
SOME NON-ABELIAN PROBLEMS ON COMPACT 
RIEMANN SURFACES 

by R. C. Gunning 

A good deal of tlte classical function theory of compact Riemalili surfaces 
is of an essentially abelian nature, liaviiig to do with complex analytic 
properties of flat coinplex line bundles. Problems do arise, tho~~gli ,  which are 
reaIly non-abelian in character, having to do with cornplex analytic prop- 
erties of flat complex vector bundles. These problems lead in quite inter- 
esting but relatively little explored directions. The aim of this lecture is 
merely to show how the beginnings of the non-abelian theory can be devel- 
oped in a manner paralleling a familiar development of the abelian theory. 

First, to establish a background for the discussioll, a few definitions should 
be recalled. Consider a cotnplex analytic manifold M of complex dimension 
n,  and let U = {U,) be a coverilig of M by open coordinate neigl~borltoods 
U,. A one-cocycle of the covering U with coefficients in an arbitrary abstract 
group G is a collection of elements (,/, E G, indexed by ordered pairs (U,, Ufl) 
of sets of the covering LT for which U, f? Up # @, such that (,, = I and that 

= 1 whenever U, f? U,{ n U, # @. The set of all such one-cocycIes 
will be denoted by Z1(U, G). Two one-cocycles (5,/,) and (tio) of Zi(U,G) 
are called equivalent if there is a collection of elements TI, E G, indexed by the 
sets U, of the covering U, such that ti,, = r ~ , ~ , ~ i l , ~ ~  whenever U,nUp#@; it 
is easy to see that this is an eqtlivalence relation in the usual sense of the term. 
The set of equivalence classcs is called tlte first cohomology set of the covering 
LI witli coefficients in the group G, and will be denoted by H1(U,G). 
The coltomology as thus defined depends on the choice of the coveri~ig LI, 
and not just or1 the space M ;  but it can be shown that for well-behaved 
coveriiigs the coho~nologies are in natural one-to-one correspondences. 
(See for instance the discussioli of Leray's theorem in [2].) Hereafter it will 
be assumed that only such well-behaved coverings are considered, and the 
common coltomology set will be denoted by H1(M, G) atid called the first 
coliomology of the space M witli coefficients in the group G. If the group G 
is abelian, it is clear that the set of cocycles form an abelian group; the 
group operations are compatible with the equivalence relation, so that the 
coltomology set H1(M, G) is also an abelian group. 
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The partic~~lar case of this construction of perhaps the greatest interest 
is that in which the group G is the matrix group of sonle rank r over the 
complex numbers, G = GL(t., C) .  The cohomology classes ( E H 1 ( M ,  GL(r, C) )  
are calledjat corizplex vector btindles of ral?lc t. over the complex lnanifold 
M .  When t. = 1 the group GL(1, C )  = C* is abelian, and the cohomology 
classes ( G Hi(M,C*)  are also called f lat complex line blirld1e.s over the 
complex manifold M .  

So far the complex analytic structure of M has played no role; to bring 
it into the game, the preceding construction call be extended as follows. 
Suppose that G is not just an abstract group, but is a complex Lie group. 
Then a one-cocycle of the covering U with coefficients in the sheaf of germs 
of analytic mappings into G is a collection of complex analytic mappings 
t,,: U ,  n U,, 3 G, such that t,,(p) = 1 for all p E U ,  and that t , , ( ~ ) ( ~ ~ ( p ) t ~ ~ ( p )  
= 1 for a11 p E U ,  n U,  n U p .  The set of all these one-cocycles will be denoted 
by z l ( U ,  O(G)). Two one-cocycles ( taB)  and ((&) are called equivalent if there 
are complex analytic mappings qa: U,+ G SLIC~I  that (&) = q,(p)(,,(p)11,(p)- 
for a11 p E U ,  n U,. The set of equivalence classes is called the first cohomol- 
ogy set of the covering U with coefficients in the sheaf of germs of complex 
analytic mappings into G, and will be denoted by H1(U,B(G)); again, a11 
these cohomology sets are in n a t ~ ~ r a l  one-to-one correspondence for well- 
behaved coverings, and the common cohomology set will be denoted by 
H 1 ( M ,  O(G)). For the matrix group G = GL(r, C) ,  the cohomology classes 
9 E H ' ( M , ~ ( G L ( ~ , c ) ) )  are called cornpiex nnalj~tic vector btrnrlles of rank 
r over the complex manifold M .  When I.  = 1 the abbreviation O* = O(C'") 
will be used, and the cohomology classes 5 G H1(M,B*)  are called complex 
analytic line buizclles over the complex manifold M. (For a discussion of 
the relationship between this definition and the usual geo~netric definitions of 
vector bundles, see for instance [GI.) 

