NON TRIVIAL CUSP FORMS IN SEVERAL COMPLEX
VARIABLES

by H. L. Resnikoff

§1. Poincaré himself showed that the series which today bear his name
can represent zero identically [6]. This is particularly vexing because the
Poincaré series span the vector spaces of cusp forms for certain discrete
groups of modular type, and it is of some interest to determine the least
weight such that a non trivial cusp form exists for a given discrete group.
The problem is no less interesting for automorphic forms in several complex
variables, nor is it more tractable.

The purpose of this note is to construct explicit non trivial cusp forms
for a wide range of domains and discrete groups in several complex variables
by using differential operators. The construction provides an upper bound
for the least w such that a non trivial cusp form of weight w exists, but
unfortunately this bound is not always the best possible: for the Siegel
and Hermitian modular groups it is of the order of the cube of the rank
of the domain.

§2. The domains that will be considered are tubes generalizing the classical
upper half plane. Let ¥ denote a simple compact real Jordan algebra
(simplicity is an inessential technical hypothesis whose principal purposc
is to relieve the burden on the notation), and Z() = W + iexp U the
tube over exp. Let I' be a discrete group of analytic automorphisms
of Z(N). If a e A, then the mapping z— =z + « is called a real translation,
We suppose that the subgroup ', = I of real translations spans U in the

sense that /T, is compact, and further that the involution z L. =g

belongs to I' (this last assumption can be weakened somewhat: cp. [9]).
Put

q = dimension of /rank ¥,
and denote the Jacobian determinant of yeI" by J,(z). A holomorphic
function ¢: Z(A) — C is a T-automorphic form of weight w and multiplier
system v, denoted ¢ e (T, w,v), if

(n $(yz) = v()J,(2) " *(z)  for all yeT,
35
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where o: I’ = C is not the zero map and satisfies the compatibility conditions

0(P172)5,9:(2) W v(y )o(y2)d,, (v22)” i Jh(z)_ e

for y;,7,€T.

It is usual to assume that |v‘ =1, and to impose a growth condition
on ¢ with respect to “‘large” Im(z) (measured in terms of the Jordan algebra
norm) but this is not necessary for our purposes and in any event is a con-
sequence of the other hypotheses for I of the type of Siegel’s modular
group when rank 2 > 1 (cf. [4] and [§]). Observe that (I', w,v) is a complex
vector space.

Since ¢ € (I', w,v) is holomorphic and /T, is compact, ¢ has a Fourier
expansion. We shall make the additional assumption, related to the growth
condition mentioned above, that this expansion be restricted to the form
@ 9z = T a(mer .

nz0

nel,
Here o(x, y) = o(xy) denotes the reduced trace of xye (i), n =0 means
that n lies in the topological closure of exp U with the natural topology
inherited from the real vector space substructure of U (or, equivalently,
that the eigenvalues of n are non-negative), and I',, stands for the lattice
dual to {y(0):yel ;.

If ne U has only positive eigenvalues, write n>0; if 1 =0 but n % 0,
write n~0, Then X,s50.= Xyuo+ Lsso:

If X, o0n)e*™ ) = 0 in equation (2), then ¢ is a cusp form. This
definition is weaker, i.e., admits a larger class of cusp forms, than that
usual in the theory of automorphic forms. But if I" has only one cusp (which
our previous hypotheses insure is ‘*at infinity’”) then this definition coincides
with the usual one; this is true in particular for the Siegel modular groups
[10].

Our immediate task is the construction of a linear differential operator
mapping (I',w,v) into (I, w’,v") for some {(w,v),(w’,v)} and all I'. From
it we will construct non-linear differential operators mapping (I, w,v) into
(I',w',v") for any (I', w, v) and appropriate (w’,v"). The procedure generalizes
that in our paper [8] for the classical case.

Let |z’ denote the reduced norm of z e (i), and V, the gradient operator
defined with respect to the symmetric bilinear form ¢. As in [9], define
the linear differential operator é. = ‘V:l by introducing the Peirce decom-
position A = E,,,s,, A, with respect to a complete orthonormal set of
primitive idempotents {¢,} of U and a canonical vector space basis
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{by} for U, m <n (one will do since the simplicity of U insures that
the A, are isomorphic for m < n). Then ze A(i) can be expressed as

rank 2 dim™

= E .z + E E bmn i >

m<n [=1

and
rank U dim Wmn
1]
Vz = Z Cry a i Z 2 E:':rmlbmna {
=1 <k m<n [=1 mn

with constants o0, €R. The reduced norm Iz‘ is a certain homogeneous
polynomial of degree rank U in {z.} U {zh.}, say N(z, zh,); we define

J o
N (ak a j "I” ﬁugﬂﬂ) ’

In [9] we proved the elementary formula

3) 0.6°™ = |a|e”™, ae W),

=,

and the Selberg operator identity
(4) Oy = |z|"+“8f|z["“"'_

Hence ¢": (I',g — n,v) = (I, q + n,v).

Suppose that w # 0 and pe(I,w,v); then ¢“ /" satisfies the functional
equation (1) with weight ¢ — n and multiplier v/ and is holomorphic
except on a thin set of points in Z(2). This will be denoted by writing
¢ e (T, g — n,9""™/"),. Then 8"¢p“~"" e (I, q + n,v"¥"™"™), and con-
sequently, when n 5 ¢ is a positive integer and r = rank U,

(5) Q}'"qﬁ = (‘bl(n—q]hr) -}-liranqb{q—ﬂ)fwe (F, H(J'W + 2), Unr)o .

