
FUNDAMENTAL THEOREMS 
CONCERNING POINT SETS’ 

I 

FOUNDATIONS OF A POINT SET THEORY 
OF SPACES IN WHICH SOME POINTS 

ARE CONTIGUOUS TO OTHERS 

my article “Foundations of Plane Analysis Situs”2 and 

made of spaces satisfying certain sets of axioms in terms of 
the undefined notions “point” and “region.” I n  the present 
treatment, “point,” region” and “contiguous to” (used as a 
relation of one point t o  another) are undefined. The  no- 
tion limit point of a point set is defined exactly as before. 
Tha t  is to  say, the point P is said t o  be a limit point of a 
point set M if every region that  contains P contains a t  least 
one point of M distinct from P. As before, the point set 
M is said to  be closed if i t  contains all of its limit points, 
it is said to  be perfect if it is closed and every point that  be- 
longs to  i t  is a limit point of it, and it is said t o  be compact 
if every infinite subset of it has a t  least one limit point, not 
necessarily belonging t o  it. But, in the book referred to, 
the point sets H and K are said to  be mutually separated if 

‘An elaboration and extension of material presented in a series of three lectures 
delivered at the Rice Institute in November, 1932, by Robert Lee Moore, Ph.D., 
Professor of Pure Mathematics at the University of Texas. 

9 Trans. Am. Math. SOC., XVII, April, 1916, pp. 131-164. 
”Am. Math. SOC. Colloquium Publications, XIII,  1932, New York. In the present 

I” in my book Foundations of Point Set T h e ~ r y , ~  a study was 

treatment the abbreviation P. S. T. will be used to designate this book. 
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2 Fundamental Point Set Theorems 
(1) they are mutually exclusive and (2) neither of them con- 
tains a limit point of the other one. Here they will be said 
to  be mutually separated if, in addition t o  (1) and (2), they 
satisfy the third requirement that  no point of H be contiguous 
t o  any point of K. In  terms of mutual separatedness, connect- 
edness is defined here just as there. T h a t  is t o  say, the point 
set M is said to  be connected if and only if it is not the sum 
of two mutually separated sets.’ But since mutual separat- 
edness has a new significance here, so does connectedness. 

If K is a proper subset of the connected point set M and 
M - K  is not connected, then M is said to  be disconnected 
by the omission of K or t o  be disconnected by K or t o  be 
separated by  K ,  and K is called a cut set of M ;  and if K 
is a point it  is called a cut point of M and, if it  is a con- 
tinuum, it is called a cut continuum of M.  
DEFINITION. If A and B are two distinct points a simple 

continuous arc from A t o  B is a closed, connected and 
compact point set which contains A and B and which is 
disconnected by the omission of any one of its points except 
A and B. The  statement “ A B  is an arc” is t o  be inter- 
preted as meaning that AB is an arc from A t o  B. 

This definition is worded precisely as in P. S. T. But 
the word “connected” occurs in two places and connected- 
ness having been defined in terms of mutual separatedness, 
it has a different significance here. Here the point set con- 
sisting of two contiguous points is an arc. So is the point 
set consisting of three distinct points A, B and C such that 
B is contiguous both to  A and to  C but A and C are not 
contiguous to  each other. But there every arc necessarily 
contains uncountably many points. 

‘Cf. iX. J. Lennes, “Curves in Non-Metrical Analysis Situs with Applications 
in the Calculus of Variations,” Am. Jour. of Math., XXXIII  (1911), and Bull. 
Amer. Math. Soc., XI1 (1906). 
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The  point set D is said t o  be a domain if for each point 

P of D there exists a region containing P and lying in D. 
The collection G of point sets is said t o  cover the point set 
M if each point of M belongs to  some point set of the col- 
lection G. If a point set is denoted by a certain letter, that  
letter with a bar above i t  will denote the sum of tha t  point 
set and all of its limit points. The  letter S will be used to  
denote the set of all points. 

Of the following axioms, the first three are worded precisely 
as in P. S. T. This set of six axioms will be called the set 2,. 

AXIOM 0. Every region is a point set. 
AXIOM 1. There exists a sequence GI, G2, GB, e . .  such 

that  (1) for each n, G, is a collection of regions covering S, 
(2) for each n, G,+1 is a subcollection of G n ,  (3) if R is any 
region whatsoever, X is a point of R and Y is a point of R 
either identical with X or not, then there exists a natural 
number m such that  if g is any region belonging to  the col- 
lection G ,  and containing X then g is a subset of (R - Y )  +X, 
(4) if MI, M2, Ma, a is a sequence of closed point sets 
such that, for each n, M ,  contains Mn+, and, for each n, 
there exists a region gn of the collection G, such that  M ,  is 
a subset of E,, then there is a t  least one point common t o  
all the point sets of the sequence MI, M2, M,, 

AXIOM 2. If P is a point of a region R there exists a non- 
degenerate1 connected domain containing P and lying in R. 

AXIOM A. No point is contiguous t o  itself. 
AXIOM B. If the point A is contiguous to  the point B, 

then B is contiguous t o  A. 
AXIOM C. If M is a closed point set and every point of 

the point set H is contiguous to  some point of M then no 
point of S - M  is a limit point of H .  

. 

'A point set is said to be degenerate if it consists of only one point. Otherwise 
it is said to be non-degenerate. 



4 Fundamental Point Set Theorems 
I will describe examples of spaces satisfying the six axioms 

of the set Zc. 
EXAMPLE 1. I n  Euclidean space of three dimensions, let 

K denote a definite sphere, in the sense of a spherical m r -  
face and let a denote an infinite sequence of distinct points 
P1, P2, Pa, . all lying on K and such that  every point of 
K either belongs to  a or is a limit point of the set of all the 
points of cz. There exists a sequence p of mutually exclusive 
spheres K1, K2, Ks, * - such that, for each n, K,, is exter- 
nally tangent t o  K a t  the point P, and is of radius less than 
I / n .  

Now let S denote the set whose elements are the ordinary 
points of K and the spheres of the sequence p. Let the 
elements of S be called points and let two points of S be 
called contiguous t o  each other if and only if one of them 
is a sphere of the sequence p and the other one is the point 
of a a t  which tha t  sphere is tangent to K.  If P is a point 
of K and m is a positive integer let TPm denote the set of all 
points of K a t  a distance from P less than l / m  and let RPm 
denote the set whose elements are the points, in the ordinary 
sense, of Tpm and the points, in the new sense, which are 
spheres of the sequence Km, Km+l, Km+2, - that  are tan- 
gent t o  K a t  points belonging to  Tpm. Let a point set be 
called a region if it  is either (1) a single element of the se- 
quence p or (2) a set RPm for some integer m and some 
point P of K.  For each n let G, denote the set of all regions 
which are elements of the sequence /3 and all regions R p m  

for which m is greater than n. It may be verified that  
Axioms 2, A and B are satisfied for this interpretation of 
point, region and contiguity and that  the sequence GI, GP, 
Ga, . satisfies all the requirements of Axiom 1. Suppose 
now that  M is a closed subset of S and that  H is a set of 
points each contiguous to  some point of M. Suppose P is 
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a limit point of H. The  point P does not belong to  the se- 
quence ,8. For if it did then P itself would be a region con- 
taining P and therefore containing a t  least one point of H 
distinct from P which is absurd. Hence P is a point of K.  
Suppose R is a region containing P. There exist a positive 
integer m and a point X of K such tha t  R is identical with 
Rxm. There exists a number i such that  TpI is a subset of 
Txm and such that  no point other than P of the finite set 
PI, Pz, PB, e . . ,  P, is a t  a distance from P less than l / i  
T h e  region Rpi contains a point Y of H distinct from P. 
There exists a number j greater than m such that  Y is 
identical either with Pj or with K j .  Since Pj belongs t o  
Rpi and t o  K it  belongs t o  Tpi and therefore to  Txm. But 
j > m .  Therefore Kj belongs t o  Rx,. But either Pj or Kj 
belongs t o  M.  Thus Rx, contains a point of M distinct 
from P. Hence P is a limit point of M .  Therefore i t  be- 
longs t o  M .  Thus Axiom C holds true in this example. 

EXAMPLE 2. I n  a Cartesian space let 0 denote the ori- 
gin, let OX denote the axis of abscissas and let A and B 
denote the points of O X  whose abscissas are 1 and -1 
respectively. Let OA denote the straight line interval con- 
sisting of the points 0 and A and all points between them 
and let OB denote the straight line interval from 0 to  B. 
Let S denote the set whose elements are the intervals OA 
and OB and the points of OX whose abscissas are either 
less than - 1 or greater than 1. Call the elements of S points. 
Let two elements of S be regarded as contiguous if and only 
if one of them is OA and the other one is OB. 

