
INTEGRAL FORMULAE 
CONNECTED BY DOLBEAULT'S ISOMORPHISM 

by F. Reese Harvey 

Introduction 

Serre [3] describes a natural bilinear form on H '(X,Rn) x H$- ' (X ,  0). 
For p = 1, .  . ., r there is a natural bilinear form on 

(see Section 1 for definitions and notation). The main result (Theorem 1.16) 
of Section 1 is that these various bilinear forms are all equivalent under 
Dolbeault isomorphisms acting on Hr(@, 3?,,,,-,) and adjoint Dolbeault 
isomorphisms acting on H,(%,&,',,,- ,+,/88'; ,,,- ,.,_,). 

In Section 2 we show (Theorem 2.2) that the Cauchy kernel is equivalent 
to the kernels of Cauchy-Fantappie type under Dolbeault's isomorphisms. 
In particular, this proves the Cauchy-Fantappie integral formula (Leray [2]), 
assuming the Bochner-Martinelli integral formula. The next result (Theo- 
rem 2.6) is a geileralization of Theorem 2.2 where the Cauchy kernel is 
replaced by the Cauchy-Weil kernel. 

Integration over the various strata of an analytic polyhedron determines 
compactly supported distributio~l forms of various types. In Proposition 3.6 
it is shown that a certain family of such forrns (3.4) are all equivalent under 
adjoint Dolbeault isomorpi~isms. In particular, integration over the topolog- 
ical boundary of a polydisk and i~ltegratio~l over the distinguished boundary 
of a polydisk are equivalent under adjoint Dolbeault isomorphisms. In 
Proposition 3.2 analogous results are proved for "smeared" polyhedra. 
Here the coinpactly supported forms (3.3) correspond heurestically to 
integration over strata, but with the advantage that they are smooth. 

The results of the first three sections imply that the Cauchy-Weil integral 
over the distinguished bou~ldary of an analytic polyhedron is equivalellt to 
a generalized Cauchy-Fantappi6 integral over the topological boundary of 
the polyhedron. In conclusion we prove these integral formulas (Theorem 
4.1) using the above equivalence. These results have applications to the 
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tlleory of analytic functioilals and the residue calculus which will be dis- 
cussed in another paper. 

I. Dolbearilt's Honzo~rzorphisnz and its Acljoint 

Suppose X is a co~nplex manifold countable at infinity. Throughout this 
paper G,,, will denote the sheaf of germs of C" forms of type (p,q) on X 
and T,,, will denote the sheaf of germs of &closed C" forms of type ( p , q )  
on X . We will also denote the sheaf 20,0 of germs of holomorphic functions 
on X by B and the sheaf T,,,, of germs of holomorphic n-forms on X by 
nvl . 

Next we define the usual cech cohomology groups HP(@,F). Suppose 
ql = { U , }  is an open covering of X. Let I denote a (p + 1)-tuple 
( I , , . . . ,  i,) where each i, belongs to the indexing set for %. Abbre- 
viate Uio n -.. n Ui, by U ,  and let I I I = p + 1. Suppose 9 is 
a sheaf of (complex) vector spaces on X. A p-coclznin f of "21 with 
values in .F is a map which assigns to every I with ( I \  = p + 1 
a sectionj; E r (U, ,  9) SO that J; is an alternating function of I. Let C,(%, 9 )  
denote the vector space of all p-cochains with values in 9. Let 
6: C P ( 8 , F )  -+ C""(JZL,~) denote the usual coboundary map defined by 

(/\ over a symbol will always indicate deletion of that symboI). Let 
zP(%, 5) = { f ~  cPp, 9) : sf = 0 )  and HP(qL7 F) = zP(@? 9 ) / s c P -  l (q~ ,  9). 

The standard way to prove that HP(qL,L,,,,) = 0 for p 2 1 is to construct 
a chain homotopy, as described below (1.1). Suppose that %' = { U i )  is an 
open covering of X. 

Lemma 1.1. Tlzere exists a family {qj i)  of furzctions 4, E Cm(X) S L ~ C ~  tlznt 

i) supp 4, c U , ,  i.e., 4, E 0 iit a rzeighborhood of X - U i ;  

ii) {supp 4 , )  is locally jinite; 

iii) C 4, = 1 in X .  

P r o ~ l .  The covering % has a locally finite refinement "Y = {V,). It 
is sufficient to coilstruct functions 4 j  satisfying i)-iii) for the covering "r. 
Choose a partition of unity subordinate to "F. That is, choose $, E C,"(X) 
with ssl~pp$,c c V,(,, for some index p(k) and with C t,b, = 1 in X. Now 
let + j  = C,(,,= I), and i)-iii) follow. 

The above family (p,) can be used to construct a chain holnotopy 
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T: cp-I(?/,& ,,,,) c CP("?I,G,,,,) for 

6: cP-'(%, G ,,,,) + CP(%, &,,,,) as follows. 

Given f E CP(%, dl,,,) let 

(1.1) (TfP), = Z $i f PI, for each 11 ] = p. 
I 

Since 4, vanishes on a neighborhood of X - Ui, uniquely deter- 
mines an ele~netlt of b,,,,(U,) which we also denote by $,fP,. Hence 

(Tf E q,,,(U,), SO that T maps CPPl, g,,,) illto cP-I(@,& ,,,, ). 

Lemma 1.2. TS + 6T: CP(-'7/,6 ,,,,) -+ CP(4'l,b,,,) is tlze identity for 
p 2 1, ai~cl T6 + ET is the ideiltity on ~~('21,G,,,,). 

