
NATURAL ASSOCIATIVITY AND COMMUTATIVITY 

by Saunders Mac Lane1 

1.  Introduction. The usualassociative law a(bc) = (ab)c is known to imply 
the "general associative law," which states that any two iterated products 
of the same factors in the same order are equal, irrespective of the 
arrangement of parentheses. Here we are concerned with an associativity 
given by an isomorphism a: A(BC) G (AB)C; more exactly, with the case 
where the product AB is a covariant functor of its arguments A and B, 
while associativity is an isomorphism a natural in its arguments A,B, and C. 
The general associative law again shows that any two iterated products F 
and F' of the n arguments A,, ..., A, are naturally isomorphic, under a 
natural isomorphism F z F' given by "iteration" of a. We then ask: what 
conditions must be placed upon a if there is to be just one such isomorphism 
F z  F' for each pair F , F f ?  This question arises in categorical algebra, as 
do the corresponding questions for a natural commutative law AB BA 
and for an identity element K for the multiplication AB, with K A z  A 
natural. Here we present answers to each of these questions. The first 
question (associativity alone) has already been treated by Stasheff [lo] in 
connection with homotopy associative H-spaces.After these lectures formula- 
ting our answers had been delivered, we found that the same questions had 
been answered by Epstein and formulated in a privately circulated preprint 
of his study [3] of Steenrod operations in Abelian categories. His results 
are certainly independent of and probably prior to ours. 

For categories we employ the usual terminology (see for example, [7], 
Chapters I and IX). A category %' is a class of "objects" A,B,C,. . . together 
with a family of disjoint sets hom(A,B) = hom,(A,B), one for each ordered 
pair of objects. When f E hom (A,B) we also write f :  A-tB and we call f a 
morphism of Q with domain A and range B. A composite gj is defined when- 
ever f :A+B and g:B-+C are morphisms with rangeCf) = domain(g) : it is a 
morphism gf:A+C. There are two axioms: the triple composite is associate 
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(whenever defined); to each object B there is a morphism 1,:B-t B which 
acts as a left and a right identity under composition. 

If B'andq are categories, a (covariant) functor F:g-+Vconsists of an object 
function and a mapping function. The object function assigns to each B E @  
an object F(B) in V: the mapping function assigns to each morphism f :B-tB1 
in a morphism F(f):F(B)-+F(B1) in V in such a way that 

the latter whenever the composite gf is defined. 
If F , G : g + V  are functors, a natural transformation t ; F  -t G is a 

function f which assigns to each object B of g a morphism 

such that for every morphism f :  B -t B' in B the diagram 

is commutative. Moreover, t is a natural equivalence (or a natural iso- 
morphism) if each t(B) has in % a two-sided inverse. It follows that this 
inverse is a natural transformation t-I : G -t F. 

If V and %' are categories, their (cartesian) product V x V' has as objects 
the pairs (C,C1) of objects and as morphism the pairs 

of morphisms f :  C -+ D and f ': C' -t D', with the evident composition and 
identities. A functor F :  V x V' -t 9 is called a bifunctor on the categories 
V and g', and similarly for functors of more arguments and for their 
natural transformations. In particular, V n  will denote the n-fold product 
of the category V with itself, so that a functor F: Vn -t 9 is a covariant 
functor on n arguments in V with values in 9. We say that F has mul- 
tiplicity n. 

2. Categories with a multiplication. By a category with a multiplication 
we mean a category 59 together with a covariant bifunctor on %? to 9. This 
bifunctor will be denoted by the symbol @, written between its arguments. 
Thus the statement that @ is a bifunctor means : 

(i) Each pair A,  B of objects of V yields an object A @ B of F; 
(ii) Each pair f :  A -+ A' and g: B -t B' of morphisms of V yields 
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a morphism of %?; 
(iii) Identity morphisms I,: A -+ A and 1, : B + B of V yield 

(2.2) 1, @ 1, = I,@,: A @  B A @  B,  

the identity morphism of A 8 B; 
(iv) If the composites f 'f and g 'g  are defined in W, then 

Examples abound. For instance, in a category %? with finite products the 
product is a multiplication. In detail, a diagram 

(with fixed ends A  and B) is called a product d iagram if to each diagram 

with the same ends there exists a unique morphism h :  C - +  P such that 
f = ph and g = qh.  The category has finite products if there is such a 
product diagram for each pair of objects A and B of V. When this is the 
case, the middle object P of the product diagram is uniquely determined, 
up to equivalence, by A and B. Choosing one P = A x B for each A and B 
yields a bifunctor x on V, hence a multiplication. This includes examples 
such as the cartesian product of sets or of topological spaces and the direct 
product of groups (in the category of all groups, with morphisms all group 
homomorphisms). 

