INTEGRAL FORMULAE
CONNECTED BY DOLBEAULT’S ISOMORPHISM

by F. Reese Harvey

Introduction

Serre [3] describes a natural bilinear form on H "(X,Q") x HZ (X, @).
For p = 1,-.--, r there is a natural bilinear form on

Hp(g‘)zvfzau,r—p) x Hp(!:?"/’ éal)r .it-r*}-pffgga,n'-ré—p— 'l)

(see Section 1 for definitions and notation). The main result (Theorem 1.16)
of Section 1 is that these various bilinear forms are all equivalent under
Dolbeault isomorphisms acting on H'(%, %, ,-,) and adjoint Dolbeault
isomorphisms acting on H %, 8 -1+ p080 y—rt p1)-

In Section 2 we show (Theorem 2.2) that the Cauchy kernel is equivalent
to the kernels of Cauchy-Fantappié type under Dolbeault’s isomorphisms.
In particular, this proves the Cauchy-Fantappié integral formula (Leray [2]),
assuming the Bochner-Martinelli integral formula. The next result (Theo-
rem 2.6) is a generalization of Theorem 2.2 where the Cauchy kernel is
replaced by the Cauchy-Weil kernel.

Integration over the various strata of an analytic polyhedron determines
compactly supported distribution forms of various types. [n Proposition 3.6
it is shown that a certain family of such forms (3.4) are all equivalent under
adjoint Dolbeault isomorphisms. In particular, integration over the topolog-
ical boundary of a polydisk and integration over the distinguished boundary
of a polydisk are equivalent under adjoint Dolbeault isomorphisms. In
Proposition 3.2 analogous results are proved for “‘smeared’ polyhedra.
Here the compactly supported forms (3.3) correspond heurestically to
integration over strata, but with the advantage that they are smooth.

The results of the first three sections imply that the Cauchy-Weil integral
over the distinguished boundary of an analytic polyhedron is equivalent to
a generalized Cauchy-Fantappié integral over the topological boundary of
the polyhedron. In conclusion we prove these integral formulas (Theorem
4.1) using the above equivalence. These results have applications to the
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theory of analytic functionals and the residue calculus which will be dis-
cussed in another paper.

1. Dolbeault’s Homomorphism and its Adjoint

Suppose X is a complex manifold countable at infinity. Throughout this
paper &, ,will denote the sheaf of germs of C* forms of type (p,¢) on X
and Z, , will denote the sheaf of germs of d-closed C* forms of type (p,q)
on X . We will also denote the sheaf &, , of germs of holomorphic functions
on X by ¢ and the sheaf 2, , of germs of holomorphic n-forms on X by
Q"

Next we define the usual Cech cohomology groups H?(%,%). Suppose
U = {U;} is an open covering of X. Let I denote a (p + I)-tuple
(igs--+»i,) where each i, belongs to the indexing set for #. Abbre-
viaste Uy, N+ N U, by U; and let |I| = p + 1. Suppose & is
a sheaf of (complex) vector spaces on X. A p-cochain f of % with
values in % is a map which assigns to every I with 'Il =p+1
a section f; e ['(U;, &) so that f; is an alternating function of 1. Let C (%, #)
denote the vector space of all p-cochains with values in %. Let
8:CHU F)— C** (U F) denote the usual coboundary map defined by

ptl

(éf)! = X (_l)kfjo-"jk'"fpﬂ
k=0

(/\ over a symbol will always indicate deletion of that symbol). Let
ZPU, F) = {fe C*(U, F):5f = 0} and H (U, F) = ZX(U, F)|5C" ™ (U, F).

The standard way to prove that H?(%,6, ,) = 0 for p = 1 is to construct
a chain homotopy, as described below (1.1). Suppose that % = {U,} is an
open covering of X.

Lemma 1.1. Thereexistsafamily {¢.} of functions ¢;e C*(X) such that
i) supp ¢, < U, i.e, ¢; =0 in a neighborhood of X — U;;

i) {supp¢;} is locally finite;

i) X¢,=1in X.

Proof. The covering % has a locally finite refinement ¥~ = {V;}. It
is sufficient to construct functions ¢; satisfying i)-iii) for the covering ¥,
Choose a partition of unity subordinate to #". That is, choose i, € C5'(X)
with suppy, < < V4, for some index p(k) and with X ; = 1 in X. Now
let ¢; = X, 4y=;¥, and i)-iii) follow.

The above family {g;} can be used to construct a chain homotopy
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T:C* ' (%,¢6,,) « CU%6E,,) for
s:c*N%,8,,) - CN(U,éE,, as follows.
Given fPeCY(%,6,,) let

(L) (Tf") = X ¢uffy, for each |I]| = p.

Since ¢; vanishes on a neighborhood of X — U;, ¢,f}; uniquely deter-
mines an clement of &, (U;) which we also denote by ¢;ff;. Hence
(Tf?) €6, (U)), so that T maps C*(Z,¢, ) into C*~NZ,¢&, ).

Lemma 1.2. T9+6T:C%.6, ) —» C"(%5,, is the identity for
p =1, and TS + €T is the identity on C%(Z,8, ).

Remark. In order to make the case p = 0 meaningful we adopt the
following definitions. Let &: &, J(X)— Co(@,&'q) be defined by (&f);
=f|Ui, and let T: &, (X) < C%%,8,,,) be defined by Tf = £¢,f;.

