
I V  

FUNDAMENTAL THEOREMS 

ON THE ESTIMATION OF COEFFICIENTS 

Iff(s) is given by the series (l), with an abscissa of abso- 
lute convergence u ~ f  < w , Theorem IX allows an immediate 
estimation of the coefficients a, by means of numbers by 
which lf(s) I is bounded on a line : u =ul >uJ. 

If M(t0, ul) =I.  u. b. \f(ul +it) 1, formula (15) gives readily: 
10 st 

1 a, I e-hq ~ h Z ( t ~ , q ) .  
The same estimate still holds if f(r) is holomorphic and 
bounded for Q ?ul, t hto, since by  Cauchy’s theorem it fol- 
lows immediately from (15) that  this formula still holds 
with u1 and to just defined (supposing of course tha t  uAf< 00) .  

I n  this chapter we shall show that  a very useful estimate 
of the coefficients can be obtained if an estimate of the maxi- 
mum of If(s) I is known in a circle. But this is true only if 
certain conditions bearing on the distribution of the ele- 
ments of {A,) are supposed to  be satisfied. The  radius of 
such a circle has to  be of a certain length which depends, 
again, on the distribution of the A,. As a matter of fact, 
for such an estimate of the coefficients we shall not even be 
obliged t o  suppose tha t  the series (1) converges. It will be 
sufficient to  suppose that the series (1) representsf(s) in a 
certain asymptotic manner in a part of the s-plane. Con- 
siderations of this type permit us not only t o  prove impor- 
tant theorems on the distribution of singularities of a func- 
tion represented by a Dirichlet series as well as theorems 
on the distribution of the values taken by f ( s )  in certain 
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Fundamental Estimation Theorems 187 
regions, but they allow us also to  prove important theorems 
on quasi-analyticity. These considerations thus allow us to  
form a theory which unites in one principle both theories: 
that  of the study of the general properties of a Dirichlet 
series (singularities, theorems of Picard's type, etc.) and tha t  
of quasi-analyticity. Although we give here the general 
theorem on the estimation of coefficients, we shall use it 
here only for Dirichlet series: for the other problems re- 
lated to  quasi-analyticity we shall refer the reader t o  our 
paper [ll]. 

The number N(x) ,  ( X  > O ) ,  of quantities A, smaller than x ,  
will be called the distribution function, or for short, the  d i ~ -  
tribution of {A,,]. We shall suppose in this chapter tha t  
hl>O. Thus N ( x )  = O  for x6A1. The  quantity 

N ( x )  D =lim sup - 
. z = m  X 

will be called the upper  denJity of {A, ] .  The essential hy- 
pothesis in all the results of this chapter will be tha t  the 
upper  density of (A , }  i s f i n i t e :O  SD < co. IfN(x) = D x + n ( x ) ,  
the function n ( ~ )  will be called the excess distribution junc- 
tion, or excess distribution of the sequence {A, ,} .  In  order t o  
characterize the sequence more precisely than by its upper 
density we shall introduce an analytic function, the growth 
of which is closely related to  the behavior of the excess 
distribution. 

Let us set 

This product converges uniformly in each closed region and 
represents therefore an entire function of z =x+iy =re", 

We have Max 1 A(z) I = A ( i r )  = n 1 +- . And, by integra- 
1.1 =I ( :;) 

tion by parts, we get 
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log Max IA(z) I =log A ( i r )  = log 

1 z J  = r  

N ( x ) d x  J' x(x2 +r2) ' 

(43) 

From this equality it follows readily that  

(45) A* ( u )  = e -@+ u ) r  A (  i r )dr .  1- 
From (44) it follows that  A*(u) is defined by (45) for 

Since we have: 
u >o. 

m 

A( i r )  = cerZk, 

where the coefficients ck are positive, c o = l ,  we see from 
(45) that  

0 

Thus  A*(u) is holornorphic and is represented by (46) 
for u complex with I D+u I >D, but we shall only use this 
function for u >O.  It is positive and increases as u decreases 
to  zero. From (43) it follows that  

log h ( i r )  =nDr +2r2 

and (45) gives immediately : 

Thus, only the function n(x j  enters in the definition of 
A*(u), and this is the reason we shall call h*(u)  the growth 
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f unc t ion  of the excess distribution (n (x ) )  of the sequence (An) .  
Let us also set 

(where A'(z) is the derivative of A(z)). If we set 

we see, since A(XJ =0, that  

A ( Z) - A' (X j)X j 
2 '  A&) = lim- = 

tha t  is t o  say: 

(49) 

The sequence (A, )  given by (47), or, what amounts to 
the same thing, by (49)) shall be called the sequencc arm- 
ciated with the sequence fhn}. 

