VII
ORDER OF SINGULARITIES?

32. The fractional derivative Df(x) is defined as follows:

Dif(x) = f(x),
Def(x) = f (& — 2)~1-*f(z)dz, ¢ <0,

Dz f(x) = D"‘"”f(x), a>0,

where ¢ is the smallest integer not exceeded by a.
The derivative thus defined for a< 0 differs from the
function

1 ( —1~—a
5 j (x — )7 (s)do

by a function which is regular except perhaps at 0 and 4.
The Taylor expansion of DZf(x) is obtained from the
second of the above formulas. The series

% — 2)77(@) = (x — D) " X agn

converges uniformly along the curve Cy,,;* integrating term-
wise, we have

1 Hadamard, loc. ¢cit.  See pp. 154 ff.

2 Provided a< — 1; if — 1 < & < 0, the termwise integration can be justified

by a theorem of Osgood: Lehrbuch der Funktionentheorie, Leipzig (1912), vol. 1,
p. 593; the S, of that theorem is taken as

z_.._

f (x —g)—l—a Za,‘z"dz {Eprror]
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D:f(x) =

[v0)
~1me Y a,ards
n=]

1“(— > Zanj (x — z)"17zndz.

n=l
If we make the substitution z = tx, the integral
f(x — g)"iTgndy
0
becomes .
x7%n (1 — )7t
0
= x"%"B(— a, n + 1)
D(= @) D(n + 1)

= I'fn4+1-—-qa) ’
from which we obtain
. oa T(n+1) n
Df() = w= Ky oy @ @< 0.
If & 1s positive,
. _ r'(n+1) N
D2 f) d”zf(n+1~a+p) w

e+ DIn+p—a)itt+p—a—1)--(n—a+l)
-X T+ 1—atp) n¥

_ gy Tt 1)
ZI"('rl. + 1 - a)

33. The Hadamard operator HS is defined as follows:
H2f(x) = f(x)

Hef(x) = log z)™1*f(z)d log 2z, a < 0,

Haf(x) = (1 i) He (), a> 0,

where p s defined as above.
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If « is negative,

z

Hif(x) = R:I—O—J ian’Klog ?—;)—l_az"“ldz.

n=1 0

[ X i n~1
J;(log z) 2" 'dz

place z = tx. The integral becomes

! 1 ~l-a
xn J(log Z> " dt
0

= n°%" ['(~ a).!

In the integral

We have, then,
Hif(x) = Y amn%"
n=1

Fora> 0,
121 = (3 Y s
A W A
14d\Vv &
- (3 22) Bawemow

2
[
-

(-1

®
L3

I

s
N

%

E
]
-

34. Let f(x) be a function, real or complex, of the real
variable x, a< x< 5. If

<1 <l

bl
ujf(x) sin vx dx

.
vJ‘f(x) cos vx dx

®

o z
1For T(e) = f 4® 1 %dx. Leto=e¢ ™, x=m log%- Then T'(a) =
0

1
mea J‘(log %)"‘“lvm_ldv. {Eprror]
)
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for all v, where a< a4’ < b’ < b, and where I is independent
of @/, b’ and v, then f(x) is said to be of finite deviation ! in

(a, b).
TaEOREM 1: A function f(x) of limited variation in (a, b)
15 of finite deviation in (a, b).

b b
Let Q = v.ff(x) cos vx dx = Sf(x)d sin vx.
For a given v, divide (a/, »") into subintervals by the
. ke . . . .
points x = —=, using such integral values of % as give points
in (a’, b').

Consider a subinterval (S , Bt

1r), interior to (a’, b’).
Denote by M,, m;, respectively, the upper and the lower
bound of f(x) in this interval, and let p, = M, — m;. Then,
in this interval,

fx) = m,+ 6(x)py, 05 6= 1.

k+1 k41 k41
T T k.2
v . v R v .
! f(x)d sin vx = ! md sin vx + ] 8p:d sin vx.
k k k
-7 - -
v v v