The dual notion is that of a coproduct. Tn a category V, a diagram 

is called a coproduct d iagram if to  any diagram 

with the same ends there is a unique h :  D -t C such that f = hi  and g = hj.  
The category V has finite coproducts if there is such a coproduct diagram 
for each pair of objects A and B. When this is the case, the middle object 
D in the coproduct diagram is uniquely determined, up to equivalence, 
by A and B, and a choice D = A * B provides a bifunctor * which is a mul- 
tiplication for e. Examples are the free product of two groups (in the cate- 
gory of groups) or the "wedge" of two spaces (in the category of topolo- 
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gical spaces with a selected base point, with morphisms continuous maps 
carrying base point to base point). 

More important for our applications are the categories with a multi- 
plication given by one of the usual tensor products. For example, in the 
category dlF of all vector spaces If, W,... over a fixed field F ,  the usual 
tensor product V @  W of two vector spaces is a multiplication. The same 
holds for the category diK of all modules over a fixed commutative ring K. 
Similarly, let DG(4; ; )  be the category of all differential graded K-modules 
(i.e., of all chain complexes of K-modules). The usual tensor product of 
differential graded modules (defined, say, as in [7], Chap. VI. 7) is a mul- 
tiplication in this category. 

If %' is a category, a subcategory V' (with the same objects as %?) is given 
by a subclass of the class of all morphisms of %?, such that this subclass 
contains every identity morphism of %' and with each pair of morphisms 
their composite (whenever defined in V). If %' is a category with a multi- 
plication @, a intlltiplicative subcategory is a subcategory %' which con- 
tains with any two morphisms f and g the morphism f @ g; then %" is 
itself a category with a multiplication. Given any set S of morphisms of %?, 
we may speak of the multiplicative subcategory generated by the mor- 
phisms of S ;  it is defined to be the intersection of all multiplicative sub- 
categories of %? which contain S. The process of generation can be described 
more explicitly. By an expansion of a morphism f we mean a morphism 
such as f @ I,, I @  (f @ I), [l @ (f @ I)] @ 1, etc. More formally, the set 
of expansions off  is the smallest set of morphisms of %? which contains 
f and with any morphism e all morphisms e @ 1, and 1,@ e for any object C 
of the category. 

THEOREM 2.1. Let S be a set of rnorphisms in a category %? with a 
multiplication. The m~iltiplicative subcategory of V generated by S 
consists of a l l  identity rnorphisms of %' and of all  composites of expansions 
of morphisms of S.  

For a proof, we must show that the indicated set of morphisms is closed 
under composition and under @-multiplication. For composition, this is 
immediate. For @-multiplication, use (2.3), which states that a @-product 
of two composites can be rewritten as a composite of two tensor products. 
By iterated application of this result, the problem is reduced to the tensor 
product of two expansions, say f @ g. But f = f 1 and g = l'g, where 1 
and 1' are suitable identity morphisms, so that (2.3) yields 

(2.4) f @ g = (f 1) @ (l'g) = (f @ 1')(1 @ g); 
this states that the @-product o f f  and g can be rewritten as a composite 
of expansions off and g, This completes the proof. 
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For any category %', let Fct(%') be the category whose objects are all 
functors F :Vn-+%' ,  of any multiplicity n,  and whose morphisms are all 
natural transformations t :  F-+ F' between two functors of the same mul- 
tiplicity. The composite of t with t': F'-+ F" is defined in the expected 
way, for any arguments A,, -..,A,, as 

(2.5) (tlt)(A,, .-.,A,) = tf(A,, . . a ,  A,) t(A1, --.,A,). 