Proof.
T3 = T80 = 2 b1~ Vs
P

=0 E k§o(_-l)k¢i i?q---jn---j,,'

13

P P
@17 = Z (=DM sty = B (D" Zbififygics,
r
= 2 2 (-1%filsiy-
k=0 i

Corollary 1.3. The sequence
0= 6,,(X) 5 C°,6,) 3 C'(@,6,)%

is exact, and hence H*(%,6, ,) = 0 for p = 1.
Next we construct Dolbeault’s homomorphisms:

(1-2) Hr(@;’,g") = Hr_i(c?‘!’ 3’“,1) el HP(’J}‘(’ gﬂ,l’_,ﬂ) T
=* Hl(@!, ‘@pﬂ,r— l) = HU(%’ ﬂa",r)/a_HO(@,’, gn,r‘!— I.}

which taken together map the Cech cohomology group H'(%,Q") into
the Dolbeault cohomology group &, (X)/38, ,— (X). We will not distinguish
between HY(Z, %, )|OH(X 6, ,-1) and Z, (X)[08, ,-(X).
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Suppose fP e C"(%,Z,,,). Let
(1.3) (Df); = ATf"); = X 9¢; \fi} for each |I| = p.
Note that (Df*);e Z, ,4,(U;) since (Tf"),e &, (U)).
0 0

~ & s
i O a CP" I(.?‘{y fzn,q} 5 > Cp(%q‘,s gﬂpi‘q) S

i i
.. 5 B
(1-4) e CP ({}{: @a]:‘q) e CP(?!$ é‘:l.q) e L
J ST ]

& b 4

o = 0 0
ra— Cp ](:?Ja gﬂ.q-i— 1) —— CP(J?‘{:Q"H,QJ- [) —

The map D goes from the upper right to the lower left.

Proposition 1.4. The operations D and & anticommute, and hence D
induces a map from HYU, %, ) into H YU Z, 111)-

Proof. Suppose fe C(%,Z, ,). Then

(8D + D3)f = (80T + 0Td)f = (6T + TH)f = of = 0,

Il

where the third equality follows from Lemma 1.2,

We will refer to the map that D induces as Dolbeault’s homomorphism.
This homomorphism can be (equivalently) described as follows (a diagram
chase in (1.4) establishes the equivalence).

Definition 1.5. The class [f*"'1e H*~ (%, %, ,+,) is the image of the
class [ f"le H(%, %, ,) under Dolbeault’s homomorphism if there exists
g’ tecr Y (%,é,,) such that

(1.5) 6gP™! = fP and 9gf™! = fF~" for all [I| = p.

If p=1, then [f°]eZ, ,.,(X)[36, (X) replaces the statement
PR e B (% 0)

From this definition it is obvious that Dolbeault’s homomorphism is
independent of the particular map D (i.e., of the choice of {¢,}).
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The following concept (cf. (1.2)) will prove useful in formulating the
main result of this section.

Definition 1.6. A sequence {fF}, with fPeZ (%, Z,,-,), p=0,--,r;
such that [f?~'] is the image of [f”]e H%,%,,,-,) under Dolbeault’s
homomorphism for p = 1,---,r will be called a sequence of Dolbeault re-
presentatives of the cohomology class [ f"] e H'(%,Q").

Now we wish to dualize Dolbeault’s homomorphism. Let &, (X)
denote the space of forms of type (p,q) whose coefficients are compactly
supported distributions; or equivalently, &, ,(X) is the dual space of the
Fréchet space C*(X) and, more generally, &, ,(X) is the dual space of the
Fréchet space &,_, ,-,(X) under the pairing {(¢,u> = (¢ /\ u) (1), where
PEE, - pnu-o(X), ueé, ((X), and hence ¢ /\ u e, (X) (see Serre [3]).

Proposition 1.7. Suppose U is a Stein manifold. Then the dual space
of the Fréchet space Z, ,(U) is isomorphic to the quotient space
8y D08 oD,

For the proof see Serre [3]. This proposition provides some motivation
for the following definitions. We will assume that % is a Stein covering.

A p-chain @ with values in é“'{,,q}ﬁé"{;,q_l is a map which assigns to every I
with |I|=p+l an element #; eé“")lq(UI),r‘gé"’[;_q_l(U,) so that #; is an alter-
nating function of I, and so that #; = 0 except for a finite number of multi-
indices I. Let Cp(’d?!,ﬁalqlgé"a,qﬂ) denote the vector space of all p-chains
with values in & ,/06; ,—;. Here u; denotes an element of &5 (U;) and
it; denotes the equivalence class in &5 (U,)[06q ,-,(U,) determined by
u;. A boundary map

8%: C(#,84,,/065,4-1) « Cpi1(U,6,,/085,4~1)
can be defined by
(1.6) (§$ﬁ)1 = Z ﬁ”.

Here il denotes the multi-index (i,iy,---,i,). Obviously 6*6* = 0. Let
Z (U, 680,408 4-1) = {QECP(%,fa,qféé”é,q_l):tS*ﬁ = 0},
and let
Hp(@!,é”g_qucfé_q_l) = z,,(%,cs’o*‘q/égg_q_1)15*cp+1(@z,£0',q;§£5,q_,).

Replacing & ,/064 ,—, by & ,, @t by u, and & by u; in the above de-
finitions we obtain the vector space C,(%, &} ,) of p-chains u with values in
&y., and the space H,(%,8;,,) = Z,(%,84,)[0%C,1(%,65,4). Using the
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map T* defined below (1.8) and the definition (1.6) of §* we could now
prove that 6*T + T*5* is the identity on C (%, &) ,) by a direct calculation.
Instead we deduce this fact (Proposition 1.10) from Lemma 1.2 and the fact
that 6* and T* are the adjoints of ¢ and T respectively.

