
IV 

THE INTEGRAL AND ITS GENERALIZATIONS 

efinite integral can be considered from several 
In  college text-books it is defined 

for functions of simple type (continuous and with a finite 
number of maxima and minima) as the limit of a certain 
sum; but in its applications to  mechanics it is expressed 
frequently in a form which does not correspond rigorously 
to  the definition. A moment of inertia, for example, may 
be defined in the form S r * d M ,  where M is not equal’to r, 
nor is r a function of M. The idea of integral is broader 
than the elementary type. 

It is of some interest t o  consider the broader notion, to  
analyze it and reduce i t  as far as possible to  a logical form 
amenable t o  the methods of mathematics. For this purpose 
i t  is helpful t o  consider some of the less mathematical and 
less logical concepts which are felt t o  be akin to  integrals. 
The first to  occur to  an applied mathematician is tha t  of a 
moment. We have a fairly clear “a priori” idea of what is 
meant by the moment of a mechanical structure about some 
axis. It bears the same relation t o  rotation as does a force 
to  parallel motion. It can easily be measured experiment- 
ally. The same is true of moment of inertia or rotational 
inertia, A similar idea, though not so simple, is that  of the 
total potential due to  an electrostatic or gravitational system. 

In  all these cases we have the familiar space and time as 
a background, In  a more general and vaguer field of 
thought there is the average. Statistical averages are 
obtained for many kinds of entities, numerically measurable 
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The Integral and Its Generalizations 35 
by necessity, but entities dependent on objects or qualities 
which are not always numenical in their essence. These 
averages are, in practice, merely ratios of sums of a finite 
number of terms, but there is a feeling in many problems 
that  there is a ghostly “correct” average t o  which we are 
but approximating by our rough methods. It is true that 
in some cases this ghost is misleading and illogical, as in the 
case of mortality statistics (unless we are considering the 
biological problem of the average mortality of all living 
tissue). Nevertheless one feels frequently that if it could 
only be grasped there is a limiting true average even in 
problems and sciences in which space and time or even pure 
number enter in a secondary manner, in which these appear 
as conditions rather than as fundamental characteristics. I n  
mathematics itself the modern tendency is to  consider not 
only collections of numbers and relations between numbers, 
but collections of functions, of curves, of logical classes, and 
so on. And there appears no absolute objection t o  such ideas 
as that  of the average maximum of a collection of functions 
or the average area of a collection of closed curves, except 
that  these concepts are vague and had not until recently 
been defined in a satisfying form. We shall see that  a t  the 
present time this objection has fallen t o  the ground. 

How can we characterize this broader concept of integral? 
From the examples given and others which the reader may 
invent there emerge several characters which are universally 
found in any concepts which are akin to  integrals or mo- 
ments or averages. 

There must be a background of entities which may be 
denoted by certain marks. I n  a simple average or in the 
moment of a finite set of particles these marks may be 
suffixes 1, 2, 3, . . which distinguish one individual from 
another. In  the moment of a continuous structure the posi- 
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tive integers may not be sufficient. The number of “indi- 
viduals” may be too great. We therefore denote the general 
mark by a noncommittal symbol “p,” which, for imaginative 
purposes, can be thought of as a “point” in some general 
geometry. A number or a point in space, a function or a 
curve, a color or a quality, may be such a mark. 

The collection of these marks considered in the particular 
case is called Po. There is again a numerical property of 
these marks, determinate when a particular mark p is 
chosen, that  is t o  say, a function of p denoted by f(p). 
For a moment of inertia p is a particle or material point, 
f(p) is the square of the distance of that point from the axis. 
For an average error, p stands for a particular case consid- 
ered, f(p) for the error involved in that case. For an 
ordinary integral the mark p is a number x lying in an 
.interval a to  b and f(p) = f(x) is some function of x. For a 
functional space p is a function belonging t o  a class Po, f(p) 
is a functional of the function p. 

I n  the case of closed curves p may be a closed curve of 
some simple type, f(p) the Green’s function for that  curve 
and two fixed points A, B. [A Green’s function is usually 
regarded as a function of one variable point for a fixed curve 
and fixed point in the enclosed area, bu t  it is convenient a t  
times t o  hold the two points fixed and vary the curve.’] 

T h e  next step is, somehow, to  sum f(p) over all marks p 
belonging to  Po. If the number of marks is limited we have 
an ordinary algebraic sum; if the collection Po has the power 
of the denumerable the sum is an infinite series; if Po is an 
interval in a number-space of a finite number of dimensions 
the sum is an integral. If Po is a continuous material body 
the sum may be a total moment or total potential a t  a 
fixed point. 
1G. C. Evans, “Cambridge Colloquium,”New York, 1918, p. 15.  
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But the summation cannot take place as a simple sum of 

the values of f(p) for all p belonging to  Po if Po has a power 
greater than the denumerable, because that would,in general, 
lead to  an infinite result. It is necessary to  proceed by a 
process of approximation. Po is subdivided into a finite 
number of subgroups P1, Pa, , . . P,, to each of which some 
weight is assigned. In  each subgroup P,, a typical mark 
pr is chosen and the value f(pr) of f a t  pr is determined and 
multiplied by the weight mr of the group. These products 
are added in the form 

S1 = mlf(p1) + . . . + mnf(pn). 
A further subdivision is made with the result Sz  and so on. 
The sequence SI, Sz, . . . may approach a limit which may 
be the same under many different processes of subdivision 
of Po and many different methods of choice of the representa- 
tive of each group. The limiting sum is then called the 
integral of f(p) over Po with the weighting system m(P),  
P being a variable subgroup of Po. 

The integral depends, we see, not only on the existence 
of a function f(p), but also on a method ofweighting m(P) 
a function of collections P of the marks p, picked out from 
Po. 