Let now { pn(x)} be a sequence of non-negative continuous 
functions defined for x L O ,  each of these functions being 
non-decreasing, with ( ~ ~ ( 0 )  =0, and satisfying, for every n, 
the inequality 

as x tends to  0. The  function p(x) =g. 1. b. p,(x) shall be 

called the enwelope o f the  reque'nce {pn(x)}. Since pn(0) = O  for 
n S  1 (by pI(0) = O  and (.SO)), we have p(0) =O. The  func- 
tion p(x) is the limit of non-negative, non-decreasing func- 
tions pn*(x) = min p&) tending to  p(x) monotonically (de- 

creasing), and therefore the integral log p ( x ) d x ,  where 

O<a <b < C Q ,  has either a finite value or the value - 03. 

(50) pn+l  ( x )  0 (pn ( x )  ), 

1 sn 

l $ k s i t  

I" 
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This integral can have the value - m only if for a certain c 
with a I C ,  q(x) =0, for 0 < x  <c .  A sequence {p,(x)] having 
the properties just described shall be called a n  asymptotic 
sequence. 

We shall denote by C(w, R) the open circle 1s - w  I <R, 
and byS(v ,R)  theregion It-t'I <R,a>a ' ,wherev=a '+i t ' .  
The region S(v ,R)  will be called a horizontal strip of width 
2 R .  If L is a Jordan arc, we shall call the union of circles 
UC(s ' ,R)  a channel of width 2R. The curve L will be called 

the central l ine of the channel. If v and w are the extremities 
of L and if Ro 6 R, Ro 6 R', we shall say that the correspond- 
ing channel of width 2Ro connects the circle C(w,R) to the 
horizontal half s tr ip  S ( v ,  R'). 

If a function F ( s ) ,  holomorphic in a horizontal half-strip 
S(v, R), and two sequences {a , }  of complex quantities, and 
{ X,) with 0 <A1 <Az, . + e lim A, = w , together with an asymp- 
totic sequence { p,(x) ] satisfy the inequalities : 

s'rL 

72 

j F ( r )  - C ame-X"LS I j p n ( e - v ) ,  

where s E S(v ,R) ,  with a>ul, and where n z l  (al independ- 
ent of n),  we shall say that  a,e-hs represents F ( s )  in 
S ( v ,  R) asymptotically wi th  respect to the sequence { p,(x) 1.  

We shall prove the following fundamental theorem : 
THEOREM XV. Let F ( s )  be a holomorphic and  bounded 

func t ion  in a region A composed of a circle C ( s l , R d ) ,  of a 
horizontal half-strip S(s2, wd?) and  of a c h a n w l  connecting 
them, of width 2nd l ,  (d l  Sd, dl rd?). Suppose that F ( s )  is 
represented in S(s2, nd?)  by asymptotically wi th  re- 
spect to a n  asymptotic requence {p,(x)], where {A,) is o f f i n i t e  
upper  density D. 

I f  D < d l ,  and i f ,  o x  setting w =  (2(dz-D)) - '  and ,  on  de- 
noting by p(x) the envelope of {(P,(x)} and by  A*(%) the growth 

1 
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f unc t ion  of the excess distribution of {L], one of the following 
conditions I ,  I I  is satisfied: 

(51) A * ( p u ~ " ) p ( u )  =0( 1) (u-+O) 
(I) there exists a positive constant p such that 

( 5 2 )  u))uU- 'du  = - C O ,  

(11) there exists a constant u' > w  such that 

(53) 1 ; o g  p(u )uW' - ' du  = - C O ,  

then 
(54) 1 a ,  I 52?rdA*(d - D)M(sl)A,eXnq, ( n  2 I ) ,  
where M(sl) i s  the m a x i m u m  of IF ( s )  1 in. C ( s , , n d ) ,  where 
{A,)  is the sequence associated wi th  the sequence { A n j  and 
zuhere crl is the real part of 51. 

