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I .  Introduction 
There has been a large amount of study devoted to the problem of ana- 

lytic continuation. If K is a subset of C" ,  11 > l ,  then one wishes to know 
if there is a larger set K',  containing K, such that all holomorphic func- 
tions on K can be extended to holomorphic functions on K'.  It has been 
known for some time that the envelope of holomorphy of a domain in 
C" is a Stein manifold spread over C" . One can then consider the case where 
K is a lower dimensional set in C" ,  11 > 1 .  For example, Hartogs proved 
that every function holomorphic in a neighborhood of the boundary of 
the unit ball in C" can be extended to a hoIomorp11ic function in the interior 
of the ball. In [I21 it was shown that if M is a real (a  + 1)-dimensional 
differentiable submanifold embedded in C", one obtains local extendibility 
over a manifold of real dime~lsion i . ~  f 2, provided the so-called Levi form 
does not vanish. Greenfield [5] has proven a similar result for an (n + k)-  
dimensional submanifold of Cn with 1 5 k n - 1. 

Denote by 9 (=  9,") the structure sheaf of germs of holomorphic func- 
tions on C". If K is a subset of C", let O(K) be the algebra of sections of O 
over K (germs of holomorphic functions defined near K).  If K K' 
(where K and K'  are connected sets), we say that K is extendible to K' 
if the natural restriction map 

is onto. 
If K is a compact subset of C", then O(K) is, in a natural way, the induc- 

tive limit of FrCchet algebras of the form lo(U) where U is an open set 
containing K. As such it has a natural locally convex inductive limit topol- 
ogy and becomes a topological algebra. The spectrum (or maximal ideal 
space) of the topological algebra O(K) is defined to be the erivelope of  bolo- 
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tnorphy of the compact set K, and is denoted by E(K) (see [GI where this 
definition is seen to be equivalent t o  an earlier one given in [12]). 

The main result of this paper is the following theorem which will be 
proved in Section 4. 

Theorem 1.1. There  is  aii open derlse set U of embec-ldings of the 
real two-spliere it1 CZ sucll tllat each e~nbecldec-1 two-sphere fro~iz  U has 
the property that  its etluelope of h0101710rplij' c o i l t ~ i i i ~  c-1 real tliree-di- 
rnensio~lnl %"' r?~c-ir~ifold a ( 1  =< T I  < a ) .  

(Outl ine of Proof ). Using an iteration technique devised by Bishop [I], 
we establish a ( k -  1)-parameter family of analytic discs iil a neighborhood 
of an elliptic point (to be defined in Section 2) in a real k-dimensional 
differentiable submanifold M%f e. By computing a certain Jacobiall 
and using a theorem on simultaneo~is analytic contin~lation from [Ill, 
we are able to say that every fullction holomorphic on ~"aan  be extended 
to a l~olomorphic f~unction on a real ( k  + 1)-dimensional Cen manifold 
(1 g n < a ) .  

Using Thom Tra~lsversality Theory (see Levine [ S ] ) ,  we prove that there 
exists an open dense set of embeddings of any compact two-manifold in 
C 2  SO that each such embedded manifold has the following properties: 

(i) There are at most linitely many exceptional points, and 
(ii) Each exceptional point is of the elliptic or hyperbolic type. 

(The concepts of exceptional points and hyperbolic points, as well as elliptic 
points, will be defined in Section 2. They are first and second order con- 
ditions on the submanifold at a point). 

Bishop [I] proves that for such a two-manifold the number of elliptic 
points minus the number of hyperbolic points equals the Euler number 
of the two-manifold. In particular, each two-sphere, embedded by an 
element in the open dense set, has at least two elliptic points. Using the 
analytic continuation result for M k c  Ck we call easily complete the proof. 

Re inark :  Consider the two-sphere in standard position in R3 c C 2  
( R 3  = {(zl, z 2 )  E C2 : Im s2  = 0)) .  Using a classical argument involving the 
Cauchy integral formula (cf. Bochner-Martin [2]), we can say that every 
f~rnction holomorpl~ic on the two-sphere can be extended to a filnction 
hoiomorphic in the open ball. In this case the envelope of holomorphy 
of the two-sphere is the closed unit ball. This is an example of an embedded 
two-sphere which has the property that its envelope of holomorphy con- 
tains a three-manifold, but does not colltain a manifold of higher dimension. 