If V has a @-multiplication, so does Fct(V); to functors F : V n +  V and 
G: Vm + V construct the functor F @ G : Vn+" + %' with object function 
defined for any arguments C,, ..., C,+, by 

(2.6) ( F @  G)(C,, .-., C,+,) = F(C1, .-., C,) @ G(C,+i, . . . ,Cn+m)3 

and with the corresponding definition for the mapping function. To natural 
transformations t : F -+ F' and u : G + G' construct the natural transforma- 
tion t @ u : F @ G -+ F' @ G' defined for arguments C, by 

These definitions give Fct(V) a @-multiplication. 
An iterate of the functor @:Vz -+ will mean any functor formed by 

repeated applications of @-multiplication. More exactly, the set of iterates 
of @ is the smallest set of functors F :  %" % which contains the identity 
functor 1 : V 4 % and with any two functors F and G the functor F @ G. 
By Ito(V) we denote the category whose objects are all iterates of @ and 
whose morphisms are all natural transformations between such iterates. 
Then Ito(%) is a category with a @-multiplication. 

3. Higher Associativity Laws. Let % be a category with a multiplication 
@ and with a natural transformation. 

such that each a(A, B,C) has a two-sided inverse a - ' ( ~ ,  B,C) in V. Call 
a the associatiuity isomorphism. If the functors F, G, and H are three 
iterates of @, of multiplicities n ,  m, and k, respectively, the natural iso- 
morphism 

(3.2) a = a ( F , G , H ) :  F @ ( G @ H )  - + ( F O G )  @ H: Q " + ~ + ~ - + V  

given for arguments Ci as 

will be called an instance of a ;  define instances of a - '  similarly. 
An iterate of a will be any morphism in the multiplicative subcategory 

of Ito@) generated by all the instances of a and of a-1. By Theorem 2.1, 
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any iterate of a may be written as a composite of expansions of instances 
of a. I t  follows that each iterate of a has a two-sided inverse. 

Now call the associativity isomorphism a coherent if to each pair 
F ,F ' :VP+Q of iterates of the functor @ there is at  most one iterate of a 
which is a natural isomorphism t : F r F'. Thus coherence requires that 
any two formally different iterates between the same pair of functors be 
equal. Coherence can also be defined in terms of diagrams: it requires 
that any diagram with vertices iterates of @ and edges expansions of in- 
stances of a be commutative. This means, for example, that the diagram 

must be commutative. Here each ai is an evident instance of a ;  thus 

and so on (and similarly in subsequent diagrams, where we wiIl omit the 
subscripts i in a,  and the corresponding specification as to  which instance 
is involved). Now the one condition (3.5) suffices to insure coherence: 

THEOREM 3.1. In a category Q with a multiplication @, an associa- 
tivity isomorphism a is coherent if and only if the pentagonal diagram 
(3.5) is commutative for every quadruple A, B, C, D of objects. 

The proof will be by induction on a suitably defined rank p for the 
iterates of @. The rank of the identity functor is defined to be 0, while for 
functors F: Qm + V and G: %?" -+ 'G? the rank of F @ G is defined in terms 
of the ranks of F and G as 

The presence of n-1  in this formula insures that a functor F has rank 
zero precisely then when it is expressed by a formula in which all pairs of 
parentheses start "in front." 

Now consider all iterates F of fixed multiplicity n ;  these are given exactly 
by the different arrangements of parentheses in an n-fold product. Draw 
the graph with vertices all these iterates and with edges all expansions 
ai ,  1 @ ai ,  1 @ (a, @ I), ( 1  0 a,) @ 1, -.. of instances of a. For n = 4, the 
graph is exactIy the figure displayed in (3.5). In general, any path along 
successive edges in this graph from vertex F to vertex G represents a natural 
isomorphism t : F z. G; namely, that isomorphism given as a composite 
of the instances on its edges. 
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If the edges of a path, taken in order, involve only instances of a (and 
none of a - l ) ,  call the path directed.  Let H ( , , , : V - - + V  be that iterate of 
@I which has all pairs of parentheses starting in front, so that H(, ,  = 8 ,  
H 1 , + , ,  = H(, ,@ 1 .  There is a directed path from any F to H(, , ;  indeed, 
we may choose such a path in a canonical way, say by moving an outer- 
most parenthesis toward the front. This proves, for every F and G, that 
there is a t  least one natural isomorphism t :  F z G ;  observe that this proof 
is really just the known proof of the "general associative law" from 
a(bc) = (a b)c. 

