangent map at the 

is an isomorphism. exp3 is an isomorphism for some neighborhoods 
origins. 6' is the tangent map at the origin for 6. Also, p' is the tangent 
r p" = p o n at the origin. 
B: C) receives its topology as a subset of Aut(B: a) = Ant(B). 

topological group with a neighborhood of the identity given by 
hich indtlce elements lying within some neighborhood of the 

ty in Aut(1 BI) and whose lnditced map on the structure sheaves 
local coordinates (over I B  I )  to nearby local coordinates (over the 
of I B  I). Topologize t l l (~, . l rh ' (n:  in)) by the strongest topology that 
z coAtinuoi1s for all B' diffeomorphic to B. By Theorem 3.4, for a 

ly small neighborhood of O E  Def(B: C), this corresponds to  taking 
tient topology on Def(B: C) via the equivalence relation of having 
hic fibers. n is an open mapping near each point where Def(B: C) 

plete. p" is holomorphic so p is continuous. A11 the other maps in (3.5) 
so continuous. 
the tangent map for p", is surjective so that p" is locally a sub- 

et * denote the d~stinguished elements in H ' ( B , ~ ~ ~ L ( ! ( ~ ,  l tz)) ,  

n :  in)) and H ' ( B , . ~ ~ , ( T I , ~ ~ ) ) ,  (p")-I(*) is a submanifold M in 
: C). We want to show that n + ' (  * ) is countable. n e t (  * ) c M, so 
suffices to show that only countably many elements of M project 
im L" c M by exactness and commrttativity. Since the tangent map, 
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L ' ,  for I" has maximal rank, H ' ( B , ~ ( ~ ,  m)) locally fibers as a submersion 
onto M. The dimension of the fibers is the dimension of ker 1' = im6'. 
We must show that only countably many of these fibers project onto * .  

The proof of the following lemma is straightforward and will be omitted. 

Lemma 3.7. Let 1 -+ 9 -%9 %s'f+ 1 be an exact sequence of sheaves 
of non-abeIian groups over a paracompact Hausdorfi space X .  Let F be a 
sheaf of abelian groups. Then 2 operates on . F  via conjugation in 9, i,e., 
if h E X', f E FX, h( f) = LC' (p- ( h )  o 1( f ) o [[I - '(A)] - ') is well defined. 
6: T ( X ,  2) -+ H1(X ,  ,F) satisfies 6 ( c  o t l )  = 6 ( c )  + c (6(d)) .  Hence 
1 1 :  b+  h(b) + 617 is a group action of r(X, .X')  on H 1 ( X , . F ) .  Let 1 , :  

H 1 ( X , F )  -+ H 1 ( X ,  3). Then ~ , ( a )  = t , ( b )  if and only if there is an element 
h E T'(X,;/?') such that a = h(b)  + 611. 

Return now to the proof of Theorem 3.6. The map i is given by mapping 
points of H ~ ( B , ~ ~ d ( n , r ? z ) )  into their orbits under the group action of 
Lemma 3.7. B~l t  given any Lie group action on a manifold, each orbit, 
while not necessarily closed, is the image of a one-to-one immersion of a 
manifold S .  The orbit of * in H ' ( B , , ~ C ( ~ , ~ I ) )  is the image of 
T ( B , . ~ ( ~ ,  rn)) under 6 ,  by exactness. Let G be the isotropy subgroup for 
E H ' ( B , ~ L ( ~ ,  in)). G = 6- ' (  * ) by Lemma 3.7. S = T ( B , . $ ~ U ( ~ ,  m))/C 

and 6 induces the immersion having the orbit of r: as the image of S. Since 
6' is the tangent map for 6 at the identity element in r ( ~ , d , ( n , n l ) ,  
ker 6' = 8, the Lie algebra for G. Also, the dimension of S equals the 
dimension of the image of 6'. But the dimension of the image of 6' is also 
the dimension of the fibers of the map I " .  Points within the same fiber lie 
in the same orbit since the points have the same image in H'(B,.~&L(II: I,?)). 
Thus the fibers above C1( * ) correspond to disjoint open subsets of S. 
Since I ' ( ~ , ~ ( n , n z ) )  has a countable topology, S has a countable topology 
and only countably many fibers may appear in the orbit of *, as was to be 
shown. We also know that G has at most countably many components 
and that (3.6) below is exact and commutative. 

A Aut ( B :  C )  -!& G -+ 1 

We must show that exp, is an isomorphism for suitably small neighborhoods 
of OET(B, , ,~O)  and of 1 eAut(B: C) and that Aut(B: C) has countably 
many connected components. We know these facts for exp, and exp,. 
Let a E V, V to be a suitably small neighborhood of 1 €Aut(B: C).  Then 
b = p(a) = exp,(P) for some p near O E  6. fi = p1(y) for some y near 0 
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e p' is a linear map. Let c = exp,(y), p(ac-I) = 1. ac-I = ~ ( d )  and d 
be near 1. d = expi(@. Then exp2(t1(b)) = ac -' = a[exp, (y)]-l. 

