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FUNCTIONS OF COMPOSITION* 

FIRST LECTURE 

INTRODUCTION - COMPOSITION, PERMUTABILITY, INTEGRAL 
POWERS OF COMPOSITION, THE CLOSED-CYCLE GROUP - 
OBJECT OF THE LECTURES - FRACTIONAL POWERS 
OF COMPOSITION, INCOMMENSURABLE POWERS, FRAC- 
TIONAL AND INCOMMENSURABLE ORDERS OF FUNCTIONS 
OF COMPOSITION OF A GROUP 

1. Introduction 
1. We call to mind the solutions of the simplest integral 

equations. In this connection two functions f(x) and 
F(x,  y), which are limited and continuous, are supposed 
to be given, and we wish to determine +(x) so as to satisfy 
an equation 

(1) f(4 =+(4 + po 0 JYf, x)  d4. 

The solution is given by the formula 

(4) 

(5)  
........................... 

A* Three lectures delivered a t  the Rice Institute in the autumn of 1919 by 
Senator Vito Volterra, Professor of Mathematical Physics and Celestial Me- 
chanics, and Dean of the Faculty of Sciences of the University of Rome. 

Translated from the Italian by Dr. Hubert Evelyn Bray, of the Rice Institute. 
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182 Functions of Composition 
The series (3) is uniformly convergent, and defines a 

function S(x, y) which may be regarded as the first example 
of a function of cornposition of F(x, y). It is obtained by 
operations t o  be performed on F(x,  y) and changes when 
that function changes. And it  can therefore be regarded 
as entering into the class spoken of as functions depending 
on other functions, or functions of curves. The equations 
(4), ( S ) ,  . , . give us moreover the first examples of the 
operation of composition of functions, and of powers of com- 
position. 

Formula (5) may also be written in the form 

(5 ' )  
J x  

and by a comparison of the formulae ( 5 )  and (5') the follow- 
ing equation 

is obtained. Thus we have a first example of permutable 
functions. 

Upon these elementary considerations is founded the 
theory of composition of functions and the permutability of 
functions. We pass then to  give the corresponding general 
definitions and fundamental properties. 

2. Composition - Permutability -Integral Powers of Com- 

2. The composition of two integrable functionsf(%, y), 
position - Group of the Closed Cycle 

+(x, y) is the operation 

J)(%, E> +(t, y> d t. 
It is understood that these functions remain in the field of 
real variables, and it will be assumed that  y > x .  If the 
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result of the operation is $ (x, y), the relation will be written 
in the form 

I f f  and 4 are equal, we may write 

and also * * * *  f8=f’f =fY. 

j,,, =)tap, 
........... 

I n  general, when m and n are integers 

being spoken of as the integral power of composition of 
degree m. If a, b, c . . . are constants, the quantities 

are the products of constants into the functionsf, 4, $, . . . 
and the equation 

( a j )  ( b ; )  (e$) ... = a  b c  ...ft$$... 
is satisfied. 

3. The operation of composition is associative, and if the 
functions happen to be permutable, also commutative: it is 
always distributive.* 

a f ,  b 4 ,  CICI, . * ‘ 

* *  * 

4. Given the series 
al z+a2 z2+a3 z8+. . . 

which is supposed to  be convergent for I z I <R, the series 

a l {+a2 j :+a3 j s+ .  . . 
is uniformly convergent whatever may be the modulus of 
the function f, this function being limited; the function 
defined by the series is permutable with f. The theorem 
may be extended to power series in more than one variable.? 

Chap. IX, Q§ 1-5. 
* V. Volterra, “Leqons sur les fonctions de lignes,” Paris, Gauthier-Villars (1913) 

t Ibid., Chap. IX, 0 10. 
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5. If m is an integer and the relation 

# b 9  Y >  = (y-x>"f(x, Y )  
is valid, f ( x ,  y) being limited and continuous, and f(x, x) 
always different from zero, the function #(x,  y) is said t o  be 
of order m + l .  

The resultant of composition of two functions of order m 
and n respectively is of order m+n, and the power of composi- 
tion of degree m of a function of order n is of order mn. 

6. Knowing a function 4 of order 1 permutable with $ 
of order m, it is possible to  calculate a function 8 of the first 
order whose mth power of composition is I), provided that 
# and + have limited derivatives up t o  and including the mth 
order. 

8 = ~ 5 . *  
I n  this case then we write: 

7. Let a(x)  and P(x) be two functions, limited and con- 
tinuous, which do not vanish, and write 

from which x1 and x are determined as 
other: 

x1 =A(%), x =p(x1). 

functions of each 

Form then the function a(x )  P ( y )  f ( x ,  y) and write it as a 
function of X I ,  yl ,  that  is, 

If now we write, by means of the change of variable given 
above. 

f i b 1 9  Y J  = a ( 4  P ( Y )  f ( X 9  Y > .  

we shall have the equations 

f(x, r> =al(xl> P d Y J  f l ( X 1 ,  Yl). 
* V. Volterra, loc. cit., Chap. XI, 5 8. 
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If again we apply the same transformation to +(x, y ) ,  and 

obtain thereby +1(.x1, y l ) ;  and if we let f = p ( f J ,  we shall have 

44 P(Y)  Jh E> @(E, Y >  d E 

From this equation we deduce that the resultant of the com- 
position of two trandormed functions is the transform of the 
resultant o j  the two functions themselves, and hence that a 
power of composition of a transformed function is the transform 
of the power of composition of the junction itself, and finally, 
that  the transformation does not alter the property of permut- 
ability, that  is t o  say, it transforms a group of permutable 
functions into a new group of permutable functions. 

8. Given a function F(x ,  y )  of order 1 all the functions 
which are permutable with it can be found. For this 
purpose the question may first be reduced t o  the case in 
which 

In fact, if F(x, y )  does not happen t o  satisfy these conditions, 
it may be reduced to one that does by means of a transforma- 
tion of the type just considered.* We shall say that a 
function F which satisfies (1) is reduced t o  canonical form. 
On the assumption that  the function F is limited and con- 
tinuous with its derivatives of the first two orders, the 
solution of the problem is then given by the formula 

*V. Volterra, loc. cit., Chap. XI, 88 1, 2. 
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in which X is an arbitrary function, and CP can be calculated 
from I: and its derivatives of the first two orders.” 

9. Another fundamental property of permutability is 
expressed in the following theorem: Two functions per- 
mutable with a third are permutable with each other. We omit 
the proof of this theorem, referring merely to  the paper of 
Professor Vessiot.? 

10. A group of permutable functions is characterized 
by a function of the first order of which the first and second 
partial derivatives exist and are finite. Consequently when 
we consider a group of permutable functions, we shall always 
assume that there is known to us a function of the first order 
which has finite deriwatiwes of the first and second orders and 
belongs to the group. This function shall be spoken of as the 
fundamental function of the group. When a fundamental 
function of the group has the canonical form, we shall speak 
of the group as a canonical group. 

11. A remarkable group of permutable functions is the 
so-called closed-cycle group,$ which is made up of functions 
of the form 

f(Y-4. 
Unity belongs to this group, and it is deduced immediately 
that 

( y  -x )m- l .  i f i t =  ~ 

1 
( m - l ) !  

3. Plan of the Lectures 
12. On the basis of these general ideas it is the plan of the 

following lectures to  develop a complete theory of permutable 

* V. Volterra, loc. cit., Chap. XI, p. 162. 
t Vessiot, “Sur les fonctions permutables et les groupes continus de transforma- 

1 V. Volterra, loc. cit., Chap. VII. 
tions fonctionelles lineaires,” Comptes Rendus, 1912, p. 682. 
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functions and their properties, analogous to the usual 
algebra and analysis. 

I n  the first place, we observe that  the operation of com- 
position of permutable functions is analogous to  multiplica- 
tion, in common with which it possesses the commutative, 
distributive and associative properties. The algebra of 
permutable functions has already been studied by Professor 
Evans. 

Now if we follow the historic development of the usual 
analytic theories, we see first unfolded the theory of integral 
powers, then fractional and negative powers. Afterwards 
comes the theory of logarithms, which barely precedes the 
infinitesimal calculus. In  fact the very definition of loga- 
rithm as given by Napier involves implicitly the idea of 
derivative. And finally comes the general theory of functions, 
which crowns the whole structure. We observe tha t  a t  first 
the name function was applied t o  powers, and then gradually 
extended its significance t o  cover the modern interpretation. 

We shall follow the same road in the theory of functions 
of composition, and since we have already discussed the 
integral powers, we shall proceed first to  treat the fractional, 
then the negative powers of composition and then the lo- 
garithms o,’’ cornposition. This leads us t o  the diferential 
and integral calculus of composition, of which we shall give 
the foundations and the elementary applications t o  the 
logarithms of composition. And we shall develop in its 
principal lines the theory of functions of composition. 

In this way it will appear clearly that  the logical process 
which serves as a guide in our path is the one that reproduces 
the evolution of ordinary analysis in its development from 
the finite t o  the infinite. 
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4. Fractional Powers of Composition - Incommensurable 
Powers - Fractional and Incommensurable Orders of 
Functions of a Group. 

13. If 4 is of the first order and we propose to  ourselves 
the problem of finding a function j’ which will satisfy the 
equation 

(0 P=4, 
we cannot find a solution in terms of a function which 
remains finite. The problem however can be solved by 
means of a function which becomes infinite but remains 
integrable. 

To be convinced a t  once of this possibility it is sufficient 
to  call to  mind the first result which was known about 
integral equations, namely the solution of the integral 
equation of Abel: 

If we write down the function 

9 
1 F(x,  y )  = - 

d y  - x  

we shall evidently have 
* 

P = n  

and thus we see that  the square of the function I/*, 
which becomes infinite for x = y ,  is nevertheless a constant. 
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We now proceed t o  show that  if $I(., 9)  is a function of the 

first order, and if 
$l(X, Y> 

( Y - 4  a 

e(%, Y) = n-1’ 

then in is of the first order. 
I n  fact, we shall have 

0 2  * = l M G Y )  

(Y - 4. 

