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FUNCTIONS OF COMPOSITION*
FIRST LECTURE

InTRODUCTION — CoOMPOSITION, PERMUTABILITY, INTEGRAL
Powers oF ComposiTioN, THE CLOSED-cYCLE GROUP —
Osjecr oF THE LEcTURES — FracrioNalL Powers
oF CoMPOSITION, INCOMMENSURABLE PowEers, Frac-
TIONAL AND INCOMMENSURABLE ORDERS OF FUNCTIONS
ofF CompositioNn oF A Group

1. Introduction

1. We call to mind the solutions of the simplest integral
equations. In this connection two functions f(x) and
F(x, y), which are limited and continuous, are supposed
to be given, and we wish to determine ¢(x) so as to satisfy
an equation

® 1) =6 + [ 9 F& %) dé.
The solution is given by the formula

@ 9) =f()+ | f® S& M d,
where

(3) S(x, y) = = F(x, y) +Falx, y) = Fs(x, y) 4+ .
with

@ Fi(,9) = j P ) P& ) d
) Fy(w,) = ji Fi(w, £) F(5, y) dE.

{* Three lectures delivered at the Rice Institute in the autumn of 1919 by
Senator Vito Volterra, Professor of Mathematical Physics and Celestial Me-
chanics, and Dean of the Faculty of Sciences of the University of Rome.

Translated from the Italian by Dr. Hubert Evelyn Bray, of the Rice Institute,
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182 Functions of Composition

The series (3) is uniformly convergent, and defines a
function S(x, ¥) which may be regarded as the first example
of a function of composition of F(x, y). It is obtained by
operations to be performed on F(x, y) and changes when
that function changes. And it can therefore be regarded
as entering into the class spoken of as functions depending
on other functions, or functions of curves. The equations
(4), (5), ... give us moreover the first examples of the
operation of composition of functions, and of powers of com-

position.
Formula (5) may also be written in the form
(5" Fi(w9) = | Fe &) Fa(69) d,

and by a comparison of the formulae (5) and (5’) the follow-
ing equation

j Fi(n 9 F&,9) 6 = Jm £ Falt, y) d &

is obtained. Thus we have a first example of permutable

functions.
Upon these elementary considerations is founded the

theory of composition of functions and the permutability of
functions. We pass then to give the corresponding general
definitions and fundamental properties.

2. Composition — Permutability — Integral Powers of Com-

position — Group of the Closed Cycle

2. The composition of two integrable functions f(x, y),
¢(x, y) is the operation

[1eo @

It is understood that these functions remain in the field of
real variables, and it will be assumed that y>x. If the
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result of the operation is ¥ (x, ¥), the relation will be written
in the form

¥=1o.
If f and ¢ are equal, we may write
peis
and also d
joeprj=ih

In general, when m and n are integers

fm+” =fmf”’
f"’ being spoken of as the integral power of composition of
degree m. If a, b, ¢ ... are constants, the quantities
af, b, cy, ..
are the products of constants into the functions f, ¢, ¥, ...
and the equation

@] 6¢) (c)...=abe..foy...
is satisfied.
3. The operation of composition is associative, and if the
functions happen to be permutable, also commutative: it is
always distributive.*

4. Given the series

a1 %+as 2 +az ...
which is supposed to be convergent for |z | <R, the series

a1f+agf;+a3f3+. .
is uniformly convergent whatever may be the modulus of
the function f, this function being limited; the function
defined by the series is permutable with f. The theorem
may be extended to power series in more than one variable. }
* V. Volterra, “Legons sur les fonctions de lignes,” Paris, Gauthier-Villars (1913)

Chap. IX, §§ 1-5.
t Ibid., Chap. IX, § 10.
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5. If m is an integer and the relation
Y(x, 3) =(y-0)" f(x, ¥)
is valid, f(x, y) being limited and continuous, and f(x, x)
always different from zero, the function ¥ (x, y) is said to be
of order m+1.

The resultant of composition of two functions of order m
and n respectively is of order m+-n, and the power of composi-
tion of degree m of a function of order n is of order mn.

6. Knowing a function ¢ of order 1 permutable with ¢
of order m, it is possible to calculate a function 4 of the first
order whose mth power of composition is ¢, provided that
¥ and ¢ have limited derivatives up to and including the mth
order. In this case then we write:

x1
g =mx
7. Let a(x) and B(x) be two functions, limited and con-

tinuous, which do not vanish, and write
dx

———— =d %1,

a(x) B(x)

from which x; and x are determined as functions of each

other:
%1 =Nx), % = u(x1).

Form then the function a(x) 8(y) f(x, y) and write it as a
function of xi, yi, that is,

filws, y1) = a(x) Bly) flx, v).
If now we write, by means of the change of variable given
above,

1 1
am) = s g =Fal),

we shall have the equations
d x
ai(x1) Bi(x1)
[z, y) =au(xs) Bulys) files, y1).

* V. Volterra, loc. cit., Chap. XI, § 8.

=dx,
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If again we apply the same transformation to ¢(x, ¥), and
obtain thereby ¢1(x1, ¥1); and if we let £ =pu(£:), we shall have

o(x) B(y) J:f(x, £) d(E, y) dE
= j a(x) B() [ (% ) $(&, 3) a(d) BE) d &
= j:fl(xx, &) ¢, y1) d &

From this equation we deduce that the resultant of the com-
position of two transformed functions is the transform of the
resultant of the two functions themselves, and hence that a
power of composition of a transformed function is the transform
of the power of composition of the function itself, and finally,
that the transformation does not alter the property of permut-
ability, that is to say, it transforms a group of permutable
functions into a new group of permutable functions.

8. Given a function F(x, v) of order 1 all the functions
which are permutable with it can be found. For this

purpose the question may first be reduced to the case in
which

) Flx, x)=1, ( ) (By

In fact, if F(x, y) does not happen to satisfy these conditions,
it may be reduced to one that does by means of a transforma-
tion of the type just considered* We shall say that a
function F which satisfies (1) is reduced to canonical form.
On the assumption that the function F is limited and con-
tinuous with its derivatives of the first two orders, the
solution of the problem is then given by the formula

@) Ny —#)+ j RGPS

% V. Volterra, loc. cit., Chap, XI, §§ 1, 2.
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in which X is an arbitrary function, and ® can be calculated
from F and its derivatives of the first two orders.*

0. Another fundamental property of permutability is
expressed in the following theorem: Two functions per-
mutable with a third are permutable with each other. We omit
the proof of this theorem, referring merely to the paper of
Professor Vessiot.}

10. A group of permutable functions is characterized
by a function of the first order of which the first and second
partial derivatives exist and are finite. Consequently when
we consider a group of permutable functions, we shall always
assume that there 1s known to us a function of the first order
which has finite derivatives of the first and second orders and
belongs to the group. 'This function shall be spoken of as the
fundamental function of the group. When a fundamental
function of the group has the canonical form, we shall speak
of the group as a canonical group.

11. A remarkable group of permutable functions is the
so-called closed-cycle group,} which is made up of functions
of the form

J(y-#).

Unity belongs to this group, and it is deduced immediately

that
1

e oy =

3. Plan of the Lectures

12. On the basis of these general ideas it is the plan of the
following lectures to develop a complete theory of permutable

* V. Volterra, loc. cit., Chap. XI, p. 162.

t Vessiot, “Sur les fonctions permutables et les groupes continus de transforma-
tions fonctionelles lineaires,”” Comptes Rendus, 1912, p. 682,

§ V. Volterra, loc. cit.,, Chap. VII.
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functions and their properties, analogous to the usual
algebra and analysis.

In the first place, we observe that the operation of com-
position of permutable functions is analogous to multiplica-
tion, in common with which it possesses the commutative,
distributive and associative properties. The algebra of
permutable functions has already been studied by Professor
Evans.

Now if we follow the historic development of the usual
analytic theories, we see first unfolded the theory of integral
powers, then fractional and mnegative powers. Afterwards
comes the theory of logarithms, which barely precedes the
wnfinitesimal caleulus. In fact the very definition of loga-
rithm as given by Napier involves implicitly the idea of
derivative, And finally comes the general theory of functions,
which crowns the whole structure. We observe that at first
the name function was applied to powers, and then gradually
extended its significance to cover the modern interpretation.

We shall follow the same road in the theory of functions
of composition, and since we have already discussed the
integral powers, we shall proceed first to treat the fractional,
then the negative powers of composition and then the lo-
garithms of composition. This leads us to the differential
and integral calculus of composition, of which we shall give
the foundations and the elementary applications to the
logarithms of composition. And we shall develop in its
principal lines the theory of functions of composition.

In this way it will appear clearly that the logical process
which serves as a guide in our path is the one that reproduces
the evolution of ordinary analysis in its development from
the finite to the infinite,.
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4, Fractional Powers of Composition— Incommensurable
Powers — Fractional and Incommensurable Orders of
Functions of a Group.

13. If ¢ is of the first order and we propose to ourselves
the problem of finding a function f which will satisfy the
equation
(1) f*”=¢,
we cannot find a solution in terms of a function which
remains finite. The problem however can be solved by
means of a function which becomes infinite but remains

integrable.

To be convinced at once of this possibility it is sufficient
to call to mind the first result which was known about
integral equations, namely the solution of the integral

equation of Abel:

Fx) = j (8) __éds,

which is

sw=2 L0 et

since
1

hay——————— d - [
.[ \/y £ VE—x =7
If we write down the function

F(x,y>=\,1

y—=x

we shall evidently have

=

and thus we see that the square of the function 1/vy-x,
which becomes infinite for x =y, is nevertheless a constant.
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We now proceed to show that if Y1 (x, 9) is a function of the
first order, and if
8r, y) = L0 |
(y—x) =
then 6" is of the first order.