The essential point is that remaining: A proof that any two paths from F 
to G yield the same natural isomorphism F E G. Along an arbitrary path 
from F to G, join each "vertex" F, to the "bottom" vertex H(, ,  by the 
canonical directed path. A glance at the diagram 

indicates that it will suffice to show that any two directed paths from an 
F ,  to H(,, will yield the same isomorphism. This we prove by induction 
on the rank of F = Fi, i t  being immediate for rank 0. Suppose it true for 
all F ,  of smaller rank, and consider two different directed paths starting 
at F with the two expansions e  and f, as in the following figure: 

Both e  and f decrease the rank. Hence it will suffice to show that one can 
"rejoin" e  and f by directed paths to some common vertex M in such a 
way that the diamond from F to M is commutative. If e  =f, take 
F' = M = F". If e  # f, the functor F, as an iterate of 0 ,  can be expressed 
uniquely as F = G H. Now the edge e  represents an expanded instance 
of a ;  it has one of three forms: 

e acts "inside" G ;  that is, e = e' 8 1 ,  for some e ' ;  
e  acts "inside" H ;  that is, e  = 1, @ e" for some e" ; 
e  is an instance of a ;  that is, e  = a(G,  K,  L) and H = K 8 L. 

For f there are the same three choices. 
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Now compare e  with f .  If both act inside the same G,  use the induction 
assumption on G. If e  acts inside G  and f inside H, say as f = I,@ f ", use 
the diamond 

F = G @ H  

which commutes in view of (2.4). There remains the case when e,  say, is 
an instance of a ,  so that F has the form 

Since e  # f,  f must act inside G  or inside H .  Iff acts inside G  as f' : G  -+ G', 
use the diamond 

G O ( K @ L )  

This commutes because a is natural. We are left with f acting inside 
H  = K @ L  as f  = 1, @ f ". If it is actually inside K  or inside L, we are 
again done, by naturality. If it is inside neither, f" must be an instance of 
a,  say with L= P  8 Q  and 

f " = a : K @ ( P @ Q ) - + ( K @ P ) @ Q .  

Here the diamond starts 

G O ( K O ( P O Q ) )  

a J \/=lsa 
( G @ K ) @ ( P O Q )  G O ( ( K @ P ) O Q ) ;  

it may be completed by the commutative pentagon of our condition (3.5). 
This is the final case of the proof. Observe that the diagrams used have 
been quite analogous to those appearing in one of the familiar proofs of 
the Jordan-Holder theorem for groups (cf. [9], 295). 
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For n = 5 the proof may be visualized in the following graph, where 
AB is short for A @  B and A - B C  is short for A(BC): 

la  
A[(B. CD)E] 4 A[B(CD. E)] 

J,(lall 
a 

A[(BC 3 D)E] -+ [A(BC. D)] E 1 (AB) ( C .  DE) +- A[B(C. DE)] 

~ ( o i )  

Each complementary region for the graph is either a pentagon (an instance 
of E3.51) or a square (an instance of naturality). The whole graph may 
be regarded as the skeleton of a 3-cell; the regions are its faces and cor- 
respond to products ABCDE with two pairs of parentheses omitted, while 
the edges correspond to products with one pair of parentheses omitted. 
Stasheff [lo] has shown that the corresponding graph for every n gives 
an (n - 2)-cell. 

This coherence result applies in the example of categories with multi- 
plications which we have cited in $2. In the cases of cartesian or tensor 
products the usual rules 

[A(B. CD)] E -%= [(AB) (CD)] E -L (AB) 

(a,(b, c)) -+ ((a, b),c), a O (b O c) -+ (a O b) O c 

yield associativity isomorphisms which evidently satisfy the pentagon 
condition, hence are coherent. However, not every associativity isomor- 
phism need satisfy the pentagon condition. A counter example (suggested 
by Fred Richman) is the isomorphism 

in the category of all K-modules. 
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4. Higher Commutativity Laws. Let Q be a category with a @-mul- 
tiplication and with a natural homomorphism 

such that 

(4.2) c(B,A)c(A,B) = 1: A@ B-t  A @  B 

for every A and B. This insures that c(B,A) is a two-sided inverse for 
c(A,B). Call c the cominutaliuity isomorphism, and assume that %? also 
has an associativity isomorphism a. Our problem is to describe the "co- 
herence" property for g under iterates of a ,  a - l ,  and c. To this end, we 
must arrange to permute the arguments of our functor. 