It should be remarked that  (52) can hold only if 

since the function A*(u) increases as ZL tends to  O(u>O), 

and l ; o g A * ( p u Y ) u u - l d u  > - C O .  Therefore the condition (53) 
is much more restrictive than the condition (32). 

For the proof of the theorem we need to  prove some 
lemmas. 

LEMMA 111. If @(s) i s  holomorphic in a circle C(s',?rc) and 
satisfies there the inequality I @(s) 1 < M ,  if h ( z )  and  Aj(z) are 
respectively defined by (42) and (48), where the upper  density 
of ( A , )  satisfies the inequality D < c ,  then the series 

converges uni formly  in every circle C(s', n ( c  - D -u) ) ,  with  
0 <u <c -D, and  represents there a holomorphic func t ion  @j(s) 
satisfying the inequality 

where A*(u) is the growth func t ion  of the excess distribution 

( - l ) k C k ( - W 2 k ) ( . r )  

I @j(~) 1 <TcMA*(u) ,  

of { A " \ .  
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By Cauchy's theorem we have for s E C(d, n(c -D -ti)) : 

( 2 k ) !  @(w)dw / <  P ( 2 k )  ! M c '  1 (5) I 5 ___ 27i l$(w-s)2b+1, = [ * ( C ' f D f U  -c) ]?"+" 
/ w  -s ' j  = x r '  

where c' is any quantity such that  c -D -u <c' <c.  Thus 

( 5 5 )  

On the other hand, it is clear from the definition of the 
quantities ck  and c k ( j )  ((42), (48)), that  0 < c k i j )  5 c k ( k  ZO), 
and therefore, by ( 5 5 )  and (46): 

We prove now a well known statement. 
LEMMA IV. I f  the junc t ion  F ( z )  i s  holornorphic and bounded 

in the hay-plane x l a  > - 00 and i f  F ( z )  i s  not identically 
zero, then, for each b >O, the integrul 

converges to a f inite value. 

F ( z S . a - 4 ) ,  where M is such that  Let us set F l ( z )  = M 
IF(z )  I <M in x z a .  Fl(z) is holornorphic for 

If 0 < I  < 1, let us denote by c z  the circle 

The  point z = 1 is.inside of every CL, Cl itself being inside 
1 1 .  the half-plane x >-. The center of Cz is the point 51 = - 2 1 - 1 2 )  

its radius is RI=- ' We shall choose only such values 
1 - 1 2 .  

of I tha t  F l ( z )  has no zeros on the circumference Cz. There 
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exists obviously an infinity of such 1 tending increasingly 
to  1, since, if this were not true, the zeros of F l ( z )  would 

1 have a limit point in xh- (different from infinity), and 2 
would be identically zero, contrary to  the hypotheses. If 
z = 1  is a zero for Fl(z) of order mo, we shall write 

where the ai are the other zeros (of order mi) of Fl(z) in C1. 

The function +'I(z) is holomorphic in C1 (closed), without 

we 1 2  zeros in this closed circle. On putting pr =zI  -1 =- 1 - 1 2  
have, by Poisson's integral formula, and by (56) : 

(57) 

If Fl(1) #O, mo=0. 

F ~ ( z )  = +I(z) (Z - I)"o(z  CY^)^*. . (Z  - c t n ( i ) ) m n ( L ) ,  

1 -a But, if a Q C I ,  then 17i < I ,  and : 

The formulas (57), (58), and (59) give thus immediately: 

n + milogIz-aiI)--22aZlogI~,r(l)I Idzl +2nmOllogL 
1 1 Z l 2  - 

n 
+2nlC milogp-a i I  =2al(mologl+log~F2(1)~), 

1 

where Fz(z) = F ( z )  Obviously Fz(l) $0. Since 0 <1<1, 
(2 - 1)"' 

we see t h a t :  
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where A is a constant, independent of 1. Since IFl(z)  I <1 

1 in x 2 -  2' 

where L is an arbitrary arc of Cl.  On the other hand, the 
arbitrary positive quantities T,  E given, there exists a num- 
ber 1 (0 < I  < 1) such tha t  each point of an arc of Cl is a t  a 
distance smaller than e from a point of the segment 

, which proves tha t  

Since (60) holds for each T ( A  being fixed), our lemma 
follows then easily. 