The first integral on the right vanishes. Moreover,
k41
x

] pkd sin v | < 2 D
k

-
v

Consider the left-hand interval, (a’, fv_o 1r>. If n and e are

positive constants, the latter being arbitrarily small, we have

ko !c_or
Ff(x) dsinuvx| < Ju [f(@) |+ 7)|d sin vx

0 —
——

v

=2|fa) |+ 29
<2‘f(a’)‘+f,

t Hadamard uses the term écart fini.
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the last inequality being valid for v> vy, since » can ap-
proach zero as n becomes infinite. Noting that a similar
result is obtained for the right-hand interval we have,
finally,

0] < 2§Ps+ 20f(@) |+ 213 |+ 2 6

where 7 is the number of subintervals interior to (a’, b’).
By hypothesis, =p; is bounded for all v, hence the same is

true of Q.

A similar process, choosing properly the points of divi-
sion of (a’, &), shows that the second integral appearing in
the definition is also uniformly bounded.!

The converse is not true; in particular, an example has

been given by H. E. Bray, namely, the function x sin —91;

This function, which is not of limited variation, is of finite
deviation. The proof of this statement depends on an
investigation of the integrals:

. d
sin ¢ dt cos i
NVe2—dan " IN2—4n
4 C

d

dt, 2N < c< d,

sin ¢ f cos ¢
> dt, > .
c‘\/t+4n c\/t +4n

In particular, every function which satisfies the Lipschitz
condition is of finite deviation, since every function having
a bounded derivative is of limited variation.

1 A simpler proof of this theorem can be given on the basis of Stieltjes’s theorem

on integration by parts: If ¢(x) is continuous, and a(x) of limited variation, a < x
< b, then

b b b
S al®)7dp(x) = a(x) ¢(x)|—~ So(x) dalx). {Epitor]
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35. THEOREM 2: Let f(x) = Zax", with R=1, If 2 |an‘
converges, and if lim n |a,| log n = 0, then f(x) = f(¢*) =

F() is continuous and of finite deviation on the unit circle.
The continuity of F(¢) is evident, since Za,e™* is domi-
nated by the convergent series X |a,|, and is accordingly
uniformly convergent in every interval.
In order to show that I exists, independent of v, such that

bl
ujm,) cos v de | < I, <1,

b’
UJF((;,) sin vo do

it suffices to show that
b’
v JF (¢)e™*d ¢

a’

J

<103

b)

y J'F<¢)e—v*¢d¢

a’

L

< I

For a given v, we may write
bl

J=|v ) ame(m+")“”d¢
m=0

al
o O v
{mv)id’ (m4-u)ia’
= a 4 — €
P Pt )

a’

< f:l a I v Amtont _ (mtudia!
m=0 " m + v
=]
2 Y| an|
m=0

=28,

and consequently [ is uniformly bounded.

A
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’

<0

v E a, je(m—u)icﬁdd)

m=0

L=

(1)

a’

X v

a [e(m—u)ib’ . e(m—u)l'a’]
mz=0 "m—v ’

if v 1s not an integer; otherwise

v Y —_u)ia’
Zl am — [E(m—u)ib i} 6,(m v)m] + Udu(b’ _ al) ,

where the prime indicates that the (v 4+ 1)-th term is omitted
in the summation.
In the first case,

and in the second case,
L<Z[dm] vl+2ﬂ'ldl

Choose £ and K so that 0< k< 1< K. Consider, in (1),
all the subscripts m for which m < kv. Each corresponding

2[am‘

term is less than T30 that

28
,,.;w'“"" | ST-F
Similarly,
2v 28
m;}(u,amllm—'vl<K—1'
Take next all the m’s for which flv< m < v.
2 i)
I lalmsvlal(te 44 1) @

where 4, is the coefficient of greatest absolute value for
kv < m < Ev, and 4 the number of such integers m.
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Since [ is one of the indices occurring in the sum, the
inequalities

k<lsl
v

are verified. Hence

1 1 21 1
2”l“t|<1+§+"“+,‘1><‘k—laz|(1+§+----+

] -
~—

But we have
h=E[(1=Fv] -1
= 1—-kv—1—¢, 0<¢<1,

1l
TN
—_

|
x>~
i
—
e |+
cm
N——

- puv’
where pu=1—k—-1—j;—€—”
Moreover,
1+ ! SRR o L
lim 2 vp, -1 3)
v log (vp,) ’

since log vp, = log v+ log p,, and lim p, = 1 — k5 0, so that
h = vp, becomes infinite with v. ”

On the other hand,

v 1
15'2<];=5,

so that
0<logv—logli<log s.