We now introduce a notation for our integral in order to  
be able to  speak of it. Since it is a number which is deter- 
minate when the function f(p) (p = element of Po) and the 
weighting m(P) (P  = subgroup of Po) are given, we call it  

J- f(P) dm (PI 9 

or S f d m ,  or, when we are not so interested in the weight- 

If there is to  be any analogy with mechanics or statistics, 
the weighting m(P) must be such that  the sum of the weights 
of any number of distinct collections PI, Pz, , . . P, is equal 

ing, S(f) * 
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to the weight of the group consisting of all elements belonging 
to  any one of them, that  is, if P = PI + P2 + . . . + P,, 

m(P> = m(PJ  + m(P2) + . . . + m(P,). 
Now in such a subject as this, limiting processes and infinite 
series will naturally occur and difficulties will constantly 
appear unless we allow the weighting to  be additive even 
for an infinite set of subgroups. That  is to  say, when 

P = P , + P , +  * . ' ,  
m(P) = m(PJ  + m(P2) + . . ., 

provided there is no p common to two groups P,. 
Integrals which do not satisfy this relation are useful in 

some fields, but each requires its special treatment. Here 
we confine our attention to  cases in which the additive 
property holds for an infinite as well as for a finite sum. 

Now it happens that the sum of a set of classes or collec- 
tions is independent of the order of the summation; for, by 
its definition, the sum of a set of classes is the class of 
elements belonging to  some one class of the set. It follows 
that the sum m(Pl) + m(P2) + . . . , which is a numerical 
series, must be independent of the order of its terms. I n  
the usual case the weights m(P) are essentially positive (or 
zero), and then the above series has the same sum in any 
order if i t  is convergent a t  all. But in electrostatics the 
charge in a volume can be regarded as a weight of the col- 
lection of points contained in the volume, and it will satisfy 
all the usual requirements for a weight except that  of con- 
stant sign. T o  be as general as possible we should allow 
the possibility that  m(P) is sometimes negative. Then the 
series m(PJ + m(P2) + . . . must be absolutely convergent. 

It is of considerable value to  distinguish in some way 
integrals which are based on essentially positive weight from 
the more general type, in the first place because the former 
are more common in practice and satisfy more completely 
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the properties of ordinary integrals; secondly, because, as we 
shall show, the other apparently more general sum can be 
regarded as the difference of two integrals with positive 
weighting. For an integral with positive weighting we use 
the symbol I(f) instead of S(f). 

Returning to  our attempted definition of the integral in 
terms of the weights, we have 

S(f) = lim S,, 
1, 

S n  = Z f(pi, n)m(Pi, n). 
1 - 1  

It follows that if, for every p in Po, 
f(p) = fl(P) + fdp) + . . . + fn(p), 
S(f) = S(fJ + S(f2) + . * 1 + S(f,). 

Again as with the weight m(P) so here with the function f ,  
our integral will be more amenable to  analysis if it satisfies 
this additive law not only for a finite but also for a de- 
numerably infinite set of functions; that  is, if when 

f(p) = fl(P) + fdp) + * . . 9 

S(f) = S(f1) + S(f2) + . . * . 
Now, since S(f) is defined by means of a limit, this statement 
involves the validity of a change in order of a double limit. 
Again this double limit can be expressed as a double series 
in the following manner: 

In  the process by which S, is obtained we subdivide Po 
successively into parts so that P1, n is further subdivided 
into a set of distinct collections Pj, n + l  where j takes on a set 
of values depending on i. Or, again, P1, n itself is a part of 
one of the collections Pj, n-1 of the previous stage. Let 

To(f) = f(pl, o)m(Po), 
1, 

Tn(f) = Z [f(pi, n) - f(pj, n-i)]m(Pi, n), n = 1, 2 ,  ... . 
1-1 

Then 
S(f,) = Z T,(f,), 

n -0 
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S(fi) + S(fz) + . . = Zr ZnTn(fr), 
S(f) = ZnTn(f) = Zn Z,Tn(fr). 

Such a change of order of summation in a double series we 
know t o  be legitimate if the double series is absolutely con- 
vergent. This suggests the restriction of the series f l  + fz  
+ . , , t o  absolutely convergent series. 

We are now in a position t o  state the following general 
property of our integral: 

If fl(p) + fz(p) + . . . is absolutely convergent and equal 
to  f(p) for all marks p in Po, then 

Since the sum fl  + f z  + . . . is the same under any derange- 
ment of the terms, the sum S(fJ + S(fJ + . . . will be equal 
to  S(f) for any derangement and the series is absolutely 
convergent. 

T o  distinguish this type of general integral from other 
types, for example that  of E. H. Moore,’we call it an abso- 
lute integral. 

It re- 
mains t o  give i t  a more detailed and more logical exami- 
nation. 

Given a body of definitions it would be possible to examine 
the whole as a logical system for the consistency and inde- 
pendence of its postulates; but before this can be done it is 
necessary t o  determine some process of definition. 

At first there may only be a small class of functions for 
which the initial defining processes, such as the method of 
subgroups and their representatives outlined above, give 
a single result. The analysis must be developed by stages 
proceeding from a smaller to  ever wider classes of functions 
for which the integral is defined. And this extension will be 

(19149 P. 334. 

S(f) = S(f1) + S(f2) + . . . . 

Our problem is now explained in general terms. 

1 E. H. Moore, “Bulletin of the American Mathematical Society,” Vol. XVII 
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most naturally obtained through sums of absolutely con- 
vergent series. We shall also use the principle that  when a 
function lies between two other functions whose integrals 
are defined and equal, then this common value is also the 
integral of the given function. This principle, however, can 
only be used in the case of the positive integral I(f). 

Before we proceed any further we introduce two concepts 
which are extremely important in connection with integrals 
of absolute type. 