The  next lemma is a corollary of Lemma IV. 
LEMMA V. If the func t ion  @(J) ir holornorphic and bounded 

in the region R(ol,P) defined by  
A I t1 <- (1-ole-.), a ~ b ,  2 

cchere 0 $rol <2eS, and i s  not identically zero,  then 
u +i cos-1e8-a e R(ol, p)  

j o y  u > p (here 0 gcos-1 < F )  and 
2 

. .  
If 5 belongs t o  the boundary of R(cY, p), and if a>@, then 

and therefore, if cos t =e@-., a l p ,  then 5 =u+it e R(a, p), 
which is equivalent to  the assertion that  

5 =u+i cos-l(efl-') E R(a, p) 
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for u 2 p. The curve C, in the s-plane, on which cos t =eB-r 

( u ~ p ) ,  and the region bounded by this curve, in which 

cos t > 6 p - U  ( [ t I <;, G > p ) ,  are mapped by the transforma- 

tion z = x + i y  =es into the straight-line x =e@ =y and the 
half-plane x >y. The function of z, f(z) = +(r), is then, by 
hypothesis, holomorphic and bounded for x z y ,  and is not 
identically zero. 

I t  follows then from Lemma IV tha t  

and from y = e u  sin t ,  dy = ( e 0  sin t + e @  cotnt)du, as s e C, it 
follows tha t  
(62) 

From the obvious relationship 
(e. sin t +e@cotnt) (1 +P sin2t)-1 N e-0, 

as s, on C, tends to  infinity u tends then to  + CQ and t to 

and from (62) follows then (61). 
We now proceed to  the proof of Theorem XV. 
Let L be the central line of the channel connecting 

C(sl, ad) td S(sz, adz), (s2 =u2+i tz ) ,  and belonging to  A. 
Let F ( s )  = C( - l ) + , ( j ) F Z k ) ( s ) ,  where the c h ( j )  are given by 
(48). By the hypotheses of the theorem and by Lemma 111, 
Fi(s)  is holomorphic in each of the circles C(sl, a ( d - D  -u) ) ,  

+adz), C(a+it2, n ( d 2 - D - u ) ) ( a > ~ z + a d z ) ,  where u is such 
that  0 <u <dl - D. 

C(J’, R(dl-D-u))(s’ e L) ,  C ( ~ + i t z , a ( d i - D - ~ ) ) ( ~ z < ~ ~ ~ z  

We have by the same Lemma 111: 
I F i ( ~ i )  1 <adM(~i)h*(u), 
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where u is such that  O<u<d-D. Therefore, since h*(u) 
is continuous for u > O  : 

Let us now write 
(63) /F,(JI) I S d M ( s l ) A * ( d - D ) .  

n 

% ( 5 )  = F ( s )  - u,e-xms. (64) 

By hypotheses, there exists a number u' such that  
@ ? , ( ~ ) ( n  2 1) is holomorphic in every circle C(Z+it2,  adz) 
with 3 2 u', and in every such circle : 
(65)  
(a' is independent of n). 

j(J) = 

1 

I @n(J )  1 5(Pn(e-z+dz) ,  (n 2 l),  

It follows then from Lemma 111 tha t  the function 
m 

( - l ) k c n ( j ) @ , n ' 2 k ' ( J )  = C( - l ) k C p F ' 2 y J )  - 
n =O k 

n 

(66) c( - l ) k C k ( i l  XEame-xms =F~(J) - 
k ?n =1 
n 1; 

m = 1  ?I ? ? I  = 1 
c ume-xms c ( - l ) k C k ( j ) h E  =Fi(s )  - ~ , d ~ ( X , ) e - ~ m ~  

is holomorphic in every circle C(3 +it2, r ( d 2  - D - u) ) ,  5 2 u' 
with 0 <u <dz-D,  and in this circle: 
(67) I @ % , j ( ~ )  I ~n~scpn(e-S ' "dp)h*(~) .  

