SOME NON-ABELIAN PROBLEMS ON COMPACT
RIEMANN SURFACES

by R. C. Gunning

A good deal of the classical function theory of compact Riemann surfaces
is of an essentially abelian nature, having to do with complex analytic
properties of flat complex line bundles. Problems do arise, though, which are
really non-abelian in character, having to do with complex analytic prop-
erties of flat complex vector bundles. These problems lead in quite inter-
esting but relatively little explored directions. The aim of this lecture is
merely to show how the beginnings of the non-abelian theory can be devel-
oped in a manner paralleling a familiar development of the abelian theory.

First, to establish a background for the discussion, a few definitions should
be recalled. Consider a complex analytic manifold M of complex dimension
n, and let i = {U,} be a covering of M by open coordinate neighborhoods
U,. A one-cocycle of the covering I with coefficients in an arbitrary abstract
group G is a collection of elements &, € G, indexed by ordered pairs (U, U,)
of sets of the covering U for which U, N U, 5% &, such that £,, = I and that
CaplpyCya = 1 Whenever U, N Uy, N U, 5% . The set of all such one-cocycles
will be denoted by Z'(U,G). Two one-cocycles (&,4) and (&) of Z'(U,G)
are called equivalent if there is a collection of elements #, € G, indexed by the
sets U, of the covering U, such that &, = n,&,4n, ' whenever U,NU, & ; it
is easy to see that this is an equivalence relation in the usual sense of the term.
The set of equivalence classes is called the first cohomology set of the covering
1l with coefficients in the group G, and will be denoted by H'(QU,G).
The cohomology as thus defined depends on the choice of the covering 1I,
and not just on the space M; but it can be shown that for well-behaved
coverings the cohomologies are in natural one-to-one correspondences.
(See for instance the discussion of Leray’s theorem in [2].) Hereafter it will
be assumed that only such well-behaved coverings are considered, and the
common cohomology set will be denoted by H'(M,G) and called the first
cohomology of the space M with coefficients in the group G. If the group G
is abelian, it is clear that the set of cocycles form an abelian group; the
group operations are compatible with the equivalence relation, so that the
cohomology set H'(M, G) is also an abelian group.
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The particular case of this construction of perhaps the greatest interest
is that in which the group G is the matrix group of some rank r over the
complex numbers, G = GL(r, C). The cohomology classes ¢ e H (M, GL(r, C))
are called flat complex vector bundles of rank r over the complex manifold
M. When r=1 the group GL(1,C) = C* is abelian, and the cohomology
classes e H'(M,C*) are also called flat complex line bundles over the
complex manifold M.

So far the complex analytic structure of M has played no role; to bring
it into the game, the preceding construction can be extended as follows.
Suppose that G is not just an abstract group, but is a complex Lie group.
Then a one-cocycle of the covering Ul with coefficients in the sheaf of germs
of analytic mappings into G is a collection of complex analytic mappings
Eup U, MUy — G, such that £,,(p) = 1 forall pe U, and that ,,(p)&;,(p)E,.(p)
= 1forall pe U, " Uy N U,. The set of all these one-cocycles will be denoted
by Z'(U, &(G)). Two one-cocycles (£,,) and (&) are called equivalent if there
are complex analytic mappings n,: U,— G such that & ,(p) =n,(p)E,,(PIns( p) !
for all pe U, N Uj. The set of equivalence classes is called the first cohomol-
ogy set of the covering 1 with coefficients in the sheaf of germs of complex
analytic mappings into G, and will be denoted by H'(Ul, @(G)); again, all
these cohomology sets are in natural one-to-one correspondence for well-
behaved coverings, and the common cohomology set will be denoted by
H'(M,@(G)). For the matrix group G = GL(r,C), the cohomology classes
¢e H'(M,0(GL(r,C))) are called complex analytic vector bundles of rank
r over the complex manifold M. When r = 1 the abbreviation ¢* = @(C¥)
will be used, and the cohomology classes & e H'(M, 0*) are called complex
analytic line bundles over the complex manifold M. (For a discussion of
the relationship between this definition and the usual geometric definitions of
vector bundles, see for instance [67.)

Note that for any complex Lie group G, a cocycle (,,) € Z'(U, G) can be
viewed as a cocycle in Z'(U, ¢(G)), interpreting the constants £, as constant-
valued analytic mappings; equivalent cocycles in Z'(U, G) are clearly also
equivalent when viewed as cocycles in Z'(U, ¢(G)), hence there results a
well-defined mapping

u: H\(M, G) - H'(M, 0(G)).

