
CERTAIN ASPECTS OF MODERN 
GEOMETRY' 

N his letter inviting me to  lecture a t  the Rice Institute, I President Lovett suggested tha t  I might take as a model 
the  course of lectures which Felix Klein gave in Chicago in 
1893. I felt sure tha t  President Lovett was not trying t o  
tease me by setting up a standard of exposition and insight 
which could only make me uncomfortable, but was trying 
t o  indicate a type of subject matter. So I looked up the 
volume of Lectures on Mathematics, the first in the Col- 
loquium series of the American Mathematical Society, and 
found that what Klein did was to  pass in review the various 
branches of mathematics t ha t  were being studied in Ger- 
many at  tha t  time with particular reference to  the research 
under way at  Gottingen. He  did this in a series of fifteen 
or twenty lectures. Since I am to  give only three lectures, 
I felt a t  once excused from so general a survey and decided 
to  limit the field to  certain aspects of modern Geometry. 

In  thinking over the general problem of such a survey 
I made an observation which is by no means new but which 
I think ought t o  be impressed on all mathematicians, namely, 
tha t  one cannot fairly excuse himself for a failure to  have 
a comprehensive view of mathematics no the ground of the  
increased complexity and extent of the subject matter. For 
although it is true tha t  the mass of material is enormously 
larger than it was in 1893, our progress has not consisted 
only in the discovery of new facts and theorems. It has 
consisted still more in the discovery of more comprehensive 

'A course of three lectures delivered at the Rice Institute on Jan. 8, 11, and 
12, 1932, by Oswald Veblen, Ph.D., D.Sc., Professor of Mathematics, The In- 
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208 Modern Geometry 
points of view from which we can see large groups of mathe- 
matical phenomena in their relationship t o  each other. We 
can carry over what we have learned in one field into many 
other fields, and we can leave many details out of considera- 
tion which were formerly regarded as essential. Thus by 
the processes of generalization and selection which result 
from mathematical research it is possible, I believe, t o  have 
as good a grasp of the whole of mathematics, now, as one 
could have had in 1893. 

Another reflection which is bound to  occur to  one in think- 
ing back to  1893 is that  no one could now come from Got- 
tingen to lecture in America with the idea tha t  he was car- 
rying a light into the wilderness. Of course, Klein did not 
let any such feeling show in what he said, but there is no 
doubt that  that  is what he felt he was doing. Today (Jan- 
uary, 1932) Gottingen is quite as great as i t  was in 1893, 
but the wilderness has changed. There is no one, indeed 
there are no two or three, mathematical centers that  can be 
regarded as dominating the rest. I cannot think of any 
branch of mathematics that  can be regarded as localized in 
less than two centers. A new discovery made in Texas is 
not so apt t o  be seized on for development by a student of 
the man who made it as by someone in Warsaw or Moscow, 
and the next step is just as likely t o  be made in Vienna 
as anywhere else. The  nearest thing to  a nationally localized 
mathematical movement was the Italian school of algebraic 
geometry and that  has been a thing of the past since this 
subject was turned in a new direction by the work of an 
American mathematician who was born in Moscow. 

So I propose to  talk about mathematical subjects rather 
than about the work of particular individuals or groups 
of people and to  t ry  t o  describe general ideas and tendencies 
of thought rather than details. 



I 

THE MODERN APPROACH 
TO ELEMENTARY GEOMETRY 

N this first lecture let us t ry  to  see what effect, if any, I modern research has had on our views about elementary 
geometry, and how the latter ought t o  be presented to  
students. According to  old tradition the Euclidean geom- 
etry was the type example of a logically perfect science. 
Starting from the axioms it proceeded by inexorable logic 
from one theorem to  another. On the other hand, what 
we now call analysis was admitted to  be on rather a shaky 
foundation, but justified by the importance of its results. 
Then, during the nineteenth century, there came, on the 
one hand, the discovery of a number of non-Euclidean 
geometries which tended to  shake confidence in the Eu- 
clidean geometry and to  produce a more critical attitude 
toward it. On the other hand, there came the refounding 
of analysis by deducing the whole theory of real and com- 
plex numbers from tha t  of the whole numbers. The  nega- 
tive numbers and rational fractions were defined as certain 
pairs of whole numbers. The irrational numbers were de- 
fined as certain infinite sets of rational numbers. The  com- 
plex numbers in their turn were pairs of reals. The  ex- 
istence of the real number system was thus carried back 
by a series of constructions to  the existence of the whole 
numbers. On this seemingly secure basis there was then 
constructed a complete system of analysis in which every 
operation (differentiation, integration, solution of differential 