In fact, we shall have
o= Yal(x, ¥)

(y —x)ﬁ‘:_2
where
ax, 9) =J': iz, x+(y —”;xz 1) %(xil(y +x) 1, y) dn,
7" (1-n) "

and consequently ¥, remains finite like ¢, and is continuous,
and of the first order. Similarly it is evident that

és = ¢3(x’ y)

,!—_-.—3 b
(y—x) *
where ¥ (», y) is a function of the first order, and so on;
whence it follows that the function
6" =¥l )
is a function of the first order.

It is evident that if i possesses finite and continuous de-
rivatives up to a certain order, the same is true for ys, ¥s,
e

14. Let us assume that the function 6 is permutable with
¢, and that ¢ and ¢ possess finite and continuous first deriva-
tives. In this case it is possible to calculate in a simple
manner the function f which satisfies (1).

In the first place we may point out that ¥, must be per-
mutable with ¢, for we have the equation

frg=fr-1¢8=6r286=... =én
It follows that
o (x, x) =C Y,(x, x),
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C being a constant,* and hence, since ¢ and y, possess finite
and continuous first derivatives, that the function

(%, y) ~Culx, y)
approaches zero as x approaches y to the same order as y—x

or higher order.
The function g which satisfies the integral equation

y
@ 9 9) =Coale )= [ ol D el6: ) d
is finite and continuous, since ¥,(x, x) =0. We can then
write explicitly

1/1
® f(x,y)=0E{a+%5§+i%gé£z+...}.

We see immediately that we have

fry)=S&2

(y—x) ™
where g(x, y) is of the first order and such that
V0, %)

*(3)

n
And since we can take any one of # values for the nth root
of C we can obtain by means of the procedure (3) 7 solu-

G(x, x) =

tions.
15. Let ¢ be reduced to the canonical form F. Then @

may be obtained from (2) Chap. II by writing

1

1.
4 A=q"
In fact we shall have .

1 2.
L= [ w7 By =n) ulmy)du
0= ¢ =T s
(y=x) *
* V. Volterra, loc. cit., Chap. X1, p. 3.
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in which the numerator is of the first order. It will be
differentiable if ® is differentiable, and thus will have deter-
minate derivatives provided that F has such, up to and
including the third order. In this case we shall have

o-r-()

If instead of (4) we write the equation
1

N=n' u(n),
where u(n) is an analytic function which does not vanish
for 7 =0, we shall obtain another formula for § which may
be used in the formulae (5) and (3); and thus a § may be
determined in an infinite variety of ways.

It may be asked if in this way we obtain always merely
the same solutions upon substitution in (3). At present
we content ourselves with the observation that all such
solutions are permutable among themselves.

16. The formulae which we have given lead us necessarily
to extend the notion of order.

If ¢(x, v) 1s of the first order, and if

f(x’ y) = (y_x)a d’(x’ y),
the function f will be said to be of determinate order a+1.
Thus the functions 6 and f of the preceding sections are of
order 1/n. In the above definition, the function ¢(x, y) is
said to be the characteristic of f(x, y), and ¢(x, x) its diagonal.

If we have a function

f(x, y) = (y _x)a(b(x, y),
in which ¢(x, y) is finite and continuous, and further, ¢(x, x)
=0, we say that f is of order higher than a+1. In this way
we may obtain functions however which are of no determi-
nate order whatever; for example the function
(y—x)""1log (y —x) ¢(x, ¥),
where ¢(x, y) is of the first order, is of order higher than
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n—¢ where € is arbitrarily small, and yet has no determinate

order.
If ¥(x, y) and ¢(x, y) do not have determinate orders, but

the function
¥(x, )
(y —'x)aqb(xa y)

1s always less than some determinate number, with a positive,
it will be said that ¢(x, y) with respect to ¢(x, y) is of order
not less than a. The operations of composition will be
applicable to functions whose order is greater than a positive
number, and we shall consider such functions.

In order to obtain a function of determinate order 7
belonging to a group of permutable functions, it is sufficient
to substitute in (2), § 8:

) =7"""p(n),
where u is bounded and does not have 0 as a limiting value

as n approaches 0.
If two functions are of determinate orders a and B their

resultant is of order a+B. In fact if ¢, and ¢, are of the first
order, we may write

Al =01 ¢:(x, ),
Fily =081 (, 3),
fifo= (y—x)=te=1
[ =20t e =) m) e+ 9= 2) )
whence 1f we substitute
‘)b(x’ 3’)
- jn (1= )P~ u(, %+ (y—2) 1) dale+ (y =) 1, 3) dn,

we shall have
Fufa=(y =2y 91 4(x, 3),
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in which
Vo 5) = 1, 3) o, ) LT D,
so that ¥ will be of the first order. By the same procedure,
it may be shown that if one of the functions is of order higher
than a, and if the other is of order B or higher, then the resultant
is of order higher than a+f

The function ¥ may be differentiated to whatever order
¢: and ¢, are both differentiable. It may further be noted
that the theorem does not demand that f, and f. be permut-
able.

If a function is of order r, its nth power will be of order nr;
and if we denote the respective characteristics of the func-
tion and its power by G (x, y) and L(x, y) we shall have

_I"() ow
L(x, x) =T0n ) G*(x, x).
If the function were of order higher than 7 its nth power
would be of order higher than nr.

17. If

b(x, y) =f(x,y) (y—#)"1,
with | f(x, y) | <M and a >0, we obtain in the case that m
is an integer, the inequality

ot < ogm I (e
|67 <m0 (y— et

Hence if the series

o0

2 G 2™

1
is convergent for values of z of absolute value less than a certain
quantity, the series

-] *

Za, o™

1
is convergent whatever may be the modulus of the function
f(x, ) provided that it is finite (compare § 4).
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18. Given f of order n+a with 0 <a: <1, and # a positive
integer, and given Y of order n+a+p, or higher order, with
B>0, we proceed to treat the problem of calculating ¢ so
that the equation

& %
C) fo=y
will be satisfied. This problem can be solved by a method
analogous to that which I gave in my * Lecons sur les équa-
tions intégrales et intégro-différentiélles”’, Chap. 11, 3, p. 60.*

In fact, if we write
(y —x) ~*=0(x, y)

we shall have i

L I I

0fo=y.
Now 8 is of order 1 —e, and so 5}'=g will be of order n-1,
and K=0*;£ will be of order #4148 or of higher order.

The equation

x %

go=kK
is solved at once by differentiating it #+1 times with respect
to x, and thus reducing it to an equation of the second kind.
Evidently ¢ will result of order 8 or less than 8. In order
to apply the method it is necessary to admit when f and ¢
are of determinate orders, that their characteristics should
have finite derivatives of the n-1st order.

It is not necessary that the given functions f and ¢ should be
permutable. If, however, they are permutable it may be
deduced that ¢ will be permutable with them. If they are
not permutable, the equation

L
(5 ¢ /=y
is distinct from (5), and can be solved by forming the integral
equation
¢f0=y9,
* Paris, Gauthier-Villars, 1913,
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in which ;’5 will be of order n+1. By means of n+41
differentiations it could be reduced to an equation of the
second kind.
The equations (5) and (5) each admit a single solution.
Consider the equation

(6) figr=y,
where
® % [ N ]
fl =f+fx, ¥r1=¥+¥p,
and assume that f and y have the same properties as before,
while x and p are functions of higher order than some positive
number.

The solution ¢; of (6) in which f; and ¢; are supposed
given, can be solved by first solving (5), and then taking

L L] ® % % L] L *
¢1=¢+0¢ p—(@+9 p) x+ @+ o) X*—...,
which series will always be uniformly convergent. In this
case also there will be a unigue solution.

The functions fi and ¢, are respectively of the same orders
as the functions f and ¢, but it is not necessary that they
satisfy the conditions imposed on f and y with respect to the
differentiability of their characteristics.

19. Suppose that we are given a function

¢(x! y) = (y _x)a_l \b(x5 y)

of determinate order e, and that we wish to calculate the
function f, such that

[ ]
" =¢.

By virtue of the preceding considerations it is possible to
extend to this case the procedure followed (§ 14) in solving
the analogous equation (1) in which ¢ is of the first order.

In fact, if we suppose that the group to which ¢ belongs
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1s first reduced to the canonical form and if we calculate the
function
1 a_
1+ (=2 [ o Bl =) u|5 3] du
o 0
6= = s
(y—=x)
6" will be of order « and its diagonal will be

ING))
Now if we solve the equation
6 — I'(a) 0" F(a) en

HONEECN

regarding g as unknown and assuming the existence of the
derivatives of ¢ and &, of the orders demanded by the preced-
ing theorems, f will be given by the formula-

,— 1 ( 1_ 1)
PR (0+15§+u—§§2+. . )
T (g) n 1.2
n
We shall thus obtain # solutions, since \"/I‘—(a—) contains
an nth root of unity as an indeterminate factor.

These solutions are all permutable with each other and
with ¢. We have to determine, as in § 15, whether it is
possible to find other solutions permutable with these.

20. Iff, andf; are two permutable functions of determinate
orders and if the characteristic of each possesses a finite and
determinate derivative of an order equal to the integer next
larger than the order of the respective function, and if

fl"=f*2”’
Si=¢fy

then we shall have
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where € is an nth root of unity. In fact f; and f; will be
necessarily of the same order, and if we represent their
characteristics by ¢, and ¢, we shall have necessarily

¢’1”(x’ x) =¢2”(x, x),
¢1(x: x) =€ ¢2(x, x)

and therefore

But

O=fr-jr=(fi—af) (f-af)...(fi-ef),
where €, €, . . . ¢, are the nth roots of unity.

