ON HOLOMORPHIC CROSS-SECTIONS IN TEICHMÜLLER SPACES, II*

by Clifford J. Earle

§1. Let X be a closed oriented smooth (= class C^{∞}) surface of genus g > 1. Its Teichmüller space T(X) is a contractible complex manifold of dimension n = 3g - 3 whose points correspond to certain equivalence classes of complex structures on X. T(X) can be embedded as a bounded open set in $C^n [2]$; the image is a domain of holomorphy [3].

Eells and the author have recently constructed a certain principal fibre bundle over T(X) [5]. Its total space M(X) has a natural complex structure which makes the projection

$$\pi: M(X) \to T(X)$$

holomorphic. There are holomorphic local cross-sections ([1], [5]). In addition, the bundle (1) is topologically trivial because T(X) is contractible. Since T(X) is a Stein manifold it is natural to look for a (global) holomorphic cross-section. Oddly enough, the search is fruitless. We shall prove

Theorem 1. The fibre bundle (1) does not have a holomorphic cross-section.

A somewhat stronger theorem was proved in [4], but the connection between that theorem and Theorem 1 was left rather vague. Here we provide more details. For general accounts of Teichmüller theory see [1], [6], and [9].

§2. First we describe the fibre bundle (1). The total space M(X) is the set of smooth almost complex (= complex) structures on X which induce its given orientation. M(X) is given the C^{∞} topology. Let $Diff_0(X)$ be the topological group of diffeomorphisms of X which are homotopic to the identity, again with the C^{∞} topology. The natural action

^{*} This research was supported in part by the United States Air Force through grant number 49-638-1591.

(2)
$$M(X) \times \text{Diff}_0(X) \to M(X)$$

is defined by letting $\mu \cdot f$ be the pullback of the complex structure μ by the diffeomorphism f. The Teichmüller space T(X) is defined to be the orbit space $M(X)/\text{Diff}_0(X)$, with quotient topology.

Theorem 2. The quotient map (1) produced by the action (2) is a trivial fibre bundle. The total space M(X), base space T(X), and structure group $Diff_0(X)$ of that bundle are all contractible.

Suitable versions of Theorem 2 can be formulated for any compact surface; the group $\operatorname{Diff}_0(X)$ always has a compact Lie group as strong deformation retract. For details see the author's joint papers with Eells [5] and Schatz [7].

§3. Consider now a cross-section

$$s: T(X) \to M(X)$$

of (1), and choose a complex structure μ_0 in the image of s. According to the uniformization theorem, there is a covering of X by the open unit disc $\Delta = \{z \in C; |z| < 1\}$ which is holomorphic with respect to μ_0 . The cover group Γ is a discrete group of holomorphic automorphisms of Δ . The complex structures on X lift to the Γ -invariant complex structures on Δ . These are in bijective correspondence with the C^{∞} functions $\mu: \Delta \to C$ which satisfy the conditions

(3)
$$|\mu(z)| < 1$$
 for all $z \in \Delta$

(Under that correspondence, a function $f: \Delta \to C$ is holomorphic with respect to μ if and only if $f_{\bar{z}} = \mu f_z$. Thus $\mu = 0$ corresponds to the standard complex structure on Δ .)

Let $A(\Gamma)$ be the complex Fréchet space of C^{∞} functions on Δ which satisfy (4), and $M(\Gamma)$ the convex set of functions in $A(\Gamma)$ which satisfy (3). Since X is compact, Γ has a compact fundamental domain D, and condition (3) is equivalent to

$$\sup\{|\mu(z)|; z \in D\} < 1.$$

Thus $M(\Gamma)$ is open in $A(\Gamma)$ (with respect to the C^{∞} topology), and the identification of M(X) with $M(\Gamma)$ makes M(X) a complex Fréchet manifold. (More precisely, that identification is biholomorphic with respect to the

natural complex structure on M(X), which is independent of the choice of μ_0 and Γ .)

From now on we identify M(X) with $M(\Gamma)$. That means we regard the projection (1) as defined on $M(\Gamma)$ and the cross-section s as a map into $M(\Gamma)$. By our construction of Γ , $0 \in M(\Gamma)$ belongs to the image of s.

§4. Now let $L^{\infty}(\Gamma)$ be the Banach space of bounded measurable functions on Δ which satisfy (4), with the L^{∞} norm. Because Γ has a compact fundamental domain, there is a continuous inclusion map $j: A(\Gamma) \to L^{\infty}(\Gamma)$. Under $j, M(\Gamma)$ is mapped into the open unit ball $M^{\infty}(\Gamma)$ of $L^{\infty}(\Gamma)$. The theory of quasiconformal mappings tells us that the map (1) factors through $M^{\infty}(\Gamma)$; there is a commutative diagram

$$M(\Gamma) \xrightarrow{j} M^{\infty}(\Gamma)$$

$$\pi \downarrow \qquad \qquad \downarrow \pi^{\infty}$$

$$T(X) \xrightarrow{1} T(X)$$

whose bottom row is the identity. Moreover, all the above maps are holomorphic. The differential of π^{∞} at 0 is known; its kernel is

$$Q(\Gamma)^\perp = \big\{ \mu \in L^\infty(\Gamma) \colon \int_{\Delta/\Gamma} \ \mu \phi \, = \, 0 \, , \quad \text{all } \phi \in Q(\Gamma) \big\}$$

where $Q(\Gamma)$ is the space of holomorphic functions ϕ on Δ which satisfy

$$(\phi \circ \gamma)(\gamma')^2 = \phi$$
 for all $\gamma \in \Gamma$

(see [1] and [2]). $Q(\Gamma)$ is a complex vector space of dimension 3g-3; it is the lift to Δ of the space of holomorphic quadratic differentials on Δ/Γ .