Now assume that % is a countable covering of X. Then C*(%, 6, ,) with
the relative topology induced from the Fréchet space [],7)=,+16, (U)) is
obviously a Fréchet space. If fPe C*(%,6, ,) and u? € C (%, 6, ,-,) let

1
<ffp’ Hi’) = El (fh ”I

e any SR
(1.?) <f s U ) (P‘l' 1)! |I|=pzr+1 [ =p+1

where 2 denotes summation over strictly increasing multi-indices. Now,
C,(%,6,,,-,) Is easily seen to be isomorphic to the dual space of the Fréchet
space C*(%, &, ,) under the pairing {f”,u”). Since C*(%,Z, ,) is a closed
subspace of C*(%, &, ,)itisa Fréchet space. Notethat if u” and v” determine the
same element in C (%, &4 ,4— /064 u- 4 1) (.. #=7¥") then {f?,u?y ={f?,v7).
Therefore (1.7) defines a bilinear pairing {f?, %) between C*(%, %, ) and
C,(%, 84 n-al084 n—q-1)- It follows easily from Proposition 1.7 that
this pairing is non degenerate (i.e., that C,(%,&g ,-,/06 y~q—1) 18 isO-
morphic to the dual of C*(%, Z, ,)) if each U; is Stein.

Proposition 1.8. The coboundary map 5:C*~'(Z, &n) = CU%, 8, is
a continuous linear map with adjoint

0%:C,\(#,65,0—g) « C X, E50-0) -

Also the coboundary map 6:C* (U, %,,) —» CU¥U,%,,,) is a continuous
linear map with adjoeint

8%: Cp (U85 1ol B8 g 1) = Col B8 J08 1)

Proof. Suppose f*~'eC’™N%,¢&,,) and u®e CAU,E¢ —,).

I N X et T

) J|=p+1 k=0

Gy =

(p+1
51 T by = e,

where the middle equality follows by letting I = (jo,* /x> *j,)and
I :A};a;mi[y {¢;} of functions satisfying the conditions in Lemma 1.1 can
be used to construct a chain homotopy
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T*:Cp—l(%séaa.q) =i CP(%?épa,q)
for
8*:C,y(%,85,)) « C%,E5,,).

Given u" e C,_4(%,6;,,), let
P
(1.8) (T, = X (=1)f;uf7},. ;, for each |J|=p+1.
k=0

Since ¢;, vanishes in a neighborhood of X — U;, and uj?;__l}k___jp is com-
pactly supported in Uj;, ,  ; , their product is compactly supported in
U,. Hence (T*u?™');€84,,(U,) for each |J| = p+ 1, so that T* defines

a map from C,_,(%,8, ,) into C(%,&, ,).

Proposition 1.9. The map T:C"'I(—’é’!,é’ﬂ’q)e- CY(#%,6,,) defined by
(1.1) is a continuous linear map with adjoint T*:C,_ (%,6q n-q) —
C(%,64 4-,) defined by (1.8).

Proof. Suppose f?eCX%,6,,) and u’P~*eC,_ (%85 ,-,)- Then

APty = o 3T (hfhui is equal to

Y l=p

1 2 . g -
—_— 2 (=D s > =Ll T,

TET AT EARAS AL R e ) >
by the change of variables I = (jo,**;,,**,j,) and i = j; (as in the proof
of Proposition 1.8).

Proposition 1.10. 0*T* 4 T*5%: C(%,84,,) > C (%, 6,,,) is the iden-
tity (p = 1), and 6*T* + T#e* is the identity on Co(%,8 ,). Therefore,
the sequence

r 8* ’ 5*
0 £ gﬂ‘q(X) — CO(%”(E‘O,I]) ol Cl(%,go‘q) = e
is exact.

Remark. For p =0, let &*:Cy(%,6,,,) = &g, (X) be defined by
e*u = Xu;and let T*:Co(%,5},,) « &4 (X) be defined by (T*v); = ¢v.
Define §* to be zero on Cy(%, 8 ,) so that Hy(%, &y ,) is isomorphic to
65,4(X).

Proposition 1.11. The map 9:6, (U) » &, ,+,(U) is continuous with

adjoint (—1)"*9410:64 4o (U) = &p gy (U).
See Serre [3] for the proof.
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Next we construct adjoint Dolbeault homomorphisms
1.9) H(U,64,4l080p-1) « Hy—i(U,80,4-1/060 =3) « -
© = Hy U84 5145190 0-r4p-1) —
% = Hl('?",aéaa,u—r+1;3-6,6,:1—:-) — {ueéy,_(X):0u= 0}f3§6,n—r—1(X)a

which taken together map the compactly supported Dolbeault group
(4 €84, AX): Bu = O}f8h ump-1(X) into H(U,E4 /384 1),
Suppose @' € Cpo (U, 81— q- 1108 ,). Let

0,n—g—
P
(L10) @Y, = (1| (-8,
for each |J| = p + 1.

Proposition 1.12. The map D:C"%, %, )~ C*" Y%, %, ,+,) is con-
tinuous and its adjoint is

D$ : Cp(%’)gé,n—qféga,n—q— 1) = Cp—-1(%:g£),n-q—1/gga,ﬂ—q-2) &

Proof. Since D = 9Ti, the adjoint of D equals (—1)""?*1i*T*J by
Proposition 1.9 and Proposition 1.11.

0 0

A A

(1.11)

5* ' T 6* r ayeld 6$
PCP-—l(qz’éyo,n—qf:ago,ﬂ—q—l &_ Cp(@{’go,n—q/aéaﬂ,n—q—l) . 2

A f
5% 5% 5%
b Cp— 1(@"536,!1—4) s—T Cp(%,fa,n—q) e
A T*
(__1)n+q+la_ (_I)n-f-r_r-i-la‘

5* !’ ~ ! 5=k ! r 5*
— Cpt (U84 1= q-1/060 n—g-2) — Cp(%:go,n—q—11"350,.-1—(;—2) A

Proposition 1.13. The operators D* and é* anticommute, Hence D*
induces a map from

Hp—-l(qz)g(;,n—-q— I./a_éga.n‘—q—z) iﬂfﬂ Hp(d"’!ag{},n—qfa-g;),nuq— 1)'

Proof. By Proposition 1.4, D + D§ = 0. Therefore, by Proposition 1.8
and Proposition 1.12, D*6* + §*D* = 0,
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We will refer to the map induced by D* asthe adjoint Dolbeault homo-
morphism. It follows from a diagram chase in (1.11) that this homomor-
phism can be described (equivalently) as follows.