Lemma 3.5, there is an cc near O E  r(B, B,Ce) such that a = exp, (a). 
s exp, is onto some neighborhood of the identity and Aut(B: C) is a 
e-dimensional Lie group. Exactness in the bottom row gives that 
B: C) has countably many components. 

for the general induction step. Let n =&B = n q ,  n' =&B' 
' I  m =&c = nY:' with si S ri l ri and ri = r: for all but one 

j, of i and r j  = r j +  1. By induction, we may assume the theorem 
d for the pairs (B', C) and (B, B') and that I B I = I B' I .  
el the I B,I by their indices i ,  1 g i l n. LetAut,(B: C) be that subset 
t(B: C) which preserves the labeling. Autl(B: C) is an open and 

normal subgroup of Aut (B: C) . Aut, (B: C)/Aut(B: C) can be 
ht of as a subgroup of the (finite) group of permutations on n letters. 
(B: C) denote the set of analytically distinct pairs (BV,C) with B" 
morphic to B as in Definition 3.1 and Theorem 3.2. Let S,(B: C) 
e the set of analytically distinct pairs (B", C) with B" labeled and B" 
morphic to B. That is, (B", C) and (B", C) are the same element of 

: C) if there is an isomorphism (1,: B"+ B such that 4 = 1 @ I :  I B",] 
I and (1, extends the identity map on C. By disregarding the labeling, 

t a canonical map o: Sl(B: C)-+S(B: C). oV1(a )  has at most n! 
nts. o is one-to-one if I B 1 = I C I. 

fore, for L 2, H ' ( B , ~ G ( ~ :  ti')) - S(B: B'). For r; = 1, 
s isomorphic to that subset of H~(B, .&c(~  : n')) whose elements 
1 image under the S o p of (3.1) and its following paragraph. 
below, the upper row is an exact sequence of abelian groups. 

wer row is an exact sequence of pointed sets. The given structure 
beling on (B, B', C) determine the distinguished elements. Exactness 

e verified below. 
6 ' 0 -+ T(B,,,,#B) 1 T(B,B,cB) r(B'B',CO) + 

0 -+ Aut (B: B') -L Aut,(B: C) 5 Aut1(B1: C) % 

Def(B: B') 11; Def(B: C) % Def(B': C) 

1 . 3  

4 S(B: B') .!+ S,(B: C) 5 S1(B1: C) , 
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i and p are defined in the obvious way. Exactness at Aut(B: B'),  
Aut,(B: C) and S,(B: C) is immediate. For r ,  E Aut, (B': C), 6(4) is the 
obstruction of Lemma 3.3 to extending to an automorphism of B. Thus 
we have exactness at Aut,(Br: C). More explicitly, 6 may be defined as 
follows. 4 extends to local isomorphisms di: Ui -+ 5, where U, and V,  are 
open subsets of B. 4,:' o 4i is an automorphism of Ui n Uj which is the 
identity on B'. { g j d l o  (bi) is a set of coordinate changes for a($), 
(4,: U i - t  K) are compatible with the coordinate changes for 6(9) and 
are the identity on C. Hence (+i) establishes an isomorphism betweell 
L O  J(4) and *, the given structure on (B, C). Hence r o S = * ,  Let 

= (B,B1) and suppose that i($) = *.  Then there is an i som~rphis l~  
4: 8-t B which is the identity on C. Since B' c B, (I, induces an isomor- 
phism 6: B' -t 4(B1). In fact, &B') = B' since 4 maps each I Bf I to itself 
by our definition of S,(B: C). 6($-') = ~,h and we have exactness at S(B: B'). 

n,, n2, and 71, are like the 71 of (3.5). 1" and p" are the (noncanonicat) 
induced maps of Theorem 2.1. 1' and p' are the tangent maps for 1" and p" 
at the distinguished points. 6" is (noncanonically) defined in some neigh- 
borhood of 1 as follows: n ~Ai i t , (B ' :  C). a = exp, (a). a inay be locally 
extended to vector fields a, E T'(Ui,,,,O). The map u + ai is chosen to be 
linear. exp(- aj) o exp(ai) provides changes of coordinates which are the 
identity on B'. Thus (a} provides a parameter space for a deformation of B, 
fixing B'. 6" is the induced map of Theorem 2.1. 6' is the tangent map for 6" 
at  1 (compare with (3.16) below). Also n,  o 6" = 6. (3.7) is a commutative 
diagram. 

By Theorem 3.4, we may assume that Def(B: B'), Def(B: C) and 
Def(B1: C) are complete at each of their points. o,: S,(B: C) -+ S(B:C) 
and o3 : S,(B1: C) 4 S(B1: C) forget about the labeling. It suffices to prove 
that (a ,  o 71,)-I(*) is countable. p' is onto, so we may assume that p" is a 
submersion. By the induction hypothesis, (u ,  o 71,)- ' ( *) is countable. 
Thus it suffices to prove that for s E (o,  o n3)-I(*), only countably many 
points in (PI')-' (s) are isomorphic to * = (B,C). But if pU(t) = s and t is 
isomorphic to (B, C), we may just change the labeling and regard t as the 
distinguished point in S,(B: C) and s as the distinguished point in S,(B1: C). 
Def(B: C) and Def(BJ : C) are effectively parametrized at t and s respec- 
tively since they are complete there and have the small& possible dimension. 
Thus we may keep n, and n,, change base points and change the rest of 
(3.7), and always take s = 0. It thus suffices to prove only that countably 
many points in (p")-'(0) are isomorphic (without labeling) to (B: C). 
- 

o, I ( * )  is finite. Hence, by another change of base points, it suffices to 
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prove only that countably many points in (p")-'(0) are isomorphic (with 
labeling) to (B: C). 

We may take Def(B: B') to be connected. Then p" o P(Def(B: B')) 
c ?I;'(*) is connected. But n;'(*) is countable by the induction hypothe- 
sis. Hence p" o 1" (Def (B: B')) = 0. That is, Def(B : B') is mapped by L" 
into the fiber (p")-'(0) = M of the submersion p". By exactness of the top 
row, L" is a submersion onto M. 

The needed analogue of Lemma 3.7 is given by the following group 
action of Aut,(B1: C) on S(B: B') . Let $ = cls [t] E S(B: B') c 
~ l ( ~ , . r h ( n :  11')).  Then $ is the obstruction to extending the identity iso- 
morphism 5:  B' -, Br to  an isomorphism between B and B"; t,b = (B", B'). 
If asAut,(B': C), a($) is the obstruction to extending the isomorphism 
a o t to an isomorphism between B and B". Then Sa = a(1) and i($) = L($') 
if and only if there is an a fAut,(B1: C) such that $' = a($). 