Since Ai(X,) =O for m#j ,  we see that  for n z j ;  
n 

U , A ~ ( X , ) ~ - ~ ~ ~  = ~ j A j ( X j ) t - " ' ,  
m = l  

and we may write, for n z j  (by (66) and (67)): 
(68) an, j(J) =\kj(J) =F,(s)  - U j * ~ j ( X j ) t - k J T ,  

( 5  = u +it, I t - tz j 5 n(d2 - D -u), 0 <u <dz - D, u > u', j s n). 
(69) I \ k j ( ~ )  [ S ? ~ d i ( ~ ~ ( t - " f i r ~ ' ) A * ( ~ )  

From ( P ~ + ~ ( x )  =o(cp,(x) ) (x- fO)  it follows tha t  for u suf- 
ficiently large and j fixed (pk(e-u-CTdz)  2 cpj(e-'+"dZ), 1 5 k si. 
Therefore there exists a quantity u* independent of n such 
that  (69) holds for It - tz l  sn(dz-D-u) ,  (TZU*,  0 <u <dz-D, 
n 2 1. We have hence, for the same values of J, 
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[q i ( r )  I STd2A*(U)g. 1. b. ( ~ ~ ( e - ' + * ~ ~ )  

= adzh* ( U) (o( e - r+*dz ) .  

(70) 11 2 1 

We shall now prove that \ki(r) is identically zero. For 
tha t  purpose we shall consider the function 

e j ( v ;  r) =\ki (:+it2), 
where v z w .  It follows from (70) that, in the region 

with 0 <u <dz -D, the following inequality holds: 

(71) I e j ( v ;  5 )  1 ~ ~ * d ~ ~ * j U ) ~ ( t - ~ + ~ d z ) .  

Let q be an arbitrary positive quantity and let us set 

a =a(q) = 2 q ~ e l ~ 2 ~ ,  p = p(q) >max vu*, log - , We have 

then P>vu*,  2 e s > m > 0 .  Since in (71) u can be taken 
arbitrarily from the interval (0, d z - D ) ,  we set for u z p :  

( 3 
t l a  1 

2 0  2 v  2ve9 2w 
u=--- +-. The condition 0 <u  <dz -D = - is then 

satisfied, since v > w  and 1 -ae-@>O. I t  follows from (71) 
that e j (v;  r) is holomorphic in the region R(a, p )  given by 

I t (  <- (1 -at-#), azo, and satisfies there the inequality: T 

2 

This inequality shows first that, if v >w, d j ( v ;  5) is bounded 
in R(a, p). Indeed, as cr-+m, the right member of (72)  

tends to  rd2A* (iO - -- z'y> p(0) =O. But, if, moreover, (51) of 

the condition (I) of the theorem is satisfied, then e j ( O ;  J) is 
also bounded in R(a, p)  provided that in the definition of 
a! and p, given above, q takes the value p involved in (51). 



198 Dirichlet Series 

(a  P = P W  : 
Indeed, by (72), we have, in the region R(a, p) so defined 

(73) 1 Oj (w ;  s) I s r d 2 A *  pe-w(E-Td'))  cp(e-(a-rdz>), 

and by (51) we see that I Bi (w;  s) 1 < N  < CQ in R(a, 0). Thus 
we have proved tha t  &(v; s) is bounded in R(a(q), P ( q ) )  with 
q >0, arbitrary, and that B(o; s) is bounded in R(a(p) ,  p ( p ) ) .  
If \kiis) were not identically zero, B j ( v ;  s) would be not identi- 
cally zero for Y arbitrary, and, by Lemma V we would have: 

(74) i,'.g 1 e j p ;  a + i  c o s - ~ - c )  1 e-cda > - a, 

with p=P( l ) ,  if Y>O, and with P = p ( p ) ,  if Y = W .  From (74) 
and (72), both with v > w ,  q = 1 ,  it follows that for k > O  suf- 
ficiently large : 

( 

If condition (11) is satisfied, and if we choose Y=w', we 

shall have by (75), on putting e-:?hdz =u : 

l f o g  cp(u)u"-'du > - 01 ( K  constant >O) ,  

which is in contradiction with (53). Thus if condition (11) 
is satisfied, *i(s> =O. 