If n is a positive integer and P is the interval OA, let 
RPn denote the point set whose elements are P and the 
points of OX whose abscissas, in the ordinary sense, lie be- 
tween l and i + l / n .  If P is OB let Rpn denote the set whose 
elements are P and the points of OX whose abscissas are 
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between -1 and -1- l /n .  If P is a point of S distinct 
from O A  and from OB, let Rpn denote the set of all points 
of S distinct from OA and from OB and a t  a distance from 
P less than l / n .  I n  this illustration a point set will be called 
a region if and only if i t  is a set RP, for some positive in- 
teger n and some point P of s. The set of axioms & is 
satisfied by this interpretation of point, contiguity and re- 
gion. If, for each n, G, denotes the set of all regions Rpn 
for all points P of S, the resulting sequence GI, G2, G3,  - - e 

fulfills all the requirements of Axiom 1. 
It is t o  be noted that  if, in this example, H denotes the 

point set whose elements are O A  and the points of OX 
whose abscissas are greater than 1 and K denotes the set 
consisting of OB and the points of OX whose abscissas are 
less than -1, then H and K together make up the whole 
of S but they are mutually exclusive and no region contains 
a point of both of them and therefore neither of these sets 
contains a limit point of the other one. This, however, 
does not imply that S is not connected. For the point OA 
of H is contiguous to  the point OB of K and therefore H 
and K are not mutually separated. 

EXAMPLE 3. Let S denote the set whose elements are the 
intervals of OX whose endpoints are consecutive numbers 
of the set composed of zero and the integers. Consider a 
space whose points are the elements of S. Let two points 
of S be regarded as contiguous if and only if they are abut- 
ting intervals of OX. Let a point set be regarded as a re- 
gion if and only if i t  is a single point of s. The axioms of 
Eo are satisfied by this interpretation. If, for each n, G, 
denotes the set of all regions, the sequence GI, Gz, Ga, 
satisfies the requirements of Axiom 1. I n  this space no 
point has a limit point. Nevertheless, S is infinite and 
connected. 
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DEFINITION. T h e  point P is said to  be a boundary point 

of the point set M if either (1) P belongs to  one of the sets 
M and S-M and is a limit point of the other one or (2) P 
is a point of S - M  which is contiguous t o  some point of M.  

If the proposition P can be proved on the basis of Axioms 
0, 1 and 2 alone, mutual  separatedness and boundary and 
notions partly or wholly dependent on one or both of these 
being defined in accordance with the treatment given in 
P. S. T., and on the basis of the axioms of the set 2, i t  is 
possible t o  prove a proposition Pc which is worded precisely 
as is proposition P, the notions referred to  being now de- 
fined in accordance with the present treatment; then the 
proposition P will be said t o  “hold here just as in ordinary 
point set theory.” 

For example, let P denote the proposition tha t  if A B  is 
a simple continuous arc from A t o  B and A B - 0  is the sum 
of two mutually separated point sets H and K,  then one of 
these sets contains A and the other one contains B. This 
proposition is proved in P. S. T. on the basis of Axioms 0 
and 1, the terms “simple continuous arc from A t o  B” and 
“mutually separated point sets H and K” being defined as 
indicated there. Here these terms have a different signifi- 
cance but if Pc denotes a proposition worded precisely as 
is P but in which these two terms are given this new mean- 
ing, this new proposition with the old wording can be proved 
on the basis of the set of Axioms 0, 1, A, B and C. The  
proposition Pc is, then, said to  hold here just as in ordinary 
point set theory. 

An example of a proposition that  holds in ordinary point 
set theory but which can not be proved here is the statement 
that  if A B  is a simple continuous arc then AB-(A+B)  is 
connected. Here, if A and B are contiguous to  each other, 
A B - ( A + B )  does not even exist. 
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Consider the very first proposition of P. S. T.: No point 

of a region is a boundary point of that  region. There this 
proposition means that  if P is a point of a region R then not 
every region that  contains P contains both a point of R 
and a point not belonging t o  R. This is obviously true since 
R itself is a region containing P and certainly i t  contains 
no point not belonging to  itself. Here this proposition means 
that  if P is a point of a region R then not only is the above 
obviously fulfilled condition satisfied but P is not a point 
of S- R which is contiguous to  a point of R. This condition 
also is obviously fulfilled. So the proposition in question 
holds here just as in ordinary point set theory. 

On the other hand, in ordinary point set theory it is true 
that  no point of a region R is a boundary point of the com- 
plement of R. But there exists a space satisfying 2, and 
consisting of just two points R and E these points being 
contiguous to  each other. I n  this example, R is necessarily 
a region and E is its complement and not only is i t  true that  
R contains a boundary point of its complement but i t  is the 
entire boundary of its complement. 

NOTATION. If M and N are point sets the notation M -N 
is used t o  denote the common part of M and N that  is t o  
say the set of all points that  belong both to  M and t o  N .  

DEFINITIONS. As in ordinary point set theory, a subset 
K of a point set M is said to  be an open subset of M if for 
each point P of K there exists a region R containing P such 
that  R .M is a subset of K and a point set M is said to  be 
locally compact if, for each point P of M there is a compact 
open subset of M containing P. An open subset of a point 
set is sometimes called a domain with respect to that  point 
set. 

The  sequence of domains D1, D2, D3, - - is said t o  close 
down o n  the point set M if (1) M is the common part of all 
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the domains of this sequence, (2) for every n, &+I is a sub- 
set of D, and (3) if D is a domain containing M there exists 
a number n such tha t  D, is a subset of D. 

The  point P is said to  be a sequential l imit  point of the 
sequence of points PI, Pz, Pa, - if for every region R con- 
taining P there exists a natural number 6 such tha t  if n>6 
then P, lies in R. If P is a sequential limit point of the 
sequence a then a is said to  converge to P and it is said to  be 
a convergent sequence. 

There is a large body of propositions which are conse- 
quences of Axioms 0 and 1 and in whose statement there 
occurs neither the term mutually separated nor the  term 
boundary nor any other term which is defined either wholly 
or partly in terms of one of them. It is clear tha t  all such 
propositions hold true here. For convenience of reference I 
will list a few of these many propositions as numbered 
theorems, referring to  P. S. T. for proofs or indications of 
proofs. 

THEOREM 1. I f  P i s  a point there exists a n  infinite sequence 
of regions closing down on P. 

THEOREM 2. I f  P i s  a l imit  point of the point set M then 
P i s  the sequential l imit  point of some i n j n i t e  sequence of 
points of M a l l  distinct f r o m  each other and f r o m  P. 

DEFINITION. The  collection G of point sets is said to  be 
monotonic provided it is true tha t  if x and y are two point 
sets of the collection G then either x contains y or y con- 
tains x. 

THEOREM 3. I f  G i s  a monotonic collection of closed and 
compact point sets, there exists at least one point common to 
all the point sets of the collection G and their common part 
i s  closed. 

THEOREM 4. No locally compact and countable point set i s  
perfect. 
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THEOREM 5 .  Every closed and compact point set has the 

Borel-Lebesgue property.' 
THEOREM 6. I f  M and N are two mutually exclusive closed 

point sets and one of them is compact then there exist two do- 
mains D M  and D N  containing M and N respectively and such 
that D M  and D N  are mutually exclusive. 

DEFINITIONS. If a is a sequence of point sets M I ,  M z ,  
M3,  - then by the limiting set of a is meant the set of all 
points P such that if R is a region containing P then there 
exist infinitely many natural numbers n such that M,, con- 
tains a point of R. 

The  point set M is said to  be the sequential limiting set 
of the sequence a of point sets if M is the limiting set of 
every infinite subsequence of a. Under these conditions a 
is said t o  converge t o  M .  

THEOREM 7. If the limiting set of a sequence a is compact 
then some subsequence of a has a sequential limiting set. 

THEOREM 8. Every closed and compact point ret is a metric 
spacee2 

Let us now proceed to  a consideration of propositions 
involving the notion of contiguity. 

THEOREM 9. If H and K are mutually exclusive closed 
point sets and H is compact there do not exirt infinitely many 
points of H each contiguous to some point of K. 

Suppose there exists an infinite subset L of H Proof. 
'The point set M is said to  have the Borel-Lebesgue property if for every collec- 

tion of domains covering M there is a finite subcoliection of that  collection that  
also covers M .  

*The point set M is said to  be a metric space if with every pair of points X 
and Y belonging to  M there is associated a number d (X, Y), called the distance 
from X to Y, such that  (1) d (X, Y)=d (Y, X ) z O ,  (2) d (X ,Y)=O if and onlyif 
X= Y, (3) if A, B and C are any three points of M then d (A, B)+d (B, C ) z d  
(A ,  C), (4) the point P of M is the sequential limit point of the sequence of points 
PI, Pz, Pa,.  of M if and only if d (P", P) approaches 0 as a limit as n increases 
indefinitely, Cf. M. Frechet, Rend. Ciw. Mat. di Palerrno, XXII (1906), p. 17. 
Under these conditions the point set M will be said to be metric with respect to  
the distance function d (X, Y). 
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such tha t  each point of L is contiguous to  some point of K. 
Since H is compact the point set L has a t  least one limit 
point P. Since H is closed P belongs to  H and, by Axiom 
C, it belongs t o  K. Hence H and K have a point in common, 
contrary to hypothesis. 

THEOREM 10. Every boundary point of the common part of 
two point sets i s  a boundary point of one of them. 

THEOREM 11. The boundary of the s u m  of a $kite number 
of point sets i s  either vacuous or a subset of the s u m  of their 
boundaries. 

THEOREM 12. The boundary of a point set i s  closed, and so 
i s  the s u m  of a point set and its boundary. 