Definition 1.14. The class [0°]e€ H (.64 4-4/06 G u-q-1) is the image
of the class [0° '] € H,—((#,E§ y—q-1/06 n-q-2) under the adjoint Dol-
beault homomorphism if there exists u’e C(%,6; ,-,) such that

(1.12)  (*uP); = (=) '0f ™! and uf — vf€0EG —y-1(U)).

If p=1 then [1°]e{wedy -~ 1(X):0w = 0}/06] ,—,-2(X) replaces the
statement [8°7 '] € H,— (%, 64 4—q-1/080 n—q-2) Where v° also denotes
e* 0 =T, 00 €8 u-q-1(X) (given a v° e Co(#, 84 1—y4-1))-

Definition 1.15. A sequence {#"} with #°€ Z(%,6 ¢ u-r+pl08 4 eyt p-1)
p = 0,1,-,r such that [i"] € H (%, 8§ y—r+p[08 4 u—y+p-1) is the image of
[u?™'] under the adjoint Dolbeault homomorphism for p = 1,2,--,r,
will be called an adjoint sequence of Dolbeault representatives of
[u e H(%, & u-1[08¢ 4—r~1)- In the special case p = 0,

[u®]e{we &y - (X):0w = 0}/36 u—p—1(X).

Consider the bilinear pairing (f?,a") between CP(%,%,,) and
C%, 4,4-ql08¢ n—q-1) restricted to Z%(%, Z,,) and

Zp(‘%’a 36."—4/536."—“— 1)'

This restricted bilinear pairing vanishes if either f7edC? ™ (%, Z,.) or
#°€8%*C 4 (%80, 1-gf 080 n-4—1), since (6g? 1,y ={gP™*,6*3") = 0 and
fP,0%07 1y = (37, 5"y = 0. Therefore, the bilinear pairing (1.7) induces
a bilinear pairing between H*(%, %, ) and H (U, - o/08 8 u=g—1)-

Now the main theorem of this section follows easily.

Theorem 1.16. Suppose % isa Stein covering of X . If {f"}(p = 0,---,r)
is a sequence of Dolbeault representatives of a cohomology class
[/ e H (%, Q") and {i"}is an adjoint sequence of Dolbeault representativesof
[4,] eHA %, 8¢ ,-r|3E o n—r—-1) then {fP,u”) isthe sameforall p = 0,--,r.
In particular,

(1.13) ff”/\u“ = & ST A uj-
X [f]=r+1 JX

Proof. As mentioned above the bilinear pairing { , ) induces a bilinear
pairing between HA(%, %, ,-,) and H (%, &4 -y 4 pl08 g -1+ p—1)-Therefore,
to prove the theorem it suffices to replace { /”} by any sequence of Dolbeault
representatives of [f"] and replace {u”} by any adjoint sequence of
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Dolbeault representatives of [u']. Now replace {f*} by {D""?f"} and {u*}
by {(D*)?u®}"p = 0,--,r. Then {f?,uP) = (D" 7*f",(D*)"u®y = (D" ?~1f",
(D¥PH 1%y = (fP*1 uP* 1y by Proposition 1.12.

Remark. If, for any p=0,--,r, 5C1’"1(¢?!,£‘Z’,,,,_p) is closed in
2@, 2, ) and 5Cpui(U,85 ey pl08hprip-)) is closed in
Zp(@‘,fl{‘,,_,”,l’a_é“{}_"_,”_1) then the same is true for all p, and
H (U6 p—r+pl0806 u—rsp-1) 1s the dual of the reflexive Fréchet space
H"%,%, ,-,) (ie., the bilinear pairing {p,o) is non degenerate). We will
not pursue this extension of Serre duality further.

We conclude this section by proving that Dolbeault’s homomorphism
commutes with *‘restriction.”” This fact will enable us to mimick the standard
proof of Cauchy’s integral formula in one variable in proving integral
formula in several variables. Suppose ¥ is a refinement of %, that is, there
exists a map p from the index set for ¥ into the index set for % such that
VieU,; for all i. Let p*:C%%,7F)— C(¥',%) be defined by
(0*Nr = foiis)py i Vi The map p* obviously commutes with & and
hence induces a map p*: H*(%, ) — H*(¥", % ). This map p* can be shown
to be independent of the particular map p. We will refer to this map as
restriction from % to 7. Note that if p = 0 then p* is just restriction of
sections of & from |J; U; to UJ; V;.

Proposition 1.17. Dolbeault’s homomorphism commutes with restric-
tion. That is,

Hp(g'!)!, "'{2‘;,.‘;) —r ‘Hﬂ_l(%" ‘ffn,;;+ 1)

T
HP(Y/:“?X ) — Hp_l(‘y/s‘gu.ﬁ'-i-l)

n,q

commutes.
Proof. Use Definition 1.5 and the fact that 6 commutes with p*.
2. Sequences of Dolbeault Representatives

First, for an arbitrary open covering % of a complex manifold X count-
able at infinity, we have the sequence of Dolbeault representatives defined

by (1.3).

Proposition 2.1. Suppose {¢;} is a family of functions satisfying the
conditions in Lemma 1.1. Given freZ(%,Q)"), let
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@1 fF=(=0" I 3Afiy forall |[J|=p+1,

|K|=r—p
where a, = 3(r—p)(r—p—1). Then {f*} (p = 0,---,r) is a sequence of
Dolbeault representatives of [ /"] e H(%,Q").