Hence, for all v, we have

|logv — log I| < M, 4)
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and we may therefore replace log vp, in (3) by log [:

1 1
L5ty
lim = 1.
o log !
Now, given ¢, there exists a number v, such that for v> v,

we have, from (2),

T a2

ku<m<y ‘ 1m - |
By hypothesis /| a;| log! approaches 0 as ! becomes
infinite, hence as v becomes infinite, because of (4). And
since the right hand side of (5) is bounded for v < v,, having
only a finite number of terms, it follows that this expression
is bounded for all v.
There exists, by hypothesis, a number L, such that
Lo | ay, | log Ly exceeds any other /|a|logl. We may
therefore write

L lanl——

kv<m<v l

21
?Iall(l + ¢ log . (3)

\ < pLO] aLallog Ly,

where u is a certain constant.
In a similar way it may be shown that

2v
\am\————< #'Loar,|log Lq.
1+Bu<m<Kv I I

In case v is an integer there remains to be examined only
the term va, (b’ — a’). This expression is bounded, for it
approaches zero as v becomes infinite.

If v is not an integer, consider

v . .
ag, - - [e(E’u-v)ib’ e(E’u—u)ta’] (6)
and
v . .,
aE\;-{-l . 1 — [Z(Ev+l—v)l.b — E(Eu-i—l—v)ia ]. (7)
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We have

e(Eu—u)ib’ - e(E'u—u) ia’

(Eu — )b’ — a’)
2

2 u, (Eu—v)l

< (BEv—=v)(a'+b).
Hence the expression (6) is, in absolute value, less than
laE"lv(b’ + a') < 2 wv|ag,)
if we take '+ a’< 2 7. The last expression approaches
zero as v becomes infinite.
Similarly the quantity 2 #v | ag,.1| is an upper bound for
the expression (7).
Combining the foregoing results, we obtain

28 28
L <+ ===+ uLq|as,|log Lo+ u'Lo|a.,|log Lo+ 2M, (8)

1- K-1
where M exceeds the largest of the numbers of the form
v]a,| (' —a) 27v]ag| 2| ag, ., |.  Since each of
these expressions approaches zero as v becomes infinite, the
number M exists.

CorOLLARY: The deviation of f(x) satisfies the inequality

L<« k1S + k2L0|aLollog Lo -+ k3loldlul, (8’)

where ky, kyy ks are numbers not depending on the particular
series, and Iy | ay, | is the maximum value of k| ay| for all b,
the numbers S and Lo having their previous significance.

On the other hand, we have also the following theorem:

TueoREM 3: Given f(x) = Za,x", R = 1. If f(¢"*) = F(¢)
15 continuous and of finite deviation on the unit circle, then
for every e> 0

(a) Z' converges, and
(%) lim n'~*|a,|log n = 0.1

L Or, what is the same thing,

lim nl—¢lan| = 0 for every ¢ > 0. [EpiToOR]
n—oo
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Construct a circle C, with center at the origin and radius

r< 1. Then
1 [f(x)dx

T2
¢

n

On the other hand, since
lim f(re'®) = f(£*%)
r—1

uniformly for all ¢, we have

Jfgﬂ e f 1),

n+1

where C is the unit circle. Consequently
1 2r

= ~Jﬂﬁkﬂw¢
2 )

Since f(¢*) is of finite deviation, L, exists such that

2r
‘n{ﬂﬁwww4<Lm

and therefore

nla,| <L L=£%
27
l an l L
ne < nl+e’
so that ) L{I—"—I converges
7, '

In order to prove the second part of the theorem, we need
only note that

| Ilog <Llogn

and that the limit of the right-hand side is zero.
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36. The order of f(x) on an arc of the unit circle is the
number « such that H=“%9 f(¢*) is continuous and of finite
deviation on the arc, whereas, for H~'“~9 f(¢%), at least one
of these properties fails, that is, H=“"9f is either discon-
tinuous or not of finite deviation, or both discontinuous and
not of finite deviation.

