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41. Let X be a closed oriented smooth (= class Cm) surface of genus 
g > 1 . Its Teichmiiller space T(X) is a contractible complex manifold of 
dimension n = 3g - 3 whose points correspond to certain eq~~ivalence 
classes of complex structures on X .  T(X) can be embedded as a bounded 
ope11 set in Cn [2]; the image is a domain of holomorphy [3]. 

Eells and the author have recently constructed a certain principal fibre 
bundle over T(X) [5]. Its total space M(X) has a natural complex structure 
which makes the projection 

1~oIomorpl~ic. There are holon~orphic local cross-sections ([I], [5]). I11 
addition, the bundle (1) is topologically trivial because T(X) is contractible. 
Since T(X) is a Stein manifold it is natural to  look for a (global)1~olomorphic 
cross-section. Oddly enough, the search is fruitless. We shall prove 

Theorem 1. The Jibre bundle (1) does not have n lzolon~orphic cross- 
section. 

A somewhat stronger theorem was proved in [4], but the connectiotl 
between that theorem and Theorem 1 was left rather vague. Here we provide 
more details. For general accounts of Teichmiiller theory see [I], [6], 
and [9]. 

$2. First we describe the fibre bundle (1). The total space M(X) is the 
set of smooth almost complex (= complex) structures on X which induce 
its given orientation. M(X) is give11 the Cm topology. Let Dif&,(X) be the 
topological group of diffeomorphisms of X which are homotopic to the 
identity, again with the Cm topology. The natural action 
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is defined by letting p - f  be the pullback of the complex structure p by the 
diffeomorphism f .  The Teichmiiller space T(X) is defined to be the orbit 
space M(X)/Diffo(X), with quotient topology. 

Theorem 2. T h e  quotierzt nzap (1) PI-oduced b y  the actiorz (2) is a 
tr ivial f ibre bundle. The total space M(X), base space T(X), afzrl struct~cre 
group Diffo(X) of that  bundle are al l  contractible. 

Suitable versions of Theorem 2 can be formulated for any compact 
surface; the group Diff,(X) always has a compact Lie group as strong 
deformation retract. For details see the author's joint papers with Eells [5] 
and Schatz [7] .  

S3. Consider now a cross-section 

of (I), and choose a complex structure ,~i, in the image of s .  According to 
the uniformization theorem, there is a covering of X by the open unit disc 
A = { z  E C ;  ( z I < 1) which .is holomorphic with respect to  ,uo . The cover 
group r is a discrete group of l~olon~orphic automorphisms of A.  The 
complex structures on X lift to  the r-invariant complex structures on A.  
These are in bijective corresponde~lce with the C" functions k t :  A  -+ C 
which satisfy the conditions 

(3) 1 /+I 1 < 1 for all z E A  

(Under that correspondence, a fi~nction f:A-+C is holomorphic with re- 
spect to ,LL if and o111y if J' = / i f ,. Thus / !  = 0 corresponds to the standard 
complex structure on A.) 

Let A(T) be the complex FrCchet space of C" ffunctions on A which 
satisfy (4), and M ( T )  the convex set of functions in A(r) which satisfy (3). 
Since X is compact, I- has a compact fundamental domain D ,  and con- 
dition (3) is equivalent to  

Thus M ( r )  is open in A(r)  (with respect to the C" topology), and the 
identificatioll of M(X) with M(T) makes M(X) a complex FrCchet manifold. 
(More precisely, that identification is biholomorphic with respect to  the 



natural complex structure on M(X), which is independent of the choice 
of p, and r . )  

From now on we identify M(X) with M(r) .  That means we regard the 
projectioi~ (1) as defined on M(T) and the cross-section s as a map into 
M(T). By our construction of T, 0 G M(T) belongs to the image of s .  

54. Now let Lm(r) be the Banach space of bounded measurable func- 
tions on A which satisfy (4), with the Lm norm. Because r has a compact 
fundamental domain, there is a continuous inclusion map j : A(r)  + Lm(T) . 
Under j ,M(r)  is mapped into the open unit ball Mm(r)  of Lm(T), The 
theory of quasiconformal mappings tells us that the map (1) factors through 
Mm(T); there is a commutative diagram 

whose bottom row is the identity. Moreover, all the above maps are holo- 
morphic. The differential of n" at 0 is known; its kernel is 

where Q(r) is the space of holomorphic functions 4 on A which satisfy 

(4  0y)(y')2 = 4 for all y ~ r  

(see [I] and [2]) Q(F) is a complex vector space of dimension 3g - 3; it 
is the lift to A of the space of holomorphic quadratic differentials on A/T, 

55. Suppose the cross-section s: T(X) -+ M(F) is holomorphic. Then 
so is the map h :  Mm(r )  -+ Mm(T) given by 

It is easy to see that h(0) = 0 ,  nm . h = n m ,  and h2 = h .  Let 
k1(0) = P : Lm(T) -+ Lm(T) . Then 

(6) kernel P = kernel(nm)'(0) = Q(T)I, 
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(5) and (6) are consequences of the chain rule; (7) follows from the Cauchy 
derivative estimate or by Schwarz's lemma. To prove Theorem 1 we will 
show that the above properties are contradictory. P cannot exist, For the 
proof we need a 

Definition. p E Lm(T) is a Hamilton diflerential if ( 1  y 1 1  5 11 p + 11 for 
all I E Q(T)l. 

Lemma 1. Every p in the image of P is a Hamilton dvferential. 

Proof. If p = P p  and I E Q(T)'-, then 

Lemma 2. (Hamilton). Every Hamilton dzferential p = / I  p 1 )  1 4 114, 
some $ E Q ( ~ ) .  

Proof (from [S]). By assumption, 11 !J 11 equals the norm of p as a func- 
tional on Q(T). Since Q(T) has finite dimension, there is a non zero 4 in 
Q(T) with 

" ,. 

Since 4 # 0 a.e., Lemma 2 follows. 
We can conclude immediately that P does not take its values in j (A(T)),  

for each 4 E Q(T) has zeros, and p = 14 114 is not smooth at the zeros 
of 4. Theorem 1 follows at once, but we prefer to  show that P cannot 
even take its values in Lm(T). (Hence the map 71") has no holomorphic 
cross-section.) The point is that Q(T) and the image of P both have di- 
mension 3g - 3 2 3 .  But each function in the image of P has constant 
modulus, by Lemmas 1 and 2 .  That contradicts the obvious 

Lemma 3. Let V be a cornplex vector space of functions of constant 
modulus. Then  dim V 5 1. 

Remark. We are grateful to  Hugo Rossi for Lemma 3 and for pointing 
out that our argument proves this 

Proposition. Let E be any complex linear subspace of L1 such that 
(a) 1 <dimE < co; 
(b) i f  ~ E E ,  then either 4 = 0 a.e. or 4 f 0 a.e. 

Then there is no linear map P :  Lm -t L* with P2 = P, 11 P I /  I 1 , and 
kernel P = E ~ .  In other words the natural map from Lm onto E" cannot 
be split by a linear isometry. 
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