7 #I ( 1 - B P -  

a-2 ’ 
where 

l$l(.,.+(Y-.)B)rC/a(x+(Y+.)rl,Y) d r ,  
$ 4 . 9  Y) =lo n-1 n -  1 

and consequently $2 remains finite like Itl and is continuous, 
and of the first order. Similarly it is evident that  

;a = $ a h  Y> 

(Y - 4” 

e*. =$&, y> 

n-3 3 

where $ (x ,  y) is a function of the first order, and so on; 
whence it follows that  the function 

is a function of the first order. 
It is evident that  if $i possesses finite and continuous de- 

rivatives up t o  a certain order, the same is true for IJ~, $3, 

. . . )bn. 
14. Let us assume that  the function 6 is permutable with 

4, and that  t$ and $ possess finite and continuous first deriva- 
tives. I n  this case it is possible to  calculate in a simple 
manner the function f which satisfies (1). 

I n  the first place we may point out that  $;must be per- 
mutable with t$, for we have the equation 

It follows that  

* * * * *  * * *  * *  
e n t $ = , , - 1 4 0 = 0 n 7 2 t $ 0 2 = . . .  = + e n .  

44% 4 = c $#I(% 4, 
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C being a constant,* and hence, since C#J and +n possess finite 
and continuous first derivatives, that  the function 

approaches zero as x approaches y to the same order as y - x  
or higher order. 

C#Jh Y> -C+n(x, Y) 

The function g which satisfies the integral equation 

is finite and continuous, since + n ( x ,  x )  =O. We can then 

We see immediately that  we have 
G(x, Y> 

(Y -4. 
f (x ,  Y> = n-1' 

where g(x, y )  is of the first order and such that  

G(x, x )  = a m .  

And since we can take any one of n values for the nth root 
of C we can obtain by means of the procedure (3) n solu- 
tions. 

15. Let C#J be reduced to  the canonical form F. Then 8 
may be obtained from (2) Chap. I1 by writing 

1 - -1 
(4) X=q@ . 
I n  fact we shall have 

1 ! -I  
1 + (Y - X I  J U n  (Y - x >  2.4 I x ,  Y> 

0 e= "-1 9 

( Y - 4  
* V. Volterra, loc. cit., Chap. XI, p. 3. 
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in which the numerator is of the first order. It will be 
differentiable if @ is differentiable, and thus will have deter- 
minate derivatives provided that F has such, up t o  and 
including the third order. I n  this case we shall have 

If instead of (4) we write the equation 
1 - -1  

A = ? ”  P ( 7 h  
where p(7) is an analytic function which does not vanish 
for 7 =O, we shall obtain another formula for 8 which may 
be used in the formulae (5) and (3); and thus a 8 may be 
determined in an infinite variety of ways. 

It may be asked if in this way we obtain always merely 
the same solutions upon substitution in (3). At present 
we content ourselves with the observation tha t  all such 
solutions are permutable among themselves. 

16. The formulae which we have given lead us necessady 
to  extend the notion of order. 

If  +(x,  y) is of the first order, and if 
f(% Y> = (Y -XIa 4(% Y), 

the function f will be said to  be of determinate order a+l. 
Thus the functions 8 and f of the preceding sections are of 
order l /n .  I n  the above definition, the function +(x ,  y) is 
said to  be the characteristic off(x, y), and $(x ,  x )  its diagonal. 

If we have a function 
fhY Y) = (Y -x>a4b(x, Y), 

in which 4(x,  y) is finite and continuous, and further, 4 ( x ,  x )  
=0, we say that j is of order higher than a+ 1. I n  this way 
we may obtain functions however which are of no determi- 
nate order whatever; for example the function 

where $(x,  y) is of the first order, is of order higher than 
(Y -x)”-l 1% (Y - x >  4 ( x ,  Y), 
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E - - L  where e is arbitrarily small, and yet has no determinate 
order. 

If  $(x,  y) and @(x, y) do not have determinate orders, but 
the function 

$b? Y> 
(Y - x ) " + ( x ,  Y) 

is always less than some determinate number, with a positive, 
it will be said that $(x, y) with respect to +(x, y) is of order 
not less than a. The operations of composition will be 
applicable to  functions whose order is greater than a positive 
number, and we shall consider such functions. 

I n  order to  obtain a function of determinate order 
belonging t o  a group of permutable functions, it is sufficient 
t o  substitute in (2), 5 8: 

X11) =r]'-lP(ll), 
where p is bounded and does not have 0 as a limiting value 
as r] approaches 0. 
If two functions are of determinate orders a and B their 

resultant is of order a+p. I n  fact if 4l and 42 are of the first 
order, we may write 

fl(Y -wl 4l(% Y), 
f2(Y-W142(3c, Y), 

Jj2  = ( y  -x)a+0-1 x 

whence if we substitute 
+(x,  Y )  

we shall have 
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in which 

so that  # will be of the first order. By the same procedure, 
it  may be shown that if one of the functions i s  o j  order higher 
than CY, and ;f the other i s  of order p or higher, then the resultant 
i s  of order higher than cu+p 

The function # may be differentiated t o  whatever order 
and 62 are both differentiable. It may further be noted 

that  the theorem does not demand tha t  fi and f i  be permut- 
able. 

If a junction i s  of order r, its nth power will be of order nr; 
and if we denote the respective characteristics of the func- 
tion and its power by G (x ,  y )  and L(x,  y )  we shall have 

If the function were of order higher than r its nth power 
would be of order higher than nr. 

17. If 
4(x, Y> =fh Y) (Y 

with I j ( x ,  y) I <M and a>O, we obtain in the case that  m 
is an integer, the inequality 

. .  
Hence if the series 

m 
Z amzm 

i s  convergent f o r  values of z of absolute value less than a certain 
quantity, the series 

1 

is convergent whatever may  be the modulus of the function 
f (x ,  y )  provided that it i s  finite (compare # 4). 



194 Functions of Composition 
18. Given j of order n+a with 0 <a! < 1, and n a positive 

integer, and given $ of order n+a!+P, or higher order, with 
p>O, we proceed to treat the problem of calculating c$ so 
that  the equation 

will be satisfied. This problem can be solved by a method 
analogous to that  which I gave in my " Leqons sur les iqua- 
tions intigrales et intigro-diffirentiilles ", Chap. 11,3, p. 60.* 

( 5 )  G=$ 

I n  fact, if we write 
(Y -4 -u=N% Y>, 

we shall have 

* *  
Now 8 is of order 1 -a!, and so 8 f = g  will be of order n+l, 
and K =e* 2 will be of order n + 1 +p or of higher order. 

T h e  equation 
;;=K 

is solved a t  once by differentiating it n+1 times with respect 
t o  x,  and thus reducing it to  an equation of the second kind. 
Evidently 4 will result of order I n  order 
to  apply the method it is necessary to  admit when f and $ 
are of determinate orders, that  their characteristics should 
have finite derivatives of the n + l s t  order. 

It is  not necerrary that the given junctionr f and 4 should be 
permutable. If, however, they are permutable it may be 
deduced that c$ will be permutable with them. If they are 
not permutable, the equation 

is distinct from ( 5 ) ,  and can be solved by forming the integral 
equation 

or less than p. 

(5  '1 8=$ 
* * *  
4 j e = J  8, 

* Paris, Gauthier-Villars, 1913. 
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in which ?e" will be of order n + l .  By means of n + l  
differentiations it could be reduced to  an equation of the 
second kind. 

The equations (5 )  and (5') each admit a single solution. 
Consider the equation 

* *  
(6)  f 141 = $1, 

where 

and assume that  f and 1c, have the same properties as before, 
while x and p are functions of higher order than some positive 
number. 

The solution 41 of (6) in 
given, can be solved by first 

91=6+4 ;4+i 

which fi and $1 are supposed 
solving (s), and then taking 

* *  * 
;+(4+4 PI  X2-. . ., 

which series will always be uniformly convergent. I n  this 
case also there will be a unique solution. 

The functions fl and yh are respectively of the same orders 
as the functions f and $, but it is not necessary that  they 
satisfy the conditions imposed on f and # with respect to the 
differentiability of their characteristics. 

19. Suppose that  we are given a function 

4 ( x ,  Y) = (Y -XIa-* w, Y) 

of determinate order CY, and that  we wish to calculate the 
function f, such that  

By virtue of the preceding considerations it is possible t o  
extend t o  this case the procedure followed (0  14) in solving 
the analogous equation (1) in which Q is of the first order. 

I n  fact, if we suppose that  the group t o  which @ belongs 
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is first reduced t o  the canonical form and if we calculate the 
function 

1 E-1 
1 + (y - x> J 24" W Y  - X I  24 I x ,  Y1 d 24 

0 e =  
(y +'-: 9 

e'. will be of order cy and its diagonal will be 

Now if we solve the equation 

regarding g as unknown and assuming the existence of the 
derivatives of c$ and CP, of the orders demanded by the preced- 
ing theorems, f will be given by the formula. 

1 1  

f = - ( s + - e g + l Z  QF(T) 1 * *  - (n 1 . 2  - 9 ( jg 'z  + . . . ) . 
n (n) . -  

0- 

We shall thus obtain n solutions, since d ' ( a )  contains 
an nth root of unity as an indeterminate factor. 

These solutions are all permutable with each other and 
with 4. We have to  determine, as in 0 15, whether it is 
possible t o  find other solutions permutable with these. 