The interplay between flat and complex analytic vector bundles is expressed
in the mapping p for the case of the matrix group G = GL(r, C). The image
of p is then the set of complex analytic vector bundles which have flat
representatives, that is to say, which can be described by constant cocycles;
and for any flat vector bundle ¢ e H' (M, GL(r,C)), the set ™" (u(£)) consists
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of all the flat vector bundles which are analyiically equivalent to the given
bundle ¢.

To digress for a moment, here is an example of a problem, the study of
which naturally leads to questions of the relationships between flat and
complex analytic vector bundles. It is well known that every compact
Riemann surface M (one-dimensional complex analytic manifold) can be
represented as the quotient of a subset D of the complex plane by a group I'
of linear fractional transformations. Actually, D can be taken to be either
the entire complex plane (when M has genus g = 1) or the unit disk (when
M has genus g > 1); but there are many other such representations which
are of importance. (See in this regard the paper [ /].) Those subsets of D which
contain no points equivalent under the group I" can be used as coordinate
neighborhoods on the surface M = D/I'. This provides a coordinate covering
U = {U,} of the surface M by open sets U, with local coordinates z,: U,— C
which have the special property that in each intersection U, N U, # (J the
local coordinate mappings are related by z,= T,y(zy), for some linear
fractional transformations T,,; for a general complex analytic coordinate
covering of the surface M, one can only assert that the mappings T,, are
complex analytic homeomorphisms. Now it is of some interest to determine
what are all the possible special complex analytic coordinate coverings of
this form for a given Riemann surface M, and one approach to the problem
is the following. If {U,,z,} is one of these special coordinate coverings of M,
then to each intersection U, N U, (F there is associated the linear frac-
tional transformation T,, such that z,=T,(z,); cleartly T, =1, and
Ty Ty Ty =1 whenever U,NU, NU, # . Of course, replacing the local
coordinates z, by w, = S (z,) for some linear fractional transformations S,
leads to what must be considered as an equivalent special coordinate cov-
ering; and for this equivalent coordinate covering, w, = T,,(w,;) where
T;3=S,T,;S; . Thus to each equivalence class of special coordinate coverings
there is naturally associated a cohomology class in H'(M,PGL(2,C)),
where PGL(2,C) is the group of linear fractional transformations, which is
a complex Lie group isomorphic to the quotient of the group GL(2,C) by
its center C*. It can be shown that this is a one-to-one correspondence
between the set of equivalence classes of these special coordinate coverings
of the Riemann surface M and a subset of H'(M, PGL(2,C)) called the set
of indigenous cohomology classes; there remains the problem of describing
the indigenous cohomology classes on M. For this latter problem, the
natural homomorphism GL(2,C)— PGL(2,C) induces a mapping

p:H'(M,GL(2,C))— H'(M, PGL(2,C)),
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which is not onto; but it can be shown that the indigenous cohomology
classes all lie in the image of p, hence are the images of a class of flat vector
bundles of rank 2 on the surface M, which bundles will be called the in-
digenous flat vector bundles on M. Indeed, the indigenous flat vector bundles
can all be taken to have determinant 1, in the obvious sense. Finally, for a
Riemann surface of genus g > 1, this class of indigenous flat vector bundles
can be described as precisely the class of those flat vector bundles which
are analytically equivalent to complex analytic vector bundles represented
by cocycles of the form

d
¢d.’3 2 d_Z ¢“ﬁ
[ e ZYU, O(GL(2,C))),
Lt 0 ‘nba_ﬂl

where (¢,4) € Z'(U, 0*) are cocycles representing any complex line bundles ¢
for which ¢ =x. The canonical line bundle x is that line bundle defined
by the cocycle (k) = (dzzldz,) € Z'(U, 0%); there are 27 such line bundles
¢, hence there are 29 complex analytic vector bundles of this form. (For
the proofs and further details see [3].)

Returning once more to the main thread of the discussion, recall that the
mapping u arises by viewing elements of the complex Lie group G as constant-
valued complex analytic mappings into G. The constant functions can be
described quite conveniently for these purposes as the class of complex
analytic functions with zero exterior derivative; but there is the complication
that the functions considered here have values in the group G, so that some
care must be taken in defining the exterior derivative. Suppose that f: U — G
is a complex analytic mapping from an open neighborhood of a point p, in
M into the group G. The Lie algebra g of the group G can be used to provide
canonical coordinates in an open neighborhood of the point f(p,) in G by
the mapping

Xeg—f(py)  expXeq.