To any collection P contained in Pg there corresponds a 
function f(p) equal to  1 when p belongs to  P, and t o  0 when 
p does not belong to  P. Given the collection P, f(p) is 
completely and uniquely determined. Vice versa if a func- 
tion of this type (equal everywhere either to  1 or 0) is given, 
it determines the collection P of marks p for which it is 
equal to  1. For such a function the integral will equal the 
weight of the collection P. For example, in a statistical 
problem the weight of any subgroup is also the average of 
the numbers equal to  1 in the subgroup and to  0 for all 
other marks or subgroups. Hence to  state the weighting of 
the integral is the same thing as to  state the value of the 
integral for a certain simple class of functions. 

To express the problem in this way, in terms of an initial 
class of functions, has several advantages. On the one hand 
we may prefer to  use for the purposes of our exposition a 
different class of initial functions; for example, functions 
defined by certain series or polynomials; on the other hand 
the first step from these special functions to  the next class 
may suggest the processes of extension to  even wider classes. 

The second concept is related to  monotone sequences. 
If a series is absolutely convergent i t  is the difference of two 
convergent series of positive (strictly, non-negative) terms, 
in which the partial sums form monotone sequences. Mono- 
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tone sequences and absolute convergence are therefore inti- 
mately related and this implies that monotone sequences are 
essential items in the theory of integrals of absolute type. 
Now in order to  obtain such sequences it is valuable, if not 
necessary, to  consider the greater of two numbers. 

Let A be the class of numbers not greater than the num- 
ber a, B the class of numbers not greater than b, and so on. 
In logic there are two combinations of classes, the logical 
sum A v B which consists of all numbers not greater than 
one of the two numbers, that is, not greater than the greater 
of a and b, and the logical product A A B, which consists 
of all numbers not greater than either of the two numbers, 
that is, not greater than the lesser of a and b. This suggests 
the following symbols and the corresponding properties: 

ayb = the greater of a and b, 
= 3 ( a + b ) + & I a  - b l .  

aXb = the lesser of a and b, 
= $ ( a + b )  - 4 1 a - b l .  

- (aXb) = ( -  a)y( - b), - (ayb) = ( -  a)X( - b), 
(ayb)yc = ay(byc), (aXb)Xc = aX(bXc), 

if a 5 c, (ayb)Xc = ay(bXc), and we have the right to use 
the notation aybyc, aXbXc, and (when a 5 c) aybXc. More- 
over a rb  + aXb = a + b, 

a = ahb + (a - b)yO. 
Many other similar identities could be proved by inspection 
or by correlation with the logical classes A, B, . . . , 

Again, if a 5 b, ayc 5 byc, aXc 5 b k ,  and if lim an = a, 
lim anyc = ayc, lim anXc = ahc. 

We can extend the same notation to  functions so that 
fyg is that function which for each p is equal to  the greater 
of f(p) and g(p). The above equalities and inequalities 
will be immediately applicable to  functions as well as real 
numbers. One point may be noticed, that if fl is the 



The Integral and Its Generalizations 43 
function corresponding to  the collection PI and fi to Pz, 
then f,yf2 corresponds t o  PI + Pz and f l A f z  to  PIPz. 

Now if an initial class of functions is given which possess 
integrals in such a way that  the additive postulate is satis- 
fied, then we can proceed to  define the integral of any linear 
combination of these functions and this will yield consistent 
results. The  chief difficulty consists in the next stage, which 
is not immediately obvious. One important requirement 
is that  a distinctly dynamic and constructive process should 
be present in order that  the integral may be defined for a far 
wider class of functions than the initial class. E. H. Moore 
has proceeded by considering limits of relatively uniform 
convergent sequences. This leads to  an interesting develop- 
ment to  which the reader is referred.’ It is, however, a 
process distinctly different-as a generative process-from 
the processes invented by Borel, Lebesgue, and W. H. 
Young. We prefer t o  follow the latter development. I n  this 
there is maintained on the one hand a constant correlation 
with the weight of subgroups, and on the other hand with a 
type of absolute convergence. These two are related more 
closely than might a t  first be imagined. For just as a series 
Zus is absolutely convergent when and only when the series 
2 I us I is convergent, so in the theory of Lebesgue integrals, 
f(x) is summable if, and only if, I f(x)l is summable. 

I n  the case where p is a real number between 0 and 1 let 
us assume, as an example t o  show the relations between the 
weights of intervals and absolute summability, that  the 
initial class of functions is such that any linear combination 
of functions of the class and the modulus of any function of 
the class are members of the class. Suppose also that 
f(x) = 1 (0 i x 5 1) and f(x) = x (0 s x _I 1) are among 

( 1 9 1 2 1 ,  P. 334. 
1 E. H. Moore, “Bulletin of the American Mathematical Society,” Vol. XVII 
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the members of the initial class. Then it will be possible to  
assign a weight to  any interval. For the function 

is equal to  0 from x = 0 to  x = b/m, thence linear to x = 

(b + l ) /m where it is equal to  1 and remains equal to  1 up 
to  x = 1. Since fyg is a linear combination of f, g, and 
I f - g I, fyg is a member of the initial class if f and g are 
members. Therefore the function above defined possesses 
an integral. Now make m and b increase indefinitely but 
in such a way that (b + 1) /m remains equal to  c (0 5 c 5 1). 
The limiting function will be equal to  0 for x < c and to  1 
when x 2 c. If the limiting process is valid the integral of 
this function can be regarded as the weight (measure) of the 
closed interval c 5 x 1. Subtracting another interval 
d < x 6 1 (this time keeping b/m fixed and equal to  d)  we 
obtain the weight of any closed interval (c, d).  

Reciprocally, if the original aspect is that  of the weighting 
of subgroups, the set of marks p for which I f(p) 1 has a 
given value is simply the sum of those for which f(p) and 
for which -f(p) have tha t  value. Hence the determination 
of the integral of I f I will be of the same type as for f and -f. 

With this general somewhat diffuse and nonlogical analysis 
of the foundations performed we are in a position to  make a 
careful attack of the problem. 