Note that for any complex Lie group G, a cocycle (t,,,) E Z1(U,  G)  can be 
viewed as a cocycle in Z 1 ( U ,  &(G)), interpreting the constants (,,,as constant- 
valued analytic mappings; equivalent cocycles in z l ( U , G )  are clearly also 
eq~livalent when viewed as cocycles in Z1(U,L"(G)), hence there results a 
well-defined mapping 

The interplay between flat and complex analytic vector bundles is expressed 
in the mapping [i for the case of the matrix group G = GL(r,  C) .  The image 
of p is then the set of complex analytic vector bundles which have j a t  
representatives, that is to say, which can be described by constant cocycles; 
and for any flat vector bundle 5 E H ' ( M ,  GL(r,C)), the set p- ' (p( t ) )  consists 
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of all tlie flat vector b~lndles which are nnnlytically eqrlivalent to the given 
bundle c. 

To digress for a moment, here is an example of a problem, tlie study of 
which iiat~irally leads to questio~ls of the relationsliips between flat and 
complex analytic vector bundles. It is well known that every compact 
Rieinann surface M (one-dimensional complex analytic manifold) call be 
represented as the qnotient of a subset D of tlie complex plane by a group r 
of linear fractional transformations. Actually, D can be taken to be either 
the entire complex plane (when M has genus g = 1) or the unit disk (when 
M has genus g > 1); but there are many other such represe~itations which 
are of importance. (See in this regard tlie paper [I].) Those subsets of D which 
contain no points equivalent under tlte group r can be used as coordinate 
neighborhoods on the surface M = DIT. This provides a coordinate covering 
21 = {U,) of tlie surface M by open sets U, with local coordinates z,: U,+ C 
which have the special property that in each intersection U, n UIJ # (a the 
local coordinate mappings are related by z ,  = Talr(zll), for some linear 
fractional transformations Tap; for a general complex analytic coordillate 
covering of the surface M, one call only assert that the mappings T,/, are 
complex analytic homeomorphisms. Now it  is of some interest to determine 
what are all the possible special co~nplex analytic coordinate coverings of 
this form for a given Riemann stirface M, and one approach to the problem 
is the following. If {U,, z,) is one of these special coordinate coverings of M, 
then to each intersection U, nu,, # 121 there is associated the linear frac- 
tional transformation Tap such that z, = Tall(zp); clearly T,, = I ,  and 
TalJIT;,,T,,, = I whenever U, n U1, n U, # @. Of course, replacing the local 
coordinates z ,  by w, = S,(z,) for some linear fractional tratlsformations S, 
leads to what must be considered as an equivalent special coordinate cov- 
ering; and for this eq~iivalent coordinate coveririg, w, = T:ll(\~p) where 
T,;] - S,T,,,S~['. Thus to each equivalence class of special coordinate coverillgs 
there is nat~~ral ly  associated a cohomology class in H1(M,PGL(2,C)), 
where PGL(2, C) is the grorip of linear fractioiial transformations, which is 
a complex Lie group isomorpl~ic to the quotient of the group GL(2,C) by 
its center C'::. It can be shown that this is a one-to-one correspondence 
between the set of equivalence classes of these special coordinate coverings 
of the Riemann surface M and a subset of H1(M, PGL(2, C)) called the set 
of indigeno~is cohomology classes; there remains the problem of describing 
the indigenous coliomology classes on M. For this latter problem, the 
natural l~o~nomorpl~ism GL(2, C) -+ PGL(2, C) induces a mapping 