(See [5], for instance.) In terms of these coordinates, the mapping f can be
expressed as the complex analytic mapping F, : U — g such that

J(p)=f(po) - expF,(p) forall pel,

provided that U is small enough. The mapping F,_ has values in the complex
vector space g, so that its exterior derivative dF,, is a well-defined complex
analytic g-valued differential form of type (1,0) in the neighborhood U.
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The exterior derivative of the mapping f at the point p, can then be
defined by

D f(po) = dF,,(po);

and it is easy to see that Df is also a complex analytic g-valued differential
form of type (1,0) in the neighborhood U. This derivative has the property
that for any two complex analytic mappings f,g: U— G,

D(fg)=Ad(g’")- Df + Dg,
where Ad denotes the usual action of G on the vector space g. To see this,

write  f(p) =f(po) - expF(p), &(p)=g(po) - expG(p), and [(p) - g(p)
= f(po) - &(po) * exp H(p); then

expH(p) = g(po)™" - expF(p) - g(po) exp G(p)
= exp[Ad(g(po)™") - F(p)] - expG(p),

from which the desired result follows.

Specializing to the case of a one-dimensional complex manifold M
(a Riemann surface) for the remainder of the lecture, every complex analytic
g-valued differential form of type (1,0) is locally of the form Df, and the
mapping f is constant precisely when Df=0. What has been said so far
can then be summarized in the assertion that the following is a twisted exact
sequence of sheaves (of not necessarily abelian groups)

065062 019 (g) -0,

where i is the inclusion of elements of G as germs of constant-valued analytic
mappings, and D is the exterior derivative as just defined. (To say that this
sequence is twisted means that i is a sheaf homomorphism, while D is only
required to satisfy a condition of the sort already noted; D is a sheaf homo-
morphism twisted by means of the adjoint action of G on g. To say that this
sequence is exact means that for each sheaf, the image of the mapping from
the left is the kernel of the mapping to the right; this is well-defined, even
for twisted homomorphisms D.) When G is an abelian group, this is an
exact sequence in the usual sense.

The use of sheaf terminology is not really essential; it merely suggests
passing to an associated cohomology sequence. There are limits to what
can be done in this direction, since the group G may not be abelian and the
sequence is twisted ; but at least the following portion of an exact cohomology
sequence always arises, in the familiar and very straightforward manner:
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0 —5 G —s T(M,0(6)) —2> T(M, 01 (@) =25

O M,6) s B, 06) —— | H'\(M,0"%(4de)).
el (M.OG)H

(See the discussions of the abelian case in [2] or [6], for instance.) It is

necessary to be a bit careful about the meaning of this exact cohomology

sequence, since the cohomology sets need not have any group structure;

but everything becomes quite clear, upon examining the mappings more

closely.

First, consider an element &e H'(M,¢(G)) represented by a cocycle
(&,p) € Z'(U, €(G)); recall that the cocycle condition is just that £ alp bt
in U, NU; N U,. Applying the diflerential operator D, it follows easily that
the g-valued differential forms D¢&,, defined in the various intersections
U,NU, satisfy D&, = Ad(¢y,') - D&,y + D&y, in U,NU,NU,; and this
can be viewed as the condition that these differential forms compose a one-
cocycle (D¢,y) e Z' (U, 0"°(4d¢&)). The mapping v in the exact cohomology
sequence is the mapping which assigns to the cohomology class ¢ that
cohomology class in H'(M, 0"°(AdZ)) represented by the cocycle (DE.p);
the cohomology class & is in the image of u if and only if ¥(&) =0. In the
special case that G = GL(1,C) = C, all the sets H'(M,0"°(4d¢)) coincide
with the set H'(M, ¢*°), which is a group in this case; and the Serre duality
theorem provides a natural isomorphism H'(M,¢"°) =~ C, when M is a
compact Riemann surface. The image v(£) e C is an integer called the Chern
class of the line bundle &; and & has flat representatives precisely when
c(£) = 0. (See [2] for further details.) In the special case that G = GL(r, C)
for r > 1, the sets H (M, 0"°(Ad¢&)) can be distinct; when M is a compact
Riemann surface, Serre duality can again be applied, and H'(M, 0"°(4d¢))
can be identified with the dual vector space to the algebra of complex analytic
endomorphisms of the complex analytic vector bundle £. The analysis is a
bit more involved, but there eventually results the theorem of Weil that
Ee H'(M,&(GL(r,C))) has flat representatives if and only if, for each
indecomposable component & < &, the line bundle determinant (&) has
zero Chern class. (The first statement and proof of this theorem were given
in [9]; see also the discussion in [£].)