The order of f(¢) on any arc, a< ¢ < b, of the unit circle
is clearly not greater than the order of f(¢*) in an arc con-
taining (a, b). The order of f(£) in the point ¢, is defined
as the lower bound of the orders of f(¢**) in all the intervals
containing ¢o. If f(¢*) is of order w on the circumference,
there is at least one point on the circumference at which the
order is w; there is no point on the circumference at which
the order exceeds w.

THEOREM 4: The order of f(x) on the circle of convergence
15 given by

W= IEI_ I_QM'_L_I + 1.
n—ox log

We have, by definition, that for all except a finite number
of values of n,
log|a.| _log(n|a.

log ! log n

14 < w-+ ¢

with ¢> 0 arbitrary. Hence
nla,| < nete,

a 1
Lw;zl < it )

| a, :
s accordingly converges.

Moreover, from the preceding inequality, we have, for n
sufhciently large,

The series Y,

"ol g <,
n2

lim 71|
N o nw+2e

log n = 0.



302 Singularities of Functions

. a .
Hence the series anx", where b, = F%Z, satisfies the hy-

pothesis of Theorem 2. Consequently H~“*% f(¢) is con-
tinuous and of finite deviation on the unit circle.
On the other hand, there is an infinity of values of #

such that

log(n|an|)>w_e,
log n
la, |1
w-—e>—’
n n
nic

7”—' log n > log n,

a . . :
where ¢, = nwf2e' The last inequality shows that H~“~2f(x)
= Xc,x" is not both continuous and of finite deviation;
otherwise we should have, by Theorem 3,

lim 7'~ ¢, | log n = 0.

"n—o0

We have seen that the expression

—log|a
lim log| 2, | = —log R
N~ 00 n
gives the absolute value of at least one singular point. It
is natural to inquire whether similar formulas yield informa-
tion regarding the kind of singularities on the circle of
convergence. The answer is affirmative. In fact, the pre-
ceding theorem shows that the value of the expression

log | 4 |

lim —=—~—
n— 0 a,

determines the order of the function on its circle of con-
vergence.
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37. We have often employed the following fact: If xq 1s
an isolated essential singularity of the function f(x) about
which the function remains uniform, then we may write

f@x) = fi(x) + fa(w),

where x, is the only singularity of fi(x), and fa(x) is holo-
morphicin x;. We may state a similar fact for the separation
of the arcs on which the function has a given order.

THEOREM 5: Let f(x) be a function having the order w on
the closed arc T of the unit circle (of convergence). Then, given
e> 0, we may write

fx) = /i(®) + falx),

where fi(x) is of order not greater than w + e on the entire unit
circle, and fo(x) is holomorphic on T, except perhaps at a
and b.

By hypothesis, the function

¢(x) = H;*"f(x)

is continuous and of finite deviation on I'.

In the figure, T' is the
arc ab. Draw a circle
passing through ¢ and
b, and having its center
within the unit circle.
With O as center, draw
a circle of radius 1 ~ 7.
Let 7 denote the shaded
region.




304 Singularities of Functions
For every point of T, we may write ¢(x) = ¢,(x) + ¢2(x),

where
J’ ¢>(Z)
T 2 T

1 9 dz.

L= X
:um‘

If we let n approach zero, ¢;(x) and ¢y(x) vary continu-
ously, since ¢(x) 1s continuous. We may therefore write

1 [ o(»)

¢a(x) =

¢1( ) 2 1I'"I« 7 — X dZ,
alb
_ 1 [ e
$2(x) = 2 n ;L= K 4z
By writing
1 1 1 1
== - {1 + - + + }
2—x 2 x 2
112
we have
oi(z) = Xk,
where
oo L [,
T2 a1 Attt

Since ¢(x) is of finite deviation on T,

ka

%T j o(x)cos (n + 1)6 — i sin (2 + 1)6]

[~ sin 8 4 1 cos 6] 46 <-£—’ (9)
where x = cos § + 7sin 6, and L is a constant.
On the other hand, we have, by definition of ¢, ¢1, and ¢,

fx) = He**o(x)
= HoVgy(x) + Ho¢a(x). (10)
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We may write
H:+E¢l<x) = Zlnxn’

where /, = k,n°t. Hence, from (9),
|1,] < Ln~tHete

and the function H:¢,(x) 1s of order not greater than
w-+ eonT, by Theorem 4.