209 



210 Modern Geometry 
equations, etc.) was justified by an appropriate existence 
theorem. 

I n  the latter part of the century, analysis had come to  
be regarded as perfectly secure and geometry was often held 
t o  be a dubious affair resting on doubtful “geometric intui- 
tions” which could only be justified by reformulating them 
so as t o  be susceptible of a purely analytic treatment. 

Then came the intensive studies of the axiomatic founda- 
tions of geometry initiated by Pasch and Peano and con- 
tinued by Hilbert, E. H. Moore, and others, which restored 
the prestige which had been lost by the Euclidean geometry. 
It was once more possible to  regard geometry as a set of 
propositions proceeding by the laws of logic from a set of 
axioms. Also it was possible to prove that  the axioms were 
logically independent, i.e., no one deducible from any of 
the others. 

Furthermore the theory of groups had been developed to 
a very high degree of perfection and applied to  the classifi- 
cation of geometries, so that  it  was possible to see the Eu- 
clidean geometry as a single citizen in an orderly community. 
All this is so well known that  I will take the appropriate 
remarks as having been made about the Erlanger Program 
and pass on. 

I n  arriving a t  this clear cut view of geometry it was nec- 
essary t o  regard it as an abstract science. This meant that  
i t  was necessary to  distinguish between geometry as a branch 
of mathematics and geometry as a branch of physics. 

As a branch of mathematics, geometry is an orderly se- 
quence of theorems and definitions proceeding by logical steps 
from a set of unproved propositions, or axioms, stated in 
undefined terms such as point, betweenness, and congruence. 
The axioms are perfectly arbitrary, subject t o  the requirement 
t ha t  they should be consistent and mutually independent. 
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They have nothing t o  do with experience or observation. 

As a branch of physics, on the other hand, geometry is 
the description of the results of a vast body of experiments 
and observation. I t  tellr what will happen if you do certain 
thingr. For example, if you will mark three non-collinear 
points A, B, C on a blackboard with chalk and then mark 
three other points, A' midway between B and C, B' mid- 
way between C and A, and C' midway between A and B, 
and then draw the three straight lines AA', BB', CC', these 
three lines will have a point in common. 

It is true of course tha t  none of the operations described 
can be performed exactly. When you try t o  make a point 
you really make a spot, and when you t ry  to  draw a line 
you really make a strip. But the more accurately you suc- 
ceed in indicating the points and drawing the lines, the more 
beautifully will the result of the experiment be in accord 
with the theorem stated. This state of affairs is characteristic 
of physics as a whole. No experiment can be carried beyond 
a certain degree of accuracy, and no physical object can be 
completely characterized. 

But in order t o  avoid the complication tha t  would ensue 
if we tried t o  describe the physical situation as i t  actually 
presents itself, we postulate the existence of certain idealized 
objects, which in the case before us we call points and lines, 
and assign t o  them certain exactly stated properties. T h e  
theory of these ideal objects is a branch of mathematics. 
The  body of experiment and observation in which this 
mathematics is used is a branch of physics. It is the busi- 
ness of the mathematician to  reason accurately and in- 
telligibly about the ideal objects. It is the business of the 
physicist t o  determine what the ideal objects shall be and 
t o  verify or reject the axioms and theorems about them by 
successively finer and finer experiments. 
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This is what is meant when we say that  mathematics is 

an exact science and tha t  the mathematician need not know 
or care whether his axioms are true or false, and even need 
not know what they mean. It is the business of the physi- 
cist t o  know and care about all these questions. 