If we assume e=¢, the binomial expressions f,—efs,
fi—e€, f2 will be of the same order as f; and f; and conse-
quently, by the results obtained in § 18, it follows that

fi=efe

21. The question which we raised previously (§§ 15, 19)
is now answered in view of this proposition, that is, by
changing A () in the manner indicated we obtain always
the same solution of (1) since the results are always functions

. 1 .. .
of determinate order - whose characteristics possess deriva-

tives and whose nth powers of composition are equal to each
other. The same is true of the solutions of (8).

22, If f, and fa are two permutable functions of determi-
nate order and

* *
fl” = fzm’

* *

fi= fym,
g being any integer whatever. Conversely, if the last
equation 1s satisfied, the equation

fr=e fz -
will be true, € being one of the gth roots of unity. We shall
write

it follows that

f1=}%’
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and obviously, in writing this equation we shall include in
the symbol f; an undetermined root of unity.

Given f,, in order to calculate f; it will be sufficient to
calculate first, by the rules given in §§ 14, 15 and 19 the
function

j;l/n’
from which we obtain
(fatmym.

The whole of the ordinary algebra of fractional powers can
be applied without change to fractional powers of composition.

23. In the expression

I
if we suppose that f is of a determinate order a, 1.¢.,
f=-x)"1Gx, y),

it then follows that f*; will be of order Q‘nﬁ‘ , Or

o= (y-x)g"LIL(x, s
and
L(x, x) = [G(x, x)]ﬁ”_r_”%)_.
o0 (%)

. *— . . . .

The fractional power f* is determined to within a factor
equal to a root of unity. We shall be able to do away with
this indeterminateness when the diagonals are all positive.

If f is a function of determinate order a whose diagonal

-

Fet=n" " L(ns]2),

and the diagonal of this function is also positive.

is positive

Let us suppose that as we make the number % approach
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a positive rational number S, L(x, y’g) tends uniformly

toward L(x, y|8); and that as %n approaches any irrational

number z>0 L(x,y‘%) tends uniformly toward a deter-

minate finite limit L(x, y | z).
We shall write
Ji= (=) L(x, y | 2),
and refer to this function as an irrational power of composition
of order .
We shall have
L(x, x| 2) = G, x)* =—=%
If | G(x, v) | <M, we shall have

. LHe) |

| Ly 19| <0 £ 2.
All of the algebraic calculus of powers with commensurable
or incommensurable positive exponents is extensible to the case

of powers of composition, and consequently
f:f*sx =fs+m’
* *
(fs)n =f5ﬂ,
the numbers z and z; being any positive numbers whatever.*
24. When we know the function

*
fz =(y _x)az—l L(x’ y I Z)’
for any positive value of z whatever we are in a position to

calculate the function qg‘, where ¢ is given by the equation
¢ =f+f \b,

. » . .

*The actual calculation of f% cannot be carried out without recourse to the theory
of logarithms of composition. It is done in Lecture III, §25 We may add at the
outset the following statement of a fundamental property: f’ is an entire function
of 2.
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and where ¢ is any function of an order greater than a certain
positive number.

We shall have in fact
¢ =ftaf+ .,
and the series is always uniformly convergent (§ 17).
It is seen immediately that from the fact that f‘ is an
analytic function of 2 i¢ follows that $= is also analytic, and

. * . . . . *
that since f* is an entire function so also 1is ¢*.
25. As an example let us treat the case of functions which

belong to the closed cycle group.
Unity belongs to the closed-cycle group and if z is positive

we have

z(z—1)
1.2

*_(y—x)pt
1 Tk

and therefore 1% is an entire Junction of z.
Now let ¢ (y —x) be a function of the first order possessing
a derivative. If ¢ (0) =1, then

¢ (y—x)=1+1¢'

where $’ denotes the derivative of . Consequently

¢ =Trpziogy +Z(1 Disgnst..

*
and therefore ¢*, thus obtained, is an entire function of z.
Vito VOLTERRA.



SECOND LECTURE

INTRODUCTION — ZERO AND NEGATIVE PoweRrs oF Cowm-
POSITION — FRrRacTiONs oF CoMPOSITION — PROGRESs-
s1oNs OF CoMPOsITION — LOGARITHMS oF COMPOSITION
~— NarerIaN LocaritimMs ofF CowmposiTioN, EXTEN-
sioN OF LoGariTuMs OF COMPOSITION,

1. Introduction
1. If we have the relation
fé=y
(in which we suppose £, ¢, ¢ to lie in the field of permutable

functions) and if we consider the operation of composition as
analogous to multiplication, we can write, by analogy,

W ¢=% ) r=%
f ¢
and also
(2) o=yfY (2) f=¥o
and we can regard the symbols (1), (2), (1), 2’) as represen-
tative of the operations whereby we solve the integral equa-
tion

v=[re o s,

in which we are to regard ¢ and f successively as the un-
known function.

We observe that if f is of order m and ¢ of order #, ¢ will
be of order m+n, m and n being positive numbers. Hence

m<m-+n>n.
201
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If then we write the symbol

*

2; or ®F -1,

F

where ® and F are permutable functions, it will have no
meaning if the order of ® is less or equal to the order of F.

A great difficulty arises if we wish to give a meaning, in
general, to the symbol in question.

But it is to be remembered that an analogous difficulty
arises in the elements of arithmetic if we restrict ourselves
to the field of integers. If we write

2X3 =6,
we can represent division of 6 by 3 or by 2, by the symbols

=0 _gx3-1 0 %21
=3=6X37%,  3=5=6x27"

But until we leave the field of integers the symbols
3 1

5 4
have no meaning.

In arithmetic we can introduce the number 14=2-1 by
defining multiplication of an even number by 14 as equivalent
to dividing it by 2. Similarly we could define the symbol
f~! by the property that

i‘f_l =9,
provided that

F=4].
But just as, by this procedure, we should obtain in arithme-
tic only the reciprocals of the integers, so, in the field of
composition we should obtain only special functions of
composition. Consequently, in order to obtain readily
more general functions, we follow another course, the princi-
ple of which we will now explain.
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2. In arithmetic we can arrive at the fractional numbers
by an extension of the number field, introducing them, after
the integers, as new quantities for which we define equiva-
lence and all the operations which can be performed on them
in combination with each other and with integers. Unless
we depart from the field of integers these quantities have
only formal significance. But all the calculations and all
the propositions in which they are involved cease to be
purely formal, whenever we desire, provided that we multi-
ply by a suitable integer. They then represent actual rela-
tions between integers.

We shall follow precisely this method in order to introduce
fractions of composition, and they will be formal in char-
acter, but the remark which we have just made applies to
them, namely, that they can be combined by composition
with a convenient function in such a way that the results
cease to be formal and represent actual relations between
functions.

2. Zero and Negative Powers of Composition— Functions of
Composition
3. First we must introduce the element which corresponds
to unity in arithmetic but which, in the field of composition,
we do not yet possess in a perfectly clear and simple manner.
Let us return, therefore, to the simpler integral equation
considered in the first lecture and let us write it in the form
¥
f(x, y) =¢(xs y)+'[ ¢(x, £) F(&, y) d§,
X
in which the given functions are assumed to be permutable.
In the notation of composition we can write

f=¢+$ ;‘-‘9
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and the solution
bp=f—fFtfBr_Fhoy. .
In the lectures which I gave at the Sorbonne (“Fonctions de
lignes,” Chap. IX) these formulae were written
f=¢ (1+F)
and
¢d=f(l—F+F2—Fs4...)

A
14 F
In other words we had, by definition,
$(1+F) =946 F.
Unity, in this case, functioned in such a way that when
combined by composition with ¢ it gave ¢ as a result.
On the other hand, if we combine ¢ with 1, giving to 1 its
ordinary meaning, we have

o1 =J:¢<x, £ de,

which is different from ¢. Therefore unity sometimes means
the element which composed with a given function reproduces
that function and sometimes it has its ordinary significance.
To avoid confusion we agree to state explicitly on each
occasion which meaning we wish to attribute to unity. In
order to remove all uncertainty we will use two different
symbols for the two meanings.*

4. Let f(x, y) be a function belonging to a group of
permutable functions. We know what is meant by com-
position of a function of the group with f.t By composition
with ]*"1 we mean performing the inverse operation, that

is, finding a function which, operated upon by f, will re-

* Evans has removed this ambiguity by another method.
1 Cf. Lecture 1, § 2.
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produce the given function. If then we compose the first

. . . * . . . 3
function with f and then with f~1, thisis equivalent to leaving
the function unaltered. Then

* ok *

ji=r
will be a new entity which we shall introduce into the group,
defining it as that element which composed with any other
function of the group leaves it unaltered. It is this element
which corresponds to unity.

The properties of f° are given by

Fo=f, (Foym=fe, (F1=f5 fo =42,
f and ¢ being functions which belong to the group. And
if 2 1s a constant

@f) (y=af.

@fo+bf) cfordf)=acfo+ado+bef+bdfo.
Hence it turns out that a 7°+b f has only a formal meaning
by itself but acquires an actual meaning provided that it is
combined with any function of the group.

The introduction of the element f° greatly simplifies the
formulae which I have given in previously published works

on the theory of permutable functions (cf. loc. cit., p. 138).
In addition let us consider, for example, the series

Fl[f]l—f°+f+f +f

which satisfies the addition theorem

FlUf+4 [=F A1 7114,
a form of statement which is much simpler than that given
on page 159 of the work cited.
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Besides this we can show more clearly the period of F

| 1] | since we have the relation
Fllf+27if1|=F|f1],
that is to say F | [f*] | has the period 2 7 if°.

5. We will proceed now to the study of fractions of
composition in the strict sense of the term. Let us consider
a set of permutable functions of determinate orders. We
will denote these functions by f, ¢, ¢, . . .;f1, 01, ¥, .
fas b2, Y2, . . . and suppose that linear combinations of
them are likewise of determinate orders and also that if we
take any one of them which 1s of higher order than a second
it is always possible to find one and only one function of the
group which, when composed with the second, will give the
first.

