THE ENVELOPE OF HOLOMORPHY
OF A TWO-MANIFOLD IN C**

by L. R. Hunt and R. O. Wells, Jr.**

1. Introduction

There has been a large amount of study devoted to the problem of ana-
lytic continuation. If K is a subset of C", n > 1, then one wishes to know
if there is a larger set K', containing K, such that all holomorphic func-
tions on K can be extended to holomorphic functions on K’. It has been
known for some time that the envelope of holomorphy of a domain in
C" is a Stein manifold spread over C". One can then consider the case where
K is a lower dimensional set in C", n > 1. For example, Hartogs proved
that every function holomorphic in a neighborhood of the boundary of
the unit ball in C” can be extended to a holomorphic function in the interior
of the ball. In [12] it was shown that if M is a real (n + 1)-dimensional
differentiable submanifold embedded in C", one obtains local extendibility
over a manifold of real dimension n + 2, provided the so-called Levi form
does not vanish. Greenfield [§] has proven a similar result for an (n + k)-
dimensional submanifold of C" with 1 £k £n—1.

Denote by O(= 0.) the structure sheaf of germs of holomorphic func-
tions on C". If K is a subset of C", let @#(K) be the algebra of sections of ¢
over K (germs of holomorphic functions defined near K). If K ;K’
(where K and K’ are connected sets), we say that K is extendible to K’
if the natural restriction map

riO(K') = O(K)

is onto.

If K is a compact subset of C", then ¢(K) is, in a natural way, the induc-
tive limit of Fréchet algebras of the form @¢(U) where U is an open set
containing K. As such it has a natural locally convex inductive limit topol-
ogy and becomes a topological algebra. The spectrum (or maximal ideal
space) of the topological algebra ¢(K) is defined to be the envelope of holo-
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morphy of the compact set K, and is denoted by E(K) (see [6] where this
definition is seen to be equivalent to an earlier one given in [12]).

The main result of this paper is the following theorem which will be
proved in Section 4.

Theorem 1.1. There is an open dense set U of embeddings of the
real two-sphere in C* such that each embedded two-sphere from U has
the property that its envelope of holomorphy contains a real three-di-
mensional €" manifold M (1 £ n < ®).

(Outline of Proof). Using an iteration technique devised by Bishop [7],
we establish a (k—1)-parameter family of analytic discs in a neighborhood
of an elliptic point (to be defined in Section 2) in a real k-dimensional
differentiable submanifold M* of C*. By computing a certain Jacobian
and using a theorem on simultaneous analytic continuation from [11],
we are able to say that every function holomorphic on M* can be extended
to a holomorphic function on a real (k + 1)-dimensional %" manifold
(1 = n<ow).

Using Thom Transversality Theory (see Levine [8]), we prove that there
exists an open dense set of embeddings of any compact two-manifold in
C? so that each such embedded manifold has the following properties:

(i) There are at most finitely many exceptional points, and

(ii) Each exceptional point is of the elliptic or hyperbolic type.

(The concepts of exceptional points and hyperbolic points, as well as elliptic
points, will be defined in Section 2. They are first and second order con-
ditions on the submanifold at a point).

Bishop [I] proves that for such a two-manifold the number of elliptic
points minus the number of hyperbolic points equals the Euler number
of the two-manifold. In particular, each two-sphere, embedded by an
element in the open dense set, has at least two elliptic points. Using the
analytic continuation result for M* < C* we can easily complete the proof.

Remark: Consider the two-sphere in standard position in R3® < C?
(R® = {(z,2,)€C*: Imz, = 0}). Using a classical argument involving the
Cauchy integral formula (cf. Bochner-Martin [2]), we can say that every
function holomorphic on the two-sphere can be extended to a function
holomorphic in the open ball. In this case the envelope of holomorphy
of the two-sphere is the closed unit ball. This is an example of an embedded
two-sphere which has the property that its envelope of holomorphy con-
tains a three-manifold, but does not contain a manifold of higher dimension.

A manifold M embedded in C" is said to be totally real if there does
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not exist a point such that the tangent space to the manifold at this point
contains a nonzero complex subspace of C”.

In [13] it was proven that a totally real oriented two-manifold embedded
in C* must have Euler number zero and thus be a torus. In [10] it was
shown that a totally real submanifold is not extendible.

Denote by 7 the set of embeddings of the torus in C* such that the
embedded tori are not totally real. In Section 4 we shall prove the following
theorem.