To each functor F of multiplicity n and each permutation a in the sym- 
metric group S(n) on n letters we construct a new functor a F  of the same 
multiplicity with the object function 

and the evident corresponding mapping function. Similarly, if t: F -+ F' 
is a natural transformation between two functors of the same multip1icity 
n, define at:aF-+ aF' by 

If p is also in S(n), then (j?a)F = P(aF) and (pa)t = P(at). Moreover, if 
the composite transformation t't is defined, then 

Again, consider natural transformations t : F -t F' and u : G -+ G' of multi- 
plicities n and m, respectively, so that t @ u is defined. Let a€Sr(n)  and 
y E S(m). Define a x y to be that permutation of S(n + m) which acts on 
the first n letters as does a and on the remaining m letters, in order, as does y. 
Then the definitions show that a F  @ yG =(a x y)(F @ G)  and that 

A permuted iterate ("pit" for short) of @ will be any functor of the form 
aF, for a E S(n) and F an iterate of @ of multiplicity n. An instance of c 
is (as before), any natural transformation c(F,G), where the functors F 
and G are any iterates of 8. 

DEFINITION. The isomorphisms a and c are coherent if every diagram 
of the following form is commutative: Vertices, permuted instances of @ ; 
edges, permuted expansions of instances of a, i1 , and c. 
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For example, a special case of this coherence is the commutativity of 
the following "hexagonal" diagram 

Coherence can also be described in more categorical terms. Let Pito(%) 
be the functor category with objects all permuted iterates H :gn -t %? of the 
functor @ and morphisms all natural transformations t between such 
functors H. Then Pit is a category with a multiplication-and with an 
action of the groups S(n). Call a subcategory of Pit symmetric if it con- 
tains with each t :  H + H' of multiplicity n all at,  for a E S(n). Consider 
the symmetric multipIicative subcategory of Pit&) generated by all in- 
stances of a ,  a- ' ,  and c. Then the isomorphisms a and c are coherent 
if and only if this subcategory contains, for objects H and H', at most 
one morphism t : H + H'. The equivalence of this description of coherence 
to the previous definition follows from 

THEOREM 4.1. T h e  symmetric multiplicative subcategory of Pito(%?) 
generated by  any set S of morphisms has as its morphisms all composites 
of permutations of expansions of morphisms of S. 

Proof. The indicated set of morphisms is clearly closed under compo- 
sition; we must also show it closed under @-multiplication and under 
permutation. The latter follows by (4.3), the former by the previous argu- 
ment for Theorem 2.1 together with the observation that (4.4) turns per- 
mutations followed by @ into @ followed by a suitable permutation. 

In the case at hand, when S consists of instances of a ,  a - l ,  and c,  this 
theorem shows that every morphism in the corresponding subcategory has 
a two-sided inverse. In this case we will show that this subcategory con- 
tains with any two objects H and H' at least one morphism t : H +  H'. 
Moreover, the pentagonal and hexagonal conditions suffice for coherence: 

THEOREM 4.2. In  a category with a @-multiplication, the associativity 
and commulativity isomorphisms a and c will be coherent if and only if 
they satisfy the commutativity conditions given b y  the pentagon of (3.5) 
and the hexagon (4.5). 

The result may be restated by saying that three conditions suffice for 
coherence: the condition c2 = 1 of (4.2) on c alone, the pentagon con- 
dition on a alone, and the hexagon condition on a and c together. 
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For the proof, consider all the permuted iterates of @ of some multi- 
plicity n. Write each as aF, for a in S(n) and F an iterate of 0, and arrange 
these aF as "vertices" in n! boxes corresponding to the n! choices of a. 
Consider the graph formed by the functors as vertices and with edges 

(n ! boxes) 

all permuted expansions of instances of a and c. Each directed path in 
this graph corresponds to a (composite) natural transformation between 
the functors represented by the vertices at  the ends of the path. We need 
show only that each closed path in this graph yields the identity natural 
transformation. By the pentagon condition and the previous treatment for 
associativity, we know that the result holds for a closed path staying in- 
side any one box. Hence we may concentrate on the portions of the path 
between the boxes, filling in the path within each box as may be convenient. 

The vertices are functors of n arguments, say A,, ... ,A,. In the box 
corresponding to the permutation a, the arguments appear in the order 
A,,,..-,Aa,. Each edge between boxes comes from a permuted and ex- 
panded instance of the commutativity isomorphism c. Thus the edge 
lA2 Q c(A3 Q A5, A4 @ Al) must start at the permutation (23541) in the 
association 2[(35)(41)]; it must then exchange the block 35 with the block 
41. In general, any such edge will interchange two successive blocks of 
letters in A,,,.-.,A,, . But now consider the hexagon condition (4.5). In 
the top row the instance c(A@ B,C) interchanges the block AB with the 
single letter C; the hexagon condition states that this interchange may be 
replaced by two instances of c which interchange single letters with C. 
Repeated such replacement using instances of the hexagon shows that 
any interchange of successive blocks may be replaced by interchanges of 
successive letters, say A, and A,,,. This means that any closed path can 
be replaced by one in which each edge between boxes corresponds to the 
application of one of the transpositions ai = (i,i + I), i = I,ae.,n-1, of 
successive letters. 