Proof. Let @ denote the boundary of M and let Mc de- 
note the set of all points X of @, if there are any, such that  
X is contiguous t o  some point of M .  Suppose P is a limit 
point of @. Then it  is a limit point either of M c  or of 
P-M,. Tha t  every limit point of P-MC belongs to  @ fol- 
lows as in ordinary point set theory. Suppose P is a limit 
point of Mc. Then, since every point of M c  is contiguous 
to  some point of the closed point set 2 therefore, by 
Axiom C, P belongs t o  Ai. But M i  is a subset of S - M .  
Hence P is a limit point of S-M.  Therefore if P belongs 
t o  M i t  is a boundary point of M by definition. If it does not 
belong to  M ,  it belongs to  a - M  and therefore, again by 
definition, it is a boundary point of M .  Thus @ is closed. 
But M+p=R+p and a is closed. Hence M+@ is closed. 

If M is  a closed and compact point set, 
XI ,  Xz,  X S ,  . . i s  a n  infinite sequence of distinct points of 
M ,  and, j o y  each n, Y,  i s  a point of M which i s  contiguous to 
X ,  and d ( X ,  Y )  i s  a distance function with respect to which 
M i s  metric, then d (Xn ,  Y,)+O as n+ C Q .  

Proof. Suppose, on the contrary, that  there exist a posi- 
tive number e and an infinite sequence of positive integers 

THEOREM 13. 
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nl, n2, n3, . such that, for each i, d (Xni,  Y,J >e. There 
exist points X and Y and a subsequence ml, m2, m3, - of 
the sequence nl, n2, n3, - - such that X and Y are the se- 
quential limit points of the sequences Xml, Xm2,  Xm3, . a e 

and Yml, Ympy Ym3, * respectively. Now, for each j ,  the 
point set Tj consisting of Y and the points of the sequence 
Ymj+l, Ymj+z, Ymj+3y . . - is closed and, for each i, Xmj+,. is 
contiguous to  Ymj+i. Furthermore, since the points of the 
sequence Xml ,  X m Z ,  Xm3, are all distinct, X is a limit 
point of the point set Xmj+l+Xmj+Z+Xmj+a+ . . There- 
fore, by Axiom Cy for each j ,  X belongs t o  Ti. But Y is the 
only point common t o  all the point sets of the sequence 
TI, Tz, T3, . Therefore d (Xmi,  Y)+O as i increases in- 
definitely. But so does d (Ymiy Y ) .  Therefore so does 
d (Xmi,  Y m J .  Thus the supposition that  d (X,, Y,) does not 
approach 0 as n increases indefinitely leads to  a contra- 
diction. 

THEOREM 14. If the closed point set M is compact there 
does not exist an uncountable subset K of M such that each 
point of K is contiguous to some point of M .  
Proof. Suppose there exists such a set K .  By Theorem 

8, there exists a distance function d (X, Y )  with respect t o  
which M is a metric space. For each point P of K let X p  

denote some point of M which is contiguous to  P. There 
exists a positive number e such that, for uncountably many 
distinct points P of K, d (P, Xp) >e. Let PI, Pz, Ps, 
denote a sequence of distinct points of K.  By Theorem 13, 
d (P, Xp,) -+O as n+ a. This involves a contradiction. 

DEFINITION. The subset H of the point set M is said 
to be closed relatively to M if M contains no limit point of 
H that  does not belong to  H .  The point P is said t o  be a 
boundary point, relatively to M y  of the subset H of M if P 
belongs both t o  M and to  the boundary of H. The set of 

. 

. 
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all boundary points of H relatively t o  M is called the bound- 
ary of H relatively to M.  

THEOREM 15. I f  the subset H of the point set M i s  closed 
relatively to M and M - H  is  the s u m  of two mutually sepa- 
rated point sets K and L then K is a domain with respect to M 
and its boundary with respect to M ,  ;f i t  exists, i s  a subset of H. 

THEOREM 16. I f  M and N are mutually separated closed 
point sets and M i s  compact then there exists a domain D con- 
taining M such that N contains no point either of fs or of its 
boundary. 

Proof. Let p ( N )  and p (fs) denote the boundaries of N 
and of B respectively. By hypothesis, M and N + p  ( N )  are 
mutually exclusive and M is closed and compact and, by 
Theorem 12, N + p  ( N )  is closed. It follows, by Theorem 6, 
tha t  there exists a domain D containing M such tha t  B 
and N + p  ( N )  are mutually exclusive. Clearly N contains 
no point of f s + p ( f s ) .  

THEOREM 17. Suppose H and K are two mutually sepa- 
rated closed point sets and MI, MP, Ma, . - i s  a sequence of 
closed and compact point sets such that (1) every M ,  contains 
both a point of H and a point of K ,  (2) f o r  each n, M ,  con- 
tains M,,1 and (3) no M ,  is the s u m  of two mutually sepa- 
rated closed point sets one containing a point of H and the 
other containing a point of K. Then  i j M denotes the com- 
mon part of all the point sets of this sequence, the closed point set 
M i s  not the s u m  of two mutually separated closed point sets one 
containing a point of H and the other containing a point of K .  

Proof. Suppose, on the contrary, t ha t  M is the sum of 
two mutually separated point sets M H  and MK intersecting 
H and K respectively. By Theorem 16 there exists an open 
subset D of M containing MH and such that  M K  contains 
no point of D or of p, the  boundary of D with respect t o  M.  
For each n, Mn contains a point of p. Otherwise M ,  would 
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be the sum of two mutually separated point sets D. M ,  
and M,- (D+p) .Mn containing M ,  -MH and M ,  .MK re- 
spectively. But, by Theorem 12, p is closed. Hence p .MI,  
,8 -Mz, p ‘M3, . is a sequence of closed and compact point 
sets each containing the next one. Hence, by Theorem 3, 
the point sets of this sequence have a t  least one point 0 
in common. The point 0 belongs t o  M $3. This involves a 
contradiction. 

THEOREM 18. If M is a nondegenerate connected point set 
every point of M either is a l imit  point of M or is contiguous 
to some other point of M .  

Proof. If P is a point of M either one of the sets P and 
M - P  contains a limit point of the other one or P is con- 
tiguous to some point of M - P .  Since no point is a limit 
point of a single point, the conclusion follows. 

If H and K are two mutually separated 
point sets, every connected subset of H f K  is a subset either 
of H or of K.  

THEOREM 20. If M is a connected point set and L is a 
point set consisting of M together with some or all of its bound- 
ary points, then L is connected. 

THEOREM 21. If G is a collection of connected point sets 
and there exists a point set g of the collection G such that, for 
every other point set x of G, g contains either a point or a 
boundary point of x then the sum of all the point sets of the 
collection G is connected. 

DEFINITIONS. A point set which is both closed and con- 
nected is called a continuum. If H and K are two mutually 
exclusive closed point sets, the continuum M is said t o  be 
irreducible from H to K if M contains both a point of H and 
a point of K but no proper subcontinuum of M does s0.l 

THEOREM 19. 

‘The notion of an irreducible continuurn was introduced by L. Zoretti, “La 
notion de ligne,” Ec. Norm., XXVI (1909), pp. 485497. 
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THEOREM 22. I f  M i s  a point set and K i s  a subset of the 

set of all points X such that X i s  contiguous to some point of 
M then @+K i s  closed and i j  M i s  connected then @+K 
i s  a continuum. 

THEOREM 23. I f  H and K are two mutually separated 
closed point sets and M i s  a closed point set containing H and 
K and M i s  not the s u m  of two mutually separated closed point 
rets, one containing a point of H and the other containing a 
point of K ,  but every closed proper subset of M that contains 
both a point of H and a point of K i s  the s u m  of two such 
point sets, then M is  a n  irreducible cont inuum f r o m  H to K .  

THEOREM 24. I f  the closed and compact point set M con- 
tains a point of each of two mutually separated closed point 
set H and K and i s  not the s u m  of two mutually separated 
closed point sets one containing a point of H and the other 
one containing a point of K ,  then M contains a cont inuum 
which i s  irreducible f r o m  H to K. 

THEOREM 25. I f  the closed and compact point set M in- 
tersects each of the two mutually separated closed point sets 
H and K but M contains no cont inuum that intersects both 
of them, then M is  the s u m  of two mutually separated closed 
point sets intersecting H and K respectively. 

THEOREM 26. I f  H and K are mutually exclusive closed 
subsets of the compact cont inuum M there i s  a subcontinuum 
of M that i s  irreducible f r o m  H to K .  

Theorems 23 and 24 are worded in precisely the same 
manner as Theorems 31 and 32 of pages 18 and 19 of P. S. T. 
except for the substitution of “mutually separated” for 

mutually exclusive.” They may be established by argu- 
ments having much in common with the arguments given to 
prove these Theorems in P. S. T. Theorems 25 and 26 are 
almost direct corollaries of Theorem 24. 

THEOREM 27. I f  H and K are mutually separated closed 

6; 
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subsets of the compact closed point set M but M contains no 
cont inuum containing both a point of H and a point of K ,  
then M i s  the s u m  of two mutually separated closed point sets 
one containing H and the other containing K.  

Theorem 27 is the same as Theorem 35 of Chapter I of 
P. S. T. except for the substitution of “mutually separated” 
in place of “mutually exclusive.” It may be proved with 
the help of Theorems 25, 16 and 5. 

THEOREM 28. If H and K are two mutually separated closed 
point sets and the compact continuum M is  irreducible f r o m  H 
to K then M - M (H+ K )  i s  connected, M - M H is  connected 
and every point of M H is  a boundary point of M - M - H with 
respect to M .  

Theorem 28 may be established with the help of Theorem 
27 by an argument largely similar t o  that employed to  prove 
Theorem 37 of Chapter I of P. S. T. 