For example, a set of functions of this nature would be
that which could be generated by taking a function of the
first order, forming its integral and fractional powers, form-
ing products of composition of these powers and adding

together constant multiples of these results.
*

We shall say that I,; 15 the fraction of composition belonging
¢

to the group and having f for its numerator and ¢ for its de-
nominator.

We shall say that

‘4 =f’
fO
and that
id
b1 P
whenever

firda=frdn



Second Lecture 207

From this we can infer the proposition that two fractions of
composition which are equal to a third are equal to each
other.

In fact, if

J:l {2 fl fa
b1 P 1 ¢s

it follows that
(1) f1: (;z =f; ¢y, (2) fids=fs ¢y,
and therefore, composing both members of (1) with ¢,
f*x é’z ;53 =fz ;51 ¢3 =J*;2 q;a $1-
But by equation (2)
fl <I;2 Q;s =$2f1 (53 =d;;f; Q;l,
therefore
;z ¢3 ;51 =¢02 fa ¢1,
and from this it follows, by the general hypothesis that we
made previously,
b1 fi=1 o

that is to say,

J_‘z - J.f!
&, ¢s
From the definitions which we have given it is easily seen
that £=1¥.
¢ oY
6. We have now to distinguish between three cases:

*

(1) In the expression ('; suppose that f is of higher order than

¢. Then, assuming that the conditions which we have
stated (§ 5) are satisfied, we can calculate a function ¥
such that
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and we thus have

[od.
¢ ¢°

(11) Again, if f 1s of lower order than ¢, then (supposing always
that the aforesaid conditions are satisfied)
¢=/¥

and therefore

whence it follows that

(1) Finally suppose that f and ¢ are of the same order. The
ratio of their characteristics will be constant. If we denote
this constant by a, the function

y=f—a¢
will have a definite order greater than that of ¢. Then
we can write

¥ =$ 5’
and therefore
f=a ¢+$ 8.
Consequently
f¢°=(a¢°+6) ¢,
and finally

-J;= aql:°+0.
¢

7. Two or more fractions of composition can always be
reduced to a common denominator which 15 a function whose
order is not less than the order of any of the denominators.

In fact, if we are given

» *
L h
* * 9
o1 ¢
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and if ¢ is of higher order than ¢; and ¢, then

¢=$1 $1=q§2 352:

and therefore

fihide fi_fils
b & ¢ @
If the order of ¢ were equal to that of one or both of the

given denominators, we should have
ol =$1 (a d‘;o“l"pl)
=61 (b 6°+¥))

where 4 and & are constants, one of which might be zero.
Therefore

A_ah+fidy
T
fi_bhthiis,
¢ &
A method of reducing several fractions of composition
L, b &
51 ’ 52 ’ ¢3 I

to the same denominator is to write the equivalent fractions

L T L I *

fipaps. .. f2¢>1¢3 fsbr1a. ..
* * * * * * b}
D12 Ps. .. ¢2¢1¢3 ¢3¢1¢z...

8. If we reduce several fractions of composition to a
common denominator and form a fraction of composition
which has this denominator and whose numerator is obtained
from the various numerators by the operations of addition
or subtraction, the fraction obtained is independent of the
choice of the denominator, according to the definition of
equivalence which has been given.
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In fact, if we have

% * L] £
hoh d_i
* T ® ) w =%

o1 P2 P P

w * % L

hEd_f i‘lfz’

¢1 ¢2
. * * % ok ok *
since frdetYide=fr itV .

The operation here indicated is called the addition or sub-
traction of fractions of composition.

Thus it is seen that all the rules of arithmetic relative
to the addition or subtraction of fractions are extensible
to fractions of composition.

9. The multiplication of a fraction of composition by a
constant consists in multiplying the numerator by the constant,
leaving the demominator unaltered.

The composition of several fractions of composition signifies
the formation of a fraction of composition which has for its
numerator the resultant of their numerators and for its denomi-
nator the resultant of their denominators.

The associative and commutative properties hold in the
case of composition of fractions, and it is seen that the
results remain equivalent if equivalent fractions are sub-
stituted for the fractions composed.

A function f is equivalent to the fraction

then

hence i
o B.ld.0 0
¢ ffo ffd ¢

We obtain in this way the composition of a function with a
fraction of composition and we see immediately that for this
kind of composition also the commutative properly holds.
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10. If we compose m equivalent fractions —J: the result is

written in the form
(—]:)mand we have evidently (-é)m =i
¢ $

The same formula will be extended, by definition, to the
case in which m is equal to a fraction or to an incommensurable
number.

11. From (3) we obtain

ff f f° v

Therefore, by composing a fraction of composition with its
denominator we obtain the numerator, or, every fraction
of composition may be regarded as the result of the operation
inverse to composition applied to the numerator by means of
the denominator, and if we adopt the exponent —1 to indicate,
as we have done previously, the inverse operation, we have

»
L

o
§=i]

and, by making an extension of the property that composi-

- * . .
tion by f° does not alter the element upon which it operates,
we can write

Now (see § 8)

which we can also write in the form

=
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% * - . . .
In general (f*)™=f*" whether &, or m, is positive, negative

or zero.
12. We wish now to find the fraction of composition
*

*

which, when composed with %, will give g We have

evidently as a solution

76
or 12
-4
and also

() *

13. These results are summarized in the statement that
the arithmetic theory of fractions can be carried over to the
field of composition.

The elements

0* .

Dy
‘9—*[\*

f fo1 fo
¥ ) f ’ f H
¥

can be included in the field of a group of permutable func-
tions. They no longer have the significance of functions in the
ordinary sense, but all the operations together with their associ-
ative, commutative and distributive properties can be extended
to these elements. However for this reason they can be
called functions belonging to the given group of permutable
functions, and we are able to extend to these elements also
the concept of order, that is to say, 1ff is of order m, and

®

¢ f
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is of order # <m we shall say that ¢ has the negative order
n—m.

Evidently if ¢ is of positive order p, ¢~ will be of order -
and the theorem, that the order of the resultant of two
functions of given orders is equal to the sum of the orders
of the components, is extended to the case of negative orders
We also extend easily the concept of an order greater than a
given negative order to the case in which the order is not

determined, that is, if J; fis not of determined order but is
of an order greater than #n <m we shall say that ¢ is of higher
order than n—m,.

14, As we have said (§ 1), it might seem as if we have
constructed in this way a purely formal theory; but this is
not the case in view of the fact that the elements which
have been introduced, formal though they are, cease to be
such by acquiring the significance of ordinary functions
whenever they are composed with a function of sufficiently
high order. Thus, for example, if we have the sum

RS SRR 4
¢ 6

N . * * oW
it is sufficient to compose it with f” ¢ 6* in order to convert

it into an ordinary function.

3. Progressions of Composition — Logarithms of
Composition

15. Let ¢(x, y) be a function of determinate finite order
and let us consider the sequence

» _3 * 9 % _1 *o *2 *3
“““ ¢ ’¢ ’¢ ’¢’¢’¢’¢"""'
We shall say that this constitutes a progression of com-
position having the ratio ¢.
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The exponents will be called the logarithms of composition
of the various powers of composition and ¢ will be called
the base. We shall write

n= 18g¢ ‘;”’
n being positive or negative.

The whole of the arithmetic theory of logarithms is
evidently extensible to the logarithms of composition now
introduced. Thus the logarithm of the resultant of several
functions is the sum of the logarithms of the component func-

tions, etc.
The progression of composition possesses properties

analogous to those of geometrical progressions. In particu-

lar
+1

Frotdr.. 4=

16. By inserting means we can pass to fractional log-

*
arithms. Let usinsert, by calculating ¢!/, m means between
two elements of the progression; we obtain the sequence
1

=2 Wl . amtl

1 2
»* *— *— *
"¢_1"'¢ m’¢m’¢°’¢m,¢m""¢’¢m""’¢2""!
which can be regarded as a new progression of composition

. * . . .
having ¢!/* as its ratio, and we can write
h
h * x2
m = log, 9™,

& and m being whole numbers.
In general, if v is a positive or negative number, rational

or irrational, we can write
* L]
(1) V= 10g¢ )
and to these logarithms of composition we can extend the
properties of arithmetic logarithms.
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17. It will be convenient to write powers of composition
in the form
] * 'o
¢ =¢",

and therefore to write instead of (1)

*O * * ¥ * *

v ¢° =log, ¢"* =log, ¢".
In this way, starting with a base ¢ and considering all of
its real powers, we can express the logarithms as real num-

bers multiplied by ¢°; but unless we take a further step in
the theory it will not be possible to obtain

1:)g¢ ll/:

except when ¥, besides being permutable with ¢, is a power
of ¢. This further step cannot be taken until we have
introduced the fundamental concept of the naperian base.
The complete construction of the theory is thus less easy
than it may have seemed at first sight. It is necessary
to introduce into the field of composition the fruitful concept,
discovered three hundred years ago by Lord Napier, of the
base of natural logarithms, in order to extend the theory
within the limits in which it can be formulated effectually.

4. Naperian Logarithms of Composition — Extension of the
Theory of Logarithms of Composition

18. Consider the function

e _?° =e.
We have
. .
é=ef°
and therefore ’
[ *

4 bpfnis

On account of this property we shall call ¢ the base of naperian
logarithms of composition.
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We have evidently
* * 2 3
F=f° (1+z+;—!+§—!+- : )

and, by virtue of the convention made in the preceding
section,

=t = (zf°)+zf%+—(iz—2i;—)—2+(zgj)3+...