Next, the set of those &€ H'(M,G) such that u(&)e H'(M, ¢(G)) is the
trivial cohcmology class is just the set g~ * (0) = 6I'(M, ¢"° (g)), where the
coboundary mapping & is defined as follows. For any section e I'(M, ¢1'°(g))
(that is, for any complex analytic g-valued differential form of type (1,0)
defined on the entire Riemann surface M), and for any sufficiently fine open
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coveringl = {U,} of M, there will exist complex analytic mappings f,: U,—»G
such that Df, =1 in U,; the functions &, = f,f,”" are easily seen to be
constants in the sets U, MU, and the cohomology class &e H'(M,G)
represented by the cocycle (&,,)eZ'(QU,G) is the image &= 6(4). If the
group G is abelian, then the cohomology set H*(M, G) also has an abelian
group structure, and the mapping § is a group homomorphism; it is then
clear that for any element £ e H'(M, G), the subset x ' (u(&) = H (M, G)
is a coset of the subgroup = *(0) = H'(M, G), and hence

(M, 0"°(g))

pN () = & - ST(M, 0M°(g)) = DI(M,0(9)’

If the group G is not abelian, there is a similar but slightly weaker statement.
For any element & € H'(M, G) there is a mapping

6: (M, 0"°(AdE)) » H'(M, G)

such that ™ '(u(&)) = 6. (M, 0"°(Ad¢&)); this modified coboundary mapping
d; is defined as follows. For any sufficiently fine open covering U = {U,} of
M and for any section 1eT'(M,0"%A4d¢)) (that is, for any collection of
complex analytic g-valued differential forms 4, in the various sets U, such
that 4, = Ad(£,p) - 45in U, N Uy), there will exist complex analytic mappings
f.: U, G such that Df, = A,; the functions &, =f,&,,f; * are easily seen
to be constants in the sets U, N Uy, and the cohomology class &' € H'(M, G)
represented by the cocycle (£;,) € Z'(U, G) is the image & = 6,(1). For the
trivial cohomology class ¢ =0 represented by the cocycle ¢,,=1, the
mapping J, coincides with the standard coboundary operator é. The groups
(M, 0"°(Ad¢E)) depend upon the cohomology ¢ to such an extent that the
images 5§F(M,@1'°(Ad§)) = H'(M,G) may be inequivalent in any natural
sense, for different cohomology classes £. (The proofs of these assertions are
all quite trivial consequences of the previously noted properties of the differen-
tial operator D; details for the case that G = GL(r, C) are worked out quite
explicitly in [4].)

To conclude this discussion, it should perhaps be pointed out that the
mapping u can be used to impose an additional structure on the cohomology
set H(M, 0(G)), generalizing the classical structure of an abelian variety on
the cohomology group H'(M, ¢*). (This sort of structure was first suggested
in [9].) The first step is to observe that the set H'(M, G) can be given some
sort of complex analytic structure. To see this, select a finite open covering
U ={U,} of the compact Riemann surface M, such that H'(2l, G) = H'(M, G);
let v, be the number of open sets in the covering U, v; be the number of
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ordered pairs of open sets in U with non-vacuous intersection, and v, be the
number of ordered triples of open sets in U with non-vacuous intersection.
The set Z'(U,G) is then the complex analytic subvariety of the product
manifold G"'={(&,)} defined by the cocycle conditions &,&s¢,,=1.
The complex analytic Lie group G = {(n,)} acts as an analytic trans-
formation group on the manifold G*' under the mapping

(01 (Ea)] €G™® X G*' > (gt )€ G

and the subset Z'(U[,G) = G"* is clearly preserved under this group action.
The quotient space

Z'U,G)/G"= H'(U,G)