For I.,! 2_ 2, nl is an isomorphism and the rest of the proof is just like the 
proof using (3.5). 

For r; = 1, n, is not necessarily an isomorphism, S(B: B') in fact need 
not even be a manifold so special care is needed. We do know that is an 
open mapping. I B I has at least two irreducible components because we 
are at the second step at least in the induction process and I.; = 1. Then 
in (3.5), I'(~,.'dt(n, n')) z T(B, 8:) = 1. There is no group action and 1 is 
an injection. Def(B: B') may be constructed more explicitly as follows. 
% = {U,, U,} is a Leray cover of Bj with I U, I a disc and I U, I = I Bj I - To, 
V o c c  1 U, I .  Let (x, y) be ambient local coordinates for U, with 
1 ~ ~ 1  = {y = 0} . L et gl(x),...,g,(x) be cocycles in Ci(N('LI),O,) which 
project onto a basis of H l(B,Cn,). Let yf,(x)a /ax, .. ., yfU(x)a /ax be cocycles 
in C1(N('LI), .,,, 0 )  which project onto a basis of H1(B,. .. O). Let (yf (x)d/ax, 
Y ~ ( x ) ~ I ~ Y )  denote (~f~(xx)aiax, ..-, yL(x)a/ax, ~ g , ( x ) a / a ~ ,  ..., ~g,(x)a lay). 
Then (yf(x)d/ax, yg(x)a/ay) projects onto a basis of H1(B,,,,.%). Let 
(t, 7) = (ti, -. ', t,,, zl, . .., 7") be the parameter space for Def (B : B'). From 
(2.22), the change of coordinates for the fiber above ( t , z )  is given by 

Bound I z I so that for fixed t, p" is an injection. Def(B: B') is complete near 
(0,O). Suppose that Def(B: B') is also effectively parametrized at q = ( t ,  z). 
Think of z as fixed. 
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represents a u-tuple of cohomology classes in H1(Bq,,~,,~O). Since Def(B: B') 
is complete and effectively parametrized at q ,  

in fact represents a basis of H1(B,, ,,,, 43) xi H ' ( B , , ~ G ( ~ , ~ ' ) ) .  But H1(B,, 
d & ( n ,  n')), like HI(B,&/(~, nt)),isinjected into S(B: B') c ~'(~,r*/ud(t,:n')). 
Thus, if n(q) = n(ql), then q = q'. We have thus shown that n is injective 
and hence a homeomorphism on that subset of Def(B: B') where 
Def(B: B') is effectively parametrized. Also, since the fibers of p" are closed 
and fpU)-"1) is embedded in ~ ' ( ~ ~ , r A d ( n :  n')) via n and since n is an open 
map, each point in S(B: B') is dosed. 

Now return to (3.7) and the Lie group action of Aut,(B1: C) on S(B: B'), 
We need to show that only countably many of the fibers of 1" are mapped 
by n, t o  the orbit of * .  Since each point in S(B: B') is closed, 6-I(*) 
= G c Aut,(B1: C), the isotropy subgroup of a ,  is closed. S =Aut,(B7: C)/G 
is then a manifold which is injected into S(B: B'), Let Orb(*)  denote the 
orbit of *. On U ,  a suitably small neighborhood of L €Autl(B1: C), 6 
factors through 6", which has 6' as its tangent map. n, o S"(s) E Orb(*).  All 
points in Orb (*)  are isomorphic so Def(B: B') is effectively parametrized 
at points of n ~ ' ( 0 r b  (a)). As shown above, n, : n; ' (orb(*)) -+ Orb (6) 
is a homeomorphism onto its image. In particular, 6" = n,-'o 6 is uniquely 
determined. S"(G) = 0. Let 8 be the Lie algebra of G. Then 8 c kerS1, 
If t E ker 6', t = pl(w) by exactness. 6 o exp, ( t )  = 6 o p o exp, (w) - * . Thus 
G 2 T, the one-parameter subgroup generated by t. Then t E 8, 8 = ker 6'. 

Hence 6" immerses U/G, an open subset of S, into n;'(orb(*)). 
d i m s  = dim imd'. Changing the basepoint in S(B1: B), but keeping 
Def(B: B'), we see that 6' (Orb(*)) is the image of a one-to-one immer- 
sion of an open subset of S. (n, o L")-' (* )  c n;'(orb(a)) by exactness 
of the bottom row of (3.7). But the fibers of L" have the dimension o 
keri' = imS', which is also the dimension of S. Hence the fibers of 1" 
above n;'(a) correspond to disjoint open subsets of S .  Since S has a 
countable topology, there are only countably many fibers. 

The proof that Aut,(B: C) has countably many components is the same 
as for (3.6). 

Proposition 3.8. Let B be a compact analytic space which can locall 
be expressed vih //B = (xayb). Then there is a two-dimensional manifol 
M in which B can be embedded as a subspace. 
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proof. Let 3 be the cover of B constructed in the proof of Theorem 2.3. 
I u,] is a one-dimensional Stein manifold. All obstructions to extending 
maps in [8, p. 3571 vanish over U,. Thus U o  can be realized as a subset 
of 1 u0I x C. The transition f~inctions on B for going from U o  c I U,i x C to Ui 
are of the form yi = yf (x,y),  xi=g(x,y) with f ( x ,  0 )  # 0 and dg/dx(x,O) $0. 
Then these coordinate changes on B are locally isomorphisms between 
some ambient open sets in I U o  I x C and Ai 3 U i .  Since the change 
of coordinates is one-to-one on I B I ,  i t  is one-to-one on some ambient open 
sets. Then the ambient neighborhoods patch together to form a manifold M. 
There are no compatibility conditions to check since no three distinct U ,  
intersect. 