Remark. 111 order to make the case p = 0 meaningful we adopt the 
following definitions. Let E :  G,,,,(X) 4 cO(@, G,,,) be defined by ( E  f )i 
= f  [ u , ,  and let T: &,,,(X) c C0(@, G,,,,) be defined by Tf = & $ , f i e  

Proof. 

Corollary 1.3. T h e  sequerzce 

is exact, arlcl herlce HP(%,&,,,) = 0 for p 2 1. 
Next we construct Dolbeault's homomorphisms: 

which taken together map the Cech cohomology group Hr(G?/,Qn) into 
tile Dolbeault cohomology group ~,,,r(~)/8~l,,-,(X). We will not distingt~ish 
between NO(*, Z,,,, ) ~ ~ H O ( % ~ , G , I , , - ~ )  and B,,,, (x)/% ,,,,- '(X). 
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Slippose f E C"?L, T , , , )  . Let 

(1.3) ( D f q I = 8 ( ~ f P ) ,  = C 8gil \ f , ;  for each 111 = p .  
1 

Note that (Df E T,,,, , (UI)  since ( T f  " ) ,  e G,,,,(U,). 

0 0 

The map D goes from the upper right to  the lower left. 

Proposition 1.4. Tlze operations D nrzcl 6 nnticonzntute, nilcl lzerzce D 
i tzduce~ n rizap froirz HP(/lG, 2 ,,,,) into Hr1('21,T ,,,, +,). 

Proof. Suppose f E C"(/Z/, X ,,,,). Then 

where the third equality follows from Lemma 1.2. 
We will refer to the map that D induces as DoIbeault's homornorphis~n. 

This l~omo~norphis~n can be (equivalently) described as follows (a diagram 
chase in (1.4) establishes the equivalence). 

Definition 1.5. The class [f P - l ]  E l i p - ' (~ ld ,  ZY,,,,+ ,) is the image of the 
class [ f P ]  E HP(o?l,3,,,,,) under Dolbenttlt's Izomornor.phism if there exists 
g P d l  E CP-1(02L, 8,J,q) such lhat 

(1.5) 6gp-' = f and 8gf -1  = fy- '  for all I I I = p. 

If p = 1 , the11 [ f  O] G Z,,,, , (X) /88 ,1 ,q(X)  replaces the statement 

Cf " , I  E H p - ' ( q ~ ,  3, , , ,+1)  

From this definition it is obvious that Dolbeault's homomorphism is 
independent of the particular map D (i.e., of the choice of ( 4 , ) ) .  
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The following concept (cf. (1.2)) will prove useful in formulating the 
main result of this section. 

Definition 1.6. A sequence { f , with f % ZP(@,  2 ,,,,- ,) , p = 0, .-., r ;  
such that [f is the image of [f '1 E HP(J2, 9,,,_,) under Dolbeault's 
homomorphism for p = 1, ..., r will be called a sequence of Dolbeault re- 
preserttatives of the cohomology class [J"] E Hr(@,Rn) . 

Now we wish to dualize Dolbeault's homomorphism. Let & i P q ( X )  
denote the space of forms of type (p,q) whose coefficients are compactly 
supported distributions; or equivalently, &;,,(X) is the dual space of the 
Frtchet space Cm(X) and, more generally, &d,,(X) is the dual space of the 
Frichet space &,,-,,,,-,(X) under the pairing ( 4 , ~ )  = ($A u )  (I), where 
4 E L?,-,,,-,(X), 1.1 E &;,,(X), and hence 4 /\ u E &A,,(X) (see Serre [3]). 

Proposition 1.7. Suppose U is a Stein martifold. Then the dual space 
of the Fre'chet space 9,,,(U) is isomorphic to the quotient space 

& ; , " - q ( ~ ) / ~ ~ ; , , , - q - I ( ~ ) .  

For the proof see Serre [J]. This proposition provides some motivation 
for the following definitions. We will assume that ??/ is a Stein covering. 

A p-chain ii with values iiz 6; ,,/i%i,,-, is a map which assigns to every I 
with I I 1 = p ~  1 an element El E&~,,(U,)/&?;,,_ ,(U,) so that a, is an alter- 
nating function of I ,  and so that u, = 0 except for a finite number of multi- 
indices I .  Let C,('ZL, &; ,,/J&b ,,- ,) denote the vector space of all p-chains 
with values in &;,,/8&;,,-, . Here u, denotes an element of &;,,(U,) and 
ii, denotes the equivalence class in G~,~(U,)/~C?,',,_,(U,) determined by 
u, . A boundary map 

can be defined by 

Here i l  denotes the multi-index (i, i,, ..., i,), Obviously 6*6* = 0. Let 

and let 

Replacing &;,,/88; ,,-, by 8;,,, ii by u ,  and tl, by u, in the above de- 
finitions we obtain the vector space C,(qI, &;,,) of p-chains u with values in 
&A ,, and the space H,(??/, G,',,) = Z,(%,&; ,,)/S"C,+ &Jtrl). Using the 
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map T* defined below (1.8) and the definition (1.6) of S* we could now 
prove that S*T  + TMS* is the identity on Cp(*?IL,&&,,) by a direct calculation. 
Instead we deduce this fact (Proposition 1.10) from Lemma 1.2 and the fact 
that S* and T* are the adjoints of 6 and T respectively. 