Theorem 1.2. There is an open dense set of embeddings in F such
that each two-torus embedded by an element in this dense set has the
property that its envelope of holomorphy contains a real three-dimensional
%" manifold (1 = n < ).

There is an example of a torus which is embedded in C? and is not totally
real. Let T2 be the standard torusin R®* = C? (R?® = {(z,,2,) e C*:Imz,=0})
with its axis of symmetry as the Rez,; axis. There are exactly four points
on the torus T? which have tangent spaces parallel to the plane z, = 0.

If we consider an oriented two-manifold of positive genus, we have the
following theorem.

Theorem 1.3. There is an open set of embeddings of an oriented
compact iwo-manifold of positive genus in C* with the following property:
each manifold embedded by an element in this open set has an envelope
of holomorphy which contains a three-manifold.

In Section 2 we discuss elliptic and hyperbolic points on a two-manifold
in C? and state a local theorem on extendibility.

Thom Transversality Theory is the topic of Section 3. We shall give
definitions and theorems and apply the theory to a two-manifold in C*.

Let M?* be an oriented two-manifold embedded in C? such that M?
has only a finite number of exceptional points, and each exceptional point
is of either elliptic or hyperbolic type. In Section 4 we discuss Bishop’s proof
that the number of elliptic points on M? minus the number of hyperbolic
points on M? equals the Euler number of M2,

2. Elliptic and hyperbolic points on a two-manifold in C*.

Let M? denote a real two-dimensional differentiable manifold embedded
inC. A point p in M? will be called exceptional if the tangent space to
M? at p is a complex-linear subspace of C? of complex dimension one.

If T.(C?) denotes the real tangent space to C*> at xeC?, we have an
almost complex tensor J: T.(C*)— T,(C?) given by the complex structure
on C*. J is given by multiplication by i.
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Define H,(M?) = T,(M?*) NJT,(M?) where pe M* and T,(M?) is the
real tangent space to M? at p. The vector space H,(M?) is called the vector
space of holomorphic tangent vectors to M* at p. Then p is an exceptional
point in M? if the complex dimension of H,(M?) is one.

As an example, if S* denotes the two-sphere in standard position in
R® = C?, then the exceptional points in S* are the north and south poles.

Letting p be an exceptional point of M?, we choose differentiable co-
ordinates u, v in a neighborhood of p in M?, vanishing at p, and analytic
coordinates z,,z, for a neighborhood of p in C*, vanishing at p. The
equations of M? in a neighborhood of p can then be written as

z; = fi(u,v)
z, = fy(u,v),

where f}, f> are complex valued ¥“ functions of u and v, defined in a neigh-
borhood of u = v = 0. (We denote by %* the class of functions contin-
uously differentiable of order k, 1 £ k < ®©.)

By properly choosing our coordinates these equations may be put in
the form
u+iv=w

Il

Z4
Zg: == g(W),

where g is complex valued and vanishes to second order at u = v = 0.
Then p is exceptional if and only if the determinant of the Jacobian
J = J(z,,2,/u,v) vanishes at p = 0.

Expanding g(w) about p = 0 we have

g(w) = aw? + ywip + fip + Aw),
where A vanishes to third order at w = 0. Assuming y £ 0 and using co-

ordinate changes (see [I]) we obtain g(w) = B(w* + W) + wiw + A(w),
where f = 0. If we assume |B| 5 %|7|, we find f 5 §.

Definition 2.1. If if <4, then  B(w? + W) + ww = 28(u’ — v} +
u? + v? = ¢, for a positive constant ¢, is the equation of an ellipse, and p
is called a point of elliptic type.

Definition 2.2. If >4, then B(w?+ w?)+ wiw = c¢ is the equation
of a hyperbola and p is called a point of hyperbolic type.

Definition 2.3. If f§ = 1, we say that p is a point of parabolic type.
Note that if f < L. then the point p is a minimum point for the function
Reg, while if f > %, the point p is a saddle point for the function Reg.
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Since o8 = = 0, p is a critical point in Morse Theory
Oul,—g 0Ovl,=9
(see Milnor [9]). The Hessian matrix is
a*g(0)  9%*g(0) 228 + 1) 0
ou? dudv
0’%(0) %0 | T
_ dvdu dv? ¢ AL =2

Thus p is non degenerate if f 4 and degenerate if f = 1. Hence the
elliptic and hyperbolic points are non degenerate critical points, while the
parabolic points are degenerate critical points. The signature of the matrix
His0if f>3and 2if f <.