therefore has the structure of the quotient space of a complex analytic
variety under a complex Lie group of transformations acting on that variety.
The variety Z'(U,G) generally has singularities, and the group action
can be rather nasty at some points; so the quotient structure must be analyzed
a bit more carefully. For this purpose, introduce the complex analytic
mapping /: GG defined by (f,,(8)) =(Eaplys’) € G for E=(£p) € G,
(To simplify the discussion slightly, the conditions £,, = | are being ignored
here; this is not serious, since it merely introduces extraneous components,
~which can in turn be ignored.) The analytic subvariety Z'(ll,G) = G*
is just the set Z'(U,G) = {feG"1|j“(€)= 1}, where 1eG"™ is the identity
element of the group G, and the regular part of this analytic variety is the
subset Z(U, G) = Z' (U, G) consisting of those points for which the differential
of the mapping f has maximal rank. To calculate the differential of f it is
convenient again to use the canonical coordinates provided by the Lie
algebra g of the group G. Selecting a fixed point &= (&,,)eZ'U,G),
introduce coordinates X = (X,,) € g” in a neighborhood of ¢ by the mapping
Xap— Cap - €Xp X,y; and introduce coordinates Y = (}’;,,?)eg"z in a neigh-
borhood of f(&) by the mapping Y, — f,5,(C) - €xp Y,4,- In terms of these
coordinates, f is represented by the mapping F: g"' —g" given by

J(&) - expF(X) =f(¢ - exp X),
or more explicitly by
CXp [Ad({;t) * Fc(ﬂ'y(X)] = EXp [A‘{(CE-: ) Xa,‘i] T EXp X;ry * CXP[_ Xa‘;]'

The differential of f at the point € can then be viewed as the linear mapping
dfe: g" = g™ given by

df.:fx)m;- = Ad{’_é,?} ' [:A"-f(gv;;,l e X'.n’l T Xm- i Xa}']‘
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Note that the kernel of the lincar mapping df; is the subset of g™ consisting
of those elements (X ) € g"'such that X,, = Ad(&5,") - Xop + X, that is to
say, the kernel of df; is just the space of cocycles ZY U, Ad(E)). On the one
hand, it follows from this that the regular part of the variety Z'(l, G) can
be characterized as

ZyU,G) = {£€ Z' (U, G)|[dim Z' (U, Ad(¢)) is maximal};

on the other hand, the tangent space to the manifold Zj(U, G) at a point
EeZy(U,G) can be identified with the space Z'(l, Ad(¢)). It is evident
that the subset Z(2, G) = Z'(U, G) is preserved under the action of the group
G, so that attention can be restricted to the set Hy(ll, G) = Z5(2, G)/G™,
which is the quotient space of a complex analytic manifold under a complex
Lie group of transformations. The orbit of a point & e Z(2l, G) under this
group action is the image of the group G " under the mapping

n=()eG"—(nLyn; )eG".

In addition to the canonical coordinates already used, introduce coordinates
in a neighborhood of the identity in the group G™ by the mapping n, = exp Z,
where Z = (Z,)eg"; in these terms, the orbit of the point & is described
locally as the image of the mapping H: g*°— g"* given by

exp H,(2) = exp[Ad(E;,') - Z.] - exp[ = Z,].

It follows that the tangent space to the orbit at ¢ is the image of the differential
dHg: " —g", where

dH{(Z)ncﬁ o Ad(éa:;i'l) : Zoc _ Z,‘I’

and this image is precisely the subspace B'(,Ad(¢)) < Z'(U, Ad(&)) of
coboundaries. Thus, whenever the quotient space Hg(l, G) has a complex
manifold structure, its tangent space at any point ¢ € Hy(l, G) can be iden-
tified in a natural manner with the cohomology group H'(M, Ad(&)). (Details
for the case of complex analytic vector bundles are worked out in [4]. It is
shown that Zj(l,G) corresponds precisely to the irreducible flat vector
bundles, and that the quotient space Hy(2l, G) does have the natural structure
of a complex analytic manifold.)

It is easy to see that the subset

8z ' Hy(M, G) = To(M, 0"°(4d&)) = T(M, 0*(Ad&))

is the complement of a complex analytic subvariety of T(M,¢"%(4d¢)),
and that the restriction of d; is a complex analytic mapping
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82: To(M, 01°(4dE)) —» HY(M, G)

between these two complex manifolds. (Again, details for the vector bundle
case can be found in [4].) The image of &7 is an analytic subvariety of
H}(M, G), if the mapping 5?is proper; it is probably true that the image is
always a complex submanifold. Thus the manifold H{(M,G) is in some
sense analytically fibred over the set H3(M, @(G)), the fibres being the images
of the various mappings d,. This casts a new and quite suggestive light on the
mapping p, and introduces a sort of complex analytic structure on the
cohomology set Hy(M, 0(G)). (This should be compared with the complex
structure considered in [7] and [&].) In the particular case that G = C¥,
the cohomology set H'(M,G) is an abelian complex Lie group, and the
mapping pu is the natural fibration associated to factoring by a subgroup;
the quotient space is itself a complex Lie group, the Picard variety attached
to the Riemann surface M.
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