Now assume that 4'IL is a countable covering of X. Then CP(qIL,&',,,) with 
the relative topology induced from the FrCchet space nlIl = p +  l&n,q(UI) is 
obviously a FrCchet space. I f f  P~ Cp(@, b,,,) and u p  E Cp(%,&,:,-,) let 

where C' denotes summation over strictly increasing multi-indices. Now, 
CP(qIL, &A,,-,) is easily seen to be isomorphic to the dual space of the Frtchet 
space CP(%, q,,,) under the pairing ( f  P,  u p  ). Since CP('???,.Y2",,,) is a closed 
subspace of CP("IL, &,,,)it is a Fr6chet space. Note that if u p  and vP determine the 
same element in CP(@, 8; ,,-, 128; ,,,-,- ,) (i.e. iiP= VP) then (f P ,  u p )  = ( f  P,  up). 
Therefore (1.7) defines a bilinear pairing (fp, iiP) between CP(@, 9',,,) and 
Cp(qIL,&i ,,,-, /a&; ,,-,- ,). It follows easily from Proposition 1.7 that 
this pairing is non degenerate (i.e., that Cp(%,d& ,,,-, /a&& ,,-,- ,) is iso- 
morphic to the dual of CP(%, T n , , ) )  if each U ,  is Stein. 

Proposition 1.8. The  coboundnry nzap 6: cP-'(qIL, 8",,) + CP(%, c?,,,) is 
a continuous linear inap with acljoint 

Also the coboundary ?nap 6 :  cP-'(~21, T,,,,) -+ Cp(%, S,,,) is a corrtiitz~ous 
linear /nap with adjoint 

Proof. Suppose f P - 1 ~ ~ P - 1 ( % , 8 n , , )  and U~EC~(%,GA, , - , ) .  

where the middle equality follows by letting I = (jo,.. . ,j , , . . . ,jp)and 
i = j k .  

A family (&i) of functions satisfying the conditions in Lemma 1.1 can 
be used to construct a chain homotopy 
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T *  : C p -  ,,I -+ cp(q[,&b, 
for 

6* : cp-l(%,&;,q) + CP(%,8A,,) a 

Given up-' E Cp-l(%,&;),q), let 

P 

(1.8) (?'*up-'), = ( - l ) k4 j ,u jq~ ,~k , . . j p  for each ( J  ( = p + 1. 
k=O 

Since 4jk vanishes in a neighborhood of X - U j ,  and is com- 
pactly supported in Ujo,,.lk,,,ja, their product is compactly supported in 
U ,  . Hence (T*uP-') ,  E & ; ) , ~ ( U ~ )  for each I J 1 = p + 1 ,  so that T* defines 
a map from C,-,(?L,8;),,) into C,(?L,&;,,). 

Proposition 1.9. T h e  rnap T :  C~- '~%,B , , , )  t CP(qL,G,,,) defined by  
(1.1) is a continuous linear map with adjoint T*:Cp-,(%,&d,,-,) + 

Cpw,&I, ,,-,) defined by (1.8). 

Proof. Suppose f E CP(@y&,,,) and uP-l  E C p -  ,(qL,&A ,,,-,) . Then 

1 
( T f  P,  up - ' )  = _T Z C (+i f L , ~ f ; - ~ )  is equal to 

P -  I r l = p  i 

by the change of variables I = (j,;.., j , ' , - . - , jp)  and i = jk (as in the proof 
of Proposition 1.8). 

Proposition 1.10. S*T* + T*6*: Cp(%,  &'A,,) -t Cp(%, &A,,) is the iden- 
tity ( p  2 l ) ,  and 6*T* + T*E* is the identity on Co(@,&i,,). Therefore, 
the sequence 

is exact 

Remark. For p = 0 ,  let E* : C,(?L,Z~ ,,) -+ G,',,(X) be defined by 
E*U = C U ,  and let T*:Co(/11,6b,,) c Cd, , (X )  be defined by ( T * v ) ~  = &v.  
Define 6* to be zero on Co(qLy&h,,) so that Ho(%,&&,,) is isomorphic to 

&,,(X>. 

Proposition 1.11. T h e  mnp $:C,,,(U) -+ &,,,,,(U) is continuous with 
adjoint (-I)",' ,,-, (u)  + 8;,,-,- ,(U). 

See Serre [3] for the proof. 
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Next we construct adjoint Dolbeault homomorphisms 

which taken together map the co~npactly supported Dolbeault group 
{ U  E & ~ , ~ ~ - ~ ( X ) :  2~1 = ~ ] / t % ' h , , ~ - ~ -  l ( X )  into H ~ ( ~ L , & ~ , , , / ~ ~ ~ , , ~ - ~ ) .  

Suppose 2 -  ' E C p -  ,(?/,&A ,,,-,- l / ~ G ~ , , l - q -  ,) . Let 

for each I J I  = p + 1. 

Proposition 1.12. T h e  map D:  CP(%, b,,,) -t c P - I ( @ ,  ~ , l , q +  ,) is con- 
tin~lous and its adjoint is 

Proof. Since D = dTi, the adjoint of D equals ( - I ) " + ~ +  '~'TT'" by 
Proposition 1.9 and Proposition 1.11. 

Proposition 1.13. T h e  operators D:k and 6" anticolnnzute. Hence D" 
iilduces a map  from 

Proof. By Propositiol~ 1.4, 6 D  + D6 = 0 .  Therefore, by Proposition 1.8 
and Proposition 1.12, D*6* + 6*D* = 0. 
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We will refer to the map induced by D": as the adjoitzt Dolbenuli honzo- 
i~~orplzisnz. It follows from a diagram chase in (1.11) that this homomor- 
phism can be described (equivalently) as follows. 

Definition 1.14. The class [GP] E ~,(qL,t'b ,,,...,/8d~ I )  is the image 
of the class [fiP-l] E H p - 1 ( J ~ / , G ~ , f l - q - l / 8 ~ ~ d f l - ~ )  under the arljoirlt Dol- 
Oea~llt honzoi~zorphisnl if there exists uP~Cp(")/,8~,, ,- ,)  such that 

(1.12) (6*:u~), = (- l)"+""~of-' and u: - $ ~ l , , , , - ~ -  l(UJ).  