All this was well understood by mathematicians thirty 
years ago. A t  the University of Chicago where I studied 
these matters under Professor E. H. Moore, we used to  call 
it “the abstract point of view.” But in those days the 
physicists regarded the abstract point of view as a plaything 
with which they, fortunately, had nothing t o  do. The  weak- 
ness of the abstract point of view, as applied t o  geometry, 
was tha t  although we know plenty of geometries, the Eu- 
clidean geometry was the only one which was actually used 
physically. 

This state of affairs changed radically with the advent 
of Relativity. After many physicists had tried unsuccess- 
fully to  state the results of experiment in terms of the clas- 
sical geometry, mechanics, and electromagnetism, Einstein 
found tha t  it was possible to  give a good account of these 
phenomena by using a four-dimensional Riemannian geom- 
etry for space-time. This is sometimes expressed by saying 
tha t  Relativity “fitted the facts” better than the previous 
theories. 

But it is not quite true tha t  we have a set of “facts” on 
one side and a “theory” on the other, and a process of 
matching one against the other. For i t  would be quite im- 
possible to  describe the facts without stating them in terms 
of some sort of theory. Besides, if we had a clear account 
of the facts without the intervention of theory, the theory 
would be superfluous. It is rather that, as in the example 
I cited above of the medians of a triangle, the theory is a 
self-consistent body of statements which serve in the de- 
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scription of the facts. When it is no longer possible t o  
describe all the facts with the aid of the theory, then i t  is 
time to  look for a new theory. 

This does not mean tha t  the old theory is absolutely dis- 
carded. For the old theory served t o  describe a large body 
of observations. It is in general only a few new and diffi- 
cult experiments t ha t  refuse t o  fit in. For example, the 
theory tha t  the sun, moon, and stars go round the earth 
is still in daily use in spite of our conviction tha t  a quite 
different astronomy is the correct one. For we still say 
tha t  the sun rises in the east and sets in the west. 

The  actual situation of the Euclidean geometry is quite 
analogous. There is a vast body of experience which is 
adequately described by language which presupposes the 
validity of the Euclidean Geometry. There is a growing 
but still relatively small body of experimental data which 
it has not been possible t o  describe in this manner. When 
we look a t  the problem of describing the complete situation, 
taking all the data of Astronomy into account as well as 
what is now called “classical” physics, we are forced to  say 
tha t  the Euclidean geometry is not true, that  a better de- 
scription of nature can be obtained by using a Riemannian 
geometry. 

If we attempt t o  take into account also the small scale 
phenomena, those that  are dealt with by quantum the- 
ory, i t  seems quite possible that  not even a Riemannian 
geometry will suffice. At least, no one has yet succeeded in 
formulating a mathematical theory that  will serve for both 
macroscopic and microscopic phenomena. 

But the domain of experience t o  which the Euclidean 
geometry does apply is so great and so important in every- 
day life, and the geometries which could be substituted for 
it are so complicated, t ha t  we cannot conceive of its being 
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displaced from its position among the subjects which 
every civilized person must study. Only we must be less 
dogmatic than we used to  be about its validity and signif- 
icance. 

Another phenomenon of our time which must affect the 
way in which we look a t  elementary geometry is the rapid 
advance of analysis. Analytic methods are being extended 
not only into all domains of mathematics but also of science 
altogether, even into the biological and social sciences. In  
geometry this movement has meant the almost complete 
disappearance of synthetic methods, as we used to  call 
them. The work on the foundations has made the synthetic 
methods ideally clear and easy t o  understand in such sub- 
jects as projective and Euclidean geometry, but when it 
comes to  developing a new subject, say a new branch of 
geometry, no one nowadays would think of overlooking the 
tools of analysis. 

It seems to  me tha t  elementary geometry should be pre- 
sented in such a way as to  prepare the students for the 
other sciences which he is t o  study later, and in which this 
very geometry is going to  be used. This means that the 
methods of geometry should not be singular ones, peculiar 
t o  this subject itself, but should as far as possible be methods 
which can be used over and over again in the other branches 
of science. 