p :  H1(M, GL(2, C)) -+ H 1 ( M ,  PGL(2, C)), 
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which is not onto; but it can be shown that the indigenous cohomology 
classes all lie in the image of p, hence are the images of a class of flat vector 
bundles of rank 2 on the surface M, which bundles will be called the in- 
digenous flat vector bundles on M. Indeed, the indigenous flat vector bundles 
can all be taken to have determinant 1, in the obvious sense. Finally, for a 
Riemann surface of genus g > 1, this class of indigenous flat vector bundles 
can be described as precisely the class of those flat vector bundles which 
are analytically equivalent to complex analytic vector bundles represented 
by cocycles of the form 

where E Z1(U, fi*) are cocycles representing any complex line bundles 4 
for which $2 = K. The canonical line bundle K is that line bundle defined 
by the cocycle ( K ~ ~ )  = (dzp /dza)  E Z1(LI, O*); there are 2g such line bundles 
4, hence there are 2g complex analytic vector bundles of this form. (For 
the proofs and further details see [3].) 

Returning once more to the main thread of the discussion, recall that the 
mapping / L  arises by viewing elements of the complex Lie group Gas constant- 
valued complex analytic mappings into G. The constant functions can be 
described quite conveniently for these purposes as the class of complex 
analytic functions with zero exterior derivative; but there is the complication 
that the functions considered here have values in the group G, so that some 
care must be taken in defining the exterior derivative. Suppose that f: U -, G 
is a complex analytic mapping from an open neighborhood of a point po in 
M into the group G. The Lie algebra g of the group G can be used to  provide 
canonical coordinates in an open neighborhood of the point f (po)  in G by 
the mapping 

(See [$I, for instance.) In terms of these coordinates, the mapping f can be 
expressed as the complex analytic mapping F,,: U 4 g such that 

provided that U is small enough. The mapping F,, has values in the con~plex 
vector space g, so that its exterior derivative tlF,, is a well-defined complex 
analytic g-valued diff'erential form of type (1,O) in the neighborhood U ,  
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The exterior derivative of the mapping f at the point p,, can t l ~ e ~ i  be 
defined by 

and it is easy to see that D f is also a complex analytic g-valued differential 
form of type (1,O) in the neighborhood U. This derivative has the property 
that for any two complex analytic lnappings f, g :  U 4 G, 

D( f g) = Acl(gP ' ) D f + Dg, 
where Ad denotes the usual action of G on the vector space g. To see this, 

write f ( ~ )  = f ( ~ o )  . expF(p), g(p) =  PO) . ~ X P  C(P), and S(p) . g(p) 
= ,f (PO) .  PO) exp H(P) ; then 

from which the desired result follows. 
Specializing to the case of a one-dimensional cornplex manifold M 

(a Rielnann surface) for tlie remainder of the lecture, every complex analytic 
g-valued differential form of type (1,O) is locally of the for111 Df; and the 
mapping f is constant precisely when D f = 0. What has been said so far 
can then be summarized in the assertion that the following is a twisted exact 
seqltence of sheaves (of not necessarily abeliari groups) 

where i is the i~~clusion of elements of G as ge rm of constant-valued analytic 
mappings, and D is the exterior derivative as just defincd. (To say that this 
sequence is twisted Ineans tliat i is a sheaf homomorpliism, while D is only 
req~lired to satisfy a condition of the sort already noted; D is a sheaf homo- 
morphism twisted by means of tlie adjoint action of C on g. To say that this 
sequence is exact means tliat for each sheaf, tlle image of the mapping from 
tlie left is the kernel of the mapping to the right; thi? is well-defined, even 
for twisted liomomorpl~isms D.) When G is an abelian group, this is an 
exact sequence in t l ~ e  usual sense. 