19. Analogously, by definition, we can write

1) §*=cf>°+<b+g;;+%s+ .=,
and we shall write
& =log: ¥
or, more simply
=]V

With the introduction of this new concept we shall be able
to solve the problem proposed in § 17.
20. For this purpose we begin by solving the problem:
given ¥ to determine ® satisfying the preceding equation.
We shall have

;ztb = \i]l’

whence, differentiating with regard to 2,

0 s,
and therefore

*
s _,dV? *
-2 = =

2 Vs =9 =/,

We have arrived therefore at the very simple formula (2)

for finding [ ¥ when ¥ is known. However, as we have
said before, the validity of the formula is subject to the

knowledge a priori that [ ¥ exists.



Second Lecture 217

21. But let us suppose now that we are given any function
¥ whatever of the group, and let us assume, for simplicity,
that it has a determinate order «.

We suppose also (see Lecture I, § 23) that, having calcu-

lated \if’, the result is expressed by

3) (y =)=~ G(x, y | ),

where G is an analytic function of z.*
Let us calculate

We obtain

aly —x)**~1 G(x, y|z) log (y —%) +(y ~x)**~1 G'(x, v | z),
where G’ denotes the derivative of G with respect to z.}

It follows that

dz

is not of determinate order; we therefore consider the fraction
of composition

: -
2" Yo =8,
It is easy to show that O is independent of z. In fact, we
have

_
=

Jrre— = Jie—¢°).

SRR PR .
Now y*—y° 1s independent of z; our statement is therefore

proved.
From (2) it follows that
dys_ =,
d P - ‘p e’

*This is always the case in consequence of a general theorem to which we have
referred previously in Lecture I, § 23.  See Lecture III, § 25,

t To avoid misunderstanding we recall that bylog 4 ={4 we mean the naperian
logarithm of the number 4.
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therefore
a2 ¢'
d z?

= ‘V ezs

But the series
: ¢ 1 dhp' 14 gb'
‘/’ T2 72 +. +h' P +.
if convergent in the unit circle with center at z, has for its
sum

*
¢’+1,

hence

Joti (e°+e+ O )

and consequently

Y= 6°+e+€2’,+§,+
from which it follows that
0=Iy.

* .

In order, therefore, to conclude that [ ¢ exists and can be
obtained from the formula (2’) it is sufficient to know that
* . . 3
W can be put in the form (3) and that this expression repre-
sents an entire function of z.

22. As an example we will calculate

i1,
recalling the fact that unity belongs to the closed-cycle

group (cf. Lecture I, § 11).
We found (Lecture I, § 25)
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But it is well known that =— is an entire function; hence

I‘( I'(z)
we can apply the foregoing procedure and we shall have

@ 4 g 0= log (9 =)

~ o = @) =B, | ),
and

(5) 11=61-
By the preceding theorem the right-hand member of (5)
is independent of z. We therefore put 2=1; and obtain

0 =log(y—x) —-T"(1).
But

C=—T"(1) = —Jm o+ logxdi=057721 ...
0

(Euler’s constant),

therefore
*®

A
©6) h:log(y—i:x)-l-C_

23. The general theorem of § 21 enables us to see that the
expression (5) must be independent of z. But a priori the
fact cannot be inferred immediately on seeing the expression
(5) for the first time. For the sake of the interesting and
curious nature of the result we will verify it directly. The
expression cannot be put in an analytical form; in fact, as
we have noted, it has a purely symbolic meaning; we can
however apply the general principle (cf. § 14) by means of
which any expression of this kind loses its purely symbolic
meaning and becomes an ordinary function. Although

&i-s
has a purely symbolic meaning,

@ 1-i
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is an ordinary function. It will be sufficient then to show
directly that this ordinary function is independent of z.

Now Gi-oi =61t

But (2’) 1:

1 z~1

and therefore
&item
We have
? log(E—x)dE =__<9_j°’ dt
(z—a) (y—§) 0BJ:(y—8) (E—x)F
9 [ 1 I'(a) I‘(I—B)]'
0B Ly —#x)*t#-1 I(1 —of—B)
This expression can be calculated without difficulty. Thus,
putting =z, 8 =1-2z, we obtain
? log(§—x)dé
2 (=8 (E—x)7"

=T(z) T(1-2) {log (y—x)+ ?((25) - I"(l)},

S SO 0]
THI(A-9).G-0" (-8 T@

from which, finally, we find that

Bit-r= =log (y —x) +C,

which coincides with the result (6) obtained before.*
24. We now show that, if we substitute for &

*

1=9%
in the series (1), we obtain unity as the sum of the series.
In fact, if we put

b= g 0 =91 =005, 519)

* This result is met with in the calculation which is carried out in an entirely
different manner in the last lecture, § 23.
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we obtain
d _a .
E-Z——G@
zﬁ
29_54,
and therefore
L 1 a0
e(<1> +<1>+ + )= e+ 2, dz2+"'

Now O is an entire functzon; consequently

6(‘I’°+<I>+2' o) =0(x, v ]|z+1),
whence

2o ;5_2 _O ylz+1) _

® tetgyt..= O(x,y |2

25. In § 19 we stated the definition of Iw. Itis easy to
verify the following properties:

N & =Iv+ie, (8)  #Fr=(2%) (),

) ?(‘1:)=z*\p-z*e, @) et
(3] e"
a7 iEmy=miv, (8" () =reme,

[ ] [ ] *o » " * o *
(7" l(c®)=[cB°+10, (8') ¥+ =0 g2,
where m is an integer or a fraction; and in the limit these

formulae will be valid for incommensurable values of m.
¢ denotes a constant.
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It is evident that

z2wni}° =f’0,

when 7 is an integer. It follows that ] f is determined except
for an additiveterm 2w i]% in the same way that the nape-
rian logarithm of a number A is determined except for the
term 2w ni. Consequently the formulae (7), (77, (7),
(7""") and the corresponding ones opposite wil! be interpreted
in a manner similar to that in which the analogous formulae
are interpreted in the ordinary theory of logarithms.
Suppose now that m is complex. We will extend the
formula (8''), by definition, to this case; and since the second
member, by virtue of (1), is represented by the series

(méy+mo+mly
which has a definite meaning, the definition of the first
member is established.
Suppose now that ¢ =¥; then
Im
is defined for complex values of m, and we have

* *
P = emgi\ll

Evidently, inasmuch as e is unchanged by adding to

¢ the term 27 n icz", (;")"‘ is determined except for the
factor 27 mni,
By definition we establish also the following formula:
(¢4 =%,
under the hypothesis that ¢ and 8 are permutable functions.
Since the second member has a known meaning, the same is

true of the first member; and if
»*

e =V,
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then the definition of

NTL
is established, and we have precisely
©) Po= il

Also in this case, analogously with the preceding one, ¥ s

. * .
determined except for the factor of composition 27",
If we write

(10) b=y,
we can write, by way of definition,
(11) 6 =logs x,

and we shall call 8 the logarithm of composition of x to base V.
From (9) and (10) it follows that
§1v =l*x,
and therefore, by (11),

L]

. lx
(12) loge x= 5=
i

Of course it is necessary, in order that the second member
may have a meaning, not only that it be possible to find the
naperian logarithms of composition of x and ¥, but also that
the fraction which appears in the second member have a
meaning. If these conditions are satisfied, then the problem
proposed in § 17 is solved.

26. If

®
¥ =f° +f,
where f is a function whose order is positive and greater than
a certain given number, then the series

PP
f+2+3+...
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is convergent (see Lecture I, § 17), and we have
TP
¥ =f+I+54

This can be verified immediately by returning to formula (1).
If

®
¥ =a f°+f,
where a is a constant, we have

v = Zaf°+f+ -

2a
and, if
0 ymte a1,
then
(14) o= alﬁ+laf°+f+f +..

It follows that, if we know the naperian logarithm of composi-
tion of a function 6 of a group, then, by using formula (14) we
can calculate that of every function of the group of the form (13).
These form a very extensive class of functions (cf. Lecture
II, § 5).

27. We will now give an application of this result:

To calculate the naperian logarithm of composition of
of any function belonging to the closed-cycle group, possess-
ing a derivative and having the order 1.

Let F(y—x) be this function, and suppose, for simplicity,
that F(0) =1,

We have

F=i(fo+F),
where F’ denotes the derivative of F.
Therefore, applying formulae (14) and (16), we obtain

I F =(log(y —) +C) 1"+F'+£2_+F' +..
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28. Let us suppose now that it is desired to obtain the
logarithm of composition of F to base 1.
Formally we can write:

5 1F_{[F_ {1F
og F="45 = 4
———He—
(log(y —x)+C)
_[«"121 F131

L1
!
F 1+T +5
—A——
(log(y —#) +C)

This brings us, consequently, to the solution of an integral
equation of the first kind having as its kernel log (y—4)+C
(Cf. § 6.)

We are thus led to a new class of integral equations which
it will be convenient to study and which will form the subject
of the sections which follow.