We assume, first, that  there are certain marks p belonging 
to  a class Po; secondly, that  there is a class To of functions 
f(p) of these marks defined for all p in Po; thirdly, that  this 
class is such tha t  when f ,  f l  belong to  the class so also do I f I, 
cf (where c is any real constant), and f + fl. 

For each of these functions of the fundamental class To 
there is defined in some way an integral S ( f )  which satisfies 
the following postulate: 
(A) If fl(p), fz(p), . . . form a finite or denumerable set of 
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functions belonging to  To, if their sum is f(p) and the 
sum I f l  I + I f z  I + . . . is g(p) for every p in Po, where 
f(p), g(p) are also members of To, then 

This postulate can be analyzed into a t  least three postu- 
lates. 

S(cf) = cS(f), if c is a real constant and if f belongs 

S(f1 + fz) = S(fl) + S(fa), if fl,  f2 belong to To. 
lim S(fn) = 0, if fl(p) 2 fz(p) 2 . . . 2 0 = lim fn(p) 

for every p in Po where fl ,  fe, . . . belong to  To. 
The postulate (A) implies these three together for (S) 

is a special case of (A), (L) is a special case if we substitute 
fn‘=g-( I fl I + I f z  I + . . . + I fn I )where 

Finally (C) is a consequence of (S) when the constant is 
rational, and of this together with (A) when c is the sum 
of an absolutely convergent series of rational numbers, 
which is true for any real value. 

But (A) implies more than is implied by (C S L) 
together. Let f(p) 2 0 for all p in Po and consider some 
finite set of functions 91,4~, . . . 4s such that  4i(p) 2 0 for 
all p in Po (i = 1 , 2 ,  . . . n) and such that 

S(f) = S(f1) + S(f2) + . . . . 

(C) 

(S) 
(L) 

to  To. 

g = I  f l  I + 1 f 2  I + . . . in(A).  

41+4z+ . . .  +dn = f .  
Then, when the 9’s are varied, postulate (A) implies that  
I S ( ~ I >  I + I s(4z) I + . . . + I S(4,) I I(f) where I(f) 
depends only on f and not on the particular subdivision o f f .  

For, if not, given any integer s we could choose the d’s 
in such a way that 

9 l , s + .  . . + b , s  = f , 9 i , s  2 O , i  = I ,  2 , .  . . na, 
1 S ( + d  I + . . . + I S ( h s , s )  1 > 2,  

91,s + . . . + h s , s  = f/2’, 
or if $i,s = di,s/zs, 
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I S(+i,s) I + . . . + I S(+ns,s) I > I .  

“S 

1 = 1  
= 2 s  2 .  +i,s 

which can be expressed as a single series of positive terms 
which is absolutely convergent, then postulate (A) asserts 
that 

is convergent, in contradiction to  our result that each par- 
tial sum of terms summed for a particular s is greater than I .  

Hence there does exist such an upper bound I(f). 
If f is 

a member of T o  (all our functions have so far been assumed 
to be of this class), I f I is a member of TO, and if f l  = fro, 
f z  = - f X O ,  

Now f l  and f z  are non-negative and therefore by the analysis 
immediately preceding, 

Zs zi I S(#i,s) I 

Let us express this inequality in a simpler form. 

f = f l  - f z ,  I f I = f l  + f z .  

I S(f) I = I SVl) - V f z )  I 
5 I S(fl) I + I Wz) I 
5 I( I f I >. 

A further consequence of (A) is therefore 

if f is a member of class TO, where I(+) is a non-negative 
number defined for all non-negative functions 4 belonging 
to TO such that if + 5 +, I(+) 5 I(+). 

The latter part of this statement follows immediately 
from the definition of I(4) as an upper bound (by upper 
bound we mean “least upper bound”). 

It will later be proved that the postulate system C S L M 
together imply (A) and therefore (A) and (C S L M) are 
logically equivalent. 

Let us first consider positive integrals, A positive 

(MI I S ( f ) I  r I ( l f l )  



The Integral and Its Generalizations 47 
integral is such that  the weight of any subgroup P is non- 
negative. This implies the more general assertion tha t  if 
f(p) 2 0 for all p in Po, I(f) 5 0. This we can designate 
postulate P. Taken in conjunction with (S) or (A) it 
implies that  iff  

which is a special form of (M). 
Then AP imply C S L P while C S L P imply C S LM.  We 

can now prove that C S L imply A, so that  the two latter sys- 
tems are equivalent, and since (A) implies (M), (M) is not, 
after all, independent of C S L, but is really implied by them. 

For let fl,  fz,  . . . be a denumerably infinite set of functions 
satisfying the conditions of postulate (A). Let 

g, I(f) 5 I(g); and this again tha t  
I I ( f )  I s I(  I f l L  

h n  = g - ( I f l  I + I  f z  I + 
kn = (g- f)  - [(I f i  I - fi) + ( I fi I - f,) + . 

- + I  fn I >, 
+ ( I fn I - fn)]. 

Then h,, k, satisfy the conditions of postulate (L) and if 
this is assumed, lim S(h,) = 0, lim S(k,) = 0. Combining 
these with C S we see that (A) is satisfied. Furthermore if 
c is a real constant, it is not difficult to  prove that S L imply 
C. On the other hand S and L are independent, for if 
S ( f )  = lim f(x) as x approaches 0 through positive values, 

S is satisfied but not L in general; while if 

L is satisfied but not S. 
Again P is independent of L and S ,  Therefore we can write 

our postulates as an irreducible minimum in the form (A) 
for the general integral S(f), or in the equivalent form (S L), 
and then add for the positive integral I(f) the postulate (P) 
to  either system. But i t  is helpful to  remember that  C, M 
are consequences of either system. 