DEFINITION. A maximal  connected subset of a point set M 
is a connected subset of M which is not a proper subset of 
any other connected subset of M .  A maximal connected 
subset of a point set is also called a component of that point 
set. 

THEOREM 29. If the open subset D of the continuum M is a 
proper subset of M and D and its boundary are compact then 
the boundary with respect to M of D contains at least one 
boundary point of every maximal  connected subset of D. 

Theorem 29 may be established with the help of Theorems 
26, 27 and 28. 

THEOREM 30. If K i s  a closed proper subset of the con- 
t i nuum M and M -  K and its boundary are compact then K 
contains a boundary point of every maximal  connected subset 

Theorem 30 may be easily established with the help of 
of M-K.  

Theorem 29. 
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DEFINITION. The point set M is said to  be connected in 

the strong sense, or strongly connected, if for every two points 
X and Y of M there exists a continuum which contains both 
X and Y and which is a subset of M .  A maximal strongly 
connected subset of a point set M is a strongly connected 
subset of M which is not a proper subset of any other such 
subset of M .  

THEOREM 31. If K is a closed proper subset of the compact 
continuum M ,  then K contains a boundary point of every 
maximal strongly connected subset of M - K.  

Proof. Let A denote a point of M - K  and let W denote 
the maximal strongly connected subset of M - K  that  con- 
tains A. Suppose K contains no boundary point of W. 
Since K and W are mutually separated, closed and compact 
point sets therefore, by Theorem 16, there exists a domain 
Dw containing W and such that  K contains no point either 
of Bw or of its boundary. By Theorem 29, the boundary of 
Dw contains a t  least one boundary point P of L, the com- 
ponent of M .Dw that  contains A. The  point set consisting 
of L plus its boundary is a continuum lying in M -  K and 
containing both A and the point P. Thus P belongs to  W. 
But this is impossible since Wis a subset of Dw and P does 
not belong to Dw. 

THEOREM 32. If D and D1 are open subsets o f the  continuum 
M and both D and p, its boundary with respect to M ,  are com- 
pact and M -  D is non-vacuous and Dl is a subset of D then 
there exists a subcontinuum of M lying wholly in D+@ - D1 and 
containing both a point of p and a point of pl, the boundary of D1. 

Proof. If p and p1 have a point in common, let N denote 
one such point. If some point X of p is contiguous to  some 
point X1 of p1, let N denote the point set X+X1. If p and 
81 are mutually separated then, by Theorem 26, there exists 
a subcontinuum K of M which is irreducible from ,d to  81 
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and, by Theorem 28, K - K .  (p+pl) is connected. Let N 
denote the point set consisting of K - K .  (p+pl) together 
with its boundary with respect t o  M .  In  each case the 
continuum N lies wholly in D+P-D1 and contains both a 
point of p and a point of p1. 

There is a theorem of Sierpinski’s t o  the effect that  if the 
closed and compact point set M is the sum of a countable 
number (more than one) of mutually exclusive closed sets 
then M is not connected. This, of course does not hold as 
a theorem here, for a point set consisting of two contiguous 
points is a compact continuum. As may be seen from the 
same example, the proposition tha t  no non-degenerate locally 
compact continuum is the sum of a countable number of 
closed and totally disconnected’ point sets also fails t o  be 
a theorem here. If, in the statement of Sierpinski’s proposi- 
tion, the word “separated” is substituted for the word “ex- 
clusive” the resulting proposition does hold here. 

DEFINITION. If H, K and T are proper subsets of the 
connected point set M then T i s  said to  separate H from K 
in M if M -  T is the sum of two mutually separated point 
sets containing H and K respectively. 

With the use of this definition, intervals and segments of 
connected point sets and relations of order between points 
of such intervals may be defined just as in P. S. T. There 
is a very large group of propositions concerning these notions 
of order which hold true here just as in ordinary point set 
theory. All the numbered theorems from 45 t o  69 of Chap- 
ter I of P. s. T. hold true here with the exception of Theorems 
60 and 63.’ 

‘A point set is said to be totally disconnected if it contains no non-degenerate 
connected point set. 

* I f  “vacuous or connected” is substituted for “connected” in the statement of 
the first of these two theorems and “distinct from its endpoints” is substituted for 
“distinct from P” in the statement of the other one, the resulting propositions 
hold true here. 
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THEOREM 33. If M is a closed and compact point set and 

a is a convergent sequence of mutually exclusive continua all 
lying in M then the sequential limiting set of a is either a single 
point or a non-degenerate perfect continuum which is not the 
sum of any two mutually exclusive closed point sets. 

Proof. Suppose, on the contrary, that  K ,  the limiting set 
of a is the sum of two mutually exclusive closed point sets 
H and L. By Theorem 6, there exists an open subset D of 
M containing H and such tha t  contains no point of L. 
For each n, let Kn denote the nth term of the sequence a. 
There exists a number m such that, for every n greater than 
m, K ,  contains a point of D and a point of M - D and there- 
fore a point P a  belonging to 8, the boundary of D. The 
point set PI+P2+P3 +. * has a limit point 0. The point 0 
belongs both to  K and to  0-0. But this involves a con- 
tradiction. 

It is t o  be noted that the conclusion of Theorem 33 gives 
much more information than would be given by the state- 
ment that  the limiting set of a is either a single point or a 
non-degenerate perfect continuum. For the Example 3 de- 
scribed shortly after the statement of the Axioms of 2, is an 
example of a space in which there is a perfect continuum 
(in this case the set of all points) which is the sum of two 
mutually exclusive closed point sets. Theorem 33 would not, 
however, continue to be a true theorem here if its conclusion 
were so strengthened as to  require that  no subcontinuum of 
the limiting set of a be the sum of two mutually exclusive 
closed point sets. For there are examples in which the limit- 
ing set of such a sequence contains two points which are 
contiguous to  each other. 

THEOREM 34. If the open subset D of the continuum M is 
a proper subset of M and i s  compact and H denotes the set 
of all points X of D such that X is  contiguous to some point of 
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M -  D, then H+ (E- D) contains at least one point or l imit  
point of every component of D and at least one point of every 
component of a. 

Proof. Since M is connected and D is a proper subset of 
M therefore H+(D-D) exists. Let 0 denote a point of D 
and let T denote the component of D that  contains 0. If 
0 either belongs t o  H or is contiguous to some point P of 
H+(fS-D), then either 0 or O+P is a connected subset 
of D containing a point of H+(b-D)  and therefore 
H+(D-D) contains either the point 0 or the point P of T. 

Suppose 0 neither belongs t o  H nor is contiguous t o  any 
point of H+(D-D). Since every point of H is contiguous 
t o  some point of the closed point set M - D  therefore, by 
Axiom C, M - D ,  and therefore D-D contains every limit 
point of H. Hence H+(D-D) is closed and i t  and 0 are 
mutually separated. The  closed point set D is not the sum 
of two mutually separated point sets Mo and M H  containing 
0 and H+(D-D) respectively. For if i t  were then M 
would be the sum of the two mutually separated point sets 
Mo and MH+(M-D) contrary to  the hypothesis that  M is 
connected. But b is compact. Hence, by Theorem 27, b 
contains a continuum containing both 0 and a point of 
H + ( b - D ) .  Hence, by Theorem 26, D contains a con- 
tinuum N which is irreducible from 0 to H+(D-D). By 
Theorem 28, N - N  .[H+(D-D)] is connected and every 
point of N .[H+ (b- D)]  is a boundary point of it. Hence 
N--N.[H+(D-D)] is a subset of T and every point of 
N -[H+ (D-D)]  either belongs t o  T or is a limit point of it. 

THEOREM 35. If D and D1 are open subsets of the con- 
t i n u u m  M ,  i s  compact, M - D  is  non-vacuous and 0 1  is 
a subset of D then there exists a subcontinuum of M lying 
wholly in B-0 ,  and containing both a point of the bound- 
ary of D1 and a point of the boundary of M-D.  
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THEOREM 36. If D and D1 are open subsets of the closed 

point set M ,  b is compact, D1 is a subret of D and 
M1,  M2 ,  Ma, - - is a sequence of mutually exclurive continua 
lying in M and, f o r  each n, M ,  contains both a point of D1 

and a point of M -  D, then ( I )  there exists a number m such 
that, for every n greater than m, M ,  contains a non-degenerate 
continuum H ,  lying in D-  D1 and containing both a point of 
f l  ( D l ) ,  the boundary of D1 with respect to M ,  and a point of 

( M  - D ) ,  the boundary of M - D with respect to M and (2) some 
subsequence of HI, Ha, Hs, - . converges to a continuum lying 
in - D1 and containing a perfect continuum lying in D -Dl. 

Proof. If /3 (bl) and /3 ( M -  D)  denote the boundaries with 
respect t o  M of bl and of M - D  respectively, there do 
not exist infinitely many points X such tha t  X belongs 
to  one of the point sets /3 (b1) and p ( M - D )  and either 
belongs t o  the other one or is contiguous to  some point of 
it. Hence there exists a number m such tha t  if n>m then 
Mn*[Dl+p(D1)] and M n * [ ( M - D ) + p  ( M - D ) ]  aremutually 
separated. 