pose that r is a given weighted graph with specified genera for the 
s. We can constrirct as follows a two-dimensional complex manifold 
h a reduced compact analytic subset A such that T is the weighted 
for A. Let A1,...,A,, be Riemann surfaces with the genera of the 
s. Embed each Ai in a line bundle Li whose Chern class is given by 

eight of the vertex Ai in T. If x is a local coordinate for Ai and y is a 
coordinate for L, L is locaIly { ( x , ~ ) l  1x1 < I, l y l  < 1) and A ,  = { y  = 0) .  
chieve the appropriate graph, we plumb the Li  together in the obvious 
er, i.e., if Li is locally (x i , y i )  and Lj is locally (xj, y,), we let y j  = xi ,  
yi be the change of coordinates at a point of Ai n Aj.  Locally A is 
= 0) = { x j y j  = 0). This construction is in general not canonical. 
ny suchembedding A c M an embedding obtained by plumbing from I?. 

rem 3.9. Let B = (B ,  @) be as in Theorem 2.1. Let  A c M be 
ed by plumbing f rom the weighted graplz for B in tlze particular 

to be described below. Suppose that all the weights ure negative. 
be that nonreduced subspace of M suclz that 1 P I  = A and P is 
orphic to B. Then  all B' dijfeotnorpl~ic to B are analytically 

lent to B if and only i f  H1(P,,B) = 0. Tltere is arz algorithtn for 
lining whether H1(P,,B) = 0. 

Proof. We will exhibit the algorithm in the course of the proof. 

the moment, P may be obtained from any plumbing construction. 

(P,.B) # 0, then Theorem 3,6 shows that there is a B" diffeomorphic 
rid hence to  B) but such that B is not analytically equivalent to P. 
ust show that H1(P,,6) = 0 implies that P and B' are analytically 
nt. If H1(P,,8) = 0, then necessarily, (3.2) and (3.3), each Ai has 
and may contain at most three points in u Aj ,  j # i. These prop- 
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erties must also hold for Bf ,  so I B' I z 1 PI. We can now omit the prime 
in B'. Let V, be a small open neighborhood of B,, the nonreduced component 
of B carried on I B, I .  Then q n 6 n Vk = a, i, j, k distinct. By a straight- 
forward generalization of the Mayer-Vietoris sequence [ I ,  p. 2361 

(3.8) o -+ T(B, ,e) 4 Q r( y., ,o) 5 Q r( 6 n vj, ,e) 
i i i 6 j  

is an exact sequence. t is induced by the restriction maps and p ( @ a , )  
(K n V,) = a, - a j  . 

Let Wi be a for P, i.e., W, is an open subset of P which is a small 
neighborhood of the image of 1 B, I under the isomorphism I B I % 1 P 1 ,  
We now show that for suitably chosen Vi and Wi, Wi and t;- are isomorphic. 
Consider first the case Ai A i  = - 1. Then ambient neighborhoods of 
I B,I in the manifold of Proposition 3.8 and of ]Pi I in the manifold of the 
plumbing construction can be achieved as a result of a quadratic trans- 
formation 18, pp. 364-3651, Upon bIowing down I Bi I and I Pi  1, the other 
irreducible components meeting I Bi ( and ( Pi I become transversely inter- 
secting submanifolds. There are at most three other irreducible components. 
Any two plane curve singularities arising from three transversely inter- 
secting manifolds are isomorphic. Thus suitable neighborhoods of the 
blown down singularities are isomorphic via an ambient isomorphism, 
Hence Vi and Wi can be made isomorphic, 

For Ai . Ai 5 - 2, we wish to apply the obstruction theory of Grauert 
[8, p. 3571 to extend the isomorphisms of the reduced spaces. Let 
rn=Jf;&(V;:/, n= .Yf"&l~] .  Then ~ ~ ( ~ , ~ d ( n : m ) ) = O  if s z l .  
Also, since 1 Vi 1 n I Bj 1, i # j ,  is a Stein manifold, the obstructions to 
extending the isomorphism to V;. IT'' also vanish. Thus it suffices to 
establish an isomorphism between the spaces V,(=Fi & IV, I) = (I V, 1, 
yi~/9jLJ&/ V;: 1 ) and %(Y,~J%I  @ 1 ) . Since we are only interested in < 
and as some neighborhoods of 1 Bi 1 and 1 Pi 1, r/;:(~,.&lV, I), for our 
purposes, differs only from I Bi 1' = (I Bi 1, ,,U/Y?) in specifying the inter- 
section points of I Bi 1 n 1 Bj 1, i # j, and the tangent direction in which 
I B~ 1 meets 1 B, 1. In ~($~.&lli( I), the Aj = (Pj are fibers and the local 
defining equation for a singular point is xy = 0, (y) =&A,, (x) =,&A,. 
Since A, is the Riemann sphere and Ai . Ai 5 0, the values of a section 
s of T @ N*, where T is the tangent bundle of Ai and N is the normal 
bundle of the embedding of Ai, can be specified at any three points. In par- 
ticular, we can specify values at each point of (Ai n ~ ~ ) . ~ ( 9 2 , 9 ~ )  is 
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isomorphic to the sheaf of germs of sections of T @ N*. If ( x ,  y) are local 
ambient coordinates for A,, then the automorphism specified by s is of the 
form x -+ x + ys(x), y -t y. Thus by a suitable choice of s, the fiber 
{ ,  = 0 )  = Aj  may be mapped to a submanifold with any tangent direction 
different from that of Ai = { y  = 0).  Thus W, and can be chosen to be 
isomorphic. 