We have similar definitions for elliptic and hyperbolic points in a real
k-dimensional differentiable manifold M* embedded in C*.

In [7] the following theorem has been proved.

Theorem 2.1. Let M*=C*be a real k-dimensional differentiable sub-
manifold of C* such that M* has at least one exceptional point of the
elliptic type. Then given any n, 1 £ n < oo, there exists a real (k+1)-
dimensional €" submanifold M such that M* is extendible to M* U M.

This theorem was proved by extending the iteration argument devised
by Bishop and applying the analytic continuation result for families of
analytic discs from [11].

Let U be an open neighborhood of the origin in R* and f be an embedding
of U into R* = C?* with f(0) = 0 such that f(0) is a saddle point for
f(U). Freeman [4] has shown that f(U) is locally polynomially convex.
For example, suppose the equations of f(U) are given by

Zy = U+iv = w

zy = u? -2,
Then the point u = v = 0 is a saddle point of f(U), and the intersection
of a closed ball with f(U) is polynomially convex. Thus hyperbolic points
will not in general contribute to the envelope of holomorphy.

Definition 2.4. An exceptional point is called non degenerate if it is
either elliptic or hyperbolic.

Definition 2.5. By a non degenerate embedding we mean an embedding
under which a manifold has at most finitely many exceptional points,
and all such points are non degenerate.
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3. Thom Transversality Theory

The following discussion of Thom Transversality Theory is taken from
the notes of Levine [§].

Let ¥V and M be manifolds of real dimensions n and p respectively. We
define the r-jet from V to M with source x and target y of a %"-map
f:V — M as the equivalence class of all ¥-maps from V to M which take
x into y, all of whose partial derivatives at x of orders = r are equal to
those of f.

We denote the r-jet of f at x by J(f)(x). If we let J'(n, p) denote the
space of r-jets of €"-maps f: V - M with f(x) = y, then J'(n,p) becomes
a euclidean space if we take the values of the partial derivatives at x as
the coordinates of a jet. The set of all r-jets from ¥V to M is denoted by
J'(V,M). If we choose local coordinates in V and M, then J'(V, M) be-
comes a fibre bundle with fibre J'(n, p) and group L(n,p) (see [8]).

If f:V = M is of class at least 47, the r extension of f is defined by:
J(f): V- J(V,M), where x = J(f)(x).

Let S be a submanifold of codimension ¢ in M, and let f: V¥ — M be a
differentiable mapping. f is said to be transversal to the submanifold S
at a point xe V if either:

(i) f(x) ¢S, or

(i) f(x)eS and the image under df of the tangent space to V at x and
the tangent space to S at f(x) = y span the tangent space to M at y.

If f is transversal to S at every point xe V, we say that f is transversal
to S. In this case one can prove that f=1(S) is a regular submanifold of V
of codimension ¢ in V, or void.

Let L(V,M,s) denote the set of all s-times continuously differentiable
maps from Vto M. On L(V, M,s) we put the topology of compact conver-
gence of all partial derivatives of orders =<s.

Assume s > r = 0 and let N be an (s—r) differentiable regular submani-
fold of J'(V,M) where V and M are at least ¥* differentiable paracompact
manifolds of dimensions n and p respectively. Suppose that the codimension
of N in J(V,M) is q.

Theorem 3.1. (Tranversality Theorem of Thom). The set of maps in
L(V,M,s) whose r extensions are transversal to N on V is everywhere
dense if (s—r)>max(n—q,0). In addition if V is compact, this dense
set is open.

For any pair of positive integers (n,p) a singularity manifold of order r
is a regular submanifold of J'(n,p) which is invariant under the group



THE ENVELOPE OF HOLOMORPHY OF A TWO-MANIFOLD IN €2 57

L(n,p). Given a singularity manifold of order r, S < J'(n,p), we can
define a submanifold S(V, M) of J(V,M), and the codimension of S in
J'(n, p) equals the codimension of S(V, M) in J'(V, M).

Let S(f) = (J'(f)”'(S(V, M))), where f: ¥V — M is of class €. Assume
the codimension of S(V, M) in J(V,M) is q.

Thom’s Transversality Theorem gives us the following results (assume
(s—r) > max(n—gq,0)):

(i) If g > n, the set of maps f in L(V, M,s) such that S(f) = & is dense
in L(V,M,s).

(i) If g = n, the set of maps f in L(V, M,s) such that S(f) = & or
S(f) is a submanifold of V of codimension ¢ is dense in L(V, M,s).