If p = 1 then [EO] E {\ti EG~, , , - , -  l(X): d\v = O)/8GA,,,-4-2(X) replaces the 
statement [ijP-'] E Np- ,(9?l,6A / a ~ b  where o0 also denotes 
&*vO = Cl UP €8; ,,,-,-,(X) (given a v0 E Co(J?l,@o', ,,-,- ,)). 

Definition 1.15. A sequence {iP)  with ~2% Zp(JIG,bb ,,,- ,+,/8&A ,) - 
p = 0,1, . . . , I .  such that [iP] EH~(V,GA ,,,-, +,/ad; ,,,- is the iinage of 
[up-'] under the adjoint Dolbeault homomorpl~ism for p = 1,2, ..., r, 
will be called an adjoint seqlierzce of Dolbeaiilt reprcserztatioes of 

[tlr] c Hr(ql, 6'6 ,,,- r / ~ ~ ~ , f I - , . A  In  the special case p = 0, 

[U O] E { IV E a;, ,, - ,(x) : %V = 0} /88;,, ,, - ,. - ,(x) . 

Consider the bilinear pairing (fP,GP) between CP(4'172'n,,) and 
Cp(4, 8; ,,,-, 188: ,,,-,- restricted to ZP(ql, 2',,,,) and 

This restricted biIinear pairiilg vatlisl~es if either f p  E 6CP-1(011, ZZn,,) or 
iiP~6'PCp+1(~l,80,rl~q/8G0,11-q-l), since (SgP-',G" = ((gP-1,6*~P) = 0 and 
c ~ P , S % ~ P + ~  ) = (6 f ", #"' l) = 0. Therefore, the bilinear pairing (1.7) induces 

a bilinear pairing between HP(%, Zff,ll) and He(%, 8b,,,-ll/88~,ll-e- 
Now the main theorem of this sectlon follows easily. 

Theorem 1.16. Suppose "// is n Sfeirt coueritzg ofX . If {J  9 (p = 0,. ..,I-) 
is a sequeilce of' Dolberrult representatives of a coho~nology class 
[TIE lT'P?/, Q") and {fiP)is all adjoint sequel~ceofDolbea~rlt represelitativesof 
[z?,.] E H , ( ~ / , G ~  ,,,-, /BG;,,-,.- then (f ", 1 1 ~ )  is tlze s an~e  for  all  p = 0, .-.,I.. 
It? particular, 

Proof. As lnelltiolled above the bilinear pairing ( , ) induces a bilinear 
pairing between fIP(%, 2'ft,r-p) and Hp(qL, bb,,,-r+p/88d ,,,-, + p- l).Therefore, 
to prove the theorem it suffices to replace { fp}  by any sequence of Dolbeault 
representatives of [f '1 and replace {tlP) by ally adjoint seqttence of 
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Dolbeault representatives of [u ' ] .  NOW replace {f by {DrmP f') and {up} 
by { ( D * ) ~ U ~ ) ' ~  = 0 , .-., r. Then (f P, up) = (Dr-Pf', (D*)~UO} = ( D ~ - ~ - '  f r, 
(~*)p+'uO) = ( f p + l , ~ p + l )  by Proposition 1.12. 

Remark. If, for any p = 0, . - a ,  r ,  ~ c " - ' ( ~ L , ~ ~ , , ~ - ~ )  is closed in  
Z p ( , l l , r p )  - and S C p + ( L , & , l l r + p / , , , -  r + p l )  is closed in 
Zp(@,~d, l l - r+p/aw a o,,I-r+p-l ) then the same is true for a11 p ,  and 
Hp(~L,~~,,-,+p/~~~,lllr+PP is the dual of the reflexive FrCchet space 
HP(OIL, 2Tl,,r-p) (i.e., the bilinear pairing (p,a) is non degenerate). We will 
not pursue this extension of Serre duality further. 

We co~lclude this section by proving that Dolbeault's homol~~orphisn~ 
commutes with "restriction." This fact will enable us to lnimick the standard 
proof of Cauchy's integral formula in one variable in proving integral 
formula in several variables. Suppose V is a refinement of q/ ,  that is, there 
exists a map p from the index set for Y into the index set for JIL such that 
Vi c Up ( , ,  for a11 i .  Let p:k:CP(9?,F)-+ CP(V,9 )  be defined by 
( ~ * f ) ~  = fptio,...p(i,, in V,. The map p'"bvious1y comnlutes with 6 and 
hence induces a map p*: HP(%, 9) -+ HP(V, 9). This map p': can be shown 
to be independent of the particular map p .  We will refer to this map as 
restriction from & to V' .  Note that if p = 0 then p4: is just restriction of 

sections of 9 from U i  Ui to U Vj . 
Proposition 1.17. Dolbeault's homoinorphis~~z cornrnutes with restric- 

tion. Thal  is, 

Proof. Use Definition 1.5 and the fact that 6 commutes with p'". 

2. Sequences of Dolbenult Repi-esentatives 

First, for an arbitrary open covering ql of a complex manifold X count- 
able at infinity, we have the sequence of Dolbeault representatives defined 
by (1.3). 

Proposition 2.1. Suppose (4 , )  is  a janzily of firnctiorzs satisfying the 
cotz~litions in Lemntn 1.1. Given f' EZ'(~!,R"), let 
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where a, = J(Y-p)(r-p-1). Then { f P )  ( p  = 0, .,.,I.) is a sequence of 
Dolbeault represetztatives of [f*] E Hr(&, Q"). 