A manifold M embedded in C" is said t o  be total ly  real if there does 
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not exist a point such that the tangetlt space to the manifold at this point 
contains a nonzero complex subspace of C". 

In [I31 it was proven that a totally real oriented two-manifold embedded 
in C2 must have Euler  lumber zero and thus be a torus. I11 [lo] it was 
shown that a totally real submanifold is not extendible. 

Denote by T the set of embeddings of the torus in C%ucll that the 
embedded tori are not totally real, In Section 4 we shall prove the following 
theorem. 

Theorem 1.2. There  is  nrz operz deizse set of' erlzbecldiizgs iiz 9- ssllch 
tha t  eaclz two-toi.us eiizbed~lecl b y  ail elelnerzt i n  this ileizse set hrls the  
property that  its etlvelope of holor~zorphy contaitzs a real t h ree -d i~~~ens io im l  
55'" nzu~zijolrl ( 1  5 11 < CO) . 

There is an example of a torus whic11 is embedded in C2 and is not totally 
real. Let T2 be the standard torusin R3 c C2 (R3  = {(zI,z2) € C 2 :  Imz2=0)) 
with its axis of symmetry as the Rez, axis. There are exactly four points 
on the torus T' which have tangent spaces parallel to the plane z2 = 0.  

If we co~lsider an oriented two-manifold of positive genus, we have the 
followi~lg theorem. 

Theorem 1.3. T1zer.e is nrz open set of' enzberldings of a n  o ~ i e n t e d  
coinpact two-nzailifbld of positive geizirs in  C2 wit11 tlze following property: 
eaclz 7narliJold elnbeclcleil b y  arz elerlzei~t iil th i s  operz set has a a  erzvelope 
of Izolor7zorp1~y \vlzich co i l t~ l i r~s  a tl~/.ee-7izat~ijold. 

In Section 2 we discuss elliptic and hyperbolic points on a two-manifold 
in C h n d  state a local theorem on extendibility. 

Thotn Transversality Theory is the topic of Section 3. We shall give 
defi~litiotls and theorems and apply the theory to  a two-manifold in C2.  

Let M2 be an oriented two-manifold embedded in C2 such that M2 
has oilly a finite number of exceptional points, and each exceptional point 
is of either elliptic or hyperbolic type. In Sectioil 4 we discuss Bishop's proof 
that the n~ltnber of elliptic points 011 M 2  ~nit l t~s  the number of hyperbolic 
poiilts on M' equals the Euler number of M2. 

2. Elliptic atzcl hyperbolic points 011 a two-r?zatziJold irz C2 

Let M 2  denote a real two-dimensional differelltiable manifold embedded 
in C2.A point p in M2 will be called exceytiorlnl if the tailgellt space to 
M2 at p is a complex-linear subspace of C2 of complex dimeilsion one. 

If T,(c~) denotes the real tangent space to  C2 at x E C2,  we have an 
almost complex tensor J :  T~(C') -+ T,(C~) given by the complex structure 
on C2.  J is given by multiplication by i .  



54 RICE UNIVERSITY STUDIES 

Define H p ( M 2 )  = T P ( M 2 )  n JTP(M2)  where p E M 2  and Tp(M2)  is the 
real tangent space to M 2  at p .  The vector space H , ( M ~ )  is called the vector 
space of holo~~zorplzic tangent  vectors to  M 2  at p .  Then p is an exceptional 
point in M 2  if the complex dimension of H p ( M 2 )  is one. 

As an example, if S 2  denotes the two-sphere in standard position in 
R3 c C 2 ,  then the exc2ptional points in S 2  are the north and south poles. 

Letting p be an exceptional point of M 2 ,  we choose differentiable co- 
ordinates u ,  v in a neighborhood of p in M 2 ,  vanishing at p ,  and analytic 
coordinates z , , z2  for a neighborhood of p in C 2 ,  vanishing at p .  The 
equations of M 2  in a neighborhood of p can then be written as 

where f, ,  f 2  are complex valued 9?" ftl~lctions of tl and v ,  defined in a neigh- 
borhood of u = o  = 0 .  (We denote by gk the class of functions contin- 
uously differentiable of order k ,  1 5 k =( co .) 