20. Iffi andf2 are two permutable functions of determinate 
orders and if the characteristic of each possesses a finite and 
determinate derivative of an order equal to the integer next 
larger than the order of the respective function, and if 

* *  
fi" = fz", 

then we shall have 
j l  = E  jz, 
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where e is an nth root of unity. In  fact fi and f2 will be 
necessarily of the same order, and if we represent their 
characteristics by 

and therefore 

But 

and 42, we shall have necessarily 
$1"(x, x )  =+an(% 4, 
M x ,  x )  = e  M X ,  x ) .  

where el, ea, . . , e, are the nth roots of unity. 
If we assume €=e l ,  the binomial expressions fl-e&, 

fi-en f2 will be of the same order as fl  and j2  and conse- 
quently, by the results obtained in $18, it follows tha t  

jl = e  f a .  
21. The question which we raised previously ( a #  15, 19) 

is now answered in view of this proposition, that is, by 
changing X (7) in the manner indicated we obtain always 
the same solution of (1) since the results are always functions 

of determinate order - whose characteristics possess deriva- 

tives and whose nth powers of composition are equal t o  each 
other. 

22. Iffl and f a  are two permutable functions of determi- 
nate order and 

1 
n 

The same is true of the solutions of (8). 

it follows that  

jl* =jam, 
q being any integer whatever. Conversely, if the last 
equation is satisfied, the equation 

fl" = e fa" 
will be true, E being one of the qth roots of unity. We shall 
write 

* * 
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and obviously, in writing this equation we shall include in 
the symbolfi an undetermined root of unity. 

Given fi, in order to  calculate fi  it will be sufficient t o  
calculate first, by the rules given in $ 0  14, 15 and 19 the 
function 

JzT 
from which we obtain 

( j p n ) m .  

f, 

The whole of the ordinary algebra of fractional powers can 
be applied without change to fractional powers o j  composition. 

23. In  the expression 

if we suppose that f is of a determinate order CY, Le., 
f= (Y - 4 a - 1 G ( x ,  Y ) ,  
c 

it then follows tha t  f" will be of order or  n 
c a 2  - 
f" = ( y  - x >  L ( x ,  y), 

and 

m . L(x, x )  = [G(x, x ) P  

c r(?) 
The fractional powerf" is determined t o  within a factor 

We shall be able to  do away with 

If j is a function of determinate order CY whose diagonal 

equal to  a root of unity. 
this indeterminateness when the diagonals are all positive. 

is positive 
*E "Ell 
f" = ( y  - x )  L(x, Y I:), 

and the diagonal of this function is also positive. 
Let us suppose tha t  as we make the number approach 

n 
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a positive rational number @, L 

199 
"> tends uniformly n 

m 
n toward L(x,  y I @); and tha t  as - approaches any irrational 

number z > O  L x ,  y - tends uniformly toward a deter- 

minate finite limit L(x,  y I z). 
( 13 

We shall write 
* I"= ( y - X ) " ' - '  L(x9 Y 14, 

and refer to  this function as an irrational power of cornposition 
of order z.  

We shall have 
rS(4 G(x, x)' - e  

r(a z> 
L(x, x I Z) 

If I G(x, y )  I <M,  we shall have 

All of the algebraic calculus of powers with commensurable 
or incommensurable positive exponents is extensible to the case 
of powers of composition, and consequently 

the numbers z and z1 being any positive numbers whatever.* 
24. When we know the function 

j E  = ( y  -X)"Z--l L ( x ,  y I z), 
for any positive value of z whatever we are in a position to 

calculate the function where $I is given by the equation 

T h e  actual calculation of; cannot be carried out without recourse to the theory 
of logarithms of composition. It is done in Lecture 111, 82.5, We may add at the 
outset the following statement of a fundamental property: fs is an entire function 
of 2. 
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and where 1c. is any function of an order greater than a certain 
positive number. 

We shall have in fact 

and the series is always uniformly convergent ( 6  17). 
It is seen immediately that  from the fact that  is an 

analytic function of z ic follows that $ is also analytic, and 
that since? is an entire function so also is 611. 

25. As an example let us treat the case of functions which 
belong to  the closed cycle group. 

Unity belongs t o  the closed-cycle group and if z is positive 
we have 

and therefore is is an entire function of z. 

a derivative. 
Now let 9 ( y  - x )  be a function of the first order possessing 

If 4 (0) =1, then 

c$ ( y - x )  =l+i $1 

where i/ denotes the derivative of 4. Consequently 
* *  * * z(z-1)* * 

@ = l“2 lz4’+- 1”/2+. . . 1.2 
and therefore >, thus obtained, is an entire function of e. 

VITO VOLTERRA. 



SECOND LECTURE 

INTRODUCTION - ZERO AND NEGATIVE POWERS OF COM- 
POSITION - FRACTIONS OF COMPOSITION - PROGRE s- 
SIONS OF COMPOSITION - LOGARITHMS OF COMPOSITION 
- NAPERIAN LOGARITHMS OF COMPOSITION, EXTEN- 
SION OF LOGARITHMS OF COMPOSITION. 

1. Introduction 
1. If we have the relation 

r * i = $  
(in which we supposef, 4, # to  lie in the field of permutable 
functions) and if we consider the operation of composition as 
analogous to multiplication, we can write, by analogy, 

(2) 4=J?-1, (2’) j=J$- l ,  
and we can regard the symbols (1), (2), (l’), 2’) as represen- 
tative of the operations whereby we solve the integral equa- 
tion 

+ = IYJ(% E) 4(E9 Y )  dE, 

in which we are t o  regard 4 and f successively as the un- 
known function. 

We observe that  i f f  is of order m and 9 of order n, # will 
be of order m+n, m and n being positive numbers. Hence 
m<m+n>n. 

201 
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If then we write the symbol 

* 

where @ and F are permutable functions, it will have no 
meaning if the order of @ is less or equal to  the order of F. 

A great difficulty arises if we wish t o  give a meaning, in 
general, to  the symbol in question. 

But it is to  be remembered that  an analogous difficulty 
arises in the elements of arithmetic if we restrict ourselves 
to the field of integers. If we write 

2 X3 =6, 
we can represent division of 6 by 3 or by 2, by the symbols 

But until we leave the field of integers the symbols 
3 1  
5 '  4 

I n  arithmetic we can introduce the number %=2-' by 
as equivalent 

Similarly we could define the symbol 

have no meaning. 

defining multiplication of an even number by 
t o  dividing it by 2. 
f-' by the property that  

provided tha t  

But just as, by this procedure, we should obtain in arithme- 
tic only the reciprocals of the integers, so, in the field of 
composition we should obtain only special functions of 
composition. Consequently, in order to obtain readily 
more general functions, we follow another course, the princi- 
ple of which we will now explain. 
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2. I n  arithmetic we can arrive a t  the fractional numbers 

by an extension of the number field, introducing them, after 
the integers, as new quantities for which we define equiva- 
lence and all the operations which can be performed on them 
in combination with each other and with integers. Unless 
we depart from the field of integers these quantities have 
only formal significance. But all the calculations and all 
the propositions in which they are involved cease t o  be 
purely formal, whenever we desire, provided that we multi- 
ply by a suitable integer. They then represent actual rela- 
tions between integers. 

We shall follow precisely this method in order to  introduce 
fractions of composition, and they will be formal in char- 
acter, but the remark which we have just made applies to 
them, namely, tha t  they can be combined by composition 
with a convenient function in such a way that the results 
cease to  be formal and represent actual relations between 
functions. 

2. Zero and Negative Powers of Composition-Functions of 
Corn p o d i o n  

3. First we must introduce the element which corresponds 
t o  unity in arithmetic but which, in the field of composition, 
we do not yet possess in a perfectly clear and simple manner, 
Let us return, therefore, t o  the simpler integral equation 
considered in the first lecture and let us write it in the form 

f(x,  Y> =cp(  x, Y 1 + cp(% E >  F(E, Y> dE, 

in which the given functions are assumed to be permutable. 
I n  the notation of composition we can write 
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and the solution 

* *  * *  
4 = f -j  F + j  Fz -f .b +- . . . 

I n  the lectures which I gave at  the Sorbonne (“Fonctions de 
lignes,” Chap. IX) these formulae were written 

j = i  (I+$) 
and 

cp =f(l - J + L P + .  . .) 
- --. ? 

1+E 
In other words we had, by definition, 

Unity, in this case, functioned in such a way that when 
combined by composition with + it gave q5 as a result. 

On the other hand, if we combine 4 with 1, giving to  1 its 
ordinary meaning, we have 

J x  

which is different from 9. Therefore unity sometimes means 
the element which composed with a given function reproduces 
that function and sometimes it has its ordinary significance. 
To avoid confusion we agree to  state explicitly on each 
occasion which meaning we wish to  attribute to  unity. In 
order to  remove all uncertainty we will use two different 
symbols for the two meanings.* 
4. Let f ( x ,  y) be a function belonging to  a group of 

permutable functions. We know what is meant by com- 
position of a function of the group withj . t  By composition 
with f-l we mean performing the inverse operation, that  
is, finding a function which, operated upon by f, will re- 

* Evans has removed this ambiguity by another method. 
t Cf. Lecture 1,s 2. 
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produce the given function. If then we compose the first 
function with f and then with?-’, this is equivalent to  leaving 
the function unaltered. Then 

* *  * 
f j-’=fO 

will be a new entity which we shall introduce into the group, 
defining it as that  element which compoJed with a n y  other 
function of the group leaves i t  unaltered. It is this element 
which corresponds to  unity. 

The properties of? are given by 

f and t$ being functions which belong t o  the group. And 
if a is a constant 

( a h  ti) =af .  
( a p + b ] )  (c fb+d f) =a  c p + a  d ++b c f + b  d?;. 

Hence it turns out that  a ?’+b 1 has only a formal meaning 
by itself but acquires an actual meaning provided that  it is 
combined with any function of the group. 