From (74) and (73) it follows, on putting e - % b d 2 = u ,  tha t  

lim inf log[h*(pu.)cp(~~)]~~- 'du > - 01, 

1 =o+ 1' 
which is in contradiction with ( 5 2 ) .  Thus if condition (I) 
is satisfied we still have \kj(r) EO. I n  other words: if the 
conditions of the theorem are satisfied we have 
(76) Pi($) =ajA i(Xj)e-Ais. 

It follows then from (63) that 
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( 7 7 )  1 ajAi(Xi) [e-’jU1 5 n d M ( r l ) A * ( d  -D), 
which is equivalent to  (54). Theorem XV is then completely 
proved. 

The following lemma will allow us to  consider Dirichlet 
series with an abscissa of absolute convergence (uA < 03) as 
representing the principal branch of the function represented 
by this series, asymptotically with respect to  a simple asymp- 
totic sequence cp,(x), for which both conditions (I) and (11) 
of Theorem XV are automatically satisfied. 

LEMMA VI. If Ca,e-Ans has a n  abscissa of absolute conver- 
gence UA < 03) then the principal branch of the func t ion  F ( s )  
represented by this series i s  represented arymptotically by thir 
series with rerpect to the arymptotic sequence 

pn(x) =A(a’ )eXnu’~b ,  A(u’) =C I a ,  I 
in each horizontal half-strip S(o, R)  with o = u1 +itl, UI 2 u’ > UA, 
t l  and  R arbitrary. 

u’ > uA) 

We have indeed for a >a’ : 

I F ( s )  - C ame-Xms I s n DI e2 

I a ,  I = C I a ,  j e-(xm-b)u 
m - 1  n +1 +I 

e2 m 

6 e - k  I a ,  I e-(h-Mc’ < - [E I a, I e- (bs-h)~’]e-An~ 
n +I m = 1  

= A(u’)ex”“’e-X”“. 

Theorem XV together with Lemma VI gives immediately 
the following theorem. 
THEOREM XVI. Let F ( s )  be holornorphic in a region com- 

posed of a circle C(s1, ird), of the half-plane u>uo and of a 
channel of width 27rd1, the central l ine of which has one ex- 
tremity in the half-plane u > uo, the other extremity being the 
point s1. Let F ( s )  be given for u > n  by 

the upper  density of {A,} being D. If D <dl S d  then 
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(78) I a, I 6 2adh*(d -D)M(sJA,eXtiul, 
where A*, M ( s J ,  A,, ul have the same meaning a5 in  Theorem 
X v. 

Since D < 0 0 ,  we see, by Theorem VII, that  uAp 5 u,, < a, 
and by Lemma VI, F ( s )  is represented asymptotically in 
S(s2, 7rd2), with 52 =uz+itz, u2 1 u ’  > u A ~ ,  d2 =d, by 
with respect to  { q . ( x ) } ,  where +on(.) =A(a’)eXnc’&. But ob- 
viously q ( x )  =g. 1. b. q , ( x )  =O for x <e-“ ’ ,  and therefore 

both conditions (I) and (11), each of which is sufficient for 
the conclusion of Theorem XV, are satisfied. The  conclu- 
sion of Theorem XVI, which is that  of Theorem XV, is 
therefore satisfied. 

We have seen that  Theorem XVI follows immediately 
from Theorem XV, but Theorem XVI can be proved much 
more simply than Theorem XV itself. 

In  order to  prove Theorem XVI directly it is sufficient, 
after having proved Lemmas 111 and VI (Lemmas IV and 
V are here unnecessary), t o  proceed with the proof exactly 
as for Theorem XV, with cp,(x) =A(u’)eXnu’xXn, until the in- 
equality (69) is established. From this inequality it follows 
immediately that  : 
(69’) 

for u>nd2+u’. This gives then (76) and ( 7 7 ) .  In  other 
words, all the reasoning which is extended from the inequal- 
ity (69) to  the equality (76) is replaced by the establishment 
of (69’) as an immediate consequence of (69). 

The  theorems of this chapter were established by the 
author [ll]. 

l(12 

I + i (s )  1 5 a d z A * ( ~ ~ )  g.. 1. b. pn(e-u*d2) =0, 
j Zlt 