By properly choosing our coordinates these equations may be put in 
the form 

z ,  = u + iv = rv 

where g is complex valued and vanishes to  second order at u = v  = 0 .  
Then p is exceptional if and onfy if the determinant of the Jacobian 
J  = J(z , , z , /u ,v)  vanishes at p = 0. 

Expanding g ( w )  about p = 0 we have 

where I  vanishes to third order at w = 0 .  Assuming y # 0 and using co- 
ordinate changes (see [ I ] )  we obtain g ( ~ )  = /3(w2 + 6") t- w @  + I ( w ) ,  
where /3 2 0 .  If we assume 1 /31  # 4 I y l ,  we find /3 # +. 

Definition 2.1. If [/3 < 1 ,  then /3(\v2 + G2) + w$ = 2/3(u2 - v2) + 
u2  + v2 = c ,  for a positive constant c ,  is the equation of an ellipse, and p 
is calIed a point of elliptic tj 'pe. 

Definition 2.2. If /3 > 9, then /3(w2 + )q2) +- wG = c is the equation 
of a hyperbola and p is called a point of hyperbolic type.  

Definition 2.3. If /3 = ), we say that p is a point of parabolic t y p e .  
Note thet if /3 < 9, then the point p is a minimum point for the function 

Reg,  while if > 9, the point p is a saddle point for the function Keg.  
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Since ag 
= 0 ,  p is a critical point in Morse Theory 

(see Milnor [9 ] ) .  The Hessian matrix is 

Thus p is nor1 degenerate if P # + and degenerate if P = 1 .  Hence the 
elliptic and hyperbolic points are non degenerate critical points, while the 
parabohc points are degenerate critical points. The signature of the matrix 
H i s O i f P > + a n d 2 i f P < + .  

We have similar definitions for elliptic and hyperbolic points in a real 
k-dimensional dikrerentiable manifold M~ embedded in ck. 

In [7]  the following theorem has been proved, 

Theorem 2.1. Let M~ c ck  be a real Ic-dimensional di ferentiable sub- 
rnanifolcl of ~ " s l ~ c h  that M~ has a t  least one exceptional point of the 
elliptic type. T h e n  given a n y  n ,  1 5 n < a, there exists a real ( k  f 1)- 
dimensional Vn s ~ ~ b ~ n a ~ i i f o l c l  A? such that  hrlk is extendible to M W ~ .  

This theorem was proved by extending the iteration argument devised 
by Bishop and applying the analytic continuation result for families of 
analytic discs from [ I ] ] .  

Let U be an open neighborhood of the origin in R~ and f be an embedding 
of U into R3 c C3 with f(0) = 0 such that f ( 0 )  is a saddle point for 
f (U).  Freeman [4] has shown that f ( U )  is locally polynomially convex. 
For example, suppose the equations of f  (U) are given by 

Then the point u = u = 0 is a saddle point of f (U),  and the intersection 
of a closed ball with f(U) is polynomially convex. Thus hyperbolic points 
will not it1 general contribute to the envelope of holomorphy. 

Definition 2.4. An exceptional point is called noit degenerate if it is 
either elliptic or hyperbolic. 

Definition 2.5. By a noiz clegeilernte embedding we mean an embedding 
under which a manifold has at most finitely many exceptional points, 
and all such points are non degenerate. 



56 RICE UNIVERSITY STUDIES 

3. Thorn Trarzsuersality Tlteory 

The following discussio~l of Thorn Transversality Theory is taken from 
the notes of Leviile [S ] .  

Let V and M be manifolds of real dimensio~ls 11 and p respectively. We 
define the )--jet front V to M wit11 source x an(/  target y of n Gr-map 

f :  V + M as the equivalence class of all VJlmaps fro111 V to M which take 
x into y ,  all of wllose partial derivatives at x of orders S 14 are equal to 
those of f .  

We denote the r-jet off  at x by J P ( f ) ( x ) .  If we let J r (n ,p )  denote the 
space of /.-jets of ?"-maps f: V + M with J ( x )  = y , then Jr(n ,p)  becomes 
a euclidean space if we take the values of the partial derivatives at x as 
the coordinates of a jet. The set of all r-jets from V to M is denoted by 
Jr(V, iM). If we choose local coordi~~ates in V and M ,  then Jr(V, M )  be- 
comes a fibre bundle with fibre Ji.(rz,p) and group L'(rz,p) (see [8]) .  