Proof. The proposition follows from the fact that Dr-'lfr = f P .  (Here 
D is defined by (1.3) and denotes the lcth iterate of D .) We prove this fact 
by induction. Suppose Dr-PJ" = f P. Then (D'-"+ ' f'), = (DfP), = 

p, fiP, by (1.3). Now by (2.1) this equals (-1)"" El Z ,", qr-p84i A 8$K 
l\ fii, which equals (- C I L i  18$ fLI (let L = Ki). 

Next we collsider certain sequences of Dolbeault representatives which 
relate to integral formulae in several complex variables. First we examine 
the Cauchy kernel (Theorem 2.2) and then the more general Cauchy-Weil 
kernel (Theorem 2.6). 

Let K t  ( i =  1,+-.,n) denote a compact subset of C and let K  = K, x . .. x K,,. 
Let U ,  = {z E Cfl: zi 6 Ki) , i = 1, ..., n . Then each Ui is a domain of 11010- 
morphy and @ = {Ui):=, is an ope11 covering of @" - K .  For a fixed 
z E K ,  the Cailchy lcerrtel, 

obviously determines a unique cocycle (aIso denoted k(5,z)) in z"-~(@,R"). 
Note 6 k  = 0 since C"("2 a') = 0. 

Theorem 2.2. Suppose for (1 ,fixer1 z E K ,  firizctions g,(c, -7) E Cn(Cn- K)  
i =l,...,n aregiven s~lclz tltnt g(5,z) = g , ( ( , ~ ) ( < ~  -z,) + ... + g,,(c, z)(r,,--zll) 
never vanishes on C"- K. Let 4,(t,z) = g,(C,z) (5,-zi)/g(t,z) i = l,.-.,rz. Tlzen 
(2.1) defines a seyireizce {1cP(5,z)) (p = 11-1,..-,0) ofDolbeai~lt representn- 
tives of tlze c o h ~ i ~ z o l ~ g y  class [I<"-'1 E HI1-'(B,Qn) where 1"-'(5,~) is the 
Cauchy ke~nel.  For p = 0 ,  

which can also be expressed as 

(2.3) lcO((, z) = (- I)'"'"-~' (n - 1) ![2nig(<,z)]-" 

Remarks. If gi(4, z) = ti - Ti t l~en  (2.3) is the Bochner-Marti~lelli 
kerneI 
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The general kernel (2.3)  is called a kernel of Cnuclzy-Farltnppid type.  
Note that the above theore111 says in particular that a kernel of Cauchy- 

Fantappi6 type is 8-closed in @" - K and that ally two such kertlels differ 
by &, where o ~ & , , , ~ - ~ ( @  '- K) .  

Proof. The proof of all but (2.3)  is exactly the same as the proof of 
Propositioll 2.1, since :=,(/I, - 1 in C" - K and 4i1c5+ extends to a form 
in U ,  where (b,(t,=) is defined to be g , ( 5 , ~ ) ( { ~ - - . , ) / g ( t , z ) .  

Now (2.3) can be proved as follows. Differentiati011 yields 
84, = ( t ,  - ~ ~ ) & ' ( < , ~ ) - ~ ( g a g ~  - ghas). Let = gagh - gh;g. Then 

A 
Assume i # 1. Then since w ,  occurs in w ,  /\ A o, A /\ o,, we may 
replace each o, (lc > 1)  by wh - g , g l l o l  = g(agh - gkg; lagl ) .  That is, 

A 
cot A *.. A CO, A A CO,, = 

gf1-2(g8gl  - g lbS )  /\ (692 - gZg;18gl)  /\ ... 
-1 3 A -  - - ~g~)A(~g~+~-~,+i~;'~~;sl)A~.~A(~~,-g,~~;'~gl). 

Now by a direct calculativil this equals 

/A, 
Consequently, $ 4 ,  ... /\ i34i A - . -  A ad),, 

This completes the proof of (2.3) and hence the theorem. 
The co~lstructioll of the Cauchy-Weil kernel depends on tlze following 

lemma. 

Lemma 2.3. Let  U denote a n  arb i t rary  open set irz C". Giverz f~ 6 ( U ) ,  
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there exist functio~ls b i ( 5 , z ) ~ O ( U  x U )  sirclz that f ( 4 ) - f ( z )  = 

bl(<,z)(5i  - Z I )  + ... + bI1(5,z)(t,,  - z,,) in U x U .  

Remark. If U = C" then the lemma is trivial (expand f ( e )  in a power 
series about z) . 

Proof. Let 0 denote the envelope of holomorphy of U with projection 
n: O E  @'I. The functions f ( t )  and <, extend to holomorphic functions on 
(7 which we also denote by f ( t )  and t i .  Let 6 denote the sheaf of germs 
of hoIomorphic futlctions on 8 x (7 and let A: On+ 0 denote the sheaf 
homomorphism defined by 1: ( g l ,  gn) -+ g1(5,  - z l )  + +gn(i;',,-2,). 
Let W denote the kernel of /Z and .F the image of 3,. Then 0 -+ 92 -+ On+ 

9 + 0 is an exact sequence of coherent analytic sheaves on the Stein mani- 
fold 0 x 0. Therefore H 1 ( o  x 0, 9)=O and hence 1,: 8 ( 0  x o);)-tl?(Ox 0,s) 
is surjective. I t  remains to show that f  ( 4 )  - f  ( z ) ~ l ? ( O  x 0,',9). By 
using power series we have that the germ induced by f ( t )  - f ( z )  belongs 
to F at each point (to, z,) E U x U - This completes the proof if U is a do- 
main of holomorphy. Suppose X ,  E 8 and n ~ ,  = z ,  . Let g ( [ )  = J (n - ' (5 ) )  
for 5 near z .  Expanding in power series gives g(4) - g(z )  = C:=,a,({,z), 
( t i  - zi)  for 5 ,  z  both near 2,. Now f ' (y)  = g(ny)  for y near x, . Therefore 
f ( x )  - j ( y )  = C i a i ( n x , x y ) ( 4 , - z i )  for x , y  near x,. 