Let us now show that H1(K., ,O) = 0. Let PC! be the sheaf of germs of holo- 
rnorphic 1-forms and let be the structure sheaf for P. = YLm(,n, ,a). 
Let 8, = (yL,~(pC!, 9r), v 2 0. P O / B l  may be identified with the sheaf Ys 
01 germs of sections of the tangent bundle to I Pi I = A, which vanish at the 
points of {Ai  n A j ) ,  i # j. Hence H1(W,,,8/8,) = 0 and it suffices to show 
that H1(W,,B1) = 0. Let J f r  be the sheaf of germs of sections of N, the 
normal bundle of the embedding of Ai. There is a canonical exact sequence, 
v l  1, 

(3.9) 0 4 F,@ 9:/9:"+ 8,/8,+ -+ J f r  @ 9r/#rf 4 0. 

rom Chern class considerations over Ai, H1(wi,YS @ s ~ / $ Y +  l )  = 
. , N  @ 9f6:/91+')=0. Thus it suffices to prove that H1(W,, 0,)=0 for 

e sufficiently large v. For v sufficiently large, 8, is supported on 
n Aj) ,  j # i, whose underlying space is Stein, Hence [7, Satz 3, p. 171, 
8 , )  = 0. Hence H1(Wi, ,B) = 0. 
s in (3.8), the term @iH1(K,B8) vanishes. In (3.8), let the l/i decrease 

gh a fundamental sequence of neighborhoods of the Bi and take the 
ct limit. Taking direct limits preserves exactness, so 

Temporarily choose local coordinates at a point of I B ~ ]  n I Bj I so that 
= (xnyb), 1 Bi 1 = { y  = 0}  . Let 0(x ,  y) be the ring of convergent 

power series in the two variables x and y. Modulo xayb, T(Bi n Bj,  may 
be represented near (0,O) as xU(x, y)  a/dx @ y0(x, y) a/dy. I'(Bi, ,8) includes 
all vector fields v of the following form. v E ybx ~ ( x ,  y) a/ax @ ybO(x, y) 
a/ay for ( x ,  y)  near (0,O) E ] B ~  I n I Bj  1 and v = 0 near other points in 1 Bi 1, 
Thus in computing H1(B,,0) from (3.10) it suffices to consider only those 
elements in @ i ,  T(Bi n Bj ,  ,O) of the form 



86 RICE UNIVERSITY STUDIES 

The elements of (3.11) form a finite dimensional vector space. 
For the particular P we are about to  construct, i t  is a simple matter 

to list the elements of r(Pi,,%) whose images in (3.11) are non-zero. 
Namely, think of (pi/ as C U { a ) ,  Put the (at most) three points of 
{ I  Pil n I P, I), j # i ,  successively at 0, co, and 1.  I f  I PiI . [ P i ]  = - V ,  

the change of coordinates on W,, with (x, y) coordinates near O E  I pi/ and 
(x, ,  y,)  coordinates near co E 1 P, 1 is chosen to be x = 1 / x,,  y = s,"y,, 
The plumbing constr~~ction coordinates near 1 are to be (x - I) and y. 

There are three cases, corresponding to whether 1 P,l n 1 P j  I ) has one, 
two, o r  three points in it. (The case of no points corresponds to one vertex 
in the graph and all obstructions to extending maps vanish.) With the only 
point of { I Pi I n I P j  1 )  at 0, the relevant basis of sections of r(P,,,O) for 
non-zero image in (3.11) is the appropriate finite subset of the following list. 
The list is derived using the 0, from (3.9). 

a a a x -  x2 -- vxy- ax ax 3)' 

For two points in {I P, 1 n Ipj I}, we have the following sublist of (3.12). 
We also give the vector fields in (x,, y,)  coordinates. The last element of 
the odd numbered rows is lost because of the vanishing condition at x, = 0. 
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Finally, for three points, the odd numbered rows again have one fewer 
element than in (3.13). In particular, there is no first row. 

a a a 
yxV(x  - 1) - = - y,x,(l - x,)  - + vy4(1 - x,)  - ax  ay1 ayl 

H'(P,,O) being 0 is equivalent to the condition that the elements of 
(3.12)-(3.14) map onto a spanning set for the direct sum over all singular 
points of I P I of the elements of (3.11). This is the desired algorithm. It is 
a finite process because the elements in (3.12)-(3.14) having factors yb may 
be disregarded. 

Letdg/I3 = 14,". Let s = (st,.-.,s,,), 1 6 si 5 ri and B(s) 7 ( ~ B / , ~ O / I I Y ; ~ ) .  
Since ,(,,O is a quotient of &I, if H1(P,,8) = 0 ,  then H ' ( P ( s ) , ~ ( , ) ~ )  = 0 for 
all s 5 5; = (r , ,  ..., r,,). T o  prove that any B diffeomorphic to P is analyti- 

equivalent to P, we will proceed by induction on the si. We induct 
he formally stronger statement that s,(P(s)) = *. We start our in- 

n at s = (2,  ..., 2). To prove that if B(s), s = (2,  ..., 2), is diffeomorphic 
), then B(s) is analytically equivalent to P(s) via an isomorphism 
preserves the labeling, i t  suffices by Theorem 2.1 and Theorem 3.2 
e that H ' (B(s),  ,(,,B) = 0 for all B(s). We know that H1(P(s),,(,,O) = 0. 

se (3.10) t o  calculate H1(B(s),,(,,O) and see how the images of elements 
12)-(3.14) differ in (3.11) for B(s) and P(s). For B(s), Vi w Wi in (3.8) 
e transition rule for T/,n Vj need not be given by the plumbing trans- 
tion. However I B1 = {x,yi  = 0 )  = { x j y j  = 0 )  because V, = W;: and 
Wj. Thus the change of coordinates for B(s) is of the form 