29. The preceding problem is only a particular case of a
much more general question.

From (12), if ¥ and x are permutable functions, we have

* lx
log, x =2 ;
v Ty

and, if 1;‘ is given by formula (2),

=F°+

*
logy x
* *
- Ixy’
= % )
[ae(y —x)**=1 G, y | 2) log (y — %) + (y =)=~ G(x, 3 | 2)]
and we shall therefore have to solve new integral equations
of the first kind whose kernels involve logarithmic terms.
30. As we foresaw, especially in the last section, we are
confronted with the necessity of solving certain integral

equations (of Volterra type) whose kernels contain a term
having a logarithmic factor,
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This is a new class of integral equations to the solution
of which we cannot apply directly the known methods of
procedure. We shall not stop to solve the general problem
but treat a single example to indicate the method which is

convenient to use.
Let us try then to solve the integral equation

(15) j:ﬂs) llog(x — £) + C] d £ = (%),

where C denotes Euler’s constant,
Multiplying both members by »(x, y), a finite continuous
function, and integrating from 0 to y, we have

(16) {3 3) ds [ 1(6) logle—5)+C1 d
= [ 1 a5 Togr—p+ 1ot ) v

= 6 5) .
If we can obtain v(x, v) in such a manner that
[ nogtr— &)+ Clta =9 dx = (5 -,

where a is any positive number, the problem will be solved,
for the equation (16) can be written

J’;f@) (y—ErdE= j ’ 4(0) (5 3) d

and this equation belongs to a well-known class of integral
equations. Now, if we take the well-known formula in

the theory of the Euler Integral:

Jy (=~ (y—x)ft _(y—§eFPt
: I'(e) I'(8) I'a+8) ~’

we observe that the second member is a function of & and 8.
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If we integrate with respect to 8 and differentiate with
respect to a, we obtain

(y—§)c="" (y—x)p! _(y—g)t-t
Joa (UTe) 8], =
and if we put a=8"=1, we have

j:<log<x—s>+6)dsj =2 jg——(y—u).

T(E+1)
We can therefore take for »(x, y) the function
—-— ® (y_x)ﬂ d
9= rErn 4P

The formula giving the solution of the integral equation (15)
is therefore:

16 =~z [o@ at | it emprar.

In a similar manner the integral equations are treated upon
which depend various problems in the determination of
logarithms of composition.

31. As an application let us consider the solution of the
problem proposed in § 28, that is, to determine

ISgl F

where F is a function which belongs to the closed-cycle
group and F (0) =1.

We found

Pl Fed
. L} F’ 1+T + 3

log, F=F°+ -

—_—
(log(y —#)+C)

+...

Hence if we put
* * * %
i )

we shall have to solve the integral equation

jZf(&—x) (log(y — £) +C) d £ = by —#),
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or, changing variables,
["® togte -8+ Cyag =6 (o).
If we observe that ¢(0) =0, then
P

/ —_—
¢ =P+ it

and therefore, applying formula (1’), we have

fly—x) =—%K[F’(E—xHF'z(Sz_x)+F'3(‘E_")+. L]dE

3
= (y— &)t
TaEH %S
and finally
g, F= o L P ipe-w+ G0 B gy
(y—8)F
J Ta+n %t

Therefore, by using the preceding formula, we can obtain
the logarithm of composition to base unity of any differentiable
SJunction of the first order which has its characteristic equal to

unity and belongs to the closed-cycle group.
Vito VOLTERRA.



THIRD LECTURE

InTRODUCTION — FUNcTioNs oF ComposiTioN — DERIV-
ATIVES AND INTEGRaLs OF ComPosITION — APPLI-
caTION OF INTEGrATION OF ComposiTioN To Log-
ARITHSM oF ComposiTioN AND To Powers oF Com-
POSITION.

1. Introduction

1. At the beginning of the first lecture we considered a
particular function of composition which we expressed in the
form

S(x, y) = ~F(x, ) +F2(5, 5) =P, )+ ..,
and which, we said, belonged to the general class of func-
tions which depend on other functions, i.c., to the class of
functions of lines. We can obtain a more complete formula,
according to the notation which we have been using, by
adding a term to the right-hand member and writing instead
of S the function

i‘°
P+ F
We shall extend this concept and examine in this lecture
general functions of composition.

T N S R

2. Functions of Composition — Derivatives and Integrals of
Composition

2. We shall develop in particular those ideas which are

connected with the subject which we have been treating, 1.e.

with the subject of powers and logarithms of composition,
229
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reserving for another memoir a more thorough and complete
development of the subject in general.
3. If we have an analytic element

o0
(1 Zim A 2™

0
with center z =0, convergent within a circle radius R. Then,
if the function F(x, y) is finite and continuous, the function

0 *

2 am I
0

is also finite and continuous and permutable with F. We
shall call it a rational entire function of composition of F.
Now consider the expression

?
2 by 27
1

This has a pole of order p if 5,20. If we assume that F
possesses a derivative, then, according to the definition
given in the preceding lecture, the expressions

m bm

o M=

and
o ® 14 *
ZpanFr+2, 0, F—™
1 0

have a meaning. The latter will be called a rational func-
tion of composition having a pole of order p.
If we suppose # to be positive we can calculate also the
expression
®© xm P *
2w am F+2Z,, by F7
1 0

This is an irrational function of composition if it contains at
least one term having a fractional exponent.
Let us consider
IF.
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We do not yet know whether, corresponding to any finite

continuous function F, the function I F exists (cf. the preced-
ing lecture). However, if the logarithm of composition
exists when F belongs to a certain functional field we shall
call 1t a logarithmic function of composition.

The sums, the resultants of composition and the ratios of
composition of several functions of composition will be
regarded as new functions of composition.

4. We shall represent the various functions of composition
by means of the symbol

&(F).
F will be called the argument of the function ®.

If ¥ (F) is a function of composition, and F (®) is another
function of composition, we can obtain
*
Y(F @),
which will be called a function of a function of composition.

5. We thus have the means of defining various classes of
functions of composition. We should be able to obtain new
functions as uniform limits of those previously obtained by
making the parameters which they contain approach given
values. But we will proceed now to establish a general
definition of the term function of composition which will
include as particular cases all these classes. The method
which we shall adopt to attain this end consists in stating
two fundamental properties common to all the functions
hitherto examined, and in assuming these properties as those
which define, in general, all functions of composition.

The first of these properties is this, that all the functions
previously examined are permutable with the function which
constitutes the argument; we proceed to formulate in the
following paragraph the second fundamental property.
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6. Let us return to the rational entire function of com-
position
&(F) =2, ap P~
1
If we form the expression
*
S(F+ef) —3(F),
where € is a number and f is a function permutable with F,
then as e approaches zero the expression approaches zero;
moreover
% %
D(F+ef) —P(F)
ef
approaches a limit which is easily calculated, namely
f),,, m Qo Fm-1,
1

This expression is thus independent of f. It is called ke
dertvative of composition of ® with respect to F.

The rule for calculating the derivative consists in differ-
entiating the series (1) with respect to z and substituting
for the powers of z powers of composition of . Hence the
rule is the same as the one for calculating the ordinary
derivative provided that instead of the ordinary powers we
use powers of composition.

It is easy, in this manner, to extend the concept of the
derivative of composition to rational functions of composition
having poles, to irrational functions of composition and to
all those which can be obtained from these by the operations
of addition, composition, forming ratios of composition and
forming functions of functions of composition. The rules
for finding derivatives of composition are the same as those
which are applied in ordinary differentiation except that in-
stead of the ordinary operations of multiplication, raising to
powers and forming ratios, we substitute the corresponding

operations of composition.
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We can extend this concept of the derivative also to
logarithmic functions of composition. If we wish to obtain

. . L . . .
the derivative of composition of [ F, it is sufficient to ob-
serve that

AF=F,
and thus we find that
dF_poy
dF

We can therefore generalize the foregoing rule for finding
the derivative of composition also to expressions containing
logarithms of composition.

Evidently, in all the cases considered, if the increment
given to the function F is € f, a function permutable with F,
and if € is made to approach zero, then the limit of the ratio
of composition which has for its numerator the increment of
the function of composition and for its denominator € f will
be independent of f. This is the second fundamental property
which we were seeking.

To represent the derivative of composition of the function
® of the argument F we shall use the symbol

x
() 2.
dF

7. With these introductory notions let us proceed to
state the general definition of the term function of composi-
tion.

Let ® (x; y) be a function which depends on all the values
of the function F(En), x<E<n<y, in the sense in which
these terms are used in the theory of functions of lines, so
that we can write, in the notation of that theory

2=2|rd i,
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and let us suppose that F(x, y) can vary in a certain func-
tional field for which it is assumed that, if f and ¢ are con-
tained 1n it; a f+54 ¢ 1is also contained in it, @ and 4 being
parameters which are independent of x and y and which
vary over a certain interval. Let the functions ® and F be
permutable. We will further assume that they are continuous,
that is to say, if ®(x, y) corresponds to F (x, v) and ®:(x, y)
corresponds to Fi(x, v), ® approaches ®, uniformly when F
approaches F, uniformly.

Besides this we will assume that, in the sense in which
the operation is carried out in the theory of functions of lines,
® can be differentiated with respect to F, so that it will be
possible to obtain its successive derivatives to any order
that it may be necessary to consider.

Let us substitute for F(£, 1)

F(& n)+ef(& n),
which is permutable with F(§, ), and indicate by & (x, y)
the corresponding value of ® (x, ), and let us form the ratio
of composition
3 -
ef
and let € approach zero. If there exists a limit of this ratio,
independent of f, we shall say that ® is a function of composi-
tion of the argument F and we shall represent it always by the
symbol ch(F) which we adopted previously. The limit in
question will be called the derivative of composition and will
be indicated by the symbol, already introduced,
d$
dF
Like the ordinary derivative the derivative of composition
can be regarded as an actual ratio of composition, and the

>
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numerator and denominator constitute respectively the
differential of the function and the differential of the argument.

The two fundamental properties of functions of composi-
tion are therefore: (1) The function is permutable with its
argument; (2) the derivative is independent of the differential
of the argument (cf. § 10).

8. Let us prove now that the derivative is also a function
of composition of F.

If we denote by ¥ the derivative Z;}; we can state first

that

¥=v [0l |

We will show that ¥ possesses the two fundamental proper-
ties which serve to characterize a function of composition.
The first of these fundamental properties holds for the
derivative ¥, since it is permutable with F.
Let us proceed to prove that the second property also
holds. It is to be noted, then, that we have

(F+efr) —B(F) =& Ve by,
where f is permutable with F and %, approaches zero with e..
Let f, be a function also permutable with £, and form
the expression

S(F+e fitefs) ~d(F+ef) —d(F+efr) +O(F)
—afi (¥ | Frafl| =¥ | [F]]} +at/ -b),

where )’ and 4,” become zero with €; and e respectively.