On the other hand, #:(x) 1s developable in a Taylor’s
series, since it is the difference of two Taylor’s series.
Moreover, ¢2(x) is holomorphic on T, except perhaps at a
and b, since it is holomorphic in every point which is not
on the arc amb. Hence H2*¢:(x) is also holomorphic on T.

We see therefore from (10) that f(x) is represented in the
desired form.

38. We may now prove two theorems which are useful
in investigating the behavior of a function in the neighbor-
hood of a singular point.

THEOREM 6: Suppose f(x) has on the closed arc T of the
circle of convergence the order wy less than a positive number w.
Let ¢y, ¢2 be two quantities such that 0< ¢, < ¢2< 2 7, and
such that T contains the arc ¢1¢y in its interior. Then, as
r—1,

(a) the quantity _

(1 = 1) re")

approaches zero uniformly with respect to ¢, provided ¢ < ¢
< ¢o; and

(b) the quantity

(1-n°1I,

where I, is the deviation of f(re*®) on the arc ¢1¢2 of the circle
of radius r, also approaches zero.

We may assume that f(x) is of order w on the whole circle,
which involves no loss of generality. In fact, from the
preceding theorem, we may write f(x) = fi(x) + fa(x), where
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fi(x) is of order < w on the entire circle, and where f5(x)
is holomorphic on I, except at the end points; the theorem

is evidently true for fy(x).
We have, by Theorem 3,

an

llm o1 = 0-
n—wo N
Now, since
. I(n+ w) 41
nll»rg T(n+ Dne"t L
and since
1 n
A—a" Yd.an,
where
I'(n+ )

" D(n + 1)
it follows that
al@r+1) _ 4o

lim -————-——* = lm

n— o0 F("'L + w) n—o0

Hence, for an arbitrary ¢> 0,

[an|<§d,,, n> n.

If we add to 1 a polynomial,

(1 —2)°
Px) = :‘_::A,-x", 4> al,
we have, a fortiori, =
lail<gditdy =120,
| a0 + are® oo a,,er"‘e’"‘ile | <
St drte ot dpy") P,

1 As may be obtained from the approximation formula:
I+ ) ~A2rnuren., [Ebrror]
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and

n¢+le(nz+l)i¢+ ) net1

lan,+1’ "'|<§dn,+1f +eee,

so that
16 <5 B+ P |

[a—y

(1= lf@ <5+ A= P@ ],

where x = r¢*. The first part of the theorem follows at once.
For the proof of the second part of the theorem, it suffices,

in view of the Corollary of Theorem 2, to show that

lim (1 — N*(&S, + koL, | ar, | log L™ + kili| @, | 77) = 0,

r—1

The reasoning of the first part of the theorem shows that
lim (1 - 7)“S, = 0.

r—1

If L, as a function of 7 remains bounded, say < m,, for
all » such that 1 — y < r < 1, where 7 1s fixed, we have

lim (1 — *L, | ar, | log L/ = 0. (11)
r—l

Choose «’ so that w; < v’ < w. From Theorem 3, we have,
for m > my,

a'—1

m
| an | < log 7’ (12)

and, placing r =1 — ¢,
(1—remlogm|a,|rm™< m(1 — &me, (13)

for m > m,.

Consider (11) for the case in which L, increases indefinitely
as r— 1, and in particular when L, > m, as may be the case
when 7 is sufficiently near 1.
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We note that the expression m*(1 — ¢)™e does not in-
crease in passing from m = n to m = n 4+ 1, provided

1

1—¢

For in order that #*(1 — "< (n+ 1)*'(1 — "¢, it is
necessary and sufficient that
(n -+ 1)“’ S 1 :
n 11—
1

n<——<1 )wi’ 1-
1—¢

The expression m* (1 — €)™ will therefore attain its great-
est value for m = m,, where m,, or perhaps m; + 1, 1s given

by the expression

But we have

1 1 =
= - _1+6(Z)9

2 —1 o %
where 6(z) is bounded in the neighborhood of z = 1, 7.c.,
1 1 =

22—=1 az-1

' < M,

for |z — 1| < 4, where 5 is sufficiently small.