Let K ,  denote a component of M,.D containing some 
point of D1. By Theorem 34, K,  contains a point of ,8 ( M  - 0). 
Since it is a subset of b, the continuum K,  is compact and 
i t  intersects both p ( M - D )  and Dl+p(&). Therefore, by 
Theorem 26, there exists a subcontinuum H, of K,  which 
is irreducible from p ( M - D )  t ob l+ /3  (&). ByTheorem 28, 
i f n > m ,  then H,-H,.[Dl+p (E1)Sp ( M - D ) ]  isaconnected 
point set L, and Dl+p(ol) contains a point P such that  
either P is a limit point of L, or P is contiguous to  some 
point X of L,. I n  the first case, P belongs to  the boundary 
of D1. In  the second case, X or P belongs t o  the boundary 
of bl according as P does or does not belong to  D1. So, in 
either case, H ,  contains a point of the boundary of D1. The  
continuum H ,  is either 2, or the point set obtained by add- 

- 
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ing to  L n  one or more points that  are contiguous to  L,. 
But L n  contains no point of El+@ (01). Hence H ,  contains 
no point of D1. Hence it is a subset of D-Dl. 

. 
such that Hnl, Hn2, Hn3, - * is convergent. Since, for every 
n greater than my H ,  intersects each of the two mutually 
exclusive closed point sets D1+P(Dl) and P(M-D) ,  the se- 
quential limiting set of the sequence Hnl, Hn2, Hn3, a * - con- 
tains a t  least two distinct points, one belonging to  Dl and 
one to D-D. Hence, by Theorem 33, it is a non-degenerate 
perfect continuum T which is not the sum of two mutually 
exclusive closed point sets. The continuum T intersects both 
D-D and 01 and it is a subset of D-Dl. Since T .(fsl) and 
T .(B-,D) are non-vacuous, closed and mutually exclusive, 
T contains a point 0 belonging t o  neither of them and there- 
fore belonging to  the point set D-Dl. There exist open 
subsets D2 and D3, of M ,  containing 0 such that E2 is a 
subset of D-Dl and 03 is a subset of Dz. There exists a 
number k such that  each continuum of the sequence H,,, 
Hnk+l, Hnk+2, - contains a point of D3. But each of them 
contains a point of Dl and therefore of M -  D2. Hence there 
exist an infinite subsequence ml, m2, m3, . . of the sequence 
nl, n2, n3, - - and a sequence Qnl, QnZ, Qn3, - such that (1) 
for each i, Qni is a subset of Hni lying wholly in 02-D3 and 
containing both a point of p(D3) and a point of P(M-DZ), 
(2) the sequence Qn1y Qn3y converges to a non- 
degenerate continuum Q. The sequence Hnl, Hn2, Hng, . - 
converges to T, and Q is a perfect subcontinuum of T which 
lies in D-'dl and intersects 03 and &-D2 and which is not 
the sum of two mutually exclusive closed point sets. 

DEFINITION. If A and B are two points, by a simple 
chain of domains from A t o  B is meant a finite sequence 
R1, R2, . ., R, of domains such that  (1) R1 contains A and 

There exists an ascending sequence of numbers nl, n2, n3, 

- 
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R ,  contains B, (2) no domain of this sequence except R1 
contains A and none except R ,  contains B, ( 3 )  if i>j+l, 
no point of Ri is identical with, or contiguous to, any point 
of Rj, (4) if i=j+l, some point of Ri is identical with, or 
contiguous to, some point of Rj. 

THEOREM 37. If M is a connected point set, A and B are 
two distinct points of M and G is a set of domains covering M 
then there exists a simple chain from A to B such that every 
l ink of this chain i~ a domain of the set G. 

DEFINITIONS.~ The point set M is said to  be connected im 
kleinen a t  the point 0 if 0 belongs t o  M and for every open 
subset D of M that  contains 0 there exists an open subset 
of M which contains 0 and which is a subset of a component 
of D. The  point set M is said t o  be locally connected a t  the 
point 0 if 0 belongs to  M and every open subset of M that  
contains 0 contains a connected open subset of M contain- 
ing 0. If a point set is locally connected a t  every one of 
its points i t  is said t o  be locally connected and if it  is con- 
nected im kleinen a t  every one of its points i t  is said t o  be 
connected im kleinen. 

A connected im kleinen continuum is called a continuous 
curve. 

If a point set M is connected im kleinen a t  every point 
of some open subset of M that  contains the point 0 of M 
then M is locally connected at  0. 

Theorems 1-37 are consequences of the axioms of 2, ex- 
clusive of Axiom 2. With the help of Axiom 2 and Theorem 
37 the following theorem may be established by an argu- 
ment having much in common with that  used to  establish 
the first theorem of Chapter I1 of P. S. T. 

'Cf. Hans Hahn, Jahresbcricht ~ C T  D. Math. Vercinigung, XXIII (1914), pp.  
318-322, and S .  Mazurkiewicz, Fundamenta Mathemaiicae, 1 (1920), and earlier 
papers in Polish, referred to  therein. 
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THEOREM 38. If A and B are distinct points of a connected 

domain D there exists a simple continuous arc from A to B 
that lies wholly in D. 

Indeed the first nineteen numbered theorems of Chapter 
I1 of P. S. T. hold here without any change whatever in 
their wording. Each of the following four theorems, 39-42, 
either belongs to this group or is a modification’ of one 
belonging to  it. 

THEOREM 39. If the continuous curve M is regarded as a 
space and the term “region” i s  interpreted to mean a connected 
open subset of M ,  then, with respect to this interpretation of 
“point” and “region,” the axioms of 2, are satisfied and 
“limit point” is invariant under this change. 

THEOREM 40. I f  D is  a point set, M i s  a point set, a i s  a 
sequence of distinct components of M .D, and 0 i s  a point be- 
longing to the limiting set of a and lying in some region which 
is a subset of D then M i s  not connected im kleinen at 0. 

THEOREM 41. If A, B and 0 are three distinct points of 
a subset M of a locally connected and connected point set T 
and M i s  closed with respect to T and there exists at least one 
point of M that separates 0 from both A and B in T and 
neither of the points A and B separates the other one from 0 
in T, then there exists a point of M which separates 0 from 
A+B in T and which i s  not separated f r o m  A+B in T by 
any  point of M .  

THEOREM 42. If 0 and A are two points of a subset M of 
a locally connected and connected point set T and M is  closed 
with respect to T,  then the set of all points of M that separate 
0 from A in T i s  compact. 

THEOREM 43. If 0 i s  a point of the locally compact con- 
‘Theorems 41 and 42 correspond to  propositions which may be obtained from 

Theorems 12 and 13 of P. S. T. by weakening their hypotheses in the manner 
indicated in the appendix of the book. Cf. the references made there to  the work 
of 0. H. Hamilton and F. B. Jones in this connection. 
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tinuum M and M is not connected im kleinen at 0 then, ;f R 
is  a region containing 0, there exist a connected domain D 
containing 0 and lying in R, an infinite sequence of points 
01, 02, 03, of D converging to 0 and an infinite sequence 
of mutually separated continua MI, Mz, M3, - such that 
( I )  M a n  is compact, (2) f o r  each n, M ,  is a component of 
M - 0 containing 0, and either a point of ;5 - D or a point 
of D which is contiguous to some point of M - D - M ,  (3) the 
sequence M I ,  M2,  Ma, converges to a perfect subcontinuum 
K of M containing 0 and a point of D- D and such that there 
is a perfect subcontinuum of K lying wholly in D. 

Theorem 43 may be established with the help of Theo- 
rems 34 and 36 and an argument having much in common 
with the proof of Theorem 8 of Chapter I1 of P. S. T. 

THEOREM 44. Under the hypothesis of Theorem 43, ;f D is 
a domain and K ,  M1,  Mz, MB, are continua fulfilling the 
conditions described in the statement of that theorem, then there 
exists a sequence of points O:, O;, 04, . converging to a point 
0' such that, f o r  each n, 0; belongs to M ,  and 0' is a point of 
K .  D which is not contiguous to any point of M -  D. 

Proof. Let T denote a perfect subcontinuum of K lying 
in D. Every point of Tis a limit point of T. Since T and the 
closed point set M - D  are mutually exclusive it follows, by 
Axiom C, tha t  there is a point 0' of T which is not con- 
tiguous t o  any point of M-D. Since 0' belongs to K # D 
there exists a sequence of points Oi, O:, Od, - . converging 
t o  0' and such that, for each n, 0; belongs t o  D *Mn. 

THEOREM 45. If the continuum M is locally compact at 
the point 0 then in order that M should be connected im kleinen 
at 0 it is suficient that f o r  every subcontinuum K of M not 
containing 0 there should exist a finite collection of continua 
jlling up M such that no one of them contains both 0 and a 
point of K. 
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Proof. Suppose D is an open subset of M containing 0 

and such tha t  Td is compact. If D is M then it is connected. 
Suppose it is not M. Then M - D  has a boundary Y with 
respect t o  M. If 0 is not contiguous to  any point of M - D ,  
let L denote Y. If 0 is contiguous to  a t  least one point of 
M-D,  let L denote Y-0 .  By Axiom C, the closed point 
set M - D  contains every limit point of the set of all points 
X such that  X is contiguous t o  a point of M - D .  There- 
fore 0 is not a limit point of Y-0. Hence, whether or not 
0 belongs to  Y,  L is closed. For each point X of L there 
exists a finite collection Gx of continua filling up M such 
that no one of them contains both 0 and X. Let Tx denote 
the sum of all the continua of Gx that  contain X. Let G 
denote the collection of all Tk’s for all points X of L. For 
each X, Tx contains an open subset of M containing X. 
Hence, since i t  is closed and compact, L is covered by a 
finite subset H of G. Let N denote the sum of all the con- 
tinua of the collection H. The closed point set N does not 
contain 0. 