The use of sheaf terminology is not really essential; it nierely suggests 
passing to an associated col~omology sequence. There are li~nits to what 
can be done in this direction, since the group C may not be abclian and the 
sequence is twisted; but at least tlie following portion of an exact cohomology 
sequence always arises, in the familiar and very straightforward manner: 
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(See the discussions of the abelian case in [2] or [GI, for instance.) It is 
necessary to be a bit careful about the meaning of this exact cohon1010gy 
sequence, since the cohomology sets need not have any group structure; 
but everything becomes quite clear, upon examining the mappings more 
closely. 

First, consider an element t E H'(M, G(G)) represented by a cocycie 
(rap) E .Z1(U, G(G)); recall that the cocycle condition is just that ~a,<,,,,t~,l = 1 
in U, n Up n U.,. Applying the differential operator D, it follows eas~ly that 
tlie g-valued differential forms D<,,, defined in the various intersections 
U ,  n U, satisfy Dt,, = Ad(tp,') Dt,, + Dl,, in U ,  n U ,  n U.,; and this 
can be viewed as the condition that these diifel-ential forms compose a one- 
cocycle (Dt,,,) E z l (U,  0 ' ~ ~ ( ~ d 5 ) ) .  The mapping v in the exact cohomology 
sequence is the mapping which assigns to the cohornology class 5 that 
col~omology class in H1(M, 0'.O(Ad<)) represented by the cocycle (Dta0); 
the col~omology class < is in the image of ji if and only if v(<) = 0. In the 
special case tliat G = GL(1,C) = C, all the sets H ' ( M , O ' ~ ~ ( A ~ E ~ ) )  cdincide 
with the set H'(M, 6"O), which is a group in this case; and the Serre duality 
theorem provides a natural ison~orphisln H ~ ( M , ~ ~ ' ~ )  r C, when M is a 
compact Rienlann surface. The image v(5) E C is an integer called the Chern 
class of the line bundle 9; and 5 has flat representatives precisely when 
c(t) = 0. (See [2] for filrther details.) In the special case that G = GL(r, C) 
for I. > 1, the sets H ~ ( M , O ' . ~ ( A ~ ~ ) )  can be distinct; when M is a compact 
Riemann surface, Serre duality can again be applied, and H'(M, 0110(~d5))  
can be identified with the dual vector space to the algebra of complex analytic 
endomorphislns of the complex analytic vector bundle 5. The analysis is a 
bit more involved, but there eventually results the tl~eorem of Weil tliat 
5 E H1(M, C(GL(r, C))) has flat representatives if and only if, for each 
indecomposable component <; c <, tlie line bundle deterniinant (5,) has 
zero C11ern class. (The first statement and proof of this theorem were given 
in [9] ; see also the discussion in [dl.) 

Next, the set of those 5 E H1(M, G) such that p(t)  E H1(M, G(G)) is the 
trivial cohcmology class is just tlie set AT' (0) = 6r(M,fi1'0 (g)), where the 
coboundary mapping 6 is defined as follows, For any section E T(M, 
(that is, for any complex analytic g-valued differential form of type (1,O) 
defined on the entire Riemann surface M), and for any sufficiently fine open 
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coveringU = {U,) of M, there will exist complex analytic mappings fa: U,+G 
such that Df, = /Z in U,; the fi~nctions tCp =fa&-' are easily seen to be 
constants in the sets U ,  n Up, and the cohomology class 5 E H1(M, G) 
represented by the cocycle (tag) EZ'(U, G) is the image 5 = ii(3,). If the 
group G is abelian, then the cohomology set H1(M, G) also has an abelian 
group structure, and the mapping 6 is a group homomorphism; it is then 
clear that for any element 5eH1(M, G), the subset y-'(p(t)) c H 1 ( ~ , G )  
is a coset of the subgroup p-"0) c H1(M, G), and hence 