We shall show how the general S-integral can be expressed 
as the difference of two positive I-integrals, then consider 

S ( f )  = f2(0), 
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how the positive integral is extended and state a number of 
examples illustrating some applications of the general theory. 
After that  we shall state some of the more important theo- 
rems which are needed in applications. 

If f(p) 2 0, for all p in Po and if f is of class To, define 
Il(f) as the upper bound of S(4) for all functions 4 of class 
To such that  0 5 4 5 f .  This upper bound exists, since by M, 

S(4) 5 I( 14 1 )  = I(+) 
s I(f). 

[At present there is no relation between I1 and I, and neither 
has been proved to  be a positive or I-integral.] 

The function 4 = 0 is a member of To and its S-integral 
is 0, and therefore 

so that I1 satisfies postulate P. 
If 

0 S 91 s fl, 0 5 42 4 fz, then 0 5 41 + 4z  6 f l  + fz. How- 
ever 41, 9, may be varied, and they can be varied inde- 
pendently , S(41) + S(4Z) = S(41 + 42) 

- i L(fl + f z ) ,  
Il(f1) + Il(f2) s Il(f1 + f z ) .  

fl + fz, 4 - f l  

Il(f) 2 0, 

Let fl, f i  be two non-negative functions of class To. 

On the other hand, if 0 5 4 

= 41 + 42, 

f 2 .  

NOW 4 = 4Xfi + (4 - fi)rO 

where 0 5 s fl ,  0 42 s fi. Hence 
S(4) = S(41) + S(4Z)  

r Il(f1) + Il(f2). 

Il(f1 + fz) 5 Il(f1) + Il(f-2). 
But this is true however we vary 4 and therefore 

When these two inequalities are combined we see that Il(f) 
satisfies postulate S, a t  least if f l ,  fz 2 0. 

For any function of class To we define 
Il(f) = Il(f70) - 11(- h 0 ) .  
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If f = g - h where g, h are non-negative, g h fy0 ,g  = 
fy0 + k, h 2 - fX0, h = k - fX0, where k 2 0. 
By the case already considered, 

Ii(g) - Ii(h) = I i ( f~O)+Ii(k)  - Ii(k) - 11( - fXO> 

By this means it is possible to  show that postulate S is 
satisfied by all functions of class To. 

Instead of proving L directly we shall prove A in the case 
where the functions summed are non-negative. Let 

f l + f 2 +  . . .  = f  
where all these functions are of class To and non-negative. 
Let 4 be of class To and such that  0 5 4 s f. Take 

= Il(f). 

41 = 4xf1, $1 = (4-f1)yO, 
4, = $lXf2, $2 = ($1-f2)70, 

and so on. 
Then 0 s 4n 5 ffl, a n d 4  = 41 + $1, 

=41+42+ $2, 

. . . .  . - - 
Also $1 - f2  5 $1, 0 5 $1, and therefore $z 5 $1. Simi- 
larly $8 5 $2, $, s $8, . . . . 
Now 4 - fl  5 f - fl, so that $1 5 f - fl; - f2 f - 
f l  - f2,  so that  $2 5 f - f l  - f2,  and so on. Then since 
$n 2 0, lim $% = 0. Therefore 

S(4) = S(4J + S(&) + . . . + S ( 4 n )  + S ( $ n )  
s Il(f1) + Il(f2) + . . * + I1(fn) + S ( $ n ) .  

But if we choose any functions gl, g2, . . . such that 
0 S gn 5 fn, g1+ g2 + . . . + gn 5 f, and 

S(g1) + S(g2) + * . . + S(gn) 5 Il(f), 
Il(f1) + Il(f2) + . . . + Il(ffl) s Il(f). 

Therefore the series of non-negative terms 

greater than Il(f). T o  return, since lim S($,) = 0, 
Il(f1) + Il(fz) + . . , is convergent and its sum is not 

S(4) 5 Il(f1) + Il(f2) + * . . , 
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and since 4 can be varied at  random this proves a second 
inequality which with the other proves that  

(Il(f) = Il(fl) + Il(f2) + . . * * 

T o  prove L itself we substitute f l  for f, f2  for f - fl ,  . . . in 
the above. Then we have proved that  Il(f) is an integral 
satisfying SL and it is also of positive type. 

Now we define 12(f) = Il(f) - S(f), and I2 will also be an 
integral of positive type, for among the functions 4 we can 
choose f itself in the definition of Il(f). 

Then we also take I(f) = Il(f) + 12(f) and this is a positive 
integral. I1 is called the positive, I2 the negative and I the 
modular integral associated with S(f). The relations 
between them are 

We have now proved that  any S-integral is the difference of 
two positive integrals. 

S(f) = Il(f) - I2(f), I(f) = Il(f) + Iz(f). 

I S(f) I = I S(fY0) - S (  - fX0) I 
5 I S(fY0) I + I S (  - fXo> I 
6 Il(fY0) + IZ(fY0) + I,( - fx0) + I2( - fX0) 

I S(f) I 6 I (  I f 1 ) .  

since all these integrands are positive. 
1 f I =fyO-fXO and 

Iff  2 0,4,, 42, , . . 4 n  2 0 and if 

But I = 11 + 1 2 ,  

41 + 4 2 +  . . .  + 4 n  = f, 
I S(41) I + I S(42) I + * + I S ( W  I 

5 I(41) + I(42)+ . - . + I(&>, 
= I(f). 

Again, given any positive e and given f 2 0, we can choose 
4 so that 0 g 4 6 f and S(4) > Il(f) - e/2. 

I fwe choose e < 211(f), S(4) > 0 so that  I S(4) [ = S(4). 
I S(f - 4) I = I Il(f) - S(4) - I2(f) I 

2 I2(f) - [Il(f) - S(4)l 
> 12(f) - e/2. 
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Therefore 

I S(4) I + I S(f - 4) I> Il(f) +12(f) - e 
= I(f) - e. 