We want to apply the transversality theory to the case V = M? (M? is
compact, €%, real two-dimensional), M =C?, and f:M?-C? is an em-
bedding.

If p is a point in M?, J'(2,2) can be identified with four-dimensional
complex euclidean space. If p is an exceptional point of M? under a #*
map f, then the complex Jacobian of f has a vanishing determinant at p.
Since the singularity S, of J;(2,2), which is defined by the vanishing of
the Jacobian determinant, is invariant under coordinate changes on M?
and C?, it is a singularity manifold of order 1, and we can thus define
S,(M?,C?) in JY(M?,C?).

Consider the set L(M?,C?*,%0). Since the real codimension of S,(M?,C?)
in JY(M?*,C?) is 2, we have that the set of maps f in L(M?,C?, o) such
that S,(f) = & or S,(f) is a submanifold of dimension 0 in M? is open
and dense in L(M? C* w).

Because the embeddings are an open set in L(M?, C? o), we find that
the set of embeddings f such that S,(f) = @ or S,(f) contains a finite
number of points is open and dense in the set of all ¥ embeddings. If
S,(f) = @ and M? is orientable, then M? is totally real under the em-
bedding f and is thus a torus, as mentioned earlier.

If p is an exceptional point in an embedded two-manifold in C2, the
equations for a neighborhood of p are

Zy = u+iv =w
z, = aw? + P? + ywiw + A(w).

If 9 £ 0 and |}3| 4 -;—1?1 these equations can be put in the form
Zy = U+iv = w

z, = B(w? + %) + wiv + Aw)
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where f = 0 and f 5 {. In this case p is a non degenerate exceptional
point.

J?(2,2) can be identified with ten-dimensional complex euclidean space.
Let p be an exceptional point of a manifold M? embedded in C? in such
a way that y = 0. Since the condition y = 0 is not invariant under coor-
dinate changes on M?, the submanifold S, of J*(2,2) which arises from
the fact that p is an exceptional point with y = 0 is not a singularity mani-
fold. However, if M? has only a finite number of exceptional points under
an embedding f into C? we may apply the following lemma at each of
these points.

We have the notation:

T = R x J'(n,p)
F: R = Tix > (f(x),7()()
G: R'-> T:x - (f(x),J(g)(x)).

Lemma 3.1 (Local lemma). Suppose fe L(R",R"s) and N<T is an
(s—r) differentiable regular submanifold of codimension q. If (s —r)>
max (n—q,0), then for each xeR" and each ueN < T such that
f(x)=u we can find:

(1) A neighborhood V, of u in T.

(2) A neighborhood W, of f in L(R", R",s).

(3) A compact neighborhood U, of x in R" such that

(a) foreach geW,, GU,)cV,;
(b) for each he W, there exists a ge W, arbitrarily close to h
such that G| U, is transversal to N.

If we set N = C? x S, and note that the real codimension of S, in
J?(2,2) is 4, we find by applying the lemma at each exceptional point,
that arbitrarily close to the embedding f is an embedding g which has a
finite number of exceptional points with y £ 0 at each such point.

We use the lemma again with the condition y = 0 replaced by the con-
dition || = %|y|. Thus the set of embeddings under which a manifold
has no exceptional points or a finite number of exceptional points with
y # 0and ! ,8| 7 {-| y‘ at each such point is dense in the set of all embeddings.
Therefore the non degenerate embeddings of M? into C* are an open dense
set in the set of all ¥ ® embeddings.

4, The Gauss Mapping and Intersection Theory

Let M = C? be a compact oriented two-manifold with a given orienta-
tion. Assume M has been embedded in C* by a non degenerate embedding.
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The following theorem is proved by Bishop [1].

Theorem 4.1. The number of elliptic points minus the number of
hyperbolic points equals y(M), where (M) denotes the Euler number of M.,

Proof. If M is a totally real torus, then M has no exceptional points.
However, the Euler number of M in this case is 0, and the theorem holds.

Therefore assume that M is not totally real. Let G denote the Grassmann
manifold of all oriented two-dimensional real-linear subspaces of C*. By
mapping each point into its oriented tangent plane we obtain the Gauss
map {: M - G.

Using Pliicker coordinates we may identify G with the product of unit
two spheres S; and S,. Denote by H the subset of G consisting of those
two-dimensional real-linear subspaces of C* which also have a complex
structure, and whose orientation is induced by this complex structure.
Then p in M is exceptional if and only if {(p)e H or —i(p)e H, where
—1(p) denotes t(p) with orientation reversed. Again using Pliicker coor-
dinates we find that H = (1,0,0) x S,.