Proof. The proposition follows from the fact that D"~?f" = f?. (Here
D is defined by (1.3) and D* denotes the kth iterate of D .) We prove this fact
by induction. Suppose D"’f" = fP. Then (D" "*!f"), = (Df?), = T.5¢,
ASE by (1.3). Now by (2.1) this equals (— 1)" Zi Xkp=r- 00 \ 0p*
Afgir which equals (=1)"»*' 2} _,_ 2+100 A SL; (let L= Ki).

Next we consider certain sequences of Dolbeault representatives which
relate to integral formulae in several complex variables. First we examine
the Cauchy kernel (Theorem 2.2) and then the more general Cauchy-Weil
kernel (Theorem 2.6).

Let K;(i=1,:--,n) denote a compact subset of Cand let K = K, x--- x K,,.

Let U; = {zeC": z;¢ K;},i = 1,---,n. Then each U, is a domain of holo-
morphy and % = {U,}{_, is an open covering of C"— K. For a fixed
ze K, the Cauchy kernel,
i dé
Mses) = 0 o D2
obviously determines a unique cocycle (also denoted k(¢,z)) in 2"~ Y(%,Q").
Note ék = 0 since C'(#% Q") = 0.

Theorem 2.2. Suppose for a fixed z € K, functions g(&,z)e C*(C"—-K
=1+ nare given such that (6,2) = £,(¢.2) (€~ 2) + -~ + 8,6 2)(E =2
never vanisheson C"— K, Let ¢ (£,z) = g(é,z )(C —z)g(éz)i=1,--,n. Then
(2.1) defines a sequence {k*(¢,z)} (p=n—1,---,0) of Dolbeault representa-
tives of the cohomology class [k"™']Je H"™ 1(%’,(1") where kK" (&,z2) is the
Cauchy kernel. For p =0,

(2.2) K%%¢,2) =
(_l)éﬂ("_“(n—l)!(:zni) u(

which can also be expressed as

(23) K2 = (=D¥ D (n—1)![2nig,2)] "

eQ'(U, N+ NU,),

i
): 1 aqbl /\ A a¢ /\ /\ a¢u /\ dg
(él_zl (5 _“u)

n S - {‘/\ _
x Z(—1)""g&,2)8e, A Ndg; N\ NOgdE.

i=1

Remarks. If g.(&,z) = & —z then (2.3) is the Bochner-Martinelli
kernel
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(24)

" o . ) 2N
T (=1 TNE=2)dE A\ NAE N+ NAE N\ dE
(= DO~ D —1))(2mi) "= s .E.__...__ S

2n

The general kernel (2.3) is called a kernel of Cauchy-Fantappié type.

Note that the above theorem says in particular that a kernel of Cauchy-
Fantappié type is o-closed in C" — K and that any two such kernels differ
by dw, where w €&, ,-,(C "— K).

Proof. The proof of all but (2.3) is exactly the same as the proof of
Proposition 2.1, since T !_,¢; = 1 in C'—K and ¢;kl;" " extends to a form
in U, where ¢(,z) is defined to be gi(&,2)(&;—z,)/g(¢,2).

Now (2.3) can be proved as follows. Differentiation yields
O = (& — 2)8(6,2)~*(g08 — 8:08). Let w, = gdg, — gdg. Then

- 2K .
0By N\ NoPi N\ -+ NOgy =
[E =20 G 2IE—208E D" 1oy A ABA -+ A

Assume i % 1. Then since @, occurs in w; /\ -+ /\a-/\ o A\ @, we may
replace each w, (k>1) by o, — g8 'w, = g(dg — gg; '0g,). That is,

o A AB A Ao, =
" X808, — £198) \ (02> — 8287 98 N\ -+
A @gi-1 — &i-181" 081) A\ 081+ 1~ 81181 080 A\ A\ (08— g:81 "021) -
Now by a direct calculation this equals

ol E(—l)'ﬂ(ﬁff_zi)gjégl N ANFgi A N 0g,

f#i
J n=2 = "/\ 1
+* 8 l:g_ E‘(‘:j_'zﬂgj]ogl/\"'/\agi/\'"/\agn'
JiFi
3 //\\ o

Consequently, g¢, A -+ A\ g /\ - A\ G,

ire —n : F o B ‘{/\ (=%

= (_ 1) (gi == zl) '“(én‘_zli)g : E],(_-l) gjagi /\ o /\ 8g; /\ R /\ Ggrx'
j=

This completes the proof of (2.3) and hence the theorem.

The construction of the Cauchy-Weil kernel depends on the following
lemma.

Lemma 2.3. Let U denote an arbitrary open set in C". Given fe O(U),
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there exist functions bJ{&,z)e@U x U) such that [f(&)—f(z)=
bl(isz)(fl = Zl) ErEET bﬂ(i)z)(éu - zn) n UxU.

Remark. If U = C" then the lemma is trivial (expand f(&) in a power
series about z).

Proof. Let U denote the envelope of holomorphy of U with projection
n: UeC". The functions f(¢) and ¢; extend to holomorphic functions on
U which we also denote by f(¢) and ¢&;. Let ¢ denote the sheaf of germs
of holomorphic functions on U x U and let A:0"— ¢ denote the sheaf
homomorphism defined by A:(g',--+,8") —» g'(&y—zy)+ - +g"(&,—2,)-
Let # denote the kernel of A and & the image of 1. Then 0 = % — (0"—
Z — 0 is an exact sequence of coherent analytic sheaves on the Stein mani-
fold U x U. Therefore H' (U x U,#)=0and hence A: 0(T x U)-»T(Tx U,7)
is surjective. 1t remains to show that f(¢)—f(z)el' (U x U, #). By
using power series we have that the germ induced by f(¢) — f(z) belongs
to & at each point (£y,z,)€ U x U. This completes the proof if U is a do-
main of holomorphy. Suppose x,e U and nx, = z,. Let g(¢) = f(n='(&))
for ¢ near z. Expanding in power series gives g(£) — g(z) = X[ a/(&,z2)"
(&;— z;) for &,z both near z,. Now f(y) = g(ny) for y near x,. Therefore
f(x)=f(y) = Xialnx,ny)(&i—z) for x,y near x,.