Since ¥, by the hypothesis which we have made, is differ-
entiable according to the rule for functions of lines we can
write
(2 V[[Ftefil| — ¥ |[F]|=ebiteh
where h; approaches zero with e If then we assume the
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existence of the third differential, in the sense of the theory
of functions of lines, we can write

V(Ftefiteaf) —B(F+eaf) —d(F+ef) +d(F)

—qafifiteaeh”,
where 4" approaches zero with € and e,.
Hence
(3) lim CI*D(F+E1f1 +€2f2) —é(F-{-elfl) —(I*D(F_{_ezfz) _|_<f,(F)
¢1=0 61 E2
a=0

¥ %
=f1 6.
But the first member is symmetrical with respect to f; and
. . s ok
fa; it can therefore be put in the form f; 6., and therefore
L] *
f161=f2 0.
Assuming f; and f; to be of determinate orders it necessarily
follows that

@ 6:=a bra

(4’) 02 =f1 512

so that the limit (3) will be equal to
,771}2 B12.

Now ¥ is independent of fi, therefore 6, is also independent
of fi.  On account of (4) it follows that 6, is independent of
fi. By the same reasoning, on account of (4'), 61, must be
independent of f,. Hence 6., is independent of f; and f5.

Now consider again equation (2). In view of (4) we can
write

V| [F+efl| =¥ |[F]|=af; bute b
and consequently
lim b4 | [F+e2f2] l_\I’ | [F] I =0y,
a=0 52f2

., being independent of fo. We have thus shown that
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v =:§—(~; possesses also the second fundamental property and

it is therefore proved that ¥ is a function of composition
of F.

When the successive derivatives of composition of & exist

they will be denoted by

@é &b

7T
and they will all be functions of composition of F in the sense
already stated.

9. We will proceed now to set forth certain observations
which will serve to make clear and complete the concepts
which we have so far formulated.

We will begin by noting that it is always desirable to
specify the functional field of variation for the argument of
the function of composition which is being examined.

Thus, for example, consider the expression

5) jF( £ Qy—£) dt,

and regard it as dependent on all the values cf F(§,19),
x<E<n<vy, in the sense of the theory of functions of lines.
Provided that the function F belongs to the closed-cycle
group the expression (5) represents a function of composition
of F; such is not the case otherwise.
In fact, if we take
F(x’ E) =F(£ —x)s

the function (5) will be permutable with F; whereas, in
general, if F(x, £) does not belong to the closed-cycle group
the condition of permutability is not satisfied. Therefore
the first fundamental property (§ 7) holds only if F belongs
to the closed-cycle group and therefore the argument will
have to be supposed to range over this field.
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10. The question might be asked whether, in defining
a function of composition (§ 7), it was necessary to state
explicitly the condition which we have imposed upon the
derivative: that it be independent of the differential of the
argument (second condition), or whether this condition
might be, on the other hand, a necessary consequence of
the condition of the permutability of the function with its
argument (first condition); but it easy to see that the two
properties are independent, in the sense that it is possible
for a function to be permutable with its argument without
the necessity of its derivative being independent of the
differential of the argument. As an example let us consider

the expression

(6) j:F(x, £ Qt—x) dt

as dependent on F.
If we suppose F to belong to the closed-cycle group, that

is to say, F(x, §) =F(§—x),

the preceding expression becomes
y—z
[ “raacman,

and we have here a function which belongs to the closed-
cycle group. It is therefore permutable with F. The first

Sfundamental property (§ T) is therefore satisfied.
Now let the increment ¢ /(y —x) be added to F(y —x). The

increment of the expression (6) is
y—=x
s mama .

In order to calculate the ratio of composition of this
increment and the increment of the argument F it is sufficient

to solve the integral equation

ef"‘f Q) d n=ej’f<y—s> Y(E—2) d &
0 %
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The solution ¥ will be the required ratio.
Now, differentiating both members with regard to y, we
have

fy—2) Qy—x) =f (0) ¥(y—%) +J':f’(y -HY(E—x) d§
or

£(x) Q) =1 (0) ¥(x) +j -5 WE dE,

and it is evident that the solution ¥ depends on f.

It follows that the second fundamental condition of § 7
(namely that the derivative of composition be independent
of the differential of the argument) is not satisfied, although
the first condition, that of the permutability of the function
with its argument, is satisfied.

11. The importance of this second condition consists in
its being invariant to the successive operations of passing from
the function to its successive derivatives: in other words, if the
condition is satisfied in passing from the function to its first
derivative it will also be satisfied in the successive passages
to the other derivatives. This is the significant fact con-
cerning the thorem of § 8.

In recognition of its importance we will give another
proof of this fact for the particular case in which the func-
tional field of the argument is that of the closed cycle.

Suppose then that to every function F of the closed cycle
another function ®, also belonging to the closed-cycle group,
is made to correspond in such a way that, according to the
general definition of § 7, ® is a function of composition ®(F).

Consider the function

dd
x= V3

aF
¥ belongs also the closed-cycle group and is independent of

d F (according to the fundamental property of § 7).
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According to the theory of functions of lines,
0= /(5,9 0 FOI £= [ Y-8 FOI &

and therefore
P'(x, £) = (x—§).

If we pass to the second functional derivative, we obtain
8% ) =0 Wx—8)=| &"(e=6m) 0 F) d .

But by virtue of the symmetry of the second derivative
(see loc. cit., ““ Lecons sur les fonctions de lignes,” Chap. II,
§ 4), it follows that
®"(x—8& 1) =2"(x~m, §),
or, assuming the existence of the derivatives of ®”,
a @/, a @/’ a @/’
dx  0E  on’

and consequently
P'(x—En)=P"(x—n, =" (x—§-n);
therefore

5 Y(x—£) =[:<1>"<x—s—n> 6 F(n)d 1.

It follows that

2 [ae—e-n o Fpan+ % [ @ e—t=1) 6 Pty dn =0,

and therefore, performing the differentiation,
®'(~£) 8 F(x) =0 (¢>0).

We have then
& (x—§~1n) =0

when 7 lies between x —# and x, from which it follows that
2§
R O SR RO REE

and this shows that our theorem is true, since the equation

can be written
sy=93"5F,
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and therefore
‘.Z_w_ =¢”;
4F
that is to say, the ratio

| R
"'j*l%*

is independent of the differential appearing in the denomi-
nator.

12. If ® is a function of composition of F the operation
differentiation of composition can be carried out by means
of differentiation, as applied in the ordinary sense.

In fact,

fim $F+eN) —$(F)
=0 ef
must be independent of f, since this function is permutable
with F. If we takef=f°, we have
S(F e F°) —(F) _ S(F+e F°)—3(F)
e F° € ’

therefore
dd_ . S(F+ef)—&(F) _ (dci(p+z 1)
dF =0 P dz =
and by this formula differentiation of composition is reduced

to ordinary differentiation.
13. Let us consider the expression

B(Fy) —B(Fy),

where F, and F, are permutable. By Lagrange’s formula
we can write

b(p) -b(r) - (LLLAALZR)

where 6 is 2 number which lies between 0 and 1,
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By this formula it follows that
M E - =(h-F) (45 ,
d FJ/ F=Fi+oF1=F)
or, if we put Fy=Fi+f,
<I>(F1+f) @(Fl) +f

where F; and f are permutable.

There follows a formula analogous to Taylor’s formula
in which the existence of the successive derivatives of com-
position is assumed, namely

S(F+f) =d(F) +f (‘—@E) { i

~F

dF)F F1+9f

d2<I>
d[‘? F=h
fm (qu) fm+1 (dm+1 &))
T + dFm/F= m+ (m4+1)I\ g fmt1 F=F1+9mf’
f being permutable with £ and 6 m lying between 0 and 1.

14. From formula (7),

‘I’(F 2) q’(F 1) _ (
F, Fz dF F= Fx
where the functions F; and Fz are supposed to be permutable.
Let us suppose that F(x, y | 5) depends on the parameter s
in such a way that for all values of s lying in a certain interval
the function F obtained belongs to a certain group of per-
mutable functions. We can then consider
S(F(x, 5 |5))
as a function of 5. By equation (7) we have
B(F(, 3| s0+1) ~B(Flx, 3| )
F(x, y .rg+h) F(x, y | 50) d@)
d F/ F=Fi+o(F— Fl)
where it is supposed that 7, =F(x, y | s0)y Fa=F(x,y |s0+h)
and 6 lies between 0 and 1.
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Assuming the existence of the derivative of F with regard
to S, and passing to the limit as 4 tends toward zero, we
obtain

®) dd(r) _dFdd

ds ds g f

15. From formula (7) it follows that if, for every function
F of the field we are considering,
dd_
dF
then ® is independent of F: that is to say, ® is equal to a
fixed determinate function belonging to the group of per-
mutable functions, which contains the field of functions

0,

over which the argument F ranges. Consequently, if Cin(F)

and éz(F) have the same derivative of composition they can
differ only by a fixed determinate function which belongs
to the group of permutable functions to which F belongs.
16. We proceed now to the subject of integration of
composition. Let there be given a function of composition

&J(F), and let us consider the function

Flx, 99
such that, for all values of s lying between certain limits &
and b, F(x, v | 5) belongs always to the same group of permu-
table functions. Let us suppose that ¢ and F are of positive
order.

We now form the expression
3 F(x,y19)

$(Fay ) =5

by composition; and, assuming that as a function of s, it is
integrable, we calculate the integral

©) [[derwy1n2Ee2da,,
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This is obtained by dividing the interval a b into # parts,

hy hay ... kg then forming
F,=F(x,y|a+h+h+...+h), F,=F(x,y]a)

#n—1 * *
(10) lim % S(F,) (F,+1~F,),

and passing to the limit in the final sum by making all the
intervals hy, A, ..., #, tend toward zero, at the same time
increasing the number of intervals indefinitely.