We next prove that ¢ (actually an order 2 approximation of ) is trans-
versal to H on M. If t(p)e H, by computing a certain determinant we
have sgn(p) = + 1 if p is an elliptic point and sgn(p) = —1 if p is a hyper-
bolic point. If p,,---, py are the points of M such that ¢(p;)e H, we define
the intersection number of t(M?*) and H as XL, sgn(p,). Chern and
Spanier [3] have shown that the intersection number is (+)x(M). By re-
versing the orientation, we find that the intersection number of —(M?)
and H is (1)x(M). Therefore the number of elliptic points minus the number
of hyperbolic points is equal to y(M). Q.E.D.

Now we are able to prove Theorems 1.1, 1.2, and 1.3.

Proof of Theorem 1.1. From Section 3 we know that the non degenerate
embeddings are an open dense set in the set of embeddings of the two-
sphere in C*. If S* is a two-sphere embedded in C? by a non degenerate
embedding, then S> has at least two elliptic points by Theorem 4.1. Let
P1s P2, Py be the elliptic exceptional points. Using Theorem 2.1, we find
that S? is extendible to S? U M;, where M, is the three-dimensional %",
n = 1, real manifold related to the point p;, i = 1,2,---,/. Choosing the
M; to be disjoint, we set M = [ Ji-, M,, and thus we have that S? is
extendible to S2 UM and M c E(S?). Q.E.D.

The proof of Theorem 1.2 is the same except that we may have only
one exceptional point of the elliptic type.
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Proof of Theorem 1.3. If M? is an oriented compact two-manifold of
positive genus, then the non degenerate embeddings are an open dense
set in the set of embeddings of M? into C?. If M? is embedded by an ele-
ment in this dense set, by using Theorem 4.1 we find that there may be
no exceptional points (if the genus of M? is one), or there are at least two
hyperbolic points (if the genus of M? is greater than one). Thus the algebraic
topology does not allow us to conclude the existence of elliptic points in
this case. In [I3] it was shown that there is at least one non degenerate
embedding of an oriented two-manifold of positive genus into C?, such
that at least two of the exceptional points are elliptic. Hence, we can only
conclude that there is an open (but not necessarily dense) set of embeddings
of a two-manifold of positive genus so that each such embedded manifold
has the property that its envelope of holomorphy contains a three-manifold.

Q.E.D.

5. Remarks

1. Let M* be a real k-dimensional differentiable manifold embedded in C¥,
ke > 2. Using Thom Transversality Theory we find that there exists a dense set
of embeddings of M* into C* such that there are no exceptional points or the
exceptional points are a submanifold of dimension k — 2. If M* is compact
and orientable, it was shown in [13] that M* is totally real only if y(M*) = 0.
Otherwise, if M* is compact and oriented and Z(Mk) # 0 there exists an open
dense set of embeddings of M* into C* such that the exceptional points
form a submanifold of M* of dimension k—2. Since k = 3, these ex-
ceptional points are not isolated, and we cannot use the local lemma as
in the two-dimensional case. Also, if we could find that the non degenerate
embeddings are an open dense set in the set of embeddings, we have no
theorem analogous to that of Chern and Spanier to complete the process.

2. We have given an example of a two-sphere in C* with two elliptic
points and no hyperbolic points. Does there exist a compact two-manifold
which can be embedded in C?* in such a way that all exceptional points are

of the hyperbolic type?

3. Consider a real k-dimensional differentiable manifold embedded in
C" where k = n+1, n>1. A point p in M* will be called exceptional
if dimCHP(M") = k —n+ 1. Elliptic and hyperbolic points can be defined
for this case and a local extension theorem similar to Theorem 2.1 of this
paper has been proved (see [7]).

4. It was shown in [Z4] that there is a dense open set of embeddings
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of a k-manifold in C", k> n, with a one-higher dimensional envelope
of holomorphy. For real codimension 2, all such embeddings have this
property. One could conjecture that:

a) All compact submanifolds of C”, of real dimension > n, have an
envelope of holomorphy of at least one higher dimension.

b) All compact submanifolds of C”, of real dimension n, have an envelope
of holomorphy of at least one higher dimension, provided that the mani-
folds are not totally real.

It is possible that the results mentioned in Remark No. 3 will be applicable
in proving a) for five-dimensional submanifolds of C*.

ADDED IN PrOOF: S. Greenfield has recently given an affirmative an-
swer to the question in Remark 2.
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