For P(s), the change of coordinates is x j  = yi, y j  = xi. The relevant terms 
in (3.12)-(3.14) for B(s) are those with coefficients x ,  y, or xy. Look at the 
linear terms. The change of coordinates in (3.15) may add higher order 
terms to the linear terms, but the eEect on the linear terms (interchanging x 
and y) is exactly the same as the effect of the change of coordinates for P(s). 
Therefore (3.12)-(3.14) produce the same linear terms in (3.11) for B(s) 
and P(s). In P(s), the xy terms in (3.11) can only come from the first row in 
(3.12) or the third row in (3.12)-(3.13) or the second grouping in (3.14). 
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H1(P(s),,,,,B) = 0 so the linear terms in (3.12)-(3.14) map onto the linear 
terms in (3.11) and the xy-terms in (3.11) must be the image of the following 
terms. An A, = I Pi I = I BiI of the form (3.12) contributes both xy d/ay 
(from x2 a/ax - vxy dlay) and xy ;/ax. Modulo the ideal (x2, y2), the B(s) 
and P(s) change of coordinates just differ in effect on xy a/ay and xy a/ax by 
multiplication by a non-zero constant. Thus they do not affect the span of 
the image. An A, of the form (3.13) contributes xy a/ax, which equals 0 in 
(3.11) in the (x,, y,) system, and x,y, alax,. Again, the span of these contri- 
butions is the same for B(s) and P(s). For v 2 3, (3.14) similarly contributes 
xy a/dx, (x - 1)y a/(a(x - I)), x1 y, alax,, and each of these vector fields 
may be chosen to vanish in the other coordinate systems, modulo (x2, y2). 
v = 1 and v = 2 must be treated separately. For v = 1, the one relevant 
section in T(Ai, ,(,,8) has the foIIowing images in the (x, y), (x - I, y), and 
(x,, y,) systems, modulo second order terms besides xy: 

For H1(P(s),p(s,B) to be zero, two more terms involving xya/ ax, 
(x - l)ya/a(x - I), or x,y,a/dx, are needed and these can only come 
from a n  Aj of the (3.12) type. The P(s) and B(s) change of coordinates just 
differ in effect by multiplication by a non-zero constant. Thus if 
H'(P(S),~(,,B) = 0, then also for B(s) the xyalax terms in (3.11) for the 
three points in { A ,  n Aj) ,  Ai.Ai = - 1, j # i, are in the image of terms 
from (3.12)---(3.14). Finally, if v = - Ai. Ai = - 2, there are two sections 

a 
- xy- = (x - ax - 

3 I ) ~  -- r 0 and 
a(x - 1) 

As for v = 1, for H1(P(~),p(,,B) to be zero, one more xy dldx term is needed 
and this can only come from an Aj of the (3.12) type. Again the xyalax terms 
in (3.11) for the three points in ( A i n  Aj], j # i, are in the span of terms 
from (3.12)-(3.14) for B(s) as well as for P(s). 

The linear terms for B(s) are, as noted, changed from those for P(s) 
only by the addition of quadratic terms. Hence if H1(P(s),,(,,$) = 0, then 
also H1(B(s), ,(,,0) = 0. Furthermore, s,(P(s)) has only one element. 

This particular P achieved by plumbing has an important special property 
that is independent of s. In computing H1(P(s), ,(,,$), the linear terms act in- 
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dependently of the higher order terms.Any linear terms in the kernel of p in 
(3.10) and (3.8) give rise to an ambient vector field on M. Integration along 
this field gives an automorphism of P(s) for all s, not just s = (2, -..,2). 
Locally, the automorphism is (x, y) +(a,x, boy), for appropriate non-zero 
a, and bob These automorphisms form a subgroup L = L(s) c Aut,(P(s)). 
Let 9 ( s )  be the Lie algebra of L(s). Let d , ( s )  = d ( s )  be the Lie subalgebra 
of T(P(s),,(,)B) given by the higher order (i.e., non-linear) terms of 
(3.12)-(3.14) which are in the kernel of p. &(s) is the Lie algebra for the 
closed normal subgroup M,(s)c Aut, (P(s)) whose induced map on I Pj [ is 
either the identity or a parabolic map with I Pj 1 n 1 Pk 1, some necessarily 
unique k # j, as its only fixed point. As vector spaces, T(P(s),,(,,O) sz P(s )  
@ dl(s). 

Now for the general induction argument starting at s = (2, ..., 2). First 
look at one Ai such that {Air\ A]), j # i ,  has only one point in it. Let 
f = 9, -. .4, ,  =,&A. d~(4 f f1 f2 :4F$2)  = 0, all k 2 0. This means 
that any diffeomorphic spaces with ideals of the form 4/f2, k 2 0, are 
analytically equivalent. Next look at another Ail such that {Ai ,n  Aj), 
j # i t ,  has only one point. If A i n  Air # a ,  then A = A, u A,, and the 
following special argument suffices to finish the proof of the theorem. For 
A, .Ai g - 2, alternately extend isomorphisms to 4;4:,'l and to 4t+l4:? l, 
k = 2,3,-a*. For Ai . Ai = -1, blow down Ai. A,. becomes a curve A' 
with A' - A' 5 0. Again all obstructions to extending isomorphisms 
vanish. By [16, Lemma 6.11, p. 1131 we can perform a quadratic trans- 
formation to restore A, and obtain the desired analytic equivalencz between 
diffeomorphic spaces. We can thus assume that A i n  A,, = a. Then 
Ld~(9:,f19ff2: 4 r , 9 3 2 )  = 0, all u 2 0, k >= 0. Thus any diffeomorphic 
spaces with ideals of the form 4 r r 4 f f 2 ,  u 2 0, k 2 0 are analytically 
equivalent. Continuing similarly, we see that B(s') and P(sl) are analytically 
equivalent for any {sl), so long as {Ain Aj), j # i ,  has only one point. 

Now let s = (sl, s,) and s' = (s;, .-., s;) satisfy s.i = s;, j # i, and 
si + l = si.  We may assume by the previous paragraph that {Ai n Aj), 
j # i, has at Ieast two points. We assume by induction that Sl(P(s')) = *. 
We must prove that Sl(P(s)) = *. Look at the bottom row in (3.7); B and 
B' in (3.7) are replaced by P(s) and P(st), C = @. By induction, 
S1(P(s1)) = * = P(sl). By exactness, it suffices to show that 6 is surjective. 