Let 2 denote the point set consisting of M - N  together 
with its boundary, let Q denote B . 2  and let K denote the 
component of Q that contains 0. Suppose that 0 is a limit 
point of M -  K. Then it is a limit point of Q- K. Since K 
is a component of Q, 0 is not a limit point of any connected 
subset of Q-K. Hence there exist a sequence of points 
P1, Pz, P3, and a sequence of distinct continua 
K1, Kz, K3, . . such that  (1) for each n, K ,  is a component 
of Q distinct from K,  (2) for each n, P, belongs t o  K,,, 
(3) the point 0 is the sequential limit point of the sequence 
p1, pz, p3, ’ * * . The collection H is finite. It follows, with 
the help of Theorem 34, that  there exist a continuum g of 
the collection H and an infinite subsequence a of the se- 
quence K1, Kz,  KS, a a a such that  every continuum of the 
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sequence a has a point in common with g. Let G1 denote 
the collection of all continua x of H such that  there exists 
a subcontinuum of M containing both a point of g and a 
point of x but not containing 0. There exists a finite col- 
lection G’ of continua filling up M such that  no continuum 
of G’ contains both 0 and a point of GT. Let T denote the 
sum of all the continua of G’ t ha t  contain 0. The  con- 
tinuum T contains an open subset of M containing 0. Hence 
it contains points of two different continua h and k of the 
sequence a. But h and k are distinct components of Q not 
containing 0. Therefore T contains a point of N belonging 
t o  h and therefore a point of GT. Thus the supposition that  
0 is a limit point of M - K  has led to  a contradiction. 
Hence K contains an open subset of M containing 0. But 
K is a connected subset of E.  Therefore M is connected 
im kleinen a t  0. 
THEOREM 46. If the locally compact continuum M is not 

connected im kleinen at the point 0 then there exists a perfect 
subcontinuum K of M containing 0 and such that no point of 
K is separated from 0 in M by afinite subset of M and such 
that furthermore there are uncountably many points of K that 
are not contiguous to 0. 

Proof. By Theorem 43 there exist a connected domain D 
containing 0, an infinite sequence of points 01, 0 2 ,  03, . 
converging to  0 and an infinite sequence of mutually sepa- 
rated continua M1,  M2,  Ma, . . . such that  (1) M is com- 
pact, (2) for each n, M ,  is a component of M .F-0 con- 
taining 0, and a point of the boundary of M-D,  (3) the 
sequence M I ,  M2 ,  M3,  - . converges to  a perfect subcon- 
tinuum K of M containing 0. Suppose X is a point of K 
and N is a finite subset of M.  There exists a number i such 
tha t  no one of the continua Mi, Mi+l, contains a point 
of N .  Suppose M - N  is the sum of two mutually sepa- 
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rated point sets H and K containing 0 and X respectively. 
By Theorem 19, each continuum of the sequence 
Mi, Mi+l, Mi+2, * * is a subset either of H or of K. Hence 
there exists an infinite subsequence a of the sequence 
Mi, Mi+l, Mi+2, such that  either H contains every con- 
tinuum of a or K does so. Let W denote the point set 
obtained by adding together all the continua of the sequence 
a and let Q denote H or K according as W is a subset of H 
or of K.  Since 0 and X are limit points of W belonging to  
M - N  therefore they both belong to  Q contrary to  the sup- 
position tha t  they belong t o  H and to  K respectively. Since 
K is uncountable therefore, by Theorem 14, there are un- 
countably many points of K that  are not contiguous to  0. 

THEOREM 47. If P i s  a point of a n  open subset D of a 
compact cont inuum M and L i s  the set of all points of M that 
are contiguous to P and T i s  the common part of L and p ( D ) ,  
the boundary of D with respect to M ,  then there exists a n  open 
subset U of M lying in D and containing P+L . D, but no 
point of T, and such that the set of all points of the boundary of 
U that do not belong to L i s  either vacuous or closed. 

Proof. By Axiom C,  P contains every limit point of L. 
Hence T and P+L- T are mutually exclusive closed point 
sets. Hence there exists an open subset W of M containing 
P+L- T and such that  r contains no point of T. Let U 
denote W -  D. The point set U is an open subset of M con- 
taining P and, if p(U) denotes its boundary, no point of 
p(U) - T is contiguous t o  P. By Axiom C, if C( U )  denotes 
the set of all points of p ( U )  that  are contiguous t o  some 
point of U, u - U  contains every limit point of C(U) and 
therefore no limit point of C(U)  belongs t o  T. Since U 
is a subset of W and r contains no point of T, there- 
fore the closed point set 0 contains no point of T. But 
P(U)=C(U)+(u-U) .  Hence p(U) -T  is closed. 
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DEFINITION. The  point set M is said t o  be compactly 

connected if every two points of M lie together in some com- 
pact continuum which is a subset of M .  

THEOREM 48. If P is a point of the compactly connected 
continuum M ,  and M is a subset of the point 5et T and M p  
denotes the Jet of all points X of M Juch that X is not reparated 
from P in T by any one point, then M p  is a continuum. 

Theorem 48 may be proved with the assistance of Theo- 
rem 26. 

THEOREM 49. If M is a locally compact and compactly 
connected subcontinuum of the continuous curve T and 0 is a 
point of h4 at which M is  not connected im kleinen then there 
exists a subcontinuum K of M containing 0 such that K is 
not connected im kleinen at 0 and such that no point of K 
separates any two points of K from each other in T,  

Proof. By hypothesis and Theorem 43, there exist a do- 
main D containing 0, an infinite sequence a of distinct points 
P1, P2, P3,  . of D converging to  0 and an infinite sequence 
of mutually separated continua M1,  M2, M3,  such tha t  
(1) M is compact, ( 2 )  for each n, M ,  is a component of 
M . not containing 0 but containing P,  and either a point 
of D-D or a point of D which is contiguous t o  some point 
of M - De M ,  (3) the sequence MI, Mz, Ms, converges 
t o  a perfect subcontinuum L of M which contains 0 and a 
point of D-D and which contains a perfect continuum 
lying wholly in D. 

Let A denote some definite point of L distinct from 0. 
The  point 0 is not separated from A in M by any one point. 
Hence i t  is not separated from A in T by any one point. It 
follows that  if a point of M - A  separates a point of M from 
0 in T then i t  separates it from A f O  in T. Therefore, by 
Theorem 41, if the  point P of M is separated from 0 in T 
by some point of M and neither of the  points A and 0 sepa- 
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rates the other one from P in T, then there exists, in M y  
a point X p  which separates 0 from P in T but which is not 
itself separated from 0 in T by any point of M .  Let M i  
denote the set of all points P of M such that no point 
separates P from 0 in T. By Theorem 48, Mo is a con- 
tinuum. Since T i s  a continuous curve there exist two mutu- 
ally exclusive and connected open subsets Do and DA of T 
containing 0 and A respectively and lying wholly in D. 
There exists a number k such that if n > k  then M ,  contains 
both a point of Do and a point of DA. Neither of the points 
A and 0 separates the other one, in T, from any point of 
the sequence Pkfl, P k f 2 ,  P M ,  - * . 

Suppose Mo is connected im kleinen at  0. Then clearly 
there exists a natural number m greater than k such that  Mo 
contains no point of the sequence Pm+1, Pm+2, Pm+3, * . 
For each n, let B, denote Pm+, and let 0, denote the point 
XBn. For each n, T-0, is the sum of two mutually sepa- 
rated point sets U, and Y, containing B, and 0 respec- 
tively. Let Hn denote the point set M U,+O,. For each 
n, H,  is a continuum containing 0, and B,. There exists 
an ascending sequence of natural numbers nl, n2, n3, . . 
such that  Onl, On2, On3, converges to  some point F and 
such that  Unl, Un2, Una, a . are mutually exclusive. Let E 
denote a region containing F.  There exists a region R 
containing F and such that  - A4 is compact. Suppose 
infinitely many of the continua Hnl, Hn2, Hn3, . . . contain 
points of S-R.  Let R1 denote a region containing F such 
that  is a subset of R. Let /3 and p1 denote the boundaries 
of M .R and M -R1 respectively with respect t o  M. There 
exists an ascending subsequence ml, m2, m3, * - of the se- 
quence nl, n2, n3, e - e such that, for every i, Omi belongs to  
R1 and Hmi contains a point of S-R. By Theorem 36, 
there exists a number q such that  (1) if i > q ,  Hmi contains 
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a non-degenerate continuum Hii lying wholly in 8- R1 and 
containing both a point of P(R),  the boundary of R1 with 
respect t o  M ,  and a point of P(M- R - M ) ,  the boundary 
of M - R . M  with respect t o  M ,  (2) some subsequence 
Ql, Q2, Q3, - - of the sequence HA,+,, HA,+2, converges 
t o  a continuum containing a point F’ lying in R-X,.  For 
each i, let Ki denote the component of T. (X-R1)  that  con- 
tains Qi. The continua of the sequence K1, Kz, Ks, ’ - . are 
mutually separated and the limiting set of this sequence 
contains the point F’. Therefore, by Theorem 40, T is not 
connected im kleinen a t  F’. But this is contrary t o  hy- 
pothesis. It follows that  each region that  contains F con- 
tains all but possibly a finite number of the continua 
H n l ,  Hn2,  Hnp * * * . Hence F is 0. There exists a region Z 
containing F and such that  Z . M o  is a subset of the com- 
ponent of D .  Mo, and therefore of W the component of 
M - D ,  that  contains F.  There exists a natural number 6 
such that,  for every i greater than 6, Hni is a subset of Z. 
But Hni is a continuum containing Bni and the point Oni of 
Mo. Hence B n 6 + l  and Bn6+P both belong to  W. But they 
belong respectively to  Mm+nd+l and Mm+n6+P, two distinct 
components of Ma D. Thus the supposition that Mo is con- 
nected im kleinen a t  0 has led t o  a contradiction. Since T 
is a continuous curve, no component of T - 0  contains a 
limit point of the sum of the remaining components of T - 0 .  
It follows that  there exists a component U of T - 0  such 
that  O+ U M o  is a continuum K which is not connected 
im kleinen at  0. The continuum K satisfies all the require- 
ments of Theorem 49. 