1 1
, a = —; then
— € w

Letz=1

< M,

wl
€
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when |e| < 7. Hence

wl
my — -E—‘ < My el < m,

i w/
= M,< mk<_e‘+M23
€

’
~M;

w
e

I—-e™m< {1 =¢ = (1 - e)%lc,

where C = (1 — )™ = const. Also

m‘;@l < <w: -+ A[2)w

N\
(Ve
€

M . .
where C; = const. > 1+ ==, From these inequalities and
w

(13), we have, for L, > m,,
(1= 7L, log L,|ay |7 < LY (1 — "¢
< m§ (1 — &)™k,
It suffices therefore to show that

lim (1 — e)%<%>w @ =0, (14)

e—0

from which (11) will follow.
The proof of (14) is immediate. For

’

lim (1 — & = ¢,

e—0
and, since w > «/,
lim &7 = 0.

«e—0

It remains to be proved that

lim (1 — r)‘”l,lalrlrl’ =0,
r—1
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This statement is verified if /. as a function of 7 remains

bounded.
If I, becomes infinite as r approaches 1, then

Lla|< IL|a |logl < L.|ag|log L.
This completes the proof, since it has been shown that

lim (1 — r)*L,|a. |log L, = 0.
r—1

Tueorem 7: If, for > 0,
lim (1 — 7)“f(r¢") = 0,
r—1

uniformly, for a < < 8, and

lin} (1 =r¢l, =0,
where 1, is the deviation of f(re”) on the arc (ap), the function
f(x) 15 of order o’ < w on the arc (afB).
In determining the order of f(x) we may consider
x~°D7%f(x) instead of H;“f(x), since if one of these func-
tions is continuous and of finite deviation, so is the other.!

The expression

5= Drf(x) = F(x) = %—5[ (1= =" Yf(1) db,

where '/ > w, is finite and continuous in the region
b

r<l, a<6<B, x=re

For in this region we have, by hypothesis,

A A
< < :
(=T ™ [T =t

169

! Hadamard, loc. cit., p. 158.
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But since '’ — 0> 0,
!%(1 — 1) Y (tx)dt| < A__Z‘(l — p)" gy,

so that for the values of x in question,
3!
A @ —w=—1
| F(x)| < mjoa — ey,

Thus F(x) is bounded in («, 8). Moreover it is continu-
ous, since the integral converges uniformly.

By definition, the deviation of F(x) is the upper bound of

8
n| Se*"F(¢*)do|
8

J‘e*"” Jl’ (1 = )" (te®)dt

a

_ n
- F(w")

This integral may be regarded as a double integral, since
the integrand is dominated by A(1 — 1)*"~*7'.  We may
therefore reverse the order of integration:

I‘_(% Jl {(1 ~ )t fne""“’f(te”’)d@ } dt.

But
8 .
| S ne*"?f(te%)do| < I,

where I, is the deviation of f(¢¢”) in (e, 8). By hypothesis

_B
=D

where B is fixed. Consequently

I, <

8
n J’egnieF(ew)d0<

___—.._....._._B ?
r”)J M o) (v — w)
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and F(x) is of finite deviation on the arc (e, 8). Since

w’’ > w, the theorem 1s proved.
It appears from the two preceding theorems that the order

of f(x) on (a, B), if positive, may be defined as the number
w such that the quantities (1 — 7)**f(r¢?) and (1 — r)**I,
remain bounded for an arbitrary ¢ as r approaches 1,
whereas one or both of these expressions fails to remain

bounded if ¢ is replaced by — e.
39. For use in a later chapter, we state without proof a

theorem of Fabry.!
THEOREM 8: If, for the series Za, x™, we have
Magr — N> kY N log A,

where k 15 a positive constant, then every point on the circle of
convergence has the same order, namely, the order of the function
on the circle of convergence.

1 Comptes Rendus, t. 151 (1910), p. 922.