The introduction of the element f” greatly simplifies the 
formulae which I have given in previously published works 
on the theory of permutable functions (cf. loc. cit., p. 138). 
I n  addition let us consider, for exkmple, the series 

1 2  

FI rh I=j”+f+fi+n+* *, 

which satisfies the addition theorem 

F I [!+dl I =$ I r i 1  I I 161 19 

a form of statement which is much simpler than tha t  given 
on page 159 of the work cited. 
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I [i 1 since we have the relation 
Besides this we can show more clearly the period of F 

tha t  is t o  say F I [A I has the period 2 7r ip. 
5 .  We will proceed now t o  the study of fractions of 

composition in the strict sense of the term. Let us consider 
a set of permutable functions of determinate orders. We 
will denote these functions by f, 4, $, . . .; f1, $1, $1, . . . 
fi, $2, fi2, . . , and suppose that  linear combinations of 
them are likewise of determinate orders and also that  if we 
take any one of them which is of higher order than a second 
it is always possible to  find one and only one function of the 
group which, when composed with the second, will give the 
first. 

For example, a set of functions of this nature would be 
that which could be generated by taking a function of the 
first order, forming its integral and fractional powers, form- 
ing products of composition of these powers and adding 
together constant multiples of these results. 

We shall say tha t  4 is the fraction of compodion belonging 
4) 

to the group and having f f o r  its numerator and 4 f o r  its de- 
nominator. 

* 

We shall say that 

J 
and that 

whenever 
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From this we can infer the proposition tha t  two fractions of 
composition which are equal to a third are equal to each 
other. 

In fact, if 

41 4 2  41 43 
i t  follows tha t  

* *  * *  
(1) fl: 4 2  = i z  41, (2) fl43 =f3 41, 

and therefore, composing both members of (1) with &, 
* *  * * *  * * *  

fl 4 2  43 = fi $1 43 = f2 4 3  41. 

ji 4% 4 3  = 4 2  f l 4 3  =4z fs 41, 

j2 J3 il =42 f 3  41, 

4s j s  -fz 48, 

But by equation (2) 

therefore 

and from this it follows, by the general hypothesis that  we 
made previously, 

that is t o  say, 

* * *  * * *  * * *  

* * *  

* *  * *  

From the definitions which we have given it is easily seen 

6. We have now t o  distinguish between three cases: 
* 

(i) In  the expression f suppose that  f is of higher order than 

4. Then, assuming that  the conditions which we have 
stated (#  5 )  are satisfied, we can calculate a function $ 
such that  

4 

f =d 6, 
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and we thus have 

(ii) Again, if j is of lower order than 4, then (supposing always 
that  the aforesaid conditions are satisfied) 

and therefore 
i @=jJ, 

whence it follows that  

(iii) Finally suppose that j and 4 are of the same order. The 
ratio of their characteristics will be constant. If we denote 
this constant by a, the function 

will have a definite order greater than tha t  of 4. 
we can write 

rCI=f-a 4 
Then 

and therefore 
+=;e, 

j = a  ++$ e*. 
Consequently 

and finally 

f’= a$++e. 
4 

7. Two or more fractions of composition can always be 
reduced to a common denominator which is a function whose 
order is not less than the order of any of the denominators. 

In  fact, if we are given 

$1 42 
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and if 4 is of higher order than 4l and $2 then 

and therefore 
4 = & 6 1  =x 6 2 ,  

If the order of 4 were equal to  that  of one or both of the 
given denominators, we should have 

4 =& (a $+$'I) 

4 =& ( b  $+h) 
where a and b are constants, one of which might be zero. 
Therefore 

$2 4 
A method of reducing several fractions of composition 

t o  the same denominator is to write the equivalent fractions 
* * *  * *  * * *  * 
* * *  , * * *  , * * *  , . . . .  fi4243.. . fi4143.. . fa4142. * .  
414243.. 42414a.. . 4a+i+z. . . 

8. If  we reduce several fractions of composition to a 
common denominator and form a fraction of composition 
which has this denominator and whose numerator is obtained 
from the various numerators by the operations of addition 
or subtraction, the fraction obtained is independent of the 
choice of the denominator, according to the definition of 
equivalence which has been given. 
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I n  fact, if we have 

x --- _+ d1 -A +_ 4 2  then 
41 $2 ’ 

since r: d 2 + 9 1 4 2  =f2 4 1 4 2  il. 

The operation here indicated is called the addition or sub- 
traction of fractions of composition. 

Thus it is seen that all the rules of arithmetic relative 
to  the addition or subtraction of fractions are extensible 
to  fractions of composition. 

9. The multiplication of a fraction of composition by a 
constant consists in  multiplying the numerator by the constant, 
leaving the denominator unaltered. 

The composition of several fractions of composition signifies 
the formation of a fraction of composition which has f o r  its 
numerator the resultant of their numerators and for its denomi- 
nator the resultant of their denominators. 

The associative and commutative properties hold in the 
case of composition of fractions, and it is seen that  the 
results remain equivalent if equivalent fractions are sub- 
stituted for the fractions composed. 

* *  * *  

A function f is equivalent to the fraction 

hence 

(3) J J - . ? . i - N  F6-Tm -1J 
We obtain in this way the composition of a function with a 
fraction of composition and we see immediately that for this 
kind of composition also the commutative properly holds. 
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the  result is i 10. If we compose m equivalent fractions 
4 

written in the form 

( Qmand we have evidently (8”=$. 
The same formula will be extended, by definition, to the 

case in which m is equal to afraction or to an incommensurable 
number. 

11. From (3) we obtain 

Therefore, by composing a fraction of composition with i ts  
denominator we obtain the numerator, or, eve?y fraction 
of composition may be regarded as the result of the operation 
inverse to composition applied to the numerator by means of 
the denominator, and if we adopt the exponent - 1 to  indicate, 
as we have done previously, the inverse operation, we have 

* *  $ E $1’1, 
f 

and, by making an extension of the property that composi- 
tion by? does not alter the element upon which it operates, 
we can write 

J 
Now (see Q 8) 

which we can also write in the form 
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I n  general (P)'"=fxm whether h, or m, is positive, negative 
or zero. 

12. We wish now t o  find the fraction of composition 
I * 

which, when composed with rcI -=, will give =. f We have 
8 dJ 

evidently as a solution 
] e *  
$4'  
- 

or 

and also 

13. These results are summarized in the statement tha t  
the arithmetic theory of fractions can be carried over to  the 
field of composition. 

The elements 

can be included in the field of a group of permutable func- 
tions. They no longer have the significance of functions in the 
ordinary sense, but all the operations together with their associ- 
ative, commutative and distributive properties can be extended 
to these elements. However for this reason they can be 
called functions belonging to the given group of permutable 
functions, and we are able to  extend to  these elements also 
the concept of order, that  is to  say, iffis of order m, and 

a 
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is of order n <m we shall say that 4 has the negative order 
n -m. 

Evidently if$ is of positive order p ,  c$-' will be of order - p  
and the theorem, that the order of the resultant of two 
functions of given orders is equal to  the sum of the orders 
of the components, is extended to  the case of negative orders 
We also extend easily the concept of an order greater than a 
given negative order to the case in which the order is not 

determined, that  is, if $ f is not of determined order but is 
of an order greater than n <m we shall say that  $ is of higher 
order than n -m. 

14. As we have said (0 l), it  might seem as if we have 
constructed in this way a purely formal theory; but this is 
not the case in view of the fact that  the elements which 
have been introduced, formal though they are, cease t o  be 
such by acquiring the significance of ordinary functions 
whenever they are composed with a function of sufficiently 
high order. 

* *  

Thus, for example, if we have the sum 
h 

* *  
{+j- "+ 4 + $- , 

$ Oh 
* * *  

it is sufficient t o  compose it with fm 4 Oh in order to  convert 
it into an ordinary function. 

3. Progressions of Composition - Logarithms of 
Corn posit ion 

15. Let $(x ,  y) be a function of determinate finite order 
and let us consider the sequence 

. . . . ,  
We shall say that this constitutes a progression of corn- 

position having the ratio $. 



214 Functions of Composition 
The exponents will be called the ZogarithmJ of composition 

of the various powers of composition and 6 will be called 
the base. We shall write 

* *  
n = log, @, 

n being positive or negative. 
The whole of the arithmetic theory of logarithms is 

evidently extensible to  the logarithms of composition now 
introduced. Thus the logarithm of the resultant of several 
functions is the sum of the logarithms of the component func- 
tions, etc. 

The progression of composition possesses properties 
analogous t o  those of geometrical progressions. In  particu- 
lar 

16. By inserting means we can pass to  fractional log- 

arithms. Let us insert, by calculating $Irn, m means between 
two elements of the progression; we obtain the sequence 

*-- 2 *-1 $4 .A *z ,nr+l * 
. . . ; - I . . . +  m, cp m, cp",cp", cp", . . . c p ,  4 , ..., 92, . . . ,  
which can be regarded as a new progression of composition 
having &m as its ratio, and we can write 

h - = log, cpm, m 
h and m being whole numbers. 

In  general, if Y is a positive or negative number, rational 
or irrational, we can write 

(1) v =log* &, 
* *  

and t o  these logarithms of composition we can extend the 
properties of arithmetic logarithms. 
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17. It will be convenient t o  write powers of composition 
in the form 

and therefore t o  write instead of (1) 
* * * * * *  

v #Jo = log, @@ = log, @. 

I n  this way, starting with a base #J and considering all of 
its real powers, we can express the logarithms as real num- 
bers multiplied by 6'; but unless we take a further step in 
the theory it will not be possible t o  obtain 

1 k P  9, 
except when $, besides being permutable with 4, is a power 
of 4. This further step cannot be taken until we have 
introduced the fundamental concept of the naperian base. 
The complete construction of the theory is thus less easy 
than it may have seemed a t  first sight. It is necessary 
t o  introduce into the field of composition the fruitful concept, 
discovered three hundred years ago by Lord Napier, of the 
base of natural logarithms, in order t o  extend the theory 
within the limits in which it can be formulated effectually. 

4. Naperian Logarithms of Composition - Extension of the 
Theory of Logarithms of Composition 

18. Consider the function 

We have 

and therefore 

* I  
ef" =e.  