If you ask a modern mathematician or physicist what is 
a Euclidean space, the chances are that he will answer: 
It is a set of objects called points which are capable of being 
named by ordered sets of three numbers (x ,  y, z) in such 
a way tha t  any two points ( X I ,  yl,  21) and (xz, y2, zz) deter- 
mine a number called their “distance” given by the for- 
mula, 
(1) d ( X l  - -X#  + (y1 -y2)2+ (Zl -z2)2. 
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With a little refinement of logic this answer is a perfectly 

good set of axioms. The  undefined terms are “points” and 
certain undefined correspondences between points and or- 
dered sets of numbers, ( x ,  y, z), which we call “preferred 
coordinate systems.” The  axioms state t ha t  the trans- 
formations between preferred coordinate systems preserve 
ratios of distances. I will not stop to  formulate them more 
closely here. This way of stating the axioms is discussed in 
some detail in a forthcoming Cambridge Tract1 by J. H. C. 
Whitehead and myself. 

I do not advocate the use of any particular set of axioms 
in the schools but I do advocate the introduction of analytic 
methods in elementary geometry. There are of course many 
practical pedagogical objections which can be made t o  this 
proposal. I do not feel confident enough of myself as a 
pedagogue t o  t ry  to meet these difficulties in detail. But I 
think that  the development of science is forcing us in this 
direction and tha t  those whose business it is t o  do so will 
have t o  find out how to  overcome the pedagogical difficulties. 

The  obvious thing to  do is t o  recognize that  we have a 
subject t o  present which has t o  do with physical reality. 
Let us approach i t  as any modern scientist would by first 
studying some of the observations and experiments with 
which we have to  deal, in crude everyday terms. This 
would correspond, I suppose, t o  the “observational geom- 
etry” which is already in our schools. After getting a start  
in this way a scientist feels the need of a systematic lan- 
guage in terms of which to  organize the phenomena. This 
language is mathematical analysis. I n  other words, as soon 
as the experimental basis is established, the study of geom- 

1 Cambridge Tracts in Mathematics and Mathematical Physics, No. 29, The  
Foundations of Differential Geometry, by Oswald Veblen and J. H. C. White- 
head, Cambridge University Press, 1932. 
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etry should proceed by the use of coordinates and the meth- 
ods of analytic geometry. 

The student, however, does not yet know enough about 
algebra and the use of numbers. Hence geometry and al- 
gebra should be learned together. The  theory of the real 
number system and one-dimensional geometry overlap a t  
every point and each helps in understanding the other. Let 
us limit our geometry a t  first t o  a single dimension. 

One of the first experiments in geometry is t o  lay off equal 
intervals along a straight line with the aid of a graduated 
ruler. It is an important result of these experiments that  
a sequence of equally spaced points on a line can be marked 
with the whole numbers. The observation that  this process 
can also be carried out in the reverse direction shows the 
necessity for the negative numbers, and for the number zero. 

The logical thing to  do a t  this stage is to give a set of 
postulates for the system of positive and negative numbers. 
The postulates are simply the rules for adding and multi- 
plying the numbers and arranging them in order of magni- 
tude. 

A similar process of experimentation would acquaint the 
student with the rational fractions and with their use as 
labels for denoting points on a straight line. Here would 
be the occasion for a !ot of arithmetic and algebra as well 
as of the geometry of the straight line. 

This is the place for the postulates for the rational num- 
bers. Also for the postulates of one-dimensional geometry. 
The chief postulate of one-dimensional geometry is that  the 
points of a line can be named by numbers in such a way 
that  the distance between the point named a and the point 
named b is the absolute value of the number b -a. By lim- 
iting ourselves t o  one dimension we have avoided the com- 
plicated formula (1). 
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It will be found tha t  a very respectable body of arith- 

metic, algebra, and geometry can be made systematic at 
this stage. But there are a variety of experiments which 
make it clear t ha t  the number system is still capable of ex- 
tension. Logically here is the place for the postulates of 
the real number system. These postulates state (1) tha t  
the numbers are subject t o  relations of greater and less, 
(2) t ha t  they can be added according t o  certain rules, and 
(3) tha t  they can be multiplied according to  certain rules. 

It is a problem for the elementary teachers how explicitly 
these postulates should be presented t o  young students. I 
should say tha t  they are easier t o  grasp than many of the 
abstract processes now studied in school courses in geometry. 