Iff': V -+ M is of class at least V', the r extension o f f  is defined by: 
J r ( f ) :  V 3 Jr(V, M), where x + J r ( f ) ( x ) .  

Let S be a silblnanifold of codimension q  in M ,  and let f :  V + M be a 
diffeerentiable mapping. f is said to be transuer.sn1 to tlze subn7anifold S 
a t  n point X E  Vif either: 

(i> f Cx) $ S 9 or 
(ii) f ( x )  E S and the image under cIJ of the tangent space to Vat x and 

the tangent space to S at f ( x )  = y span the tangent space to M at y .  
I f f  is transversal to S at every point x E V, we say that f is trarzsuersal 
to S .  In this case one can prove that f - ' ( S )  is a reg~llar subinanifold of V 
of codimensio~l q  in V ,  or void. 

Let L ( V , M , s )  denote the set of all s-times continuo~tsly differentiable 
maps from V to M .  On L(V, M ,  s) we put the topology of compact conver- 
gence of all partial derivatives of orders 5 s . 

Assume s > r 2 0  and let N be an ( s  - r )  differentiable regular submani- 
fold of JJ'(V, M )  where V and M are at least V S  differentiable paracolllpact 
manifolds of dimensions n and p respectively. Suppose that the codime~lsioil 
of N in J r ( V , M )  is q .  

Theorem 3.1. (Tranversality Theorem of Thorn). Tlte  set of rnnps in 
L(V,iM,s) whose I. extensions nre trarzsver.sa1 to N on V is euerj~cvlzere 
dense if (s-I+$ > irzrrx(n - q,O). I n  addit ion if V is compact ,  tlzis tlerzse 
set is open. 

For any pair of positive integers ( n , p )  a singulari ty  rrzanifold of order r 
is a regular sub~nanifold of Jr(n,p) whiclz is ilwariant under the group 
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L'(rt, p). Given a singularity mallifold of order r., S c Jr(n,p), we can 
define a subinanifold S(V, M) of Jr(V, M),  and the codimension of S in 
Jr(rz, 1.') equals the codimension of S(V, M) in J"(V. M). 

Let S(f) = (S'(f)-'(S(v,M))), where J :  V +  M is of class Z r .  Assume 
the codimeilsio~l of S(V, M) in Y(V, IM) is q . 

Thorn's Transversalily Theorem gives 11s the followiilg res~~l t s  (assume 
(S - 1.) > lllax(t1- q, 0)) : 

(i) If q > 1 1 ,  the set of maps f in L(V, M, s) sucl~ that S ( j )  = @ is dense 
in L(V, M, s) . 

(ii) If q 5 11, the set of maps f in L(V,IM,S) stlch that S ( j )  = @ or 
S(f) is a s ~ ~ b ~ n a ~ l i f o l d  of V of codime~lsio~l q is dense in L(V, M,s). 

We want to apply the transversality theory to the case V = M 2  (M2 is 
compact, 'G", real two-dimensional), M = C2, and f: iM2 -t C2 is an em- 
bedding. 

If p is a point in M2,  JL(2,2)  can be identified with four-dimensional 
complex euclideatl space. If p is an exceptional point of M2 under a v4 
map j', then the complex Jacobian of f has a vanishing determinant at p .  
Since tlze singularity S,  of J1(2,2), which is defined by the vanishing of 
the Jacobian determinant, is invariant under coordi~late cha~~ges  on M2 
and C 2 ,  it is a singularity manifold of order 1 , and we can thus define 
S,(IM~,C~) in J1(M< C". 

Consider the set L(M{C< a). Since the real codimensioi~ of s , ( M ~ , C ~ )  
in J '(M2,Cq is 2 ,  we have that tlie set of maps f in L(M',C~, a )  such 
that S,(f) = or S,(f)  is a s~rbrna~lifold of d i~nens io~~  0 in M' is open 
and dense in L(M2, C2, a). 

Because the embeddings are an ope11 set in L(M<C2, a ) ,  we find that 
the set of embeddings f sucl~ that S,(f) = or S,(f) contaii~s a finite 
llu~nber of points is open and dense in the set of all 9" embeddings. If 
S , ( f )  = @ and M ~ s  or~entable, then M 2  is totally real under the em- 
bedding f and is thus a torus, as mentioned earlier. 