Now the symmetric group S(n) is generated by the transpositions pi ;  

hence there exists at  least one path between any two vertices (and hence 
at least one natural isomorphism generated by a and c between any two 
permuted iterates of @ of the same multiplicity). More important, any 
closed path will correspond to a relation between these generators cri of 
S(n). Now all relations can be represented as products of conjugates of 
suitable "defining relations," and the closed paths can be reduced cor- 
respondingly. Hence our proof will be complete if we show that each de- 
fining relation in these generators gives a closed path which corresponds 
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to a natural transformation equal to the identity. A classical result ([8], 
[2])asserts that a set of defining relations on the generators o,,...,o, -, 
of S(n)  is 

2 a i  = 1 ,  i = l , . . . ,n-1  ; 

For the first relation a:= 1 we quote the assumed property c2 = 1 of 
(4.2). For the third relation it suffices to observe the diagram 

.L 1 oc '  J. 
(B@A)@(C@D)  (B@A)@(D@C)  , 

which commutes in view of the property (2.3) of @-multiplication. Finally, 
consider ( a , ~ , ) ~  = a,02ala,alo,. To draw the corresponding closed path, 
we must after each transposition ai insert an associativity so that the next 
transposition can indeed be accomplished by the commutativity c. We get 
the 12-sided polygon written below (with @ omitted) 

I' I . ,  c .1  4 
B(AC) ---- B(CA) 4 (BC)A - (CB)A 

(the headless arrows are expanded instances of c; those with heads, of a). 
We must show this diagram commutative. Insert the two dotted horizontal 
lines, each an instance of c. The middle rectangle commutes because this c 
is natural, while the top and bottom are hexagons, both instances of our 
basic hexagon (4.5). The proof is complete. 

This theorem (like the previous one) depends upon a suitable descrip- 
tion of the set of all natural transformations t : F  +P' "generated" by 
the given isomorphism a, a-1, and c. We have described this set in two 
ways; first (for the proof) as all compositions of permutations of expansions 
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of instances of a ,  am',  and c, and second (more conceptually) as the 
morphisms of the symmetric multiplicative subcategory generated by these 
same instances. There is a third description of this set of transformations; 
namely, as the smallest set of natural transformations containing a, ad', 
and c and closed under composition, tensor product, permutation, and substi- 
tution. Here substitution is the process which leads from a to one of its 
instances. More generally, following Godement [4], we define substitution 
as follows. Let t :  F + F' be a natural transformation between functors of 
multiplicity n. Let G,,...,G, be n functors (permuted iterates of @) of 
multiplicities p,, ...,p,. Then substitution of the Gi in t yields the natural 
transformation 

t *(GI, ..., G,); F(Gl, ..., G,) -+ F'(G,, ..., G,) 

between functors of multiplicity p, + -k p,, and defined for arguments 

Cij, ...,by, 

t ( . . .  Cij,...) = t(G1(C1l,~.~,C~p,),.-.,G,(C,,~,.+.,C,p,>>. 

5. Higher Identity Laws. Let %? be a category with a @-multiplication 
and a distinguished object K, called the ground object. (This notation is 
intended to suggest the case when K is a commutative ring and %? the 
category of all K-modules, so that K is a left and right identity for the 
usual tensor product). 

Assume that there is a natural transformation 

(5.1) e = e(A): K @ A + A  

such that each e(A) has a two-sided inverse in 9; calI e a (left) identity 
isomorphism. An instance of e is a natural transformation e(F), where F 
is any iterate of @. If %? also has associativity and commutativity isomor- 
phisms a and c, we again pose the question of coherence, where coherence 
means that commutativity holds in every diagram with edges permuted 
expanded instances of a ,  a-1, c, e, and e-1. In more detail, the set of 
functors at issue is the smallest set of functors g n - + V  which contains 
both the identity functor and the functor K @ A of one variable and 
which is closed under permutation and tensor multiplication of functors. 
In the category with objects all such functors we consider the symmetric 
multiplicative subcategory generated by all instances of a, a -1, c, e, and e-1. 