We will in fact show that 6 o exp,(&(sl)) = S(P(s): P(sr)). 

S(P(s) : P(st)) z H'(P(S)~-"%.~~ : n')) sz H '(P(s), p(,,,p(,,,O) 

since si 3 2. 
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The map 8 o exp, may be given as follows. T(P(s l ) ,  ,(,r,O) is the kernel 
of the map p from (3.12&(3.14) to (3.11). w e  T(P(sJ),,(,,,O) corresponding 
to ( I V ~ E  l?(Wj,p(s,)O)) from (3.12)-(3.14) is then locally represented as 
follows. Suppose that (s, y) are local coordinates, as in (3.11), near a point 
in I P ~ ~ , ~ ] P ~ I .  .Qpi(s) = ( ) I " ) .  .%'P,(s') = ( y S 1 - I ) .  %/Pj(s) =.%/PJ(s1) 
= (xsi). w ,  is a linear combination of terms from (3.12)-(3.14). oJ is a linear 
combination of terms from (3.12)-(3.14) with the roles of x and y reversed. 
( o j )  E kerp means that the terms in ( I ) ,  and w j  with coefficients x"yUy u < s j ,  
u < si- I coincide. Let AIJ(5) be a small polydisc neighborhood of (0,O) 
in P,(s) u PJ(s),  Let R,(s) be the open subset of P,(s) carried on the regular 
points of I P  I .  A term in wi with coefficient x")," with u 2 s j  vanishes on 
PJ(sl) .  w includes this term on R,(s f )  and AjJ ( s l )  but not on RJ(sl) .  S1(w) will 
not include this term. A term in w, with 1) 2 s ,  - I is included on P,(sl) 
and AtJ(s1) but not on Pi(sl). A1(w) will include this term when ti = s, - 1. 
We thus have local extensions for w to sections of ,(,,O. Denote these 
extensions by wk E l?(RA(s), pQO) and w i j  E r(Ai,(s) ,  P f  r ,O).  At least for ru near 
O E  H1(P(.ql), p ( s , , B ) ,  on R,(s) n Ai i ( s ) ,  

(3.16) S a exp,(w) = exp ( - (I), ,) o exp(wj) 

= exp(oi - w , ~  + +[ - (1lij, wi] + (higher order brackefs)) 

by the Campell-Nausdorff formula [13, pp, I 11-1 123. 
Now look at H1(P(s),,(,,,p(,g,U) and the top row of (3.7). In terms of the 

Leray cover 'II = {Rj(s),Ai,(.s)], on R,(s)n A,,($), cS'(6.1) = cls[toi - wij l .  
Let .F be the tangent sheaf to 1 Pi and let . I ' be the sheaf of germ5 
of sections of the normal bundle of the embedding of' 1 Pi 1 . Let 
11 =.%?P(s) and n' = $/p(sl). Recall the canonical exact sequence 

Thus 

is an exact sequence. Now examine (3.16) more closely for o E u//L(sl) and 
for our cover 2t. ojj ditrers from oi on R,(s) n Ai,(s) only by an expression 
of the form 
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ecall that ( A ,  n A,), j # i, has at least two points. Thus o, comes from 
rlns from (3.13) or (3.14). wi has no terms of the form ux dldx + py aldy, 
,I E C, since o E J&'(S). mi has no terms of the form uyx" djap, 14 2 1, since 
o terms of this form appear in (3.13)-(3.14). Thus [ - oij,wi] defines a 

cls [ - oi j ,o , ]  E kerp, p from (3.17). The higher order 
kets of (3.16) all involve [ - oil ,  o,]. Since [ - o,,, a , ]  is of the form 
' f (x) ajax, with f a holornorphic function of x on I R,(s) n A,,(s) ( , 

the higher brackets vanish. Finally, cls [ - mi,, w,] = CIS [w, - oil,  w,] 
), w] in the following natural sense. S'(0) = cls[w, - wij]. 
are both extensions of w to I'(R,(s),,(,)O) and /Z is any cocycle 
, P(s),P(s,~O) such that p(c1s [L]) = p o S'(o), then [A, wf] and 

. ,o i l  are cohomologous in C1(N(%), ,~,,,,(,,,O). Namely, for fixed ,?,, 
depends only on the yxUa/ax terms of of and these are the same for 

wi and o,'. For fixed wi, changing ( a , -  w,,) by elements of 

0) or F(R,(s), ,(,),,(,,)O) respectively. Thus cls [A, of] 
ls[i.]. Finally, changing CIS[?.] by an element in 

17) corresponds to modifying i by a cochain of the 
with f a holomorphic fiinction of x on I R,(s) n Aij(s) I. 

not change [A,of]. Thus, cls[- wi,,o,] = [p o S1(w), o] 

the isomorphism S(P(s): P(sl)) % H1(P(~),p~,~,p~,~)O), for o E J?'(s1), 

[ p  o 6'(u), o] E ker p. 

, ,O) = 0 by the theorem's hypothesis. There is a natural surjective 

,O -+ with coherent kernel over P. Thus also H1(P(s), ,(,)O) = 0. 
e 6' of (3.7) is surjective, Recall that 9 ( s f )  c ker6'. Hence 6': 
)+  H1(P(~),p(st),p(,~O) is surjective. All the terms in an eIement of 

have coefficients of total degree at Ieast two. Hence the Lie bracket 
'on in &'(st) strictly increases the total degree. For fixed sf ,  the 

degrees occurring in (3.12)-(3.14) are bounded. Hence, any suf- 
high number of successive Lie bracket operations results in 0 and 

s') is nilpotent. Then exp, : &(s') -, M,(st) maps onto the connected 
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component M0(s f )  of the identity in M,(sr). In (3.7), 6 :  Aut, (P(s l ) )  -+ S(P(s): 
P(sl))  is given by 6(g)  = g ( * ) ,  the image of * under the action of g. a ' ,  the 
tangent map for 6 ,  maps J l ( s r )  onto U'(P(s),p~s.,,p~s,O). Hence the orbit 
of a under the action of M 0 ( s f )  is an open subset of S(P(s): P(sl)). Then 
6 o exp, has an open image. 