17. Let us put F(x, y | a) =Fu, F(x,y|b)=Fp. We will
write the integral (9) in the form

* 3k b *
j <I>(F)dF=J $(F)dF,
s a
or in the form .
(11) J' "B dF
Fq

To justify the notation (11) it is necessary to prove that,

if we take another function
F'(x, 9|5,
which for the totality of values of s’ lying between &’ and &’
represents a set of functions belonging to the same group
of permutable functions as before, then, provided that
F(x,y|a')=F4 F'(x, v | b') =Fg, we obtain for the integral
b x I ’

©) [[&cry1m 2D gy,
the same result (9)*.

For this purpose consider

Fx, v | U, Z)),

and let us regard «# and v as the codrdinates of points of a
plane. For all the valuesof # and » corresponding to points

* For an example of two such functions F (x, y | s) and F'(x, v |5”) we can take

Flx,y | 9)=1+4s(y—x)+s2(y—x)?
Fx, y(s)=14("—2) (/=1) cos (y=2)+ = ~ 1+ -x) ('~1),

and A=0, b=1, a'=1, =2, We then have
Flo,y|0)=Flle,y | )=1F (x| )=F (%, y| D=14+(@y—2)+@—=)>



Third Lecture 245

of a certain area ¢ and of its contour S let us suppose that
F is a function belonging to a given group of permutable
functions. Let us form the integral

LciS(F) dF= J &(F) —dS

0Fdu ade
J‘I’(F)(auds T dS)dS

If no singularity exists in the interior of the region ¢, by
virtue of formula (8), we shall have

aqu aqu
J‘ (F)(a dS EX dS)dS

] B () -2 (03

[ {3 - an e

=jd$(ﬁ,ai‘_@zf do=0
cdF\Ov0u dudv IR
It follows therefore that

(12) J’ &(F) d F =0.
s
From this formula we deduce the result that, if it is possible
to pass from F(x, y | 5s) to F’ (x, y | s') continuously without
allowing F and &>(F) to traverse any singularities, then the
two integrals (9) and (9’) lead to the same result.
18. Regarding F, as fixed and Fp as variable, the integral
Fpx *
j "H(F)d F
Fq
represents a function of composition of Fz. If we call it

i(FB), we shall have
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In order to integrate the rational or irrational functions
of composition which we have considered previously it is
sufficient to apply the ordinary rules of integration and to
substitute powers of composition for the ordinary ones.

It is possible, evidently, to consider differential equations
of composition by examining the relations between functions
of composition and their derivatives of various orders.

It is also possible, evidently, to consider functions of
composition and the derivatives of functions of composition
of several arguments.

19. It is easy to recognize the analogy between the theory
which we have developed and the theory of functions of
complex variables. The second condition imposed upon
the derivative of composition of a function of composition
(§ 7) corresponds evidently to the condition that the deriva-
tive of a function of the complex variable z be independent
of the direction in which the point representing the variable
z is displaced in the complex plane (condition of mono-
geneity). Each of these conditions is preserved in successive
differentiations (theorem of § 8).

Furthermore, formula (12) corresponds to Cauchy’s
Theorem, and evidently we can state that a necessary
condition that a function be a function of composition is
that it satisfy formula (12), thus establishing a reciprocal
theorem analogous to the well-known theorem of Morera,
the converse of Cauchy’s Theorem.

3. Application of Integration of Composition to Logarithms
of Composition and Powers of Composition

20. We have seen that
diF

3 =f_1;
dF
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hence

We can also put

z"F=1imF‘p{é+ SN -
n= j;,o_*_F—F° f‘°+2(F_F°)
n n
1 1} £ a1 ds
—_——t.. e =(F-F° J I P e
Fo43(F~F) F ( ) 0 Fu(F—F°)
n
or
f*‘iF=(ﬁ—f‘°)J'!—*——£i—z_.—.
0 Fo 45(F — F°)
Now
j = i‘s-...).
F°+z(F -7 T1- ( Mo

We are thus led to inquire whether the integral

Vdx z 22 A
J'Ol_z (F-I_ZF2+(1_Z)2F3—-. . )
is convergent. The proof of the convergence depends on
the following theorems which we will state without proof.
21. Theorem I. Let F(x, y) be a finite continuous differ-
entiable function, a<x<y<b, and let
aF(x, ) 9 F(x,y) 0% F(x,v)
S =Ry, S =R y), S
F(x, x) =1, Fi(x, x) = F,(x, x) =0
(in other woids we suppose that F has the canonical form,
Lecture I, § 10) and let Fi, Fy, Fy; be finite and continuous.
Then

() zF-gl4psFo—. . =ze"“y"’)+q)————(x’3 [z),

and when % varies from h >0 to oo, ® will remain less than a
certain finite number.

=Fu(x, v),
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Note: The condition Fi(x, x)=F,(x, x) =0 can be re-
moved and the theorem will still be true.
Theorem II. If the conditions of the preceding theorem
are satisfied, and if the funciions
#F #F @F  OF
dx2’ 092 dx dy?’ Ix20y’
are finite and continuous and their absolute values are less
than M, then for y >x

lim 9,3 9 = 5EED 4 [ EEBD w(e s,

where
U(r, y) =Fot Fp+Fo+. . .,

and for y=x
lim ®(x, y | ) =0.

22. From Theorem 1 it follows, under the conditions
imposed, that the expression
lim (z F ~z2 Fofogs fo )
2=}
is equal to zero for y >x and is infinite for y =x. Further-
more, if F(x, y) is greater than a certain positive quantity,
lim (z F+z2f2+z3f3+. L) =00,
z=+4w
These properties show the close connection between the
very general series (I) and the exponential series. More-
over, Theorem I (see the remark at the end of the theorem)
serves to answer the question concerning the convergence
of the integral (1). The fact that F is reduced to the
canonical form (Lecture I, § 10) or even simply the fact that
F(x, x) =1 suffices to show that the integral in question 1is
convergent, and therefore

an Fir=(F- F°)J' (F s (1z22)2* )
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23. As an example we will now apply formula (II) in
order to obtain the expression, already found in another

way, for il1 (cf. Lecture I1, § 22),
Putting

1 2
1o=0=] L2 (1=t o=+ 2 o-0-.. )
=J1 L’_l—'_—‘(y_x) ii
0 1—’2’-’
we have by virtue of (I1I)

il1=A-i»f

But
[t ds
ORI
< f’(x)=Jl—__z ST gy
0 1~2z) ’
J) =) = [ T sl
\ "o (1—2)2" " %’
therefore

a7 f<x)=ajf"“g“’5=—1ogx+ex E’xogse—eds,

from which it follows that
(-197=-["logtag+[ wdn[ log et
0 0 7
=log x-—ﬂ[ log £etd E=log x—T'(1) =log x+C,
0

where C denotes Euler’s constant. We thus find again the
result
ii1=logx+C.

24. Returning now to the general formula (II) we ob-

serve that it gives us a method of calculating
FIF,

where F, its first derivatives and its second mixed derivative
are finite and continuous and also F(x, x) =1.
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We have in fact, by reason of (I),
1 P4 * ZZ *
it&(F—l_ZFLul_@fﬂ—.”),

|

I
|
L
+

—_
|
X
N
—-
1E
™2
N’
Iy

_—E =)
T W, y |2 (1-3),
where ¥ (x, v | 2) is always finite and continuous. Hence,

making use of (16) and (17),
ldz z 22 A
JOT:Z(F”l—zm(l—z)st"“)

1 —-— %,
=J€ ”)¥£+jwwﬁ|@a-@dz
0

=-—bg(y~xr+ﬂ‘“J log 78 d £40(x, y),

y—x
where 6 (x, y) is finite and continuous. It follows that

d-B [ (F-n gy e )
=log (y—x)+e'~ "J log £ e=%d £+0(x, v)
+[ 7, s>{—log (y—8)

o[ lognerdu+o(e, 9)}) 4 &
y—¢
=log (y —#) +x(, v),
where x is finite and continuous.
We therefore have the theorem: If F (x, y) is such that
F (%, x) =1, then

FIF=log (y—x)+x(x, y),

where x (x, y) 15 a fintte and continuous function.

=_1.._t’
1—2z
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The function x (¥, ¥) can be calculated by obtaining first
& as the solution of a certain integral equation and then
finding ¥ and 6 in the manner indicated above.

* -
It is unnecessary, therefore, to know F* in order to be

L N .
able to calculate F [ F, and the calculation can be carried out

by operating directly on the given function F (cf. Lecture II,
§21).

25. In this connection one other fact should be added:
not only is it unnecessary to know F* in order to obtain
Fi F, but, on the other hand, by means of the latter it is
possible to calculate F* when Fis given.

In fact, when FlFis known, we can obtain

EFlFye, FIF)s, FQ P, .,
and therefore, by applying the formula (see Lecture I, §25),

2FIF 2F(F)? s F(F)s

1:‘ _ 23
F+1—F+ 1! + 2! + 3! +-..,

. * - .
we can obtain F*%11, expressed in terms of a series of powers
of z by means of operations performed on F alone (see

Lecture I, § 23). The power series thus obtained for Fen1
is always an entire function.

We have here verified, in the case of powers of composition,
a fact which corresponds to one which we meet with in the
case of ordinary powers, namely, that in order to obtain the
former in general, it is convenient to use logarithms of
composition, just as in order to obtain the latter in general
it is convenient to use the logarithms of ordinary algebra.

This is another confirmation of the utility of introducing
logarithms of composition.

Vito VOLTERRA.