On account of this property we shall call e* the base of naperiun 
logarithms of Composition. 
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We have evidently 

1 ( l + z + - + - + .  22 23 . . 9 2 !  3!  
and, by virtue of the convention made in the preceding 
section, 

19. Analogously, by definition, we can write 
* *  62 $3 
e*=@'+@+-+-+. . . =*, 2! 3! 

and we shall write 
@ =I&; !P 

or, more simply 
@=I*. 

With the introduction of this new concept we shall be able 
t o  solve the problem proposed in 

20. For this purpose we begin by solving the problem: 
given !P to determine CP satisfying the preceding equation. 

We shall have 

* 

17. 

* * ea* q s ,  

whence, differentiating with regard t o  z, 

and therefore 

We have arrived therefore a t  the very simple formula (2) 
for finding 19 when $z is known. However, as we have 
said before, the validity of the formula is subject to the 
knowledge a priori that  i \E exists. 
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21. But let us suppose now that  we are given any function 
+ whatever of the group, and let us assume, for simplicity, 
that  it has a determinate order CY. 

We suppose also (see Lecture I, 0 23) that, having calcu- 
lated Ga, the result is expressed by 
(3) 
where G is an analytic function of z.* 

( y  - x ) a z -  G(x9 Y Iz>, 

Let us calculate 
d j "  --, 

d z  
We obtain 

where G' denotes the derivative of G with respect to z.t 
C Y ( Y - X ) ~ ' - ~  G(x, Y ~ Z )  log ( Y - x ) + ( ~ - x ) " " - ' G ' ( x ,  Y ~ z ) ,  

It follows that 
d $  - 
d z  

is not of determinate order; we therefore consider the fraction 
of composition 

It is easy to show that  0 is independent of z. 
have 

In fact, we 

* * *  * 
$5 t c -  p= IC."(+'- $0). 

* *  
Now 1c,'-+" is independent of z; our statement is therefore 
proved. 

From (2') it follows that  
d &  * 
d z  
-=@e, 

*This is always the case in consequence of a general theorem to which we have 

t To avoid misunderstandingwe recall that by log A = l A  we mean the naperian 
referred previously in Lecture I, $23.  

logarithm of the number A. 

See Lecture 111, 8 25. 
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therefore 

. . . . . . e . . .  

But the series 
* d j "  1 d 2 j a  1 dh& p+-+-- +. . . +-- -+. d z  2 !  dz2 h!  dzh "' 

if convergent in the unit circle with center a t  z, has for its 
sum 

hence 
$s+l, 

1 B"+e+n+fl+... *e2 *e3 Y 

+ + l = &  ( 
and consequently 

* 6 2  6 3  +=eo+e+-+-+. . .) 

e =Z$.  

2 !  3! 
from which it follows that  

* 

In  order, therefore, to  conclude tha t  1 + exists and can be 
obtained from the formula (2') it is sufficient to know that 
&5 can be put in the form (3) and that  this expression repre- 
sents an entire function of z. 

22. As an example we will calculate 

I* 1, 
recalling the fact tha t  unity belongs t o  the closed-cycle 
group (cf. Lecture I, 0 11). 

We found (Lecture I, $ 25) 
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1 But it is well known tha t  - is an entire function; hence r(z) 

we can apply the foregoing procedure and we shall have 

and 
( 5 )  11 =e 1-’. 

* * *  

By the preceding theorem the  right-hand member of (5) 
is independent of z. 

But 

We therefore put z = 1; and obtain 
e =iog(y-x) --ryi). 

c = - r y 1) = - jI 6- log x dx = 0.5772 1 . . . 
(Euler’s constant), 

therefore 
* 

23. The general theorem of 0 21 enables us t o  see tha t  the 
expression (5) must be independent of z. But a priori the 
fact cannot be inferred immediately on seeing the expression 
(5) for the first time. For the sake of the interesting and 
curious nature of the result we will verify it directly. The  
expression cannot be put in an analytical form; in fact, as 
we have noted, it has a purely symbolic meaning; we can 
however apply the  general principle (cf. 0 14) by means of 
which any expression of this kind loses its purely symbolic 
meaning and becomes an ordinary function. 

i, I - ,  
has a purely symbolic meaning, 

Although 

(6 i - g ) i  



220 Functions of Composition 
is an ordinary function. 
directly t h a t  this ordinary function is independent of z. 

It will be sufficient then to  show 

Now 

and therefore 

putting a = z, p = 1 - z, we obtain 

i: 
from which, finally, we find that 

* *  e 1 1 - 6  = log (y - x )  +c, 
which coincides with the result (6) obtained before.* 

24. We now show that, if we substitute for 
* 
11 = @  

in the series (l), we obtain unity as the sum of the series. 
I n  fact, if we put 

$ 1  1 z  =- (y -x)z-l =e(%, y 12) (4 
* This result is met with in the calculation which is carried out in an entirely 

different manner in the last lecture, $ 23. 
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we obtain 

22 1 

-- d e - ( $ &  
dz  

dz0  + * -=gcp 
d z2 
.......... 
d“e =&&, 
d zh 

. . . . . . . . . e  

and therefore 

+ +  &2 43 d e  1 d20 e(@o+@+- + - + . . . ) = e + - + -  -+ f . .  2! 3! d z  2!  dza 
Now 0 is an entire function; consequently 

* 

whence 

25. In 19 we stated the definition of i\k. It is easy to 
verify the following properties: 

(7) i(&6)=i*+ie, (8) :++x= (E+) (Ex), 
* 

(7’) i (!) =i*-ie, (8’) E-.=$,  
ex 

(7”) &b> = m :*, (8”) (;+)m =*em+, 
(7”’) 
where m is an integer or a fraction; and in the limit these 
formulae will be valid for incommensurable values of m. 
c denotes a constant. 

(81’’) ec*o+* * = ec ;* i (c  e) = I* c ++!e, 
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It is evident that  

tzrnif .  - -P, 
when n is an integer. It follows that 1 f is determined except 
for an additive term 2 a n ip in the same way that the nape- 
rian logarithm of a number A is determined except for the 
term 2 a n  i. Consequently the formulae (7), (7'), (7"), 
(7"') and the corresponding ones opposite wil! be interpreted 
in a manner similar to that in which the analogous formulae 
are interpreted in the ordinary theory of logarithms. 

Suppose now that  m is comdex. We will extend the 
formula (8"), by &finition, t o  this case; and since the second 
member, by virtue of (l), is represented by the series 

which has a definite meaning, the definition of the first 
member is established. 

Suppose now that :+=\I.; then 

is defined for complex values of m, and we have 

Evidently, inasmuch as > is unchanged by adding to 
C#I the term 27rnid", (;+)+" is determined except for the 
factor e2u'"n! 

By definition we establish also the following formula: 

(e+)@ = e+o, 
under the hypothesis that  C#I and 0 are permutable functions. 
Since the second member has a known meaning, the same is 
true of the first member; and if 

e" =*, 

* * ** 

* 
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98 
then the definition of 

is established, and we have precisely 

(9) +e = ith 

223 

* 
Also in this case, analogously with the preceding one, 9' is 
determined except for the factor of composition .h nie. 

If we write 

we can write, by way of definition, 
* 

(11) 8 = log, x, 
and we shall call 8 the logarithm of composition ofx to base 9. 

From (9) and (10) it follows that 
* *  * 
8 1 9 =1 x, 

and therefore, by ( l l ) ,  
* log, L x =  - IX. 
i9 

Of course it is necessary, in order that  the second member 
may have a meaning, not only that it be possible to  find the 
naperian logarithms of composition of x and 9, but also that  
the fraction which appears in the second member have a 
meaning. If these conditions are satisfied, then the problem 
proposed in 0 17 is solved. 

26. If 
9 =f.+j, 

wheref is a function whose order is positive and greater than 
a certain given number, then the series 

jz j s  
f+ -+ -+. . . 2 3  
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is convergent (see Lecture I, 5 17), and we have 

j 2 p  i*=f+-+-+ ... 2 3  
This can be verified immediately by returning to  formula (1). 

If 
*=af.+f, 

where a is a constant, we have 

and, if 

then 
(13) +=ea (aj=+J>, 

It follows that, ;f we know the naperian logarithm of compori- 
tion of a function 8 of a group, then, by using formula (14) we 
can calculate that of every function of the group of the form (13). 
These form a very extensive class of functions (cf. Lecture 
11, 0 5 ) .  

27. We will now give an application of this result: 
To calculate the naperian logarithm of composition of 

of any function belonging to  the closed-cycle group, possess- 
ing a derivative and having the order 1. 

Let F ( y - x )  be this function, and suppose, for simplicity, 
that F(0)  1. 

We have 
F = I (P +Et>, 

where Ff  denotes the derivative of F. 
Therefore, applying formulae (14) and (16), we obtain 
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28. Let us suppose now tha t  i t  is desired to obtain the 

Formally we can write: 
logarithm of composition of F t o  base 1. 

~ F - I ~ F -  PI*F 

I1 l Z 1  (log(y-x)+C) 
1;gl F= *- ++ - A 

( h ( Y  - x )  + C) 
This brings us, consequently, t o  the solution of an integral 

equation of the first kind having as its kernel log (y -&) +C. 
(Cf. $ 6.) 

We are thus led to  a new class of integral equations which 
it will be convenient t o  study and which will form the subject 
of the sections which follow. 

29. The preceding problem is only a particular case of a 
much more general question. 

From (12), if + and x are permutable functions, we have 
* 

and, if & is given by formula (2), 

l&$ x * *  

and we shall therefore have to  solve new integral equations 
of the first kind whose kernels involve logarithmic terms, 

30. As we foresaw, especially in the last section, we are 
confronted with the necessity of solving certain integral 
equations (of Volterra type) whose kernels contain a term 
having a logarithmic factor. 
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This is a new class of integral equations to  the solution 

of which we cannot apply directly the known methods of 
procedure. We shall not stop to solve the general problem 
but treat a single example to  indicate the method which is 
convenient t o  use. 