From these two inequalities we draw the conclusion that this 
I(f) defined in terms of 1 1  and 1 2  is the same upper bound of 
I S($1) I + 1 S(42)  I + . . . + I S ( 9 n )  1, where 41,42, . . . are 
non-negative functions whose sum is f, as that  upper bound 
which we called I(f) previously in our analysis of postu- 
late (A). 

I n  extending the definition of the integral to  functions 
outside the initial class the natural step is to  functions which 
are the sums of absolutely convergent series of functions 
of class To. Since such a series is the difference of two series 
of positive terms, and to  the latter correspond increasing 
sequences it is simpler, as W. H. Young has shown, to con- 
sider the latter first. 

If f l  5 fa 6 . . . is a non-decreasing sequence of functions 
of class To, the initial class, then lim fn exists in any case if 
we allow +a as a possible value, and we say that lim fn 
= f is of class TI. It follows that  

I(f1) 5 I(fJ 5 . * . , 
i f  I is some positive integral, and lim I(fn) exists if, again, we 
allow +a as a possible value. 

This limit has been shown by the author’ to  be inde- 
pendent of the actual sequence defining f and to  depend 
only on the limit f itself. We have a right t o  call the limit 
lim I(fnf the integral o f f ,  provided it is finite. If this is the 
case we define I(f) = lim I(fn) and say that f is a summable 
member of T1. It can then be shown that  this new integral 
also satisfies postulates SLP. I f f  is any function, we define 
the upper semi-integral of f, j(f) as the lower bound of I(g) 
for all functions g of class T1 such that g 2 f .  In  other 
1P. J. Daniell, “Annals of Mathematics,” Vol. XIX (ISIS), p. 279. 
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words, we strive t o  define the integral of f by means of 
numbers which it cannot exceed and call the least possible 
of such upper boundaries for its value a semi-integral until 
we can ascertain that  the integral itself is definite and unique. 
At the same time we define the lower semi-integral of f ,  I ( f )  
as the negative of the upper semi-integral of -f. If i t  
happens that the two semi-integrals are equal then f is said 
t o  be summable and its integral is defined to  be the common 
value of the two semi-integrals, 

The class of summable functions has the same properties 
as the initial class To. Indeed if f ,  f l  are summable so are 
I f 1, cf where c is a real constant, and f + f,. Also the postu- 
lates SLP and with them A and C are satisfied where in A 
it is necessary, in general, t o  retain the condition that 
I f l  I + I fi I + . . . is not greater than some summable func- 
tion, such as a summable member of TI, though any sum- 
mable function serves the same purpose and gives no greater 
generality. 

The fundamental theorem of this class of integrals is that  
i f f , ,  fz, , . . is a sequence of summable functions converging 
t o  a limit f, and if a summable function g exists such that 
1 ffl I 6 g for all values of n,  then f is summable and lim 

Another interesting property which suggests another 
method of development is that  the necessary and sufficient 
condition that f be summable is that, given any positive e, 
it is possible t o  find a function fe of the initial class To such 
that 

I(  ~f - f e l l  < e. 
In  other words, a summable function must be within any 
“distance” however short of some member of To, measuring 
“distance” in the function space by means of the upper semi- 
integral of the modular difference of the functions. This 

I(ffl> = I(f). 
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geometrical analogy is very fruitful but capnot here be 
entered into. 

For the general definition of S(f) we take 
S(f) = Il(f) - I2(f), 

provided f is summable with respect to  both I1 and 1 2 ,  which 
will happen whenever f is summable with respect to I the 
modular integral associated with S. 

Sometimes an operation J(f) is given in some way for an 
already wide class of functions. It is an important problem 
to decide whether i t  coincides with an integral I(f) as defined 
above by extension. Evidently, in the first place, the two 
must be identical for members of the class To. If J(f) satis- 
fies also, for all functions f for which it happens to  be defined, 
the inequality 

then i t  is sufficient to  prove the identity of J(f) and the 
extension of I(f) for all summable members of class TI. Or, 
what is the same thing, that  when f is the limit of a non- 
decreasing sequence of functions fn of class To, 

J(f) = lim, J(fd. 
Again, since, of necessity, lim J(fn) 5 J(f), fn being not 
greater than f, it is sufficient t o  show that  J(f) 4 lim J(fn). 

Illustrative examples. 
(1) Absolutely convergent series. Let Po be the class of 

positive integers 1,2,3, . . . with weights w1, w2, . . . assigned 
of such a character that  I w1 I + I w2 I + . . . is convergent. 
Let f,, be a function of the integral variable n. Then in some 
cases, for example when fn is uniformly limited, the series 

will be absolutely convergent. 
By what is known of absolutely convergent double series 

postulate A is satisfied. In  this case we can define S(f) 
without the necessity of proceeding by successive stages. 

J(f)  S J ( d ,  when f 5 g, 

S(f) = f l W l +  fzw2 + . * . 
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However we could let To be the class of functions fn equal to  
a number other than 0 for a finite set of values of n and 0 
for all the others. A function fn  which is non-negative for all 
sufficiently large values of n would then be of class T1. 

Il(f) will be the sum of fnwn for all non-negative wn and 

(2) Let Po be the class of real numbers, x, where 0 s x 
s 1. Let weighting be assigned to  each interval equal to its 
length. 

For To we choose the class of step-functions f(x) of the type 

where (0, 1) has been divided into some finite set of intervals 

If we wish i t  is sufficient, and leads finally to  no loss in 
generality, to  confine To to  be the class of functions of this  
type restricting the division points XI, xz, . . . Xn to  be those 
obtained by dividing the interval (0, 1) into n = 2' equal 
parts, r being some integer. We then define 

This integral is of positive type, for when f(x) 2 0, every 
c i  2 0 and I(f) 5 0. This is the usual integral when the 
integrand f is sufficiently restricted. The extension given in 
this paper leads to  the Lebesgue integral, as W. H. Young 
has shown. I n  place of the step-functions the class To could 
be taken to be the class of continuous functions, but then 
the proof of the existence of the integral is not immediate 
as it is for step-functions. 