Suppose U is an open set in  C" and functions h i e  O(U) are given. Let 
K i  denote a compact subset of C and let U ,  = {z E U : h,(z) $ K , )  . Then 
J2J = { U i )  is an open covering of U - K where K = { z  E U : Iz,(z) E Ki for 
all i ) .  Utilizing Lemma 2.3 (for each i) choose aij  E O(U x U )  such that 
hi(<) - Ili(z) = C(il= l ~~ i , ( [ ,  z ) ( t j -  z j ) .  Let A denote the matrix whose ith 
I.OW is (arl,...,clil,) . Given 11 1 = 11,  let AI(<,z)  denote the n x n matrix 
obtained from the i,, i,, ..., i ,,-, rows of A .  

Definition 2.4. For a lixed z E K ,  

(2.5) 
det A,(S, z ) d t  

kI(c,  z) = (2ni)-" rJ (hi(5) - hi(z>> 
E Qfl( ' J I )  , 

I EI 

with 1 I ]  = 1 2 ,  determines a cochain ( I c ~ ( ( , z ) )  E C"-1('/21,Q") called the 
Cauchy- Weil kenlei. 

This cochain is in fact a cocycle. 

Proposition 2.5. S k  = 0 .  

Proof. Suppose I J I = n + 1 is given. Consider the ( n  -t 1) x (11  -t 1) 
matrix with rows (ajkl  ,,,,, a ,,<,,, lzj,(() - hj,(z)) k=0,1,  ..., n.  Its determinantis 
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zero since each row is orthogonal to the vector ( ( ~ , - Z ~ ) ; ~ ~ , ( < ~ - Z , ) ,  -1). 
Computing this determinant by expanding about the last column gives 
C i E O ( -  ~ ) ~ ( h ~ , ( < )  - hj,(z))det Ajo...j,...j,, which must therefore equal zero. 
Now dividing this last expression by nj e J ( h j ( t )  - hj(z) )  we obtain 
6k = 0 .  

Now we can generalize Theorem 2.2. 

Theorem 2.6. Consider the covering qL of U - K described in Defin- 
ition 2.4. Suppose for a fixed z E K that fi~izctions gi({, Z )  E Cm(U- K )  
are given such that {suppg,(t,z)) is locallyfinite and 

never. vaizislzes on U - K. Define qi ( t ,  z )  = gi(5, z)(h,(<) - hi(z))  / g ( t , z ) .  
Then  (2.1) defines a sequence ( k P )  ( p  = n - 1;-.,O) of Dolbeault rep- 
reseiztatives of the cohomology class [kn- ' ]  6 H"-'(Q, Q") deterrnined by 
the Cauchy Weil kernel k"-' = ( k , ( t ,  z ) )  . T h e  special case ( p  = O), 

(2.6) k0(5,z)  = (- l)k"("-l)(n-l)! J;' 8$J1(t) A kir(5,z)  in Ui 
III=n-l 

cart also be expressed as 

Proof. The proof of all but (2.7) is exactly the same as the proof of 
Theorein 2.2. The proof of (2.7) is similar to the proof of its special 
case (2.3), except more complicated. The proof of (2.7) is omitted. 

3. Adjoint Seqtreizces of Dolbeault Representatives 

The next proposition is an analogue of Proposition 2.1 in the dual situa- 
tion. AS before, we assume that X is countable at infinity, and that @ is a 
Stein covering of X.  

Proposition 3.1. Suppose ( $ i )  i s  a family of functions satisfying the 
coizditions in Lernrna 1.1. Giveiz uO E&;,,-,(X) with aua = 0 ,  let 

p = O,1, ... , r . Then ( i i P )  is an adjoint sequence of Dolbeault representatives 
of [ l iO]  E HI:,-'(X, 0).  Here a, = 0 and a, = (12 - r )  + *p(p - 1)  for p > 0 .  
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Proof. We prove more, namely that u p  = ( D * ) ~ U ' .  Let vP denote 
( D * ) p ~ O .  Then by (1.9), 

wit11 up = 4 iu0 .  Now we prove that vP = u p  by induction. Differentiating 
(3.1) gives $v;-' = 8uF-I = (- l ) a p -  'p!84' A t i o .  By substituting for 
av,P-' in the right-hand side of (3.2) we immediately obtain vy = U P , .  

Next we consider the important case I. = n -  1 and construct some special 
adjoint sequences of Dolbeault representatives. 

Proposition 3.2. Suppose $,. E C m ( X )  kvitlz supp a$i c c Ui a r ~ d  
(supp(1 -$J) locally finite. Let u0 = 8ni$i and 

T h e n  {CP) is a n  adjoint sequence of Dolbeault repr.esentatiues of 
[ u O ]  E H:(x,@). 

Proof. 

Therefore [dP] is the image of [iiP-'1 under the adjoint Dolbeault homo- 
morphism (see Definition 1.15). 

The assumption that $, E CW(X) can be weakened considerably. In 
particular, the forrnulas (3.3) call be made to include integration over 
the various strata of the topological boundary of the polydisc. This is 
made precise in the rest of this section. First we formalize the llypothesis of 
Proposition 3.2 as a definition. 