Let us t ry  then to  solve the integral equation 

where C denotes Euler’s constant. 

function, and integrating from 0 to  y, we have 
Multiplying both members by v(x7 y), a finite continuous 

If we can obtain ~ ( x ,  y) in such a manner that  

J: [lo& - E )  + CI 4. - Y) d x  = (Y - t>“, 

where a is any positive number, the problem will be solved, 
for the equation (16) can be written 

and this equation belongs t o  a well-known class of integral 
equations. Now, if we take the well-known formula in 
the theory of the Euler Integral: 

Y (% - {)a - 1 ( y  - .)B -1 - (y - [)a+ B - 1 

we observe t h a t  the second member is a function of a and B. 

- I E r(a) w> r(a+B) ’ 
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If we integrate with respect to  p and differentiate with 
respect to  a, we obtain 

and if we put a =@' = 1, we have 

We can therefore take for v (x ,  y) the function 

The formula giving the solution of the integral equation (15) 
is therefore: 

I n  a similar manner the integral equations are treated upon 
which depend various problems in the determination of 
logarithms of composition. 

31. As an application let us consider the solution of the 
problem proposed in 0 28, that  is, t o  determine 

where F is a function 
group and F (0) = 1. 

We found 

l:gl k 
which belongs to  the closed-cycle 

( M Y  - x>  + c> 
Hence if we put 

we shall have t o  solve the integral equation 

J:AE - (log(y - E) + C> d 5 = + ( y  -XI, 



228 Functions of Composition 
or, changing variables, 

J;fM ( M X  - f )  + C1.d f = @(4* 
If we observe that 4(0) =0, then 

and therefore, applying formula (l’), we have 

and finally 

Therefore, by using the preceding formula, we can obtain 
the logarithm of composition to base uni ty  of any  diferentiable 
junction of the firJt order which has its characteristic equal to 
unity and belongs to the closed-cycle group. 

VITO VOLTERRA. 



THIRD LECTURE 

INTRODUCTION - FUNCTIONS OF COMPOSITION - DERIV- 
ATIVES AND INTEGRALS OF COMPOSITION - APPLI- 
CATION OF INTEGRATION OF COMPOSITION TO LOG- 
ARITHSM OF COMPOSITION AND TO POWERS OF COM- 
POSITION. 

1. Introduction 
1. At the beginning of the first lecture we considered a 

particular function of composition which we expressed in the 
form 

and which, we said, belonged to the general class of func- 
tions which depend on other functions, i.e., t o  the class of 
functions of lines. We can obtain a more complete formula, 
according to the notation which we have been using, by 
adding a term to the right-hand member and writing instead 
of S the function 

S(X, y> = -F(x ,  y> +I%, y> -?3(X,  y> + * * , 

E. = f i - F + h - P +  ... F " F  
We shall extend this concept and examine in this lecture 
general junctions of composition. 

2. Functions of Composition - Derivatives and Integrals of 
Composition 

2. We shall develop in particular those ideas which are 
connected with the subject which we have been treating, i.e. - 

with the subject of powers and logarithms of composition, 
229 
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reserving for another memoir a more thorough and complete 
development of the subject in general. 

3. I f  we have an analytic element 
m 

(1) ?rn am zm, 

with center z =0, convergent within a circle radius R. Then, 
if the function F(x,  y) is finite and continuous, the function 

m * 
0 
2, a, Fm 

is also finite and continuous and permutable with F. We 
shall call it a rational entire function of cornposition of F, 

Now consider the expression 
P 

1 
2, b, z-,. 

This has a pole of order p if b,=O. If we assume that  F 
possesses a derivative, then, according to the definition 
given in the preceding lecture, the expressions 

n 

5, b, 
0 

and 
P 

0 
7 ,  a, h +2, b, E- 

have a meaning. The  latter will be called a rational junc-  
tion of composition having a pole of order p .  

If we suppose n to be positive we can calculate also the 
expression 

m *m P * E  
22, a, Fr+Z, bm Fn. 
1 0 

This  is an irrationalfunction of composition if it contains a t  
least one term having a fractional exponent. 

Let us consider 
1 F. 
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We do not yet know whether, corresponding t o  any finite 

continuous function F ,  the function IF exists (cf. the preced- 
ing lecture). However, if the logarithm of composition 
exists when F belongs t o  a certain functional field we shall 
call it a logarithmic function of comporition. 

The sums, the resultants of composition and the ratios of 
composition of several functions of composition will be 
regarded as new functionr of comporition. 
4. We shall represent the various functions of composition 

by means of the symbol 

* 

F will be called the argument o j  the function CP. 

function of composition, we can obtain 
If 9 ( F )  is a function of Composition, and k(@) is another 

which will be called a function of a function o j  comporition. 
5. We thus have the means of defining various classes of 

functions of composition. We should be able t o  obtain new 
functions as uniform limits of those previously obtained by 
making the parameters which they contain approach given 
values. But we will proceed now to establish a general 
definition of the term function of composition which will 
include as particular cases all these classes. The  method 
which we shall adopt t o  attain this end consists in stating 
two fundamental properties common t o  all the functions 
hitherto examined, and in assuming these properties as those 
which define, in general, all functions of composition. 

The  first of these properties is this, tha t  all the functions 
previously examined are permutable with the function which 
constitutes the argument; we proceed t o  formulate in the 
following paragraph the second fundamental property. 
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6. Let us return to  the rational entire function of com- 

position 
&(F)  =Em a; ;m. 

1 
If we form the expression 

4 V S E  f )  -W), 
where E is a number and f is a function permutable with F, 
then as E approaches zero the expression approaches zero; 
moreover 

&(P+€ f )  4 ( F )  
d 

approaches a limit which is easily calculated, namely 
m * 
1 
2, m am Fm-'. 

This expression is thus independent off.  It is called the 
derivative of composition of @ with respect to F.  

The rule for calculating the derivative consists in differ- 
entiating the series (1) with respect t o  z and substituting 
for the powers of z powers of composition of F. Hence the 
rule is the same as the one for calculating the ordinary 
derivative provided tha t  instead of the ordinary powers we 
use powers of composition. 

It is easy, in this manner, t o  extend the concept of the 
derivative of composition t o  rational functions of composition 
having poles, t o  irrational functions of composition and t o  
all those which can be obtained from these by the operations 
of addition, composition, forming ratios of composition and 
forming functions of functions of composition. The rules 
for finding derivatives of composition are the same as those 
which are applied in ordinary differentiation except tha t  in- 
stead of the ordinary operations of multiplication, raising t o  
powers and forming ratios, we substitute the corresponding 
operations of composition. 
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We can extend this concept of the derivative also t o  

logarithmic functions of composition. If we wish t o  obtain 

the derivative of composition of i F,  it is sufficient t o  ob- 
serve tha t  

e L P = F ,  
and thus we find that 

** 

We can therefore generalize the foregoing rule for finding 
the derivative of composition also t o  expressions containing 
logarithms of composition. 

Evidently, in all the  cases considered, if the  increment 
given t o  the function F is ~ f ,  a function permutable with F ,  
and if e is made t o  approach zero, then the limit of the ratio 
of composition which has for its numerator the increment of 
the function of composition and for its denominator E f will 
be independent off. This is the second fundamental property 
which we were seeking. 

To represent the derivative of composition of the function 
@ of the argument F we shall use the symbol 

d &  
d P  

7.  With these introductory notions let us proceed to 
state the general definition of the term function of composi- 
tion. 

Let CP ( x ;  y) be a function which depends on all the values 
of the function F ( [ r ) ,  x S [ S q < y ,  in the sense in which 
these terms are used in the theory of f unc t iom of liner, so 
that  we can write, in the notation of tha t  theory 

-. (1) 
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and let us suppose that  F(x,  y) can vary in a certain func- 
tional field for which it is assumed that, if j and C#I are con- 
tained in it; a f + b  4 is also contained in it, a and b being 
parameters which are independent of x and y and which 
vary over a certain interval. Let the junctions CP and F be 
permutable. We will further assume that they are continuour, 
that  is to say, if @(x,  y )  corresponds to  F (x, y )  and CPl(x, y )  
corresponds to  Fl(x ,  y), CP approaches CPl uniformly when F 
approaches F1 uniformly. 

Besides this we will assume that, in the sense in which 
the operation is carried out in the theory of functionr of liner, 

can be differentiated with respect t o  F,  so tha t  it will be 
possible t o  obtain its successive derivatives t o  any order 
tha t  it may be necessary to  consider. 

Let us substitute for F ( [ ,  q) 
F(5, V > + E f ( t ,  71, 

which is permutable with F(E, q), and indicate by a’ (x ,  y) 
the corresponding value of (x ,  y), and let us form the ratio 
of composition 

&f -& 
E j  ’ 

and let E approach zero. If there exirtr a limit of thir ratio, 
independent o f f ,  we shall ray that GJ ir a junction of compori- 
tion of the argument F and we shall represent it always by the 
symbol $ ( F )  which we adopted previously. The  limit in 
question will be called the derivative of composition and will 
be indicated by the  symbol, already introduced, 

d &  
d ;  

Like the ordinary derivative the derivative of composition 
can be regarded as an actual ratio o j  composition, and the 

_. 
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numerator and denominator constitute respectively the 
differential of the function and the diferential of the argument. 

The two fundamental properties of functions of composi- 
tion are therefore: (1) The function is permutable with its 
argument; (2) the derivative is independent of the diferential 
of the argument (cf. 0 10). 

8. Let us prove now tha t  the derivative is also afunction 
of composition of F .  

d &  
d F  

If we denote by \E the derivative -I we can state first 

t ha t  

$=* I [ F ( i ,  7;)l I. 
X E  

We will show tha t  \E possesses the two fundamental proper- 
ties which serve t o  characterize a function of composition. 

The  first of these fundamental properties holds for the 
derivative \E, since it is permutable with F.  