If p is an exceptiorlal point in an embedded two-mailifold in C2,  the 
equations for a neighborhood of p are 

If y # 0 and I /jl # .?, 1 these eq~~at ions  call be put in the for111 
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where /3 2 0 and /3 # 4.  I n  this case p is a non degenerate exceptional 
point. 

~ ~ ( 2 , 2 )  can be identified with ten-dimensional complex euclidean space. 
Let p be an exceptional point of a manifold M 2  embedded in C2 in such 
a way that y = 0 .  Since the condition y = 0 is not invariant under coor- 
dinate changes on M2 ,  the submanifold S2 of 5"2,2) which arises from 
the fact that p is an exceptional point with y = 0 is not a singularity mani- 
fold, However, if M 2  has only a finite number of exceptional points under 
an embedding f into C2, we may apply the following lemma at each of 
these points. 

We have the notation: 

Lemma 3.1 (Local lemma). Suppose f E L(R", Rp, s) and N c T is an 
(s- r) cliff'ererztiable regular sub~mznifold of codi~~~erzsiorz q. If (s -r) > 
nzax (n-q,O), then for each x E R" arzd eaclz ti E N  c T stick that 
f (x) = u we can .find: 

(1) A neighborlzood x, of ti in T .  

(2) A neiglzborlzood Wf off irz L(Rn, R q  s) . 
(3) A co~npact neiglzborlzoocl U ,  of x in R s~ich that 

(a) for eaclz g~ W J ,  G(U,) c T/;,; 
(b) for each lz E Wf, tlzere exists a g~ Wf arbitrarily close to lz 

suck that GI U ,  is t~aizsversal to N .  
If we set N = c2 x S2 and note that the real codimension of S2 in 

~ ~ ( 2 , 2 )  is 4 ,  we find by applying the lemma at each exceptional point, 
that arbitrarily close to  the embedding f' is an embedding g whicll has a 
finite number of exceptional points with y # 0 at each such point. 

We use the lemlna again with the condition y = 0 replaced by the con- 
dition 1 = $ \ y 1 .  Thus the set of embeddings under which a manifold 
has no exceptional points or a finite number of exceptionaI points with 
y # 0 and I /3 I f { I y I at each such point is dense in the set of all embeddings. 
Therefore the no11 degenerate embeddings of M~ into C2 are an open dense 
set in the set of all %?" embeddings. 

4. The Ga~lss Mapping and Intersection Theory 

Let M c C2 be a compact oriented two-manifold with a given orienta- 
tion. Assume M has been embedded in C2 by a non degenerate embedding. 
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The following theorem is proved by Bishop [ I ] .  

Theorem 4.1. Tlze rzurnber of elliptic points ~ninus the nur?zber of 
hyperbolic poi~zts equals x(M), where x(M) clerzotes tlze Euler number of M. 

Proof. If M is a totally real torus, then M has no exceptional points. 
However, the Euler n~unber of M in this case is 0 ,  and the theorem holds. 

Therefore assume that M is not totally real. Let G denote the Grassmann 
manifold of all oriented two-dimensional real-linear subspaces of C2.  By 
mapping each point into its oriented tangent plane we obtain the Gauss 
map t :M-+G.  

Using Pliicker coordinates we may identify G with the product of unit 
two spheres S, and S,. Denote by H the subset of G consisting of those 
two-dimensional real-linear subspaces of CZ which also have a complex 
structure, and whose orientation is induced by this complex structure. 
Then p in M is exceptional if and only if t ( p )  EH or - t(p) E H ,  where 
-t(p) denotes t(p) with orientation reversed. Again using Pliicker coor- 
dinates we find that H = (1,0,0) x S,. 

We next prove that t (actually an order 2 approximation of t) is trans- 
versal to H on M.  If t ( p ) ~  H ,  by computing a certain determinant we 
have sgn(p) = + 1 if p is an elliptic point and sgn(p) = -1 if p is a hyper- 
bolic point. If p,, . . + , p N  are the points of M such that t(pi) E H ,  we define 
the intersectioiz nur7zber of t(M2) and H as C.:, sgn(p,). Chern and 
Spanier [3] have shown that the intersection number is (-&)x(M). By re- 
versing the orientation, we find that the intersection number of -t(M2) 
and H is (+)x(M). Therefore the number of elliptic points minus the number 
of hyperbolic points is e q ~ ~ a l  to x(M). Q.E.D. 