Just as in Theorem 4.1, this subcategory consists of all composites of per- 
mutations of expansions of such instances. Therefore, a ,  c, and e are co- 
herent if the subcategory contains to  any two of its objects at most one 
morphism t :  H +  H '  (it follows readily that i t  always contains a t  least 
one such morphism). 
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One special case of this coherence condition is 

two others are the commutativity of the diagrams (with AB short for AQB)  

THEOREM 5.1. I h  a category with a @-multiplication and a ground 
object K ,  the associativity, commutativi ty ,  and identity isomorphisms a ,  
c ,  and e will be coherent if and only if they satiq'y the commutativity con- 
ditions given b y  the three diagrams (5.2) and (5.3), the pentagon (3.5), 
the hexagon (4.5), and the condition c2 = 1 of (4.2). 

All these necessary conditions hold in the exampIes of $2 for the usual 
choices of a, c,  and e. 

For the proof it is convenient to  introduce the "right identity" iso- 
morphism 

Now consider the graph with vertices all functors F at issue, edges all per- 
mutations of expansions of instances of a ,  a-1, c ,  e ,  and e -  '. In this graph 
any two vertices can be joined by at least one path, for suitable instances 
of e and e' can be used to successively remove all factors K. We must 
prove that any two paths from F to F' correspond to the same natural 
isomorphism Fr F'. By applying e or e' to F', we can assume that F' 
has no factors K. The problem will be reduced to the previous theorem 
if we show that any path is equivalent to a path which starts by first re- 
moving all factors K ,  and if we show that two different factors K can be 
removed in either order. This last result is an immediate consequence of 
(5.2) and naturality. It remains only to show, in effect, that an applica- 
tion of e or of e' after an application of a or of c can be replaced by an 
application of e or e' first. In many cases this is a consequence of naturality. 
In other cases, when c is applied first, this is a consequence of the defini- 
tion (5.4) of e' in terms of e. There remains the case when a :  A(BC) - (AB)C 
is followed by e or e ' ;  this case happens only when one of A, B, or C i s  K. 
The result in the first two cases is given by the two cases of commutativity 
of (5.3). The third case (when C = K) requires that the outside rectangle 
in the following diagram be commutative 
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Fill in the inside dotted arrows as indicated. The top rectangle is then 
an instance of the hexagon (4.5), while the two bottom squares are the 
two assumed conditions (5.3). With this argument, the theorem is reduced 
to the previous cases. 

This theorem refers to functors F: V "  + V of positive multiplicity n. If we 
include also the constant K as a functor of zero multiplicity, the condition 
(5.3) must be replaced by the condition that c ( K , K )  = 1. 

If commutativity is absent, we must assume two natural isomorphisms 

(5.5) e ( A ) : K @ A + A ,  e l ( A ) : A @ K - + A .  

In  this case, replace (5.2) by 

(5.6) e ( K )  = e l ( K )  : K @ K + K 

and consider also the commutativities 

le' 
A ( K C )  A AC A ( B K )  --+ A B  

THEOREM 5.2. I n  a category with a @-multiplication and a ground 
object K ,  the associativity and identity isomorphisms a ,  e ,  and e' will 
be coherent if and only if they satisfy the following Jive commutativity 
conditions: T h e  condition (5.6), the pentagon condition (3.5), the first 
condition of (5.3), and the two conditions (5.7). 

This can be proved by reducing any path to  one which first removes 
all K's and then applying Theorem 3.1, all much as in the proof of the 
previous theorem. 

6. Tensored categories. By a bicategory we mean a sextuple 

(@,O,K,a ,c , e ) ,  

where V is a category with a multiplication @, K is a selected object of V ,  
and a ,  c, and e are associativity, commutativity, and identity isomorphisms 
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which are coherent; that is, which satisfy the diagrammatic conditions 
listed in Theorem 5.1. This coherence allows us to "identify" A Q (BQ C) 
with (A@ B) Q C, A @ B with B Q A, and K O A with A according to 
the given isomorphisms a ,  c, and e and in the fashion familiar, say, for 
modules. For example, any category with products and with a terminal 
object T can be regarded as a bicategory (an object T is terminal in V if 
to each object C of V there is a unique morphism C + T of V). For, take 
the product x as the multiplication Q in g; this product is naturally 
associative and commutative, while T satisfies T x A z A, and these iso- 
morphisms are readily seen to be coherent. 