In (3.17), p o 6 o exp, = p o  6' by (3.18). 6' is surjective so p o  6' 
= p o 6 o exp, is surjective. Fix a class a e H1(P(s), N @ n'Jil), 
p o 6 o exp, = p o 6' is a linear map so that ( p  o 6 o exp,) -'(a) is a non- 
empty affine subspace of J l ( s 1 ) .  p U ' ( a )  is an affine subspace of 
H'(P(S) ,~~ , ) ,~ ( ,~ )O) .  6 o exp,: ( p  o 6 o exp,)-'(a) -, p-'(a) is an affine 
map by (3.18) and has an open image since 6 o exp, ( d l ( s ) )  is open. Thus 
8 o exp,: ( p  o 6 o exp,)-'(a) -+ p- ' (a)  is surjective. Thus 6 o exp, and 
necessarily 6 is surjective. 

Recall the following definition [ a ] ,  [22] ,  [%I. 

Definition 3.2. Let p be a normal two-dimensional singularity. The11 
p is  taut if all normal two-dimensional singularities having the same minima] 
weighted dual graph as has p are isomorphic. 

The following theorem provides an algorithm for determining whether 
or not a weighted dual graph r is the dual graph of a taut singularity. 

Theorem 3.10. Let r be a ~ l u a l  weighted graph which comes fi-on1 a 
negative definite intersection nzatrix and represents n tniilirnal resollctio~l 
among resolutions such that the irreducible conzponenfs A, ,  1 S i 5 11, 

of the exceptional set are non-singultrr anrl have only nornzal crossiiigs. 
Let I- = ( r , ,  .-., r,,) be chosen sujicientlp large so illat i f B ( r )  is analytic all!^ 
eq~tivalent to Br(r) ,  then B(r) and B1(r)  (leternline isoltiorphic nornlal 
singularities. Let A c M be the plumbing construction of Theorem 3.9. 
Then r is the dual graph of a taut singularity i fand only ifH1(P(r),p(r,fl)=O. 

Proof. Minimal resolutions of the type of this theorem are unique [I4j ,  
[3, Lemma, p. 811, [9, Theorem 5.12, p. 911. r may be chosen by [9, Theorem 
6.20, p. 1321. The theorem is now an immediate consequence of Theorem 3.9 
and Proposition 3.8. 

$4. Discussion, Problems, and Exanlples 

Let A c M be the exceptional set in the resolution of a singularity p. Then 
r, the weighted dual graph, and the genera of the Ai  determine both the 
topological and differentiable type of the embedding of A in M (where we 
always assume non-singular embeddings of the A; and normal crossings). 
In  dealing with nonreduced spaces it seems more natural to use the dif- 
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ferentiable category. The definition of diffeomorphism in Definition 3.1 is 
equivalent to requiring that B and B' be diffeomorphic under the natural 
definitions of being nonreduced differentiable spaces. Reduced spaces 
have been studied by Spallek [21] and Ephraim [6 ] .  Section 3 can be 
entirely rephrased in terms of putting complex analytic structures on non- 
reduced spaces with differentiable structures. Theorem 3.9 gives a necessary 
and sufficient condition for a differentiable structure of a certain type to  
carry a unique analytic structure. One would like to relate this to the 
singularity p itself. I t  is not known on just how much of the structure of p 
r depends. Certainly r is determined by the analytic structure of p. r is 
probably also determined by the differentiable structure on p. However, 
this would stilI be much too strong a structure because Ephrainl has shown 
[6] that in many cases there are at most two analytic structures on a given 

rentiable structure. T, on the other hand, is not determined by the 
logical type of p, although counterexamples seem to be quite scarce. 
only examples known to the author come from homeomorphic lens 

ces. [4]  has a f ~ ~ l l e r  discussion. 
relationship between Def(A(r)), which preserves T, and the defor- 

Ion of p itself, which can change T, (as studied by Schlessinger, Tjurina, 
, and Elhik) is not fully understood. 
ps "countable" in Theorem 3.6 can be replaced by "finite." 

follow, each vertex has genus 0. 
not imply rationality (see [2] for rationality). The simplest 
ularities with dual weighted graphs like (4.1). 

the wi large and negative; say, wi 2 - 10. The corresponding sin- 
'ties are taut but not rational. 
ucture jumping is quite a common phenomenon. In fact, look at 
). If the singularity obtained by plumbing has automorphisms arising 
the linear terms in (3.12)-(3.14), then a different change of coordinates 

destroys these automorphisms will usually lower the dimension of 
For the weighted graph (4.2) with, say, wi 5 - 10, there are 

two distinct singularities. One is obtained by plumbing and 
= C. The other singularity has H1(B, ,O) = 0. S(B) = {B,P) 

, B, and {B, P )  as its open subsets. 
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(4.3) is the dual graph of a cusp singularity, a$ defined by Hirzebr~~ch, 
(4.3) consists of a polygon with weights at the n vertices. The singular~t~ 
of (4.3) is taut. 

Graphs of the form (4.3) are the only graphs which are not trees which 
can possibly be graphs for taut singularities. In particular, using [ICY], i f  
the first Betti number of a deleted good neighborhood of p is greater than 1, 
then p is not taut. For a first Betti number equal to 1,  [%3] contains a 
characterization of the possible fundamental groups for taut singularities. 
If the graph r is a tree and the associated singularity is taut, then can 
have at most two vertices of degree 3. More complete results will appear 
in "Taut two-dimensional Singularities," to be published in  the 
Mnthematisclte Annalet~.  
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