Suppose U is an open set in C” and functions h;e O(U) are given. Let
K; denote a compact subset of C and let U; = {zeU:h(z) ¢ K;}. Then
# = {U,;} is an open covering of U—K where K = {ze U:hy(z)eK; for
all i}, Utilizing Lemma 2.3 (for each i) choose a;;€ O(U x U) such that
hi(&) = hz) = 2j-,a;&,2)(E;—2;). Let A denote the matrix whose ith
row is (a;y,-+,a;,). Given lil = n, let 4,(¢,z) denote the n x n matrix
obtained from the iy, iy, -, i,-; rows of A.

Definition 2.4. For a lixed ze K,

d
@9 ke = (uy RS ey,
iel

with |Il = n, determines a cochain {k;(¢,z)} e C"~ (%,Q") called the
Cauchy-Weil kernel.
This cochain is in fact a cocycle.

Proposition 2.5. ok = 0.

Proof. Suppose |J| =n+ 1 is given. Consider the (n +1) x (n+1)
matrix with rows (a;,; . a;,.0;(&)—h;(2)) k=0,1,---,n, Its determinantis
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zero since each row is orthogonal to the vector ((¢,—~z,), (&, —z,), —1).
Computing this determinant by expanding about the last column gives
F=ol— l)k(hjk(é) —h; (z))det4; ;.. ; which must therefore equal zero.
Now dividing this last expression by [[;.;(h;j(§)— hyz)) we obtain
ok =0.
Now we can generalize Theorem 2.2,

Theorem 2.6. Consider the covering % of U — K described in Defin-
ition 2.4. Suppose for a fixed ze K that functions g.(&,z)e C*(U—K)
are given such that {supp g,(&,z)} is locally finite and

g€, z) = Z,8(8,2) (h(&) — h(2))

never vanishes on U — K. Define o; (&, z) = g(&, 2)(h,(E) — h(2)) [g(&,z2).
Then (2.1) defines a sequence {k*} (p =n —1,---,0) of Dolbeault rep-
resentatives of the cohomology class [k" '] e H" '(%,Q") determined by
the Cauchy Weil kernel K" ' = {k,(£,z)}. The special case (p=0),

2.6) K&2) = (=DM Dn—1)! T' 3¢’ Aky(¢,2) in U,

[ =n—1

can also be expressed as

Q@1 K¢z = (D" n-1)[2nig,z]™

- N -
X X (=1)fdetd,(&,2)g;,(8,2)98;, A+ A 9gj A\ -+ N\ 08;,- L.

[J]=n k=0

Proof. The proof of all but (2.7) is exactly the same as the proof of
Theorem 2.2. The proof of (2.7) is similar to the proof of its special
case (2.3), except more complicated. The proof of (2.7) is omitted.

3. Adjoint Sequences of Dolbeault Representatives

The next proposition is an analogue of Proposition 2.1 in the dual situa-
tion. As before, we assume that X is countable at infinity, and that % is a
Stein covering of X.

Proposition 3.1, Suppose {¢;} is a family of functions satisfying the
conditions in Lemma 1.1. Given u®e& ,_(X) with ou® = 0, let

. L3 a3 /\' 0
G uh = (=1Ppt (=100, 805 A ABbs A Nody, AW,

p=0,1,-.-,r. Then {&"} is an adjoint sequence of Dolbeault representatives
of [u°]le Hy "(X,0). Here a5 = 0 and a, = (n—r) + 3p(p—1) for p>0.
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Proof. We prove more, namely that u? = (D¥)Pu®. Let »” denote
(D*)Pu°. Then by (1.9),

i
(3.2) of = (=1L Y (1), 000k,
k=0

with v? = ¢u°. Now we prove that v* = u” by induction. Differentiating
(3.1) gives ovf™ ! = gui! = (—1)""'p!d¢p’ Au®. By substituting for
ov?~! in the right-hand side of (3.2) we immediately obtain v} = uj.

Next we consider the important case r = n—1 and construct some special
adjoint sequences of Dolbeault representatives.

Proposition 3.2. Suppose ;e C*(X) with suppdy,ccU; and
{supp(1 —,)} locally finite. Let u® = 8 [[;4; and

(3.3) uj = (=¥ [T yop’, p=0,-,n-1.

j¢d
Then {#*} is an adjoint sequence of Dolbeault representatives of
[u°] e HY(X,0).

Proof.
@)= Tuh = (-OPCOE Tyt = (~0%upt

i JEir
Therefore [#°] is the image of [#"~ '] under the adjoint Dolbeault homo-
morphism (see Definition 1.15).

The assumption that ;e C*(X) can be weakened considerably. In
particular, the formulas (3.3) can be made to include integration over
the various strata of the topological boundary of the polydisc. This is
made precise in the rest of this section. First we formalize the hypothesis of
Proposition 3.2 as a definition.

Definition 3.3. A collection {y;} satisfying the hypothesis of Proposi-
tion 3.2 will be called a smeared C*-polyhedron subordinate to %, and the
uf defined by (3.3) will be called generalized strata.

For simplicity assume that X is an open subset of C" and that # is a
finite covering of X. Suppose D is an open subset of X with the topological
boundary 8D compact. Suppose that pairwise disjoint oriented (not neces-
sarily closed) ¢* submanifolds (6D), of U, are given for all strictly in-
creasing multi-indices 7, and that 6D = | J,(éD),. Extend the notation
(éD); to all multi-indices by skew-symmetry.