Let us proceed to prove tha t  the second property also 
holds. It is t o  be noted, then, tha t  we have 

&(F+eI f1) - 6 ( F )  = e l  ?&+e1 hl, 
where f is permutable with F and h, approaches zero with el. 

Let f2  be a function also permutable with Fl and form 
the expression 

&(F+eljl+ea fi) - k F + e 1  f1) - k ( F + e ~  f2) +%(F) 

where hl’ and hl” become zero with el and ez respectively. 
Since ‘k, by the hypothesis which we have made, is differ- 

entiable according t o  the rule for functions of lines we can 
write 

(2) 
where hz approaches zero with €2. 

I [F+ei fd I -6 I [Fl I ] +el(hl’-hl”), 

* [ [F+ez fz l  I - * 1 [F] 1 = E Z  &+eshr 
If then we assume the 
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existence of the third differentiaI, in the sense of the theory 
of functions of lines, we can write 

6 (F + Elf1  f E 2 f 2 )  - (F + E l  fl) - & (F + E Z f 2 )  +& (F) 
= El E2 !l el+ el Ea hit, 

where h” approaches zero with el and e2. 
Hence 

(3) lim &-+Elf1 + € 2 f i >  --6(F+€ljl) -6 (F+€2f2 )  +&F) 
e i = O  E l  €2 
ea=O + +  

= j l  el. 
But the first member is symmetrical with respect t o  f l  and 

e *  
f z ;  it can therefore be put in the  form fi 02, and therefore 

Assumingfl and j z  t o  be of determinate orders it necessarily 
follows tha t  

(4) 
* *  el =j2 eI2 

so that  the limit (3) will be equal to 

jlh 012. 

Now \k is independent offl, therefore el is also independent 
On account of (4) it follows tha t  012 is independent of 

By the same reasoning, on account of (49, OI2  must be 

In  view of (4) we can 

of jl. 
fl. 
independent off2. 

write 

Hence els is independent of j l  and fi. 
Now consider again equation (2). 

* I [F+EZfil I -9 I [FI I = E J  tTl2+€2 h2, 

9 I [F+ezfzl I - *  I [FI I - lim - e12, 
t l = O  €2 x 

and consequently 

ela being independent of fz. We have thus shown tha t  
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* 

ip=- @ possesses also the second fundamental property and 
d #  

it is therefore proved tha t  \k is a function of composition 
of F. 

When the successive derivatives of composition of CP exist 
they will be denoted by 

and they will all be functions of composition of F in the sense 
already stated. 

9. We will proceed now to  set forth certain observations 
which will serve t o  make clear and complete the concepts 
which we have so far formulated. 

We will begin by noting tha t  it is always desirable t o  
specify the functional field of variation for the argument of 
the function of composition which is being examined. 

Thus, for example, consider the expression 

( 5 )  

and regard it as dependent on all the values cf F(E, v), 
x I; E 4 9 < y, in the sense of the theory of functions of lines, 
Provided tha t  the function F belongs t o  the closed-cycle 
group the expression (5) represents a function of composition 
of F; such is not the case otherwise. 

p x ,  E )  W Y  - E >  d &  

I n  fact, if we take 
F b ,  E )  = F ( t  -4, 

the function ( 5 )  will be permutable with F; whereas, in 
general, if F(x,  t )  does not belong t o  the closed-cycle group 
the condition of permutability is not satisfied. Therefore 
the first fundamental property (§  7) holds only if F belongs 
t o  the closed-cycle group and therefore the argument will 
have t o  be supposed t o  range over this field. 
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10. The question might be asked whether, in defining 

a function of composition ( 0  7),  i t  was necessary t o  state 
explicitly the condition which we have imposed upon the 
derivative: that it be independent of the dijerential of the 
argument (second condition), or whether this condition 
might be, on the other hand, a necessary consequence of 
the condition of the permutability of the junction with itx 
argument (first condition); but it easy t o  see that  the two 
properties are independent, in the sense tha t  it is possible 
for a function to  be permutable with its argument without 
the necessity of its derivative being independent of the 
differential of the argument. As an example let us consider 
the expression 

(6) p(x. 5 )  W E - 4  d t  

as dependent on F. 
If we suppose F t o  belong to  the closed-cycle group, that  

is t o  say, F(x, E )  = F ( E - x ) ,  
the preceding expression becomes 

and we have here a function which belongs to the closed- 
cycle group. It is therefore permutable with F. The first 
fundamental property ($  7) i s  therefore satisfied. 

The 
increment of the expression (6) is 

Now let the increment E f (y  - x )  be added t o  F ( y  - x ) .  

I n  order t o  calculate the ratio of composition of this 
increment and the increment of the argument Fit is sufficient 
t o  solve the integral equation 



Third Lecture 239 
The solution $ will be the required ratio. 
Now, differentiating both members with regard to  y, we 

have 

j ( y - x ) Q ( y - x )  = f ( o )  il.(y-x)+JYf(y-t) $ ( t - x )  d t ,  
or 

f(x> Cw =f (0) $(.I +i’;fW) 0 $ ( E )  d t, 
and it is evident tha t  the solution $ depends on f. 

It follows that the second fundamental condition of Q 7 
(namely tha t  the derivative of composition be independent 
of the differential of the argument) is not satisfied, although 
the first condition, tha t  of the permutability of the function 
with its argument, is satisfied. 

11. The importance of this second condition consists in 
its being invariant to the successive operations of passing f r o m  
the function to its successive derivatives: in other words, if the 
condition is satisfied in passing from the function t o  its first 
derivative it will also be satisfied in the successive passages 
t o  the other derivatives. This is the significant fact con- 
cerning the thorem of $ 8. 

In  recognition of its importance we will give another 
proof of this fact for the particular case in which the func- 
tional field of the argument is tha t  of the closed cycle. 

Suppose then tha t  t o  every function F of the closed cycle 
another function a, also belonging t o  the closed-cycle group, 
is made t o  correspond in such a way that,  according to  the 
general definition of $ 7, @ is a function of composition @(F). 

Consider the function 

IC/ belongs also the closed-cycle group and is independent of 
d F (according to  the fundamental property of $ 7).  
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According to  the theory of functions of lines, 

and therefore 
a’(% 4) =$(.-E>. 

If we pass to  the second functional derivative, we obtain 

But by virtue of the symmetry of the second derivative 
(see loc. cit., “ Leqons sur les fonctions de lignes,” Chap. 11, 
$4), it follows tha t  

or, assuming the existence of the derivatives of @’I ,  

@ ” @ - E ,  rl) =@%-7), 8,  

a w r  a 8 
a x  a 4  a7) ’ 

@’’ (x-& 7)) d j ” ( x - 7 ) ,  4) =a”(%-4:-7)); 

- = -- = -- 
and consequently 

therefore 

6 # ( X - [ )  = p ’ ( x - 4 - 7 ) )  0 6 F(7)) d 7). 

It follows that  

and therefore, performing the differentiation, 
,”(-E) 6 F(x )  =o (Em. 

We have then 
@,”(.-4-7)) =o 

when 7 lies between x-‘4 and x,  from which it follows tha t  

6 G ( X - 4 )  = p V ’ ( x - [ - d  0 6 F(7)) d 7); 

and this shows tha t  our theorem is true, since the  equation 
can be written 

6 ,=&I,  6 F, 
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and therefore 

tha t  is t o  say, the ratio 

is independent of the differential appearing in the denomi- 
nator. 

12. If CP is a function of composition of F the operation 
diferentiation of composition can be carried out by means 
of differentiation, as applied in the ordinary sense. 

In  fact, 
lim $ ( F + E ~ )  -&F) 

must be independent off,  since this function is permutable 
with F .  

€1 c = O  

If we t a k e f = f i ,  we have 

&(F+e $') - & ( F )  - - &F+E fi) -CP(F) * €P E 

therefore 

& ++ = lim &(F+a fi) -&F)  - - ( d & ( z z b ) )  9 . 
d F  r = O  € 1130 

and by  this formula diferentiation of composition is reduced 
to ordinary diferentiation. 

13. Let us consider the expression 

b ( F d  - k ( F J ,  
where F1 and Fz are permutable. 
we can write 

By Lagrange's formula 

where 0 is a number which lies between 0 and 1, 
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Bv this formula it follows that 

or, if we put F2 =Fl+f, 

where F1 and f are permutable. 
There follows a formula analogous t o  Taylor’s formula 

in which the existence of the successive derivatives of com- 
position is assumed, namely 

f being permutable with F1 and 9 m lying between 0 and 1. 
d &  
d F  

14. From formula ( 7 ) ,  assuming the continuity of , 
lim 3 J - 2 )  -&m = (2) 9 

&=Fa #22-$1 P = P I  

where the functions F1 and Fz are supposed to  be permutable. 
Let us suppose that F(x ,  y I s) depends on the parameter J 

in such a way that for all values of s lying in a certain interval 
the function F obtained belongs t o  a certain group of per- 
mutable functions. 

as a function of J. 

~ ( F ( X ,  Y I Jo+h)) -%J-b, Y 150)) 

We can then consider 

By equation (7) we have 
W(% Y 1.4 1 

where it is supposed tha t  F1 =F(x,  y I 501, Fg =F(x ,  y I~o+h) 
and 9 lies between 0 and 1. 
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Assuming the existence of the derivative of F vclith regard 

t o  S,  and passing t o  the limit as h tends toward zero, we 
obtain 

15. From formula (7) it follows tha t  if, for every function 
F of the field we are considering, 

then CP is independent of F: that  is t o  say, is equal t o  a 
fixed determinate function belonging to  the group of per- 
mutable functions, which contains the field of functions 
over which the argument F ranges. Consequently, if &(F) 
and &(F)  have the same derivative of composition they can 
differ only by a fixed determinate function which belongs 
t o  the group of permutable functions to  which F belongs. 