Since @" is a linear differential operator of order nr, multiple application
of Leibniz’ product differentiation formula shows that Z"¢ is actually
a polynomial in ¢ and its first nr partial derivatives. This proves the basic

Lemma 1. Z":(I',w,p) = (L, n(rw + 2),0™).
The next result shows that it is unusual for 2 "to be surjective in Lemma 1.

Lemma 2. If ¢e(I,w,v) and w is a rational number, then Z"¢ is
a cusp form.

Proof. In this case ¢/ has a Fourier expansion of the form

[p(q—n)jlv(z) - E ﬁ(k)elrr.ia(k:)
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where k runs over a certain lattice. Equation (3) shows that
¢ iR :
.(J”f."(’l’) - ( E ﬁ(k)eblro‘(k:}) Z ﬁ(k) J ik luebnﬂ(k:]
k=0 k>0

for some integer p, which simplifies to a sum over positive k, i.e., Z"¢
is a cusp form.

Thus, the main purpose of this note will be fulfilled if it can be shown
that 2"¢ =£ 0.

Suppose that w0, g#n, and ¢pe(I,w,v), and put y = U ™"",
Then

0=2<=0=0d"M<=0= 0,

the last equality following from the uniqueness of the Fourier representation.
A necessary condition that &) = 0 hold is given in Theorem A of [9].
In order to state it, some additional notation is necessary. Let {c,} be a
complete set of primitive orthogonal idempotents of A, and let
A, = Uy(ey + -+ +¢) be the Peirce 1-algebra with respect to the idem-
dimension 20
rank 2,
W has a Fourier expansion of the form (2) and satisfies the equation (1)
for I, with weight w*, Then Theorem A states that &) = O implies w*
is a critical weight, that is,

potent ¢; + -+ + ¢;. Put ¢, = ;in particular, ¢ = g,. Suppose

wie{g,—1: 1= k=r}.
For = ¢ and w rational, w* = q — n.

Theorem. If w is a non-zero rational, 0z ¢e(,w,v), and n is
a positive integer such that n¢ {g,: 1 < k < r}, then Z"$ is a non trivial
cusp form.

The proof follows immediately from the preceding remarks by observing
that {g, — g, +1: 12k=Zr} = {g: 1 Sk =7}

§3. The classification of simple compact real Jordan algebras [2] enables
us to determine the least positive integer n, not a member of {g,:1 < k < r}.
The results are collected in the following table (following page):

§4. Z() is Siegel’s upper half plane of degree r when rank % = r and
dim U = r(r + 1)/2. Suppose that I" is Siegel’s modular group acting on
Z(A), and denote the Eisenstein series of weight w by g,(z) [10]. A well-
known result of H. Braun states that the series defining g,, converges to a
non trivial holomorphic automorphic form if and only if w>r+ 1 and
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TasLE [
rank U dim U q(M) no(2)
i r(r + 1) k+1 2r+5 — (=1)
2 2 4
r=1 r? k P4l
r=1 2r: —r 2k —1 2
d Jifd=4
z L fi=L ;=3 2 if d£4
3 27 g1 =1,4,=35,¢3=9 2

« w=0mod2. Therefore the least w such that g, is a non trivial modular
; . 1—(=1) ;
form is (r +2) + ——g—-—-)— The theorem and the first line of the table
imply
Corollary 1. Let g, denote the Eisenstein series of weight w for Siegel's
modular group of degree r. Then

(2r+ 5=(—1)7)/4
@+ B2r+5-(-1)y))2

is a non trivial cusp form of weight
wo = {2r+5— (=)@ + (5= (=D"r + 8.
If r =1, then w, = 12 and indeed one easily calculates that
"Gg, = + 240n%A

where A is the normalized cusp form e*™*{[];, (1 — e**™)}** for the
classical modular group (cf. [7], [8]).

If r =2, then 2%g,is a cusp form of weight 20 for the Siegel modular
group of degree 2. Igusa [3] has determined the generators of the ring
of modular forms for this case: they are g, and g, and cusp forms y,,
and y,, of weight 10 and 12 respectively. Therefore Z2g, is not the cusp
form of least weight, but can be expressed as

D*gy = axio + Bgitr2

for certain constants « and f.
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One can show, however, that 2'g, is proportional to y,,, so the theorem
is not the best that can be done using differential operators.

If rank A = r and dim W =3, then Z(A) is the upper half plane associated
with the Hermitian modular forms of Hel Braun [I]. Let I' denote the
Hermitian modular group and g,, the Eisenstein series of weight w for I'.
The series defining g,, converges to a non trivial holomorphic Hermitian
modular form if w=0mod2 and w>2r (cf. [1]). Application of the
theorem and the second row of the table yields

Corollary 2. Let g, denote the Eisenstein series of weight w for the
Hermitian modular group. Then D"% gy, is a non trivial cusp form of
weight 2(r + 1)(r* + r + 1).

Observe that the weights given in Corollaries 1 and 2 insuring the existence
of non trivial cusp forms are @(»°). If, however, the algebras corresponding
to the last three rows of Table 1 are considered, there are large enough
gaps between g, and g, ; so that n, no longer is constrained to grow with
rank or dimension of 9, and therefore the weights insuring the existence
of non ftrivial cusp forms grow only as the product of r by the minimal
weight for a non trivial form, which is probably @(r?). But very little is
known about these cases.
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