Definition 3.4. Suppose
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1) (D, IJ@D);) is an (not necessarily closed) oriented C®-manifold
with boundary,

2) ((8D);, U«éD);;) is an (not necessarily closed) oriented C*-manifold
with boundary,

3) Each (éD); has finite volume and (éD); for II| = n is a compact
manifold without boundary-
Then D will be called a C®-polyhedron in general position with respect
to U.

Proposition 3.6. Suppose D is a C®-polyhedron in general position
with respect to %. Let

(3.4) fouby = f f for all fed,_y_(U,),

(20)s

p=0,.-,n—1. Then {@"} is an adjoint sequence of Dolbeault represen-
tatives of [u®]e H (X, 0), where {f,u®y = [,pf for all fe&,,_,(X).

Proof. The proof is formally the same as the proof of Proposition 3.2.
Here Xul}; = (—1)"0u,”” ' means

GZuty= 2 [ 1= [ 7= @ = -1
(@D)r  (2D)r

for all fe&,_,_,(U,). The second equality is true by a general version of
Stokes’ theorem (see Stolzenberg [4] and Federer [1]) since of = df.

The general version of Cauchy’s integral formula in several complex
variables, which we prove in the next section, will involve the following
configuration. Suppose i = (hy,++, hy) € O(U)" is a proper map of a domain
of holomorphy U into C¥, and that K,(i = 1,---,N) are compact subsets
of C. Let U; = {éeU: h(¢é)¢ K,} and let K = {{e U:h(&)eK, for all i}.
Then % = {U,} is a Stein covering of X = U — K.

Lemma 3.6. For each neighborhood V of K,

1) there exists a smeared C”-polyhedron {;} subordinate to % such
that I1y; extends as the constant function 1 across K and the extension
is compactly supported in V;

2) there exists a C”-polyhedron D in general position with respect
to % such that G = D UK is an open, relatively compact subset of V.

Proof of 1). Pick neighborhoods D; of K; such thatG = {£e U:h(¢)eD;
for all i} is a compact subset of V. Pick y; € C*(U) such that ;=1 in a
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neighborhood of {€eU:h(&)eK;} and W, =0 in a neighborhood of
{EeU:h(&)¢D;}. Then IT ;e CF(V) and is identically one in a neigh-
borhood of K . Also, supp d/; is contained in the strip {£ € U:h(¢) e D;,— K;}
which is contained in U,.

Proof of 2). Pick neighborhoods D; of K; with C® boundaries aD;]
such that G = {&e U: hy(&)eD; for all i} is a compact subset of V. Let

d(z,0D;) ifz¢ D]

) = [_d(z,aD;) if ze D),

Then ¢ h; is a C® map of a neighborhood of {€e U:h,(¢)edD;} into a
neighborhood of 0eR. Sard’s theorem can be used to insure that for
arbitrarily small r=(r,, -, ry), the sets S; = {EeU:¢;(h(&))=r;} are
C*® manifolds and that for each I, the manifolds S; ,--+,S; intersect trans-
versely. Let D = {€e U:¢Ph(&) <r; for all i} and let (D), = {£eU:
dhi(&) = r, for all iel and ¢Sh(&) <r,; if i¢I}. Since (8D), is the inter-
section of the bounded domain {¢eU: ¢ h,(¢)<r;+¢ for iel and
dPhi(E) < r, for i¢I} with the C* manifold S, M- NS;., (6D); has

finite volume.
4. Cauchy’s Integral Formula

As before, suppose h = (;,+,hy) € O(U)"is a proper map of a domain
of holomorphy U into C¥, and that K; (i = 1,---,N) are compact subsets
of C.Let U; = {EeU:h(&)¢K;} and let K = {Ee U:hy(¢)eK, for all i}.
Then % = {U;} is a Stein covering of U — K.

In the following theorem we assume the following:

1) An N x n matrix A(&,z) is given with entries holomorphic in U x U
and with A(£,z) mapping the vector é—z into h(&) — h(z). Let A,(&,=2)
denote the matrix whose 1st row is the iyth row of A(&,z), etc.

2) A family {¢;} of functions satisfying Lemma 1.1 is given.

3) There exists a neighborhood of K, and for each fixed z in this neigh-
borhood, functions g,(&,z) e C*(U) such that

N

g(¢,2) = _ags((fﬂ)(h;(é) — hy(z)) # 0 for ¢ # z.

4) A family of smeared C® polyhedra is given with each smeared
polyhedron {i;} subordinate to % such that ITy; extends as the constant
function 1 across K and {(suppI1y;) U K} is a fundamental neighborhood
system for K in U,

5) A family of C® polyhedra is given with each polyhedron D in general
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position with respect to % such that {D U K} is a fundamental neighbor-
hood system for K in U.

Theorem 4.1. i) For all fe O(K),

@1 fz) = (=P Re=rT )

= det Ay (&, 2)d&
1 a K £ KJ
1Ji§;+1 (au)Jf(é) IK[=HZ—p-'1 o) _H{J(}Ii(é:)'—"li(z))

holds in a neighborhood of K, where D is a C®-polyhedron chosen so
that fe (DU K). Using cutoff functions instead of C* polyhedra yields
i) For all feO(K),

4.0 f(z)= (_1)%{"—;?—1}(n—p—2)+ép(p+1i(2nj)—n

det Ag,(E,z)d¢ z 00
1) X 0% — A= W09
Jl= p+1 f [K|=n—p—1 l]xj(h (.é)_-h;(z)) Jl;IJ 5
holdsin aneighborhood of K, wherethe s ; are chosen so that fe O(supp Iy ).
In these formulas (4.1)" and (4.1)", p=0,1,--,n—1,
iii) If p = n—1 then (4.1)" is the Cauchy-Weil formula,