Now we are able to prove Theorems 3.1, 1.2, and 1.3. 

Proof o j  T/zeorenz 1.1. From Section 3 we know that the non degenerate 
embeddings are an open dense set in the set of embeddings of the two- 
sphere in C2.  If S2 is a two-sphere embedded in C2 by a non degenerate 
embedding, then S2  has at least two elliptic points by Theorem 4.1. Let 
p l ,  p2;..,pL be the elliptic exceptional points. Using Theorem 2.1, we find 
that S2  is extendible to S2 U Qc, where &fL is the three-dimensional 'en, 
11 2 1 ,  real manifold related to the point pi,  i = 1,2,...,1 . Choosing the 
&fi to be disjoint, we set &l = U f =, a,, and thus we have that s2 is 
extendible to S2 u&l and &l c E(S2). Q.E.D. 

The proof of Theorem 1.2 is the same except that we may have only 
one exceptional point of the elliptic type. 
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Proof of Theorern 1.3, If M 2  is an oriented compact two-manifold of 
positive genus, then the non degenerate embeddings are an open dense 
set in the set of embeddings of M2 into C 2 .  If M2 is embedded by at1 ele- 
ment in this dense set, by using TI~eorem 4.1 we find that there may be 
no exceptional points (if the genus of M 2  is one), or there are at least two 
hyperbolic points (if the genus of M Z  is greater than one). Thus the algebraic 
topology does not allow us to conclude the existence of elliptic poi~lts in 
this case. In [13] it was shown that there is at least one 11011 degenerate 
embedding of an oriented two-manifold of positive genus into C\ ssucll 
that at least two of the exceptional points are elliptic. Hence, we can only 
conclude that there is an open (but not necessarily dense) set of embeddings 
of a two-manifold of positive genus so that each such embedded manifold 
has the property that its envelope of holomorphy contains a three-manifold. 

Q.E.D. 

5 .  Remarks 

1. Let M' be a real k-dimensional differentiable nlanifold embedded ill ck, 
k > 2. Using Tholn Transversality Theory we fi 11d that there exists a dense set 
of embeddings of ~ " n t o  ~ " u c h  that there are no exceptional poillts or the 
exceptio~lal points are a s~tb~na~lifold of dimension 1' - 2. If M ~ S  compact 
and orientable, it was shown in [I31 that M ~ S  totally real only if X ( ~ "  = 0. 
Otherwise, if M" is compact and oriented and x(~~') # 0 there exists an open 
dense set of embeddings of M h  illto ~ " u c h  that the exceptional points 
form a submallifold of klk of dimeilsion k -2 .  Since 1' 2 3,  these ex- 
ceptional points are not isolated, and we cannot use the local lemma as 
in the two-dimensional case. Also, if we could find that the non degenerate 
enlbeddings are at1 open dense set in the set of embeddings, we have no 
theorem analogous to that of Chern and Spailier to complete the process. 

2. We have given an example of a two-sphere in C2 with two elliptic 
points and no hyperbolic points. Does there exist a compact two-manifold 
which can be embedded in C2 in S U C ~  a way that all exceptional points are 
of the hyperbolic type? 

3. Consider a real li-dimensional difIerentiable manifold embedded in 
C" where li 2 n + 1, n > 1 .  A point 1) in M" will be called esceptiorlnl 
if  dim,^,(^") = k - 11 f 1. Elliptic and hyperbolic points can be defined 
for this case and a local extension theorem similar to Theorem 2.1 of this 
paper lias been proved (see [Y]). 

4. It was showt~ in [I41 that there is a dense open set of embeddings 
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of a k-manifold in C",  lc > i z ,  with a one-higller dimensional e~lvelope 
of holomorpl~y. For real coditnension 2 ,  all such embeddings have this 
property, One could colljecture that: 

a) All compact submanifolds of C", of real dimension > n ,  have an 
envelope of l~olomorphy of at least one higher dimension. 

b) All compact subnlanifolds of C", of real di~nension n ,  have an envelope 
of l~olomorpl~y of at least one higher dimension, provided that the mani- 
folds are not totally real. 

It is possible that the results mentioned in Remark No. 3 will be applicable 
in proving a) for five-dimensional submanifolds of C4. 

ADDED IN PROOF: S. Greenfield has recently given an affirmative an- 
swer to  the question in Remark 2. 
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