If the group G is not abelian, there is a similar but slightIy weaker statement. 
For ally elenlent 5 E H1(M, G) there is a nlapping 

such that / ~ - ~ ( p ( t ) )  = deT(M, B ~ , ~ ( A C ~ Z ) ) ;  this modified coboundary mapping 
ii, is defined as follows. For any sufficiently fine open covering U = {U,) of 
M and for any section A E T(M, O1,O(~d()) (that is, for any collection of 
complex analytic g-valued differential forms 1, in the various sets U,, such 
that A, = Acl(S,,) A, in U ,  n U,), there will exist complex analytic mappings 
fa: U, 4 G such that Df, = I,,; the functions ti, =fa5,,, fF1 are easily seen 
to  be constants in the sets U ,  n Up, and the cohomo1ogy class 5' E H1(M, G) 
represented by the cocycle (t&) E Z1(U, G) is the image 5' = 6,(d). For the 
trivial cohomology class 5 = 0 represented by the cocycle tap = 1, the 
mapping coincides with the standard coboundary operator 6. The groups 
F(M, 0'"(Ad5)) depend upon the cohomology 5 to such an extent that the 
images 8 $ ' ( ~ , 0 ~ ~ O ( A d t ) )  c H1(M,G) may be inequivalent in any natural 
sense, for diKerent cohomology classes 5. (The proofs of these assertions are 
all quite trivial consequences of the previously noted properties of the differen- 
tial operator D;  details for the case that G = GL(r, C) are worked out quite 
explicitly in [dl.) 

To conclude this discussion, it should perhaps be pointed out that the 
mapping p can be used to impose an additional structure on the col~omology 
set H1(M, 0(G)), generalizing the classical strL~cture of an abelian variety on 
the cohomology group H1(M, P). (This sort of structure was first suggested 
in [g].) The first step is to observe that the set H'(M, G) can be given some 
sort of colnplex analytic structure. To see this, select a finite open covering 
U =  {U,) of the compact Riemann surface M, such that H1(U, G) z H'(M, G); 
let vo be the number of open sets in the covering U, v, be the  lumber of 
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ordered pairs of open sets i n  U with non-vacuous intersection, aiid v,  be the 
number of ordered triples of open sets in U with non-vacuous intersection. 
The set Z1(U,G) is then the complex analytic s~tbvariety of the product 
mailifold Gvl = {(tZs)) defined by the cocycle conditions 5aP5py5pa = 1, 
The complex analytic Lie group Gvo = {(q,)) acts as an analytic trans- 
formation group 011 the manifold Gv' tu~~der the mapping 

and tlie subset zl(LS, G) c Gvl is clearly preserved ~mder this group action. 
The quotient space 

therefore has the structure of the qtrotient space of a complex a~lalytic 
variety under a complex Lie group of tra~lsfortnations acting on that variety. 

The variety zi(U,G) gerierally has singularities, and the group action 
can be rather nasty at some points; so the quotient structure must be analyzed 
a bit more carefully. For this purpose, introdt~ce the cotnplex atlalytic 
mapping f : Gvl-+Gv' defined by (f,,l,(5))=(5,p5py5e;1) E GVZ for (=(tap) E Gv'. 
(To simplify the d i s c ~ ~ s s i o ~ ~  slightly, the conditions <,, = 1 are being ignored 
here; this is not serious, since it merely illtroduces extraiieo~~s componetlts, 
which can in turn be ignored.) The analytic subvariety Z1(U,G) c Gvi 
is just the set Z1(U,G) = { ~ E G ~ ' I J ( < )  = 1)) where 1 e G V z  is the identity 
element of the group Gv2, and the regular part of this arlalytic variety is the 
s ~ ~ b s e t  zA(U, G) c zl(U, G) consisting of those points for which the differential 
of the mapping f has maximal rank. To calculate the differential o f f  it is 
convenient again to use the canonical coordinates provided by the Lie 
algebra g of the group G. Selecting a fixed point 5 = (Sml,) E Z1(U, G), 
introduce coordinates X = (XzI1) E g '"in a neighborhood of 5 by t l~c  mapping 
Xel, + S,,, . expXUlJ; and introduce coordinates Y = (Y,/,,) ~ g ' "  in a neigh- 
borhood of f(<) by the mapping YE/,,-+ fa,,,(() . exp Yalj,. In terms of tlicse 
coordinates, f is represented by the mapping F: gv' 4 gv2 given by 

or more explicitly by 

The diIYerentia1 o f f  at the point 5 can then be viewed as the linear mapping 
rlf<: gvl -+ gvL given by 