6 1@ = @y T [ @ FSAReaE

T Ty d @
[Jj=n J(@D)s H(h @) —hy2) and (4.1)" is

(4.2)" f(2)=(—I)h(n—l)(zni)”i’fliz’n f(g)}gjlgfg)@,i)fif)) JH o
iv) If p=0 then

4.3) f(z) =

(=D 2r)™ > [ 18 S 5o _ detA(§,2)dE

j=1J@py  |Kj=a-1 [T (h(&) — h; (2)°

i ejK

@3 f@) =

" SR , det A (&, 2)dé -
1 \Enln—1) n r\ JK a 2
omeeny B [ 50 B s Tl

i g jK

or equivalently,
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4.4)' f(@) = (=1)**"D(n — D2ni)™" LDf ©e¢,2)™"

n—1 _ A _
X' X (—D'detA,(&,2)g;, (5, 2)0g5, A\ -+ A\ 08, A\ -+ N\ Og;, - NdE.

[J]=n k=0

(4.4)" f(z) = (=DM Dn-1)12ri)™" J. f(©eE,2)™"

n=1 A _ _
UAIY’ LZD(—1)"dctf1;(é,Z)g;k(é,zJég,-,,A---/\agj,(/\-"/\agj.ﬁ,/\déﬂf#sallf,-
=n k= PEj
Remark. The Cauchy integral formula for a polydisc is a special case
of (4.2)" and the Bochner-Martinelli integral formula is a special case of
(4.4)".

Proof. Consider the sequence {k”} p=0,---,n—1 of Dolbeault repre-
sentatives of the Cauchy-Weil kernel (see Definition 2.4 for the definition
of k"' and see (2.6) or (2.7) for the definition of k°). Consider the ad-
joint sequence {#"} of Dolbeault representatives given in either Propo-
sition 3.5 or Proposition 3.2. The pairings {f?,u”> make up the right-hand
sides of the above formulas. Note that o ITy; and 9y, represent the same
class in Hi(U — K,0), where x, denote the characteristic function of D.
By Theorem 1.16, this proves that the right-hand sides in all the above
formulas are the same. Consequently, it suffices to prove any one of the
above formulas. Now, of course, there are many ways to complete the
proof of the theorem. In order to use Proposition 1.17 we construct auxiliary
coverings ¥~ and %" as follows.

Suppose z is fixed. Let Ky,; = {z;} and hy, (&) = &;—z;, and let
Vysj =16€Uhy (O)¢Ky,;} = {EeU:é;—z; #0} forj = 1,---,n.Let
¥ = {V}{ih+1and # = % UY". Then # is a Stein covering of U — {z},
7" is a Stein covering of U — {z}, and % is a Stein covering of U — K.
Extend the matrix A(&,z) by adding the n x n identity matrix to the bottom
of 4. Call the extended matrix B, Then

h(&) —h(z) = Z by¢;—z;) for i=1,---,N+n.
j=1

Now, consider the Cauchy-Weil kernel E""'eZ"™'(#,Q") with

et _ L detB(®de
b Gy [T G-k
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The covering ¥ is a refinement of %~ with an obvious refinement map p, *
Similarly, % is a refinement of %" with an obvious refinement map p,.
The restriction pfE" ! is just the Cauchy kernel, which we denote by k°.
That is

1 a¢
(27['5)" (C]. - zl)'" (C’n i zn) >

(,‘91Er= 1)1 (kc)f =

where I = (N + 1,---, N + n). The restriction pFE"" " is just the Cauchy-
Weil kernel k"~ * (see Definition 2.4). That is

1 detA,(L,2)d
(2mi)" 1_[ (h(8) — hi(2))

iel

(P3E" D= (k""" =

where I = (ig,-*+ i,—,) witheach1 = iy £ N.
The following diagram commutes by Proposition 1.17,

[kC] EH"HI(‘T/-,Q")
1

[Er:— 1] eH" l( V,QH)

[k~ Y] e H™ X (%, Q")

[kB~M]e H"" YU - {z},Q")

-

[E°]e H" (U — {z},Q")

[k°]e H"}(U - K, Q")
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Therefore [E®], the image of [E"~'] under Dolbeault’s homomorphism,
restricts to [k°] the image of [k"~'] under Dolbeault’s homomorphism.
Also [E°] restricts to [K®~™] where k>~™ (¢,z) denotes the Bochner-Mar-
tinelli. Therefore k° and k®~™ determine the same class in H"~}(U — K,Q").

The right-hand sides of (4.3)” and (4.4)" can both be written as
FOK(L, 2), FTLY (L)) by Theorem 2.6. Since [k°] = [k®*™] in U ~K
and 0ITy; is compactly supported in U — K, {f(OK°(C,z), Iy ()
= <f(OKP™M(,z), 011 ¥;(0)>. Now, integrating by parts and using tbe
fact that ok° ™((,z) = 6.({) (the form which evaluates g€ &, o(C") at z)
this equals (AU ™(,2), MY, = SO ™MCz), Ty O
= f(z). This proves both (4.3)" and (4.4)". That is, f(z) = {(f(OK°(,z2),
oIy (£)>. The proof of the theorem is now complete.

Remark. If k()eé,,-(U—K) with dk =0 in U—K and there
exists w €&, ,— (U — K) with k(&) = k®~M(&,z) + dw(&), where z is some
fixed point in K (i.e., if [k] = [kB~™] in U — K), then there exists a
hyperfunction extension of k to U with 9k(&) = 6,(¢). This can be seen
as follows. First extend w(&)to @(E) on U. Then k(&) =k ®~M(¢, 2) + 0@ (&)
and hence dk(&) = 6,(¢).
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