The  point t ha t  I should like t o  emphasize most, however, 
is that  in whatever way we formulate the postulates they 
should not be presented as dogmatically as mathematicians 
used to  present them. We have seen that  an examination 
of the physical basis for our assumptions induces anything 
but a dogmatic frame of mind. But dogmatism has also 
suffered a severe blow from the side of pure mathematics. 

I referred some time ago to  the seemingly impregnable 
position which analysis had attained a t  the end of the last 
century, how everything was carried back by a series of 
constructive definitions and existence theorems t o  the solid 
ground of the whole numbers. But these constructions and 
existence theorems involve the free use of infinite sets of 
objects and the application t o  infinite classes of a logic 
which is generalized from the logic of finite classes. Doubts 
as t o  the validity of this logic have been growing more and 
more definite during the last three decades. The  well-known 
paradoxes about infinite classes were the first stage of doubt. 
The  difficulties which arose in the attempt by Russell and 
Whitehead to  carry out the constructive definitial theory of 
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mathematics in a systematic way in their Principia Mathe- 
matica increased the feeling of skepticism. Finally a most 
serious attack has come from L. E. J. Brouwer, who rejects 
entirely any existence theorem which does not exhibit ex- 
plicitly the object whose existence is t o  be proved, in a very 
narrow sense of the words “exhibit explicitly.” He goes 
back t o  a question which had lain dormant since the time 
of Aristotle and finds that  the principle of the excluded 
middle is unjustifiable in many of the cases in which i t  has 
been used by mathematicians. It is not possible for me to  
go into Brouwer’s critique here and now-it was expounded 
here three or four years ago by Professor Weyll-but the 
outcome of it is t ha t  we cannot any longer feel confident 
about the constructive theory of the real number system 
or about the main existence theorems of analysis. 

The same sort of a result seems t o  be coming out of the 
attempts by Hilbert and others t o  prove the consistency of 
mathematics. The consistency of geometry could be re- 
duced to  that  of the real number system, tha t  of the real 
number system could be carried back, by the constructive 
processes to  which we have referred above, t o  the whole 
numbers. So the problem reduces t o  that  of the consistency 
of the system of logic. But this logic is a logic which employs 
infinite processes and classes. Hilbert’s idea was that  these 
infinite classes and the other concepts used are ideal elementr 
(just as a point is an ideal element) introduced because of 
their convenience. But we use only a finite number of signs 
t o  denote the ideal elements of logic, and we operate with 
these signs according to  definite rules. Is i t  not possible to  
have a sort of behavioristic theory of these operations, t o  
look on from the outside and determine what can be done 
with these signs according t o  these rules? If we can show 

‘The Rice Institute Pamphlet, Vol. XVI, No. 4, 1929. 



Elementary Geometry 219 
that  the person who operates with these signs according 
t o  these rules can never arrive a t  both “A” and “not A,” we 
will have proved the consistency of mathematics. But no 
such proof has been forthcoming and the efforts t o  find one 
have made us more than ever conscious of the difficulties 
inherent in the constructive theory of the real number sys- 
tem. 

It seems t o  me tha t  these doubts and difficulties must 
profoundly affect anything tha t  we say about the real num- 
ber system. T h e  clearest method, in my opinion, of saying 
what we mean by the real number system is by means of a 
set of postulates such as I have already indicated-that is 
t o  say, the real numbers are a set of objects satisfying cer- 
tain conditions of order and subject t o  certain rules of addi- 
tion and multiplication. This is what I would suggest not 
only for beginning students, but, even more confidently, 
for a graduate course in functions of real variables. In  a 
course of the latter sort it  is quite usual t o  base everything 
on the Dedekind-Cantor-Weierstrass constructive theory of 
irrational numbers. I would present this theory for what 
i t  is worth as a proof of the consistency of the postulates 
for the real number system. But any such presentation 
should be accompanied by a discussion of the logical diffi- 
culties inherent in the whole process. 