16. We proceed now to the subject of integration of 
composition. Let there be given a function of composition 
&(F) ,  and let us consider the function 

such that, for all values of 5 lying between certain limits a 
and b, F ( x ,  y I J) belongs always to  the same group of permu- 
table functions. Let us suppose that  @ and F a r e  of positive 
order. 

F ( x ,  Y 15) 

We now form the expression 

by composition; and, assuming that  as a function of 3, it is 
integrable, we calculate the integral 

(9) 



244 Functions of Composition 

hl, hz, . , . h,, then forming 
This is obtained by dividing the interval a b into n parts, 

F,=F(x, y I a + h + h z + .  . . +k), Fo =F(x ,  y I a) 

and passing to  the limit in the final sum by making a!! the 
intervals hl, hz,. . ., h, tend toward zero, at  the same time 
increasing the number of intervals indefinitely. 

We will 
write the integral (9) in the form 

17. Let us put F(x ,  y I a) =FA, F(x,  y 1 b )  =FB.  

&(F)  d = J:&(F) d $, 
S 

or in the form 

(11) 

To justify the notation (11) it is necessary to prove that, 
if we take another function 

which for the totality of values of s’ lying between a’ and b’ 
represents a set of functions belonging t o  the same group 
of permutable functions as before, then, provided that 
F’(x, y I a’) =FA,  F’(x, y I b’) =FB, we obtain for the integral 

F’(x, Y Is’), 

(9’) 

the same result (9)*. 
For this purpose consider 

F(x,  Y I % v>, 
and let us regard u and v as the coordinates of points of a 
plane. For all the  values ofu  and e, corresponding to  points 

* For an example of two such functions F ( x ,  y 1 s) and F’(x, y Is’) we can take 

F’(x, y j ~ ’ ) = 1 + ( ~ ’ - - 2 )  (1’-1) cos ( y - ~ ) + ( y - x ) ~ ( J ’ - ~ ) ’ + ( y - x )  (~’-1), 
P(x,  y ~ 2 ) = l + s ( y - x ) + . T ~ ( y - . x ) *  

and A=O, b - 1 ,  d = 1 ,  b‘=2. We then have 
F (x,  y I O)=F‘(x ,  y I l ) = l ;  F (x ,  y I )=F‘ (x,  y I 2 ) = l + ( y - x ) + ( y - x ) ’ .  



Third Lecture 245 
of a certain area u and of its contour S let us suppose that 
F is a function belonging t o  a given group of permutable 
functions. Let us form the integral 

If no singularity exists in the interior of the region u, by 
virtue of formula (S), we shall have 

It follows therefore tha t  

(12) I s & ( F )  d k=O. 
From this formula we deduce the result that, if it is possible 
t o  pass from F(x ,  y I s) t o  F’ (x, y I s’) continuously without 
allowing F and @ ( F )  t o  traverse any singularities, then the 
two integrals (9) and (9’) lead to  the same result. 

18. Regarding FA as fixed and FB as variable, the integral 

* 

represents a function of composition of FB. If we call i t  
&(FB),  we shall have 
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In order t o  integrate the rational or irrational functions 

of composition which we have considered previously i t  is 
sufficient t o  apply the ordinary rules of integration and t o  
substitute powers of composition for the ordinary ones. 

It is possible, evidently, to  consider diferential equations 
of composition by examining the relations between functions 
of composition and their derivatives of various orders. 

It is also possible, evidently, to  consider functions of 
composition and the derivatives of functions of composition 
of several arguments. 

19. It is easy t o  recognize the analogy between the theory 
which we have developed and the theory of functions of 
complex variables. The second condition imposed upon 
the derivative of composition of a function of composition 
(0 7) corresponds evidently to  the condition that the deriva- 
tive of a function of the complex variable z be independent 
of the direction in which the point representing the variable 
z is displaced in the complex plane (condition of mono- 
geneity). Each of these conditions is preserved in successive 
differentiations (theorem of Q 8). 

Furthermore, formula (12) corresponds to  Cauchy’s 
Theorem, and evidently we can state that  a necessary 
condition that a function be a function of composition is 
that  it satisfy formula (12), thus establishing a reciprocal 
theorem analogous to  the well-known theorem of Morera, 
the converse of Cauchy’s Theorem. 

3. Application of Integration of Composition to Logarithms 
of Composition and Powers of Conzposition 

20. We have seen that  
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i F = Jif-  d f. 
hence 

We can also put 

247 

n 
or 

z *  z2 * F" 
x- 1 (F--  Fz+-2F8- * .  .). E.+Z(F"-P.) 1-2 2-1 (1-2) 

We are thus led to  inquire whether the integral 

is convergent. The proof of the convergence depends on 
the following theorems which we will state without proof. 

Let F(x, y) be afinite continuous d i j e r -  
entiable function, a 5 x 5 y 5 b, and let 

21. Theorem I. 

F(x, X )  =1, F ~ ( x ,  X )  =F%(x, X )  =O 
(in other words we suppose that F has the canonical form, 
Lecture I, $ 10) and let F1, Fz, F12 be finite and continuous. 
Then 
(I) z F-z2 f i+zS&- .  . . - z  - e-scv-r) +ab9 Y I 4 

z '  
and wAen z varier from h >O to 0 0 ,  

certain finite number. 
will remain less than a 
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moved and the theorem will still be true. 

are satisfied, and if the functions 

Note: The condition Fl(x,  x) '=F2(x,  x )  =O can be re- 

Theorem 11. If the conditions of the preceding theorem 

d2F d2F d3F 8 3  F 
d 2 '  2-p m' m y '  

are finite and continuous and their absolute values are less 
than M ,  then fo r  y > x  

where 

and fo r  y = x  
~ ( x ,  y )  = ~ 2 + ; 2 2 + ; 2 3 + .  . ., 

lim@(x, y I z) =O. 
z = w  

22. From Theorem I it  follows, under the conditions 
imposed, that  the expression 

lim (z F-z2  g2+z3 h-. . .) 
z = + w  

is equal to zero for y > x  and is infinite for y = x .  
more, if F(x ,  y )  is greater than a certain positive quantity, 

lim (z ~ + 9 8 2 + 2 3 + + .  . .> =co. 

Further- 

Z = + W  

These properties show the close connection between the 
very general series (I) and the exponential series. More- 
over, Theorem I (see the remark a t  the end of the theorem) 
serves t o  answer the question concerning the convergence 
of the integral (1). The fact that  F is reduced t o  the 
canonicalform (Lecture I, 9 10) or even simply the fact tha t  
F(x,  x )  = 1 sufices to show that the integral in question is  
convergent, and therefore 
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23. As an example we will now apply formula (11) in 

order to  obtain the expression, already found in another 
way, for i i 1 (cf. Lecture 11, 0 22). 

Putting 

d z  1--  z ( y - x ) + Z  (y-x)S-. . .) f ( Y  - X I  = J o  1-z ( 1 - 2  (1 -z)2 

= Joe  1 -e@- 1-6 =) d z  
1-2 ’ 

we have by virtue of (11) 

But 
i i 1 =( i - io) ] .  

1 - 2 -  I 1-2 ’  

from whish it follows tha t  

d f +JI ev d q r) log e-€ d f 

log f e- td ‘=log x - r ‘ ( l )  =log x+C, 

where C denotes Euler’s constant. We thus find again the 
result 

i i i =log x+c. 
24. Returning now to  the general formula (11) we ob- 

$ ; F ,  
serve tha t  it gives us a method of calculating 

where F,  its first derivatives and its second mixed derivative 
are finite and continuous and also F(x,  x )  =l .  
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We have in fact, by reason of (I), 

z *  22 * 1 (F-- FZ+----F’-... 1 -z 1 -z  (1-2)2 

22 * 23 * 
__ F-- FZ+- Fa- . . .  
1 - 2  (1 - ~ ) 2  (1 -2)3 

where 
making use of (16) and (17), 

( x ,  y I z) is always finite and continuous. Hence, 

‘ d z  z *  22 * 

= -log (y - x )  +ey-% 1% 4e-E d4+%, Y), 
Y - Z  

where t9 (x ,  y) is finite and continuous. It follows that  

00 

=log (y -x> + e Y - x J  log 4 e-EJ t+e(x, y> 
y--2 

+ p x ,  4)(-10!3 ( Y - 4 )  
m 

+eY - E  J- logTe-”T+w,  Y)} d E  

=log (Y -x> + X b ,  Y), 
where x is finite and continuous. 

F ( x ,  x )  =1, then 

where x (x ,  y )  i s  a finite and continuous function. 

We therefore have the theorem: If F (x ,  y )  is such that 

f l*F =log (y - x )  + x ( x ,  y),  
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The function x (x ,  y) can be calculated by obtaining first 
@ as the solution of a certain integral equation and then 
finding iP and 8 in the manner indicated above. 

It is unnecessary, therefore, to  know t5 in order to  be 
able to  calculate F 1 F,  and the calculation can be carried out 
by operating directly on the given junction F (cf. Lecture 11, 
§ 21). 

25. I n  this connection one other fact should be added: 
not only is it unnecessary t o  know in order to  obtain 
8 i F, but, on the other hand, by means of the latter it is 
possible to calculate kS when $ is given. 

* *  

* *  
In  fact, when F I F is known, we can obtain 

F(l F)z, P(iF)3,  
* * *  

F)*. . ., 
and therefore, by applying the formula (see Lecture 11, $25), 

we can obtain .&+I, expressed in terms of a series of powers 
of z by means of operations performed on F alone (see 
Lecture I, $ 23). The power series thus obtained for h+l 
is always an entire function. 

We have here verified, in the case of powers of composition, 
a fact which corresponds to one which we meet with in the 
case of ordinary powers, namely, that in order to  obtain the 
former in general, it is convenient t o  use logarithms of 
composition, just as in order to obtain the latter in general 
it is convenient to use the logarithms of ordinary algebra. 

This is another confirmation of the utility of introducing 
logarithms of composition. 

VITO VOLTERRA. 