T o  discuss the generalization of the ordinary inte- 
gral, let Po and To be as before and consider a definition of 
the general integral in the form 

where a (x) is some function of x, 0 S x 5 1. 

I(f) the sum Znfn I Wn ] . 

f(x) = c I ,  Xi-1 6 x 5 XI, 

0 = XO < x i  < . . .  < Xn = 1. 

I(f) = Sf(x)dx  = Zlci(xi - XI-1). 

(3) 

S(f) = Zici[a(xJ - a(x1-1) ] 

Postulate S is satisfied but not L necessarily. For example let 
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= 0 otherwise 
where cn is made to  approach d from below as n increases 
indefinitely. 

The conditions fl(x) ,& fz(x) 2 , . . 2 fn(x) 2 . . . 2 0 
= lim fn(x) for all x, are s'atisfied. But 
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fn(x) = 1 , ~ n  5 x < d, 

S(f,) a(d) - "(cn), 
lim S(fn) = a(d) - a(d - 0). 

Unless a(x) is continuous this difference may not be 0 as the 
postulate L demands. Either we must restrict a(x) to  be 
continuous or reconstruct our definition. Let us study the 
problem rather from the point of view of weight. If we allow 
weight (measure) to  be discontinuous i t  becomes necessary 
to  distinguish between closed and open intervals, it is neces- 
sary to  consider the weight of even a single point. As a 
matter of fact the problem can be solved satisfactorily if we 
let To be the class of functions which are constant ( =  ci) 
over each of a finite set of intervals A I  into which (0 , l )  can 
be divided, if we define 

S(f) = Zlcim(Al), 
where m ( A )  is the measure or weight of the interval A .  
For this we define 

m ( A )  = a(di-0) - a(c-0), A is (c x 5 d),clos.ed; 
= a(d+O) - a(c+O), A is (c < x 5 d) 
= a(d-0)  - a(c+O), A is (c < x < d),open; 
= a(d-0) - a(c-0)) A is (c x < d). 

By a(cs.0) we mean the limit (assumed existent) of a(c+e) 
as B approaches 0 ,through positive values. Similarly for 

If in particular a(x) is a non-decreasing function of x, de- 
noted by B(x), then the above limits exist and all the postu- 
lates can be proved. In  this case M ( A )  2 0, and the inte- 
gral is an I-integral 

a(c-0). 
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I(f) = J f ( x ) d m ( A )  

= S f ( x ) d  P(x). 
Again if a(.) is the difference of two non-decreasing func- 
tions Pl(x), P,(x) the integral using Q! can be defined as the 
difference of the integrals using P1,  82, 

J f ( x ) d  “(x) = J f ( x ) d  P ~ ( x )  - J f ( x ) d  B~(x).  
It is known that  if a(x) is of limited variation, that  is, 

is limited by a number K independently of the method of 
subdivision, then a(x) can be expressed as the difference of 
two non-decreasing functions. The converse is easily proved 
sinceif “(x) = Pl(x) - P2(x), 

and the number K may be chosen t o  be P l ( l )  - Pl(0) 
+ P n ( l )  - P2(0). The least function 8,(x) + 8,(x) - B1(0) 
- Pz(0) is called the total variation function ~ ( x )  cor- 
responding to  CY(X). This case leads to  the Stieltjes integral 
with respect to  a function of limited variation 

J f ( x ) d a ( x ) .  
The first extension of the definition leads to  integrals of 
continuous functions f&), which are the Stieltjes integrals 
proper. Further extensions of the class of integrands on the 
lines of the Lebesgue integral lead t o  the general Radon- 
Young integral.1 A frequently more useful notation is 

Jf(x)dm(e)  
where m(e) is an additive (for a denumerable infinity as well 
as for a finite number) function of sets e of values of the 
mark p = x. And then the corresponding modular integral 
can be expressed, after Radon, as 

such that 21 1 a(xi) - “(xi-1) I 

I “(xi) - “(xi-1) 1 5 Pl(x1) - Pi(xi-1) + 82(xi) - Pz(xi-1) 

J fW I dm(e) I - 
I J. Radon, “Sitzungsberichte der Akademie der Wissenschaften, Wien” (1913) 

P. 1295 .  

(1914), P. 109. 
W. H. Young, “Proceedings of the London Mathematical Society,” Vol. XI11 
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(4) Let Po be the set of all real numbers, To the class of 

functions f(x) equal to  a constant other than 0 only over a 
finite number of bounded (compact) intervals, and 0 else- 
where. For the sake of simplicity choose P(x) as a function 
which is non-decreasing from - m  to +m and which may or 
may not approach a finite limit as x approaches +m or - m. 

As in case ( 3 )  we may define the weight of a bounded interval 
A as 

m(A, = P(d+O) - P(c-0) 
for a closed interval (c, d) and in a similar manner for other 
types of interval. Then for a member of To define 

I(f) = Zicim(A1) 
where c1 is the constant value o f f  over the subinterval A,. 
If it happens that P (  -a), P ( + m )  both exist as finite num- 
bers, the remaining analysis differs in no essential from that 
ofcase ( 3 ) .  If, however, a(-..) = -m,P(+ m) = +=,for 
example, it appears that only functions f(x) which approach 
0 with more than a certain rapidity of convergence at = t m  

will be summable. It still holds that f is summable when 
and only when I f I is summable. Cases in which 

is conditionally convergent will not appear as direct cases 
of our general integral, but will require separate handling as 
limiting cases beyond our immediate aim. For example, it 
will be possible to  consider 

03 

f -,f(x) dx 

as a case of an absolute integral if the functions satisfy a 
relation of type 

lim I f(x) / xh 1 = 0, as 1 x 1 increases indefinitely for some 
x >  1. 