Definition 3.3. A collection {@i) satisfying the hypothesis of Proposi- 
tion 3.2 will be called a smeared Cm-polylzeclron subordirzate to 4'l, and the 
u7 defined by (3.3) will be called generalized strata. 

For simplicity assume that X is an open subset of C" and that 4L is a 
finite covering of X. Suppose D is an open subset of X with the topological 
boundary aD compact. Suppose that pairwise disjoint oriented (not neces- 
sarily closed) C" subma~lifolds (JD), of U ,  are given for all strictly in- 
creasing multi-indices I, and that aD = ~ , ( J D ) , .  Extend the notation 
(JD), to all multi-indices by skew-symmetry. 

Definition 3.4. Suppose 
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1) (D, U,(dD),) is an (not necessariIy closed) oriented Cm-manifold 
with boundary, 

2) ((do),, Ui(aD),,) is an (not necessarily closed) oriented Cm-manifoId 
with boundary, 

3) Each (aD), has finite volume and (aD), for I I1  = n is a compact 
manifold without boundary. 
Then D will be called a Cm-polyhedron iiz general positioiz with respect 
to @. 

Proposition 3.6. Slippose D is a Cm-polyhedron in general position 
with respect to 4'. Let 

p = 0, ..., i z -  I .  Then {iiP) is ail ndjoint sequence of Dolbeaulf represen- 
tatives of [uO] E H:(x,~),  where (f, u O )  = JaDf for all  f E &  ,,,,,-, (X). 

Proof. The proof is formally the same as the proof of Proposition 3.2. 
Here C,ur, = (-l)P~uIP-lmeans 

<f, C .;I> = r. 1 f = 1 8f = (8f, .I.";-'> = (f, (-l).8.';-') 
i i 

( B D ) , I  ( ~ D ) I  

for all j E & , , - ~ - ~ ( U ~ ) .  The second equality is true by a general version of 
Stokes' theorem (see Stoizenberg [4]  and Federer [ I ] )  since 8f = dJ 

The general version of Cauchy's integral formula in severaI complex 
variabIes, which we prove in the next section, will involve the following 
configuration. S~~ppose  11 = ( h , ,  . - a ,  12,) E Q ( u ) ~  is a proper map of a domain 
of holornorphy U into c N ,  and that K,(i = l , . . . ,N) are compact subsets 
of 6. Let Ui = {< E U: h,(<) $ K,) and let K = {< E U: k,(<) E Ki for all i). 
Then ?L = {Ui) is a Stein covering of X = U - K .  

Lemma 3.6. For each neigkborhood V of K ,  
1) tlzere exists a srlzeared Cm-polyhedron subordirzate to qL suck 

tkat n[$, exteizds as the corzstaizt furzction 1 across K nrzd the extension 
is co~~zpactly supported in V; 

2) tlzere exists a Cm-polyhedron D in general position with respect 
to 02 such that G = D u K is an  open, relatively compact subset of V. 

Proof of 1). Pick neighborhoods Dl of K i  such that G = {< E U: hi(() ED, 
for all i) is a compact subset of V. Pick Cw(U) such that I)i -= 1 in a 
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neighborhood of {< E U: Ii,(c) E Ki) and I / J ~  r 0 in a neighborhood of 
{< E U :  1zi(t) $ 0 , ) .  Then II $i E C;(V) and is identically one in a neigh- 
borhood of K .  Also, srrpp &), is contained in the strip {< E U :  hi(<) E Di-Ki) 
which is contained in U , .  

Proof of 2).  Pick neighborl~oods D: of Ki with C" boundaries aDi 
such that C = {< E U :  h , ( t )  G Di for all i) is a compact s ~ ~ b s e t  of V. Let 

Then $phi is a C m  map of a neighborhood of (5  E U: hi(t;) E all;) into a 
neighborhood of OER, Sard's theorern call be used to insure that for 
arbitrarily small r = (I., , . . # ,  r,), the sets Si  = (5 E U : $,(hi(<)) = 1.~1 are 
C m  manifolds and that for each I ,  the manifolds Sio,  ..., S l P  intersect trans- 
versely. Let D = (< E U :  4Ph,(<) < ri for all i j  and let (all), = {< E U :  
4P1zi(t;) = I., for all i E 1 and $;lz,(<) < ri if i $ 1 ) .  Since (JD) ,  is the inter- 
section of the bounded domain ( 5  E U :  $:12,(<) < I., + & for i E i and 
$41zi(5) < ri for i $1) with the Cm manifold S,,  n n S i n ,  (aD), has 
finite volume. 

4. Cnuchy's integral For~nula  

As before, suppose h = (h,,.+.,h,) E B(u)*~s a proper map of a domain 
of hoiomorphy U into eN, and that K, ( i  = 1 ,  -.., N) are compact subsets 
of C .  Let U, = (5  E U: /I,(<) q! Kij and let K = (< E U: 12, (9)  E K i  for all i )  . 
Then -2 = { U i )  is a Stein covering of U - K .  

In the following theorem we assume the following: 
1) An N x a matrix A(5 , z )  is given with entries holomorphic in U x U 

and with A(<, z )  mapping the vector < -z illto h(c) - ?z(z). Let A,(<, z )  
denote the matrix whose 1st row is the i,th row of A(E;,z), etc. 

2 )  A family ( 4 , )  of fiullctio~ls satisfying Lemma 1.1 is given. 
3) There exists a neighborhood of K ,  and for each fixed z in this neigh- 

borhood, functions g,(<, z )  E Cm(U) such that 
N 

g(5,z)  = 2 g,(<,z) ( i z , (~)-2z , (z ) )  # O for < # z .  
1 = 1 

4) A family of smeared C" polyhedra is given with each smeared 
polyhedron ( I / / , )  subordinate to % such that I I I /J ,  extends as the collstant 
function 1 across K and ( ( s~~ppI I r l /~ )  u K )  is a fundamental lieighborhood 
system for K in U . 