(!ft(X),,, = Ad(5,,) [~11(5,T,' ) . XgIj + XII, - Xu;,]. 
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Note that the kernel of the linear mapping rift is the subset of gvlconsisting 
of those elements (X,,,) E gV1such that X,, = Ad(tl,,') . Xag + Xpr; that is to  
say, the kernel of clfs is just the space of cocycles zl(U,Ad(<)). On the one 
liand, it follows from tliis that the regular part of the variety Z1(U,G) can 
be characterized as 

z;(U, G) = {4 E z'(U, G) ldiln~'(11, At/(<)) is maximal); 

on the other hand, the tangent space to the nlanifold zA(U, G) at a point 
< E z;(U, G) call be identified with tlie space z1(U,~d(5) ) .  It is evident 
tliat the subset z~(U,  G) c ~ ' (11 ,  G) is preserved under the action of the group 
GvO, SO that attention can be restricted to the set H;(U, G) = zA(U, G)/Gm, 
which is the quotient space of a complex analytic manifold under a complex 
Lie group of transformations. The orbit of a point 5 EZ~(U,G)  under tliis 
group action is the image of the group G"Ounder the mapping 

In addition to the canonical coordinates already used, introdirce coordinates 
in a neighborhood of the identity in the group G"O by the mapping q, = exp Z, 
where Z = ( Z z ) ~ g v O ;  i n  these terms, the orbit of the point 5 is described 
locally as the image of the mapping H :  gvO + gv' given by 

It follows that the tangent space to  the orbit at 5 is the image of the diKerential 
L ~ H ~ :  gvO -+ gv', where 

and this image is precisely the subspace B1(lI, Ad(()) c zl(U, Ad(5)) of 
coboundaries. Thus, whenever the quotient space HA(U, G) has a colliplex 
manifold structure, its tangent space at any point 5 E H$(U, G) can be iden- 
tified in a natural manner with the cohoniology group H1(M, Ad(()). (Details 
for tlie case of complex analytic vector bundles are worked out in [4]. It is 
shown that z$(~I ,  G) corresponds precisely to the irreducible flat vector 
bundles, and tliat the quotient space HA(U, G) does have tlie nat~iral structure 
of a complex analytic manifold,) 

It is easy to see tliat the subset 

is the colnplerneiit of a complex analytic subvariety of T ( M , o " ~ ( A ~ ~ ) ) ,  
and tliat the restriction of J5 is a complex analytic mapping 
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a,": T,(M, o l t O ( ~ d ~ ) )  -+ H:(M, G )  

between these two coinplex manifolds. (Again, details for the vector bundle 
case can be found ii [#I.) The image of 650 is an analytic subvariety of 
H h ( M ,  G), if the mapping 6:is proper; it is probably true that the image is 
always a coinplex submanifold. Thus the manifold HA(M,G) is in some 
sense analytically fibred over the set H ; ( M ,  O(G)), the fibres being the images 
of the various mappings at. This casts a new and quite suggestive light on the 
mapping p,  and introduces a sort of complex analytic structure on the 
cohomology set ~ : ( n / l ,  fi(G)). (This should be compared with the complex 
structure considered in r i ]  and [8] .)  In the particular case that G = C", 
the cohomology set H 1 ( M ,  G) is an abelian complex Lie group, and the 
mapping ,LL is the natural fibration associated to factoring by a subgroup; 
the quotient space is itself a complex Lie group, the Picard variety attached 
to the Riemanil surface M. 
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