58 The Integral and Its Generalizations 
But  an integral like 

W 

f -asin x dx / x 

will need separate treatment. 
Let Po be the class of real numbers, x, such that 0 

6 x 5 1, let To be the class of step-functions constant over 
each of a finite set of subintervals, but restricted to  be 0 in a 
neighborhood of x = 0 and in a neighborhood of x = 1. 
Let P(x) be a non-decreasing function of x which may be -a 
at  x = 0 and +a a t  x = 1. For any interval A not contain- 
ing nor abutting on 0 or 1, define 

for a closed interval A = (c, d) and similarly for the other 
types of interval. Define 

I(f) = ziclm(Al), 
where f(x) = cl on the interval A,. I n  particular, let 
P(x) = - ctn TX. Then, provided f(x) is measurable in the 
sense of Bore1 and approaches 0 with sufficient rapidity 
a t  x = 0, x = 1, it will be possible to  define 

I(f) = f f(x)d P(x). 

I f(x) / sin2x I 

( 5 )  

m(A) = P(d+O) - P(c-0) 

In  the particular case given it is sufficient if 

is uniformly limited in the interval (0 < x < 1) and if 
f(x) = Oatx  = 0 , x  = 1. 

Let To be the class of real numbers - 1 5 x 5 1, let 
To be the class of functions constant over each of a finite set 
of subintervals but restricted by the condition that no end- 
points of intervals are a t  x = 0. In other words, x = 0 is 
contained strictly within one of the intervals. For a par- 
ticular example let a( -1) = a(1) = 0, and let a increase 
from either point towards x = 0 in such a way that lim 
[ a(€) - a( - e )  ] exists as E approaches 0. 

(6) 
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transforming the cases already given. In  particular, we can 
extend (7) to  any finite number of dimensions. I t  is only 
necessary to  have some foundation in an additive function of 
intervals A .  Again examples (1) to  (6) could be generalized 
to several dimensions. 

This example due to G. C. Evans‘ suggests a different 
form of application of the general theory of integrals and of 
additive functions of sets. Let f(e) be an additive function 
of plane sets, that is, additive for an infinite sum as well as 
for a finite sum. Then a function of curves F(s) can be 
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(8) 

defined so that if s1 is a particular curve, 
F(sl) = -S $(P) df(e) 

where P is a point of the fundamental set 
2: 

cos nr #(P) = J s l  -y- dsi, 

2 and where 

nr being the angle between the inward drawn normal to s1  
and r, r being the vector PIP drawn from a point P1 on sl. 
It is then shown that F(sl) = f(e) where e is the set of points 
within sl, if F(sl) is a “continuous” function of curves. 
This means that in some cases ,a function of curves can be 
used as a weight of the sets of points within the curves. 

If (xl, x2, , . , xn . . . .) is a point in a space of a de- 
numerable infinity of dimensions such that 0 5 xi 5 l 
(i = 1, 2, , . . ), then we can define the weight m(A) of an 
interval A such as 

aI 5 xi 5 1 - bI (i = 1, 2, . . .) 
as equal to  

(1 - b, - ai), 

(9) 

m 

1-1 
m(A) = Prod 

an infinite product which may diverge to  0 or converge to 
a value not greater than 1. 

(1919) PP. 262-5. 

1 G. C. Evans, “Rendiconti della Reale Accademia dei Lincei,” Vol. XXVIII 
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Then if f(p) is a continuous function of p = (XI,  x2, . . . ) 

in the sense of FrCchet we can define 

an integral of an infinite number of dimensions.’ The 
author has also considered functions of limited variation 
in an infinite number of dimensions. This type of integral 
might possibly be useful in connection with probability of 
sets of functions defined by means of Fourier constants or by 
the coefficients of a series expression. 

Recently N. Wiener2 has investigated the prelimi- 
nary problem of weighting in general integrals and in his 
example (d) defines an integral in a space of continuous 
functions, Wiener proves that every bounded continuous 
functional is summable in accordance with his definition of 
an integral. Further papers on this subject are to  be pub- 
lished soon. 

f f(p)dm(e) 

(10) 

This is but a beginning of a new field. 
I n  a further paper3 by the author it is proved that  not 

only is the general integral S(f) expressible as a difference of 
two positive integrals, but that  a function X everywhere 
equal to  1 or - 1 exists such that for all summable f 

where I is the modular integral associated with S, provided 
that there exists at least one summable function h > 0 
except a t  marks p for which every summable f vanishes. 
For the simple Stieltjes integral this means that we can find 
a function X equal everywhere t o  +1 such that  if f is sum- 
mable with respect to  the weighting m(e) then 

ff(x)dm(e)  = ff(x)X(x) I dm(e) I. 

S(f) = I(Xf) 

1 P. J. Daniell, “Annals of Mathematics,” Vol. XX (IgIg), p.  281; Vol. XXI 

1 N. Wiener, “Annals of Mathematics,” Vol. X X I  (~gzo), December. 

P. J. Daniell, “Annals of Mathematics,” Vol. X X I  (~gzo), p.  203. 

(1919)~ P. 30. 
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The same theorem can be applied to  any number of dimen- 
sions. The function X corresponds to  a derivative of the 
function of sets m(e) with respect to  its modular function 
of sets 

This suggests the further problem of generalized derivatives. 
If m(e) is an additive function of sets e and if M(e) is addi- 
tive and positive, if also m(e) = 0 whenever M(e) is 0, 
then we may expect to  find a function D(p) summable with 
respect t o  M(e) such that 

m(e) = J e  D(p)dM(e). 
At the same time it is to  be expected that if f(p) is sum- 
mable with respect to  m(e) then 

All this, however, is without rigorous justification, a t  
present. 

J e  1 I d m ( 4  I. 

Jf(p)dm(e) = Jf(p)D(p)dM(e). 

P. J. DANIELL. 