 DEFINITION.^ The point P of the continuum M is said t o  
be a regular point of M ,  and M is said t o  be regular at P,  if 

‘Cf. Karl Menger, “Grundzuge einer Theorie der Kurven,” Math. Ann., XCV 
(1925), p. 279. 
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every open subset of M containing P contains an open subset 
of M whose boundary with respect t o  M is a finite point 
set. The continuum M is said to  be a regular curve if i t  is 
regular a t  every one of its points. 

If there are no two contiguous points in space, then, if 
the continuum M is regular a t  the point P, every point of 
M distinct from P is separated from P in M by a finite set 
of points. But this is not true in every space satisfying the 
axioms of 2,. Suppose, for example, the continuum M con- 
sists of the two contiguous points P and X. This continuum 
is regular a t  the point P for P is itself an open subset of M 
which lies in every open subset of M containing P and the 
boundary of P is the single point X. But since X is con- 
tiguous to  P i t  is not separated from P in M by any point 
set whatsoever. It is t o  be noted that  in this example not 
every open subset D of M containing P contains an open 
subset of M whose boundary is a subset of D. Thus Theo- 
rem 59 of Chapter I1 of P. S. T. does not hold true here. 
However it is true that  if L is a closed proper subset of the 
compact continuum M and M is regular a t  every point of 
L then every open subset D of M containing L contains an 
open subset of M containing L and bounded, with respect 
t o  L,  by a finite subset of M (not necessarily of 0). Further- 
more, while it is not true that every two mutually exclusive 
closed subsets of a compact regular curve M are separated in 
M by a finite subset of M ,  it is true that  every two mutually 
separated closed ones are. And in order that  a compact 
continuum M should be a continuous curve i t  is necessary 
and sufficient that  every two mutually separated closed sub- 
sets of M should be separated from each other in M by the 
sum of some finite number of subcontinua of n1.l This may 

1Cf. G. T. Whyburn and W. L. Ayres, “On continuous curves in n dimensions,” 
Bull. Am. Math. Soc., XXXIV (1928), pp. 349-360. 
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be shown with the assistance of Theorem 45. With the help 
of this same theorem, the proposition of W. A. Wilson stated 
on page 136 of P. S. T. may also be shown t o  hold true here. 

THEOREM 50. If P i s  a point of a compact cont inuum M 
and for every closed subset H of M such that P and H are 
mutually separated there i s  a finite point set that separates P 
from H in M then M i s  regular at P. 

Proof. Suppose D is an open subset of M containing P. 
Unless M is degenerate, D contains an open subset D1 of M 
which contains P and has, with respect t o  M ,  a non-vacuous 
boundary p(D1). If no point of p(D1) is contiguous to  P 
there exists a finite point set N such that  M - N  is the sum 
of two mutually separated point sets H p  and H ,  containing 
P and p(D1) respectively. Let I denote the common part 
of the point sets D1 and H p .  The point set I is a domain 
with respect t o  M ,  it contains P and its boundary with 
respect t o  M is a subset of N+p(D1)  and therefore of N 
since I and p(D1) are mutually separated. 

Suppose at  least one point of p(D1) is contiguous t o  P. 
Let T denote the set of all such points. By Theorem 9, T 
is a finite set. If p(D1) - T is vacuous, D1 is itself a subset 
of D with a finite boundary. Suppose p ( D 1 ) - T  is non- 
vacuous. By Theorem 47, there exists an open subset U of 
M lying in D1 and containing P and such tha t  if p(U)  de- 
notes the boundary of U then T is the set of all points of 
p(U) that  are contiguous to  P and p(U)  - T is closed. Since 
p(U)  - T is closed and P is not contiguous t o  any point of 
it, therefore there exists in M a finite point set N such that  
M - N  is the sum of two mutually separated point sets HP 
and HB(w--T containing P and p(U)  - T respectively. The  
point set H p  is an open subset of M whose boundary with 
respect t o  M is a subset of the finite point set N .  The  point 
set M -  T is an open subset of M containing P and bounded 
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with respect t o  M by a subset of the finite point set T. 
Let Z denote the common part of D1, H p  and M -  T. The 
point set Z is a domain with respect t o  M .  I ts  boundary 
p ( Z )  is a subset of N +  T+p( U) - T. But p( U) - T and Z 
are mutually separated. Hence p(Z) is a subset of N + T .  
Therefore i t  is finite. 

THEOREM 51. A locally compact continuum is connected im 
kleinen at every point at which it ir regular. 

Proof. Suppose the locally compact continuum M is regu- 
lar a t  the point P but not connected im kleinen there. By 
Theorem 46, there exists a compact and perfect subcon- 
tinuum T of M containing P such that  no point of T is 
separated from P in M by a finite subset of M.  Since T is 
uncountable and compact it contains a point X which is not 
contiguous to  P. By Theorem 16, there exists an open subset 
D of M containing P and such that  X belongs neither t o  
D nor to  its boundary with respect t o  M.  There exists an 
open subset H of M lying in D and containing P and bounded 
in M by a finite point set N .  The  point X does not belong 
to  H+N. Hence N separates P from X in M .  This involves 
a contradiction. 

THEOREM 52. No compact regular curve contains two mu- 
tually exclusive closed point sets H and K and injnitely many 
mutually exclusive continua each containing both a point of H 
and a point of K.  

Proof. Suppose that  H and K are two mutually exclusive 
closed subsets of a compact regular curve M and G is an 
infinite collection of mutually exclusive subcontinua of M 
each containing both a point of H and a point of K. There 
exists an infinite sequence of continua g l ,  gz,  g3, - - of the 
collection G converging to  some continuum T. Since each 
continuum of this sequence contains both a point of H and 
a point of K,  so does T. Hence T i s  non-degenerate. There- 
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fore, by Theorems 33, 4 and 14, T contains two mutually 
separated points A and B. Tha t  A and B are not separated 
from each other in M by any finite set of points may be 
shown by an argument similar t o  that  employed in a similar 
connection in the proof of Theorem 46. But this is contrary 
to  a previously mentioned proposition concerning compact 
regular curves. 

THEOREM 53. No compact regular curve contains uncount- 
ably many mutually exclusive non-degenerate continua. 

Proof. Suppose, on the contrary, t ha t  there exist a com- 
pact regular curve M and an uncountable set G of mutually 
exclusive non-degenerate subcontinua of M .  It follows from 
Theorem 14 that  there exists an uncountable subcollection 
H of G such that  every two continua of the collection H are 
mutually separated. It follows that  there exist two mutually 
separated closed subsets K and L of M such tha t  there are 
uncountably many continua of the set H that  intersect both 
K and L. But this is contrary t o  Theorem 52. 

With the help of Theorem 33 it may be shown that  if a 
compact continuum M contains two closed and mutually 
exclusive point sets H and K and an infinite number of 
mutually exclusive continua each containing both a point of 
H and a point of K then M has a continuum of condensation, 
that  is t o  say there is a non-degenerate proper subcontinuum 
T of M such that  every point of T is a limit point of M -  T. 

DEFINITION. If M is a continuum, a composant of M is 
a point set K such that, for some point P of M ,  K is the set 
of all points X such tha t  there is a proper subcontinuum 
of M containing both P and X. 

THEOREM 54. If K is a composant of a compact continuum 
M there is not more than one point of M - K which is not a 
limit point of K and if there is one such point P then P is 
contiguous to some point of K and jurthermore K = h f - P .  



36 Fundamental Point Set Theorems 
Thus either every point of M - K  is a l imit  point of K or 
no one is. 

Proof. Suppose there is a point P of M - K  which is not 
a limit point of K.  Then clearly K = K .  There exists an 
open subset D of M containing P such tha t  contains no 
point of K.  The point set contains a boundary point X 
of T, the component of M - D  that  contains K.  Since X 
does not belong t o  the closed point set K ,  i t  is not a limit 
point of K.  Hence it is contiguous t o  some point of K. 
Hence K + Y  is a continuum. Since Y does not belong t o  
K ,  K + Y  cannot be a proper subcontinuum of M.  Hence 
Y is identical with P and K = M - P. 