Bicategories have been introduced independently by several authors. 
They are in BBnabou [1], with a different but equivalent definition of 
"coherence," but without any finite list of conditions sufficient for the 
coherence. In [6] the bicategories are introduced for several purposes: to 
formulate the notion of a category with a hom functor to some other 
category, to give a general theory of algebras, and to treat categories of 
operators and higher homotopies. We will describe briefly each of these 
objectives. 

First, for an arbitrary category V, hom is a bifunctor 

where VP is the "opposite" or "dual" of the category V, and 9 is the cate- 
gory of sets. Here the composition of homomorphisms is a map of (the 
product of) sets 

(6.1) hom(B, C) x hom(A, B) 4 hom (A, C) . 

In an additive category (defined as usual; see for example [7]), hom is a 
functor to the category of abelian groups, and composition is a morphism 

(6.2) horn (B, C) @ hom (A, B) -t horn (A, C) 

of abelian groups (this is the condition which states that composition and 
addition of morphisms satisfy the distributive law). In a differential cate- 
gory, as used by Eilenberg-Moore (in unpublished work), hom is a functor 
to a category of differential graded modules, and composition is a mor- 
phism of such modules, much as in (6.2) except that now Q denotes the 
tensor product of such modules. In a11 three of these cases we have to do with 
a category whose hom-functor has values in a bicategory (e.g., sets with 
Q = x or abelian groups with the usual @-multiplication) and whose 
composition is a morphism as in (6.2). 

Second, define a tensored category (cf. [6]) to be a bicategory V in which 
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Q is abelian and the functor @ is right exact in each of its variables sepa- 
rately. An algebra in Q may thus be defined to be an object A of Q to- 
gether with two morphisms 

of Q which represents the usual "product" and "identity element" of A. 
Associativity and the other axioms for an algebra can now be expressed 
via diagrams in the tensored category Q, and the usual forma1 properties 
of A-modules and tensor products of A-modules and of algebras can be 
developed (cf. [6]) so as to include all the familiar cases (rings, graded 
algebras, bigraded algebras, differential graded algebras, and the like). 

Finally, consider a bicategory 9 whose objects are generated under 
@-multiplication by a single object B. We can then take the powers of B, 
in canonical form, to be 

By coherence, every other object of Q will have a unique isomorphism to 
some one Bn. Hence we may without loss restrict the objects of the category 
to the powers Bn; indeed, we may say that the objects of the category 
are just the natural numbers n. However, each permutation a in S(n) in- 
duces by coherence a unique morphism Bn + Bn. Thus the bicategory with 
one generator B may be presented as follows, It is a category Z? with 
objects the natural numbers (0,1,2,..-). For each n, the symmetric group 
S(n) is given as a subgroup of the group of all invertible elements in 
hom(n,n); in particular, the identity permutation in S(n) is the identity 
morphism n -, n. There is also a given bifunctor @ : 2 x 2 -+A? with 
object function 

and with mapping function which assigns to  f : m -, n and g: m'  4 n' a 
morphism f Q g: m + m' -t n + n' satisfying the usual conditions (2.2) and 
(2.3) for a functor. These structures S(n) and @ on 2 satisfy the following 
three axioms. The associative law for Q asserts that 

the permutation law requires that a~ S(n) and y E S(m) give 

for a x y defined as in (4.4). Finally, for any m and m', let z,,,, be that 
permutation in S(m + m') which interchanges the first block of m letters 
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and the second block of m' letters. For any f : m -+ n and f ': m' -+ n' in #, 
the third axiom requires that 

A category with these structures satisfying these axioms is caIled a PROP 
(short for product and permutation category). Categories of this type 
have arisen in current studies by J. F. Adams and this author on higher 
homotopies for cohomology operations. Similar types of categories have 
arisen in Lawvere's studies in functorial semantics [S]. A number of further 
results on such categories will be available: for example, i t  can be de- 
monstrated that there exists a "free" PROP on a given set gi: m,  -t n, 
of morphisms as free generators. And, as noted above, each bicategory 
generated by a single object can be represented as a PROP, 

To  summarize: in a category, the functor hom is part of the formal 
structure: a tensored category formalizes both of the basic functors horn 
and @ of homological algebra. 
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