These difficulties are also present in anything that  we do 
with the postulates. They inhere in each existence theorem, 
But when we use a set of postulates we make no such sweep- 
ing claim to  have done away with assumptions drawn from 
intuition and experiment as has been made in connection 
with the constructive theory. We simply say what some 
of our assumptions are and then go ahead with the usually 
accepted processes of Analysis. The critique of these proc- 
esses which is under way a t  the present time is a separate 
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enterprise which ought not t o  confuse the course in analysis, 
though it ought t o  influence i t  in the direction of greater 
caution and less dogmatic confidence in its foundations. 

But let us return to  elementary geometry. After arriving 
a t  a number system which includes surds as well as rational 
numbers, the postulates of one-dimensional geometry re- 
main verbally the same as before but have as much more 
content as the number system is more extensive. At this 
stage the notion of measurement and of scale should be 
well established. Slide rules for addition and multiplication 
might well be in use. 

It is now time t o  bring on a new series of experiments 
and observations the result of which is t o  establish that  
there is a way of naming the points of a plane by means of 
numbers in such a manner tha t  each point has two names, 
a first name x and a second name y-(x, y) is the name in 
full-and such that  the  names of the points of any straight 
line satisfy an equation of the first degree. 

I n  order t o  complete the plane geometry one more axiom 
is needed, namely, an axiom specifying a class of coordinate 
systems in which the distance of any two points is given 
by the formula (1). The  axioms about the straight line are 
not independent of this one, but I judge tha t  in an elemen- 
tary course it is advisable t o  do what is possible with linear 
equations first, and then t o  go on t o  quadratic problems. 

Obviously, the development of the propositions of geom- 
etry from these foundations should be closely related t o  the 
study of elementary algebra, linear and quadratic equations, 
and the like. Moreover, I ought t o  guard against one pos- 
sible misunderstanding. The  working out of this program 
does not mean the elimination of synthetic proofs from 
geometry. There are plenty of cases in which a synthetic 
or a mixed proof is easier than a purely analytic one. I n  
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such cases I would use the simplest and most direct process 
which I knew. The  result would be, I am confident, t ha t  the 
student would have as good a grasp of synthetic methods 
as a t  present, and a much better idea of what i t  is all about. 

May I take just a few minutes more t o  recapitulate? I 
have tried to  point out a number of major movements of 
scientific thought which I think should influence our atti- 
tude toward elementary geometry and the way it  is pre- 
sented. These are: 

1. The discovery of non-Euclidean geometries. 
2. The  group-theoretic classification of geometries. 
3. The arithmetization of mathematics. 
4. The axiomatization of geometry. 
5 .  The  demand of physics for more sophisticated geom- 

6. The  advance of analysis. 
7. The  revision of mathematical logic. 

T h e  thesis I have tried to advance is t ha t  although we 
can now see Euclidean geometry more clearly than ever 
before as a distinct subject capable of being treated without 
reference to  analysis by its own peculiar and highly elegant 
methods, nevertheless the spirit of our time requires tha t  
we should present i t  as an organic part of science as a whole. 
This requires the use of analytic methods from the first, 
emphasis on the approximate and provisional nature of its 
results when interpreted physically, and a non-dogmatic at- 
titude throughout both as t o  physical and as to  logical 
questions. 

When we mathematicians state our results they necessarily 
sound very matter-of-fact, and yet we are often not matter- 
of-fact people a t  all. When we are talking in general terms, 
as on the present occasion, we are apt t o  get out of bounds. 

etries. 
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Let me take advantage of this freedom and close with a 
completely speculative remark. 

In  indicating the sort of axioms which might be used 
I have considered a coordinate system as a one-to-one cor- 
respondence between points and ordered sets of numbers. 
This is the way a coordinate system figures in all branches 
of geometry a t  the present time. But the development of 
the quantum theory has several times suggested tha t  math- 
ematicians may be called on t o  devise a geometry in which 
there are no points. It may (or it may not) turn out that  
the process of infinite subdivision of chunks of space which 
is supposed t o  yield the concept of a point is physically 
impossible. If we come t o  such a geometry without points 
and without infinite resubdivision, i t  is likely that  we will 
continue t o  use analytic methods and coordinate systems. 
But our coordinate systems will no longer be one-to-one 
correspondences between points and sets of numbers. They 
will be relations of some other type between sets of numbers 
and the entities which they describe. 