Just as in ordinary point set theory, an indecomposable 
cont inuum may be defined as a continuum which is not the 
sum of any two proper subcontinua of itself. Such continua 
have been studied by Brouwer, Mazurkiewicz, Yoneyama, 
Knaster, Kuratowski and others. Brouwer established the 
existence of such point sets. 

If M is an indecomposable continuum and K is a com- 
posant of M ,  every point of M - K  is a limit point of K.  
For if P is a point of M -  K then, by Theorem 54, if P is 
not a limit point of K then K = M - P  and P is contiguous 
to  some point X of K. The point set P+X is a non-degen- 
erate proper subcontinuum of M and therefore, since M is 
indecomposable, P+X is a continuum of condensation of M.  
Hence P is a limit point of M - (P+X)  and therefore of K.  

Every numbered theorem' of P. S .  T. in whose statement 
the term indecomposable occurs continues to hold true here. 

THEOREM A. I f  M i s  a compact metric space without con- 
tiguous points and XI, X2, Xs, * * are 
sequences of points of M such that X, i s  distinct f r o m  Y, but 
the distance f r o m  X, to Y ,  approaches 0 as n increases in- 

. and Yl, Y2, Y3, 

'Cf. Theorems 108-113 of Chapter I. 
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definitely then i f  the point X is called contiguous to the point 
Y i f  and only i f ,  f o r  some n, X is one of the points Xn and Y,, 
and Y i s  the other one, then all of the axioms of & except 
Axiom 2 hold true in the resulting space. 

Proof. It is clear that  the truth of Axiom 1 is not af- 
fected by the agreement to  call certain points contiguous 
t o  certain others. Clearly Axioms A and B hold true for 
this interpretation of contiguity. It will be shown that  
Axiom C holds true. Suppose K is a closed subset of M 
and P is a limit point of a point set H of which each point 
is contiguous to  some point of K.  There exists an ascending 
sequence of natural numbers nl, n2, n3, - such tha t  either 
Xnl, Xn2,  Xn8, * . . are distinct points of H such that  P is 
a limit point of the set of all points of this sequence and, for 
each i, Yni is a point of K or Ynl, Yn2, Yng,  . . are distinct 
points of H such that  P is a limit point of the point set 
Ynl+ Yn2+ Y,,+ . * and, for each i, X n i  is a point of K.  
Suppose the former of these alternatives holds true. There 
exists a subsequence ml, m2, m3, of the sequence nl,  n2, n3, 
- such that  P is the sequential limit point of the sequence 
Xml, Xm2,  Xm3,  . - and therefore Lim d(X, ,  P) =o. But 

Lim d(X,,  Ymi) =o. Therefore Lim d(  Ymi, P )  =o  and there- 

fore, since K is closed, P belongs t o  K.  Thus K contains 
every limit point of H and Axiom C holds true for this in- 
terpretation of contiguity. 

DEFINITION. If S is a space in which there are no con- 
tiguous points and certain points of S are defined as being 
contiguous to  other points of S in such a way tha t  all of 
the Axioms of 2, except possibly Axiom 2 hold true for this 
interpretation of contiguity then the resulting space is said 
to  result from the introduction of contiguity into S. 

THEOREM B. If S is a continuous curve in which no point 

i-bca 

i- m (--too 
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is contiguous to a n y  other one and Sc is a space obtained from 
S by the introduction of contiguity then Sc is also a continuous 
curve. 

The  truth of this theorem is clear in view of the fact that  
the points of Sc are the points of S and every point set which 
is connected in the old sense in S is connected in the new 
sense in Sc though there is a t  least one point set which is 
connected in the new sense but not in the old. 

It is not however true tha t  if S is an arc and Sc is a 
space obtained from S by the introduction of contiguity 
then Sc is an arc. Consider the following example. 

EXAMPLE. Let 0 be the origin of coordinates and let A 
denote the point (1,O) in a Cartesian space. Let S denote 
the space consisting of the points of the straight line inter- 
val OA.  The space S is a simple continuous arc. For each 
n, let T, denote the point set consisting of all points of the 
interval O A  whose abscissas are of the form m/n where m 
is a positive integer not greater than n. Let Sc denote the 
space whose points are the points of S but in which two 
points are contiguous t o  each other if and only if, for some n, 
they both belong to  T, and their abscissas differ by 2/n. The 
space Sc is obtained from the arc S by the introduction, 
in a certain manner, of contiguity into the space S but, 
though all of the points of S, except 0 and A, are cut points 
of S, not only does Sc have no cut points but it has no local 
cut points and indeed no two points of Sc are separated 
from each other in Sc by any finite point set. For suppose 
K is a finite subset of Sc. Let H denote the point set con- 
sisting of the points 0 and A and all the points of K. The  
points of this set may be designated AI, Az, As, - - . , A k  in 
such a manner tha t  if i > j  the abscissa of Ai is greater than 
that  of Ai. There exists a number n such tha t  no two points 
of the set H are a t  a distance apart  as little as 2/n  and no 
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point of H has an abscissa equal t o  m / n  where m is a 
positive integer. Since, for each i less than k, the distance 
from Ai t o  Ai+l is greater than 2 / n  therefore there exists, 
in S, a point of T, between Ai and Ai+1. For epch such i 
let Li denote the rightmost point of T, between Ai and Ai+l 
and let Ri denote the point whose abscissa exceeds that  of 
Li by 2 / n .  The point Ri is necessarily between Ai+l and 
Ai+2. For each i less than k let Ki denote the set of all 
points of Sc that  belong to  the segment AiAi+l of S. While 
Ki is not a segment in the new sense i t  is, nevertheless, con- 
nected since every point set which is connected in the old 
sense is also connected in the new. If i is less than k then, 
since the point Li of the connected point set Ki is contiguous 
to the point Ri of the connected point set Ki+l, therefore 
Ki+Ki+l is connected in the new sense. It follows that  
K1+K2+ . .+K, is connected. But either this point set or 
the connected set obtained by adding to  it one or both of the 
points 0 and A is identical with Sc-K.  Therefore Sc is not 
disconnected by the omission of any finite point set K .  

Theorems 1-54 are consequences of the axioms of the 
set 2,. Let 2,' denote the set consisting of 2, together with 
the following axiom. 

AXIOM D. There do not exist three distinct points such 
that  each of them is contiguous to  each of the others. 

Let us now consider a space satisfying the more restricted 
set of axioms &'. 

DEFINITIONS. A simple closed curve is a non-degenerate 
compact continuum which is irreducible with respect t o  the 
property of being the sum of two distinct arcs with common 
endpoints. 

A continuous curve is said to  be acyclic if it contains no 
simple closed curve. An acyclic continuous curve is also 
called a dendron. 
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A point P of a continuous curve M is said t o  be an end- 

point of M if P is an endpoint of every arc lying in M and 
containing P. 

THEOREM. I n  order that a point set should be a simple 
closed curve i t  is necessary and su8cient  that i t  should be 
the sum of two distinct arcs having only their endpoints A 
and B in common and such that no point of either of them, 
except A and B is contiguous to a n y  point of the other one ex- 
cept A and B. 

THEOREM. I f  A and B are two distinct points of a n  acyclic 
continuous curve M there exists only one arc lying in M and 
having A and B as endpoints. 

Indication of proof. By Theorems 38 and 39 there exists 
an arc a lying wholly in M and with endpoints a t  A and B. 
Suppose there exists another arc p lying in M and with 
the same endpoints. One of these arcs contains a point 
not belonging t o  the other one. Suppose ,8 contains a point 
P not belonging to  a. There are several cases. 

Case 1. Suppose P is contiguous both to  A and to  B. 
Then, by Axiom D, A is not contiguous to  B. Let C(P) 
denote the set of all points of M that  are contiguous t o  P. 
By Axiom C, P+C(P) -A  is closed. Hence there is a point 
0 which is the first point of P+C(P)-A in the order from 
A t o  B on the arc a. Let A0 denote the interval of a whose 
endpoints are A and 0. The point sets A0 and A+P+O 
are arcs having only their endpoints in common and no 
point of either of them except A and 0 is contiguous to  
any point of the other one with the same exceptions. Hence 
their sum is a simple closed curve lying in M, contrary to  
the hypothesis that  M is acyclic. 

Case 2. Suppose P is contiguous t o  no point of the arc 
a. Let T denote the closed point set consisting of a and 
all points that  are contiguous to  some point of it. Let A’ 
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denote the first point in the order from P t o  A that  the 
interval P A  of 6 has in common with T and let B’ denote 
the first one, in the order from P t o  B, that  PB has in com- 
mon with T. Let A” denote A’ or a point of a contiguous 
t o  A’ according as A’ does or does not belong to  a and let 
B” be defined in a similar manner with respect t o  B’. Let 
PA‘ and PB‘ denote intervals of 0 with endpoints as indi- 
cated. Let A”B” denote the point A” or the interval of a 
from A” t o  B” according as A” is or is not identical with 
B”. The point set PA’+PB’+A’B’ is a simple closed curve. 
Thus in this case also a contradiction is reached. 

The  remaining cases may be treated with the use of largely 
similar methods. 

Theorems 26-34 of Chapter I1 of P. S. T. all hold true 
here though, as may be surmised from the above argument, 
the proofs given there are not in all cases sufficient here. 
This group includes a number of theorems concerning acyclic 
continuous curves. Theorems 43 and 44 of that  chapter 
also relate t o  such curves. The  condition of Theorem 43 
is sufficient but not necessary here and that  of 44 is necessary 
but not sufficient. 