§5. Suppose the cross-section $s: T(X) \to M(\Gamma)$ is holomorphic. Then so is the map $h: M^{\infty}(\Gamma) \to M^{\infty}(\Gamma)$ given by

$$h = j \circ s \circ \pi^{\infty}$$
.

It is easy to see that h(0)=0, $\pi^{\infty} \circ h=\pi^{\infty}$, and $h^2=h$. Let $h'(0)=P\colon L^{\infty}(\Gamma)\to L^{\infty}(\Gamma)$. Then

$$(5) P^2 = P,$$

(6)
$$\operatorname{kernel} P = \operatorname{kernel}(\pi^{\infty})'(0) = Q(\Gamma)^{\perp},$$

$$||P|| \leq 1.$$

(5) and (6) are consequences of the chain rule; (7) follows from the Cauchy derivative estimate or by Schwarz's lemma. To prove Theorem 1 we will show that the above properties are contradictory. P cannot exist. For the proof we need a

Definition. $\mu \in L^{\infty}(\Gamma)$ is a Hamilton differential if $\|\mu\| \leq \|\mu + \lambda\|$ for all $\lambda \in O(\Gamma)^{\perp}$.

Lemma 1. Every μ in the image of P is a Hamilton differential.

Proof. If $\mu = P\mu$ and $\lambda \in Q(\Gamma)^{\perp}$, then

$$\|\mu\| = \|P\mu\| = \|P(\mu + \lambda)\| \le \|\mu + \lambda\|.$$

Lemma 2. (Hamilton). Every Hamilton differential $\mu = \|\mu\| |\phi|/\phi$, some $\phi \in Q(\Gamma)$.

Proof (from [8]). By assumption, $\|\mu\|$ equals the norm of μ as a functional on $Q(\Gamma)$. Since $Q(\Gamma)$ has finite dimension, there is a non zero ϕ in $Q(\Gamma)$ with

$$\int_{\Lambda/\Gamma} \mu \phi = \int_{\Lambda/\Gamma} \|\mu\| |\phi|.$$

Since $\phi \neq 0$ a.e., Lemma 2 follows.

We can conclude immediately that P does not take its values in $j(A(\Gamma))$, for each $\phi \in Q(\Gamma)$ has zeros, and $\mu = |\phi|/\phi$ is not smooth at the zeros of ϕ . Theorem 1 follows at once, but we prefer to show that P cannot even take its values in $L^{\infty}(\Gamma)$. (Hence the map π^{∞} has no holomorphic cross-section.) The point is that $Q(\Gamma)$ and the image of P both have dimension $3g-3 \ge 3$. But each function in the image of P has constant modulus, by Lemmas 1 and 2. That contradicts the obvious

Lemma 3. Let V be a complex vector space of functions of constant modulus. Then $\dim V \leq 1$.

Remark. We are grateful to Hugo Rossi for Lemma 3 and for pointing out that our argument proves this

Proposition. Let E be any complex linear subspace of L^1 such that

- (a) $1 < \dim E < \infty$;
- (b) if $\phi \in E$, then either $\phi = 0$ a.e. or $\phi \neq 0$ a.e.

Then there is no linear map $P: L^{\infty} \to L^{\infty}$ with $P^2 = P$, $||P|| \le 1$, and kernel $P = E^{\perp}$. In other words the natural map from L^{∞} onto E^* cannot be split by a linear isometry.

REFERENCES

- [1] AHLFORS, L. V., Lectures on Quasiconformal Mappings, Van Nostrand Math. Studies, No. 10, Princeton, N. J. (1966).
- [2] Bers, L., Correction to "Spaces of Riemann surfaces as bounded domains," Bull. Amer. Math. Soc. 67 (1961), 465-466.
- [3] Bers, L. and L. Ehrenpreis, Holomorphic convexity of Teichmüller spaces, Bull. Amer. Math. Soc. 70 (1964), 761-764.
- [4] Earle, C. J., On holomorphic cross-sections in Teichmüller spaces, Duke Math. J. 36 (1969), 409-416.
- [5] EARLE, C. J. AND J. EELLS, JR., A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), pp. 19-44.
- [6] ——, Deformations of Riemann surfaces, Lectures in Modern Analysis and Applications I, Lecture Notes in Mathematics, Vol. 103, Springer-Verlag (1969), pp. 122–149.
- [7] EARLE, C. J. AND A. SCHATZ, Teichmüller theory for surfaces with boundary, J. Differential Geometry 4 (1970).
- [8] Hamilton, R. S., Extremal quasiconformal mappings with prescribed boundary values, Trans. Amer. Math. Soc. 138 (1969), 399-406.
- [9] RAUCH, H. E., A transcendental view of the space of algebraic Riemann surfaces, Bull. Amer. Math. Soc. 71 (1965), 1-39.

HARVARD UNIVERSITY and CORNELL UNIVERSITY