5) A family of Cm polyhedra is given with each polyl~edron D in general 
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position with respect t o  % such that ( D  U K) is a fundamental neighbor- 
hood system for K in U .  

Theorem 4.1. i) For all f E B(K), 

det A, ,(<, z)d( 

i E K J  

lzolds i n  a neighborhood of K ,  where D is a Cm-polyhedron clzoserz so 
that f E O(D u K ) ,  Using cu t08  functioi~s instead of C" polyhedra yields 

ii) For all f E O(K), 

holds in  a neigltborlzood of K ,  where the ijj are clzoserz so tlzatf E O(supp II$j). 
I n  these formulas (4.1)' and (4.1)", p = 0,1, -.-,rz-1. 
iii) I f  p = n - 1  then (4.1)' is the Cauclzy-Weil fbrinuln, 

or equivalently, 
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Remark. The Cauchy integral formula for a polydisc is a special case 
of (4.2)' and the Bochner-Martinelli integral fornlula is a special case of 
(4.4)'. 

Proof. Colisider the sequence {kP) p=O,. -. , iz - 1 of Dolbeault repre- 
sentatives of the Cauchy-Weil kernel (see Definition 2.4 for the definition 
of k"-I and see (2.6) or (2.7) for the definition of lcO). Consider the ad- 
joint sequence (11" of DoIbeault representatives given in either Propo- 
sition 3.5 or Proposition 3.2. The pairings < f P ,  u" make up the right-hand 
sides of the above fortnulas. Note that 8 II I), and hD represent the same 
class in H:(U - K,O), where xD denote the characteristic function of D. 
By Theorem 1.16, this proves that the right-hand sides in all the above 
forln~tlas are the same. Consequently, i t  suffices t o  prove ally one of the 
above formulas. Now, of course, there are many ways to co~llplete the 
proof of the theorem. In order to usePropositioi1 1.17 we construct a~~xiliary 
coverings and Yfl as follows. 

Suppose z is fixed. Let K,, = [ z j )  and hN+ j ( [ )  = t j  - z, , and let 
vfl+j = { C E  U:hN+j(<)$KN+j) = { g ~  U : t j -  z j  # 0) f o r j  = l;..,IZ.LeI 

Nfrr  
.//' = {Vj)jGN+ and #'" = ?L UY. The11 If is a Stein covering of U - {z), 
Y is a Stein covering of U - { z ) ,  and U/( is a Stein covering of U - K .  
Extend the lnatrix A(l,z) by adding the tz x i t  identity matrix to the bottom 
of A .  Call the extended matrix B.  Then 

n 

Iz;(C) - lzi(z) = C bij(tj - zj) for i = 1, ..., N + n 
j=1 

( /Y, Q") with Now, consider the Cauchy-Weil kernel E"-' €2"-' " 

1 det B,(t)dt En-1 = -- 
I (2ni)" n (iti(4) - lzi(z)) ' 

i € 1  
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The covering Y is a refinement of $Y'" with an obvious refinement map p ,  * 

Similarly, qL is a refinement of .r'Y with an obvious refinement map p,. 
The restriction ,D;E"-' is just the Cauchy kernel, which we denote by kc. 
That is 

where I = (N + 1, N f n). The restriction p;E "- I  is just the Cauchy- 
Weil kernel k " - I  (see Definition 2.4). That is 

where I = (i,, ... in- ,) with each 1 5 i, $ N.  
The following diagram commutes by Propositioll 1.17. 

[kc] E H"- ' (Y ,  Qn) 

[kB-M] E H"-'(u - {z),n") 

[ k O ]  E H"- ' (u  - K ,  Q") 
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Therefore [E'] , the image of [E"-'] under Dolbeault's homomorphism, 
restricts to [kO] the image of [I?-'] under Dolbeault's homomorphism. 
Also [EO] restricts to [1zB-*] where lcB-M ( 5 , ~ )  denotes the Bochner-Mar- 
tinelli. Therefore lcO and kB-* determine the same class in H"-'(u - K,Qn). 

The right-hand sides of (4.3)" and (4.4)" can both be written as 
(f(l)lco(C,z), 8II$,(C)) by Theorem 2.6. Since [kO] = [kB-M] in U - K 
and a'n $j is compactly supported in U - K, (f (C)k0(5, z), 8I I  $j([)) 
= (f ( ( ) l ~ ~ - ~ ( l ,  z) ,  8II I),([)). Now, integrating by parts and using tbe 
fact that a l ~ ~ - ~ ( l , z )  = d2(C) (the form which evaluates gs E0,,(Cn) at z) 
this equals (a(f (6)kBpM(l, z)), II $j(C)) = (f (C)8jzB-M (C, Z) , II $j(O> 
= f(z). This proves both (4.3)" and (4.4)". That is, j'(z) = (f(5)k0((,z), 

$j(C)). The proof of the theorem is now complete. 

Remark. If k(() E&,,,,- ,(U - K) with 8k = 0 in U - K and there 
exists o E En,,,-,(U - K) with 145) = kB-M (5, Z) + 80(5), where z is some 
fixed point in K (i.e., if [k] = [kB-*] in U - K),  then there exists a 
hyperfunction extension of k to U with Jk(5) = 6,(5). This can be seen 
as follows. First extend o(5)to G(5) on U. Then k(<) = k B-M((, z) + JG(<) 
and hence 81<(5) = d,(t). 
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