\Y
LACUNARY SERIES!?

20. Consider an increasing sequence of positive integers
{n.}. Denote by {N,} the increasing sequence consisting
of the positive integers not contained in {),}. Both se-
quences are assumed to be infinite. The zero coefficients in
the series

-
Lo = Xeam, (1)
where
a,, when m = \,,
Cn = " 6 ’
0 m = N,

are called lacunae, and a series of the form (1) is a lacunary
series. Weierstrass first, and later Fredholm, gave examples
of such series, in which the circle of convergence is a cut.

It is natural to inquire whether the presence of an infinity
of lacunae, distributed according to a definite law, is a
characteristic property which may supply information rela-
tive to the singularities of the function represented by the
series.

The number and, to some extent, the types of singular
points of a function are invariant with respect to differ-
entiation and integration. Any property of the coefficients
from which conclusions may be reached relative to singu-
larities should therefore be of an invariant character with
respect to these operations.

The simplest of such properties is given by the lacunae
and their distribution (to within a translation).

! Mandelbrojt: Ann, de l’école Norm. Sup., t. 20 (1923), p. 413.
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262 Singularities of Functions

The following general theorem concerning lacunary series
is due to Hadamard.!
Tueorem 1: If, for the series (1), we have

A
lim =2 > 1+ 5, (3)
n-—r0 kn
where §> 0 is arbitrary, the circle of convergence is a cut.
Fabry has shown that the conclusion holds if (3) is re-

placed by
lim ()‘n+1 - )‘n) = 0, (4)

a condition which is implied by (3). These theorems will
be considered in Chapter XII. In this chapter we shall
study lacunary series from a different point of view.
21. Tureorem 2: If
Hm (A1 — M) = o (5)
the series (1) has on the circle of convergence at least one
singularity which is not a pole.

Lemma: If L
lim (A — M) > K, (6)

where K is a positive integer, and if the series (1) has only
poles on the circle of convergence, the number of poles is at
least K + 1.

The requirement (6) 1s equivalent to the statement that
we can extract a partial sequence {A}, i =1, 2,----, such
that

Mpr = M > K, 1= 12,0000

Suppose the lemma false, i.c., we assume that the series,

having only poles on the circle of convergence, has

toc. ¢it., p. 116.
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K'< K + 1 poles. Then, from Theorem 1, Chapter 1V, we
have

— 1
lim l D, K'l < Ej{'q_"i’ )
-0
where
Oy Crg1 tete Ce KR!
Dr, K=
C,-+K; e s Cry2K’
Hence
mV[ D] = mV[e | = ®)
r— 0 e de o] R

Let K" denote the largest integer such that, for » = 0,
1, 2,----, K", we have

1

IEVI Dr.pi = Re+L

r—o0

The existence of K’ follows from (7) and (8); moreover,

0< K”< K'. And since

— T 1
SmNID el < s

we have, by Theorem 2, Chapter 1V,

r

AT 1
llm ‘Dr,K'I = W, K” + 1S K/’

r—o0

which is a contradiction. For in the determinant

[2TFES e Chny+K*+1
Dyyre= | wooe oeee e ,
CMbK™41° " CAng+142K”

all the elements of the first row belong to the sequence
{\,}, since
Mpr— N, > K > K"+ 1

Hence Dx, 4, g = 0 for all 4.
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We may now proceed with the proof of Theorem 2. If
a function has only poles as singularities on the circle of
convergence, there must be a finite number of them. Since

there is a subsequence {\;} such that

hm ()‘ni-f-l - }‘n,) = 0,
i— o0

it follows that, for 7 sufficiently large,

M1 = Ay > K, arbitrary.

As we have just seen, the function must therefore have,
for each K, at least K + 1 poles, and consequently the poles
are infinite in number. This being impossible, there 1s at
least one singularity other than a pole on the circle of con-

vergence.
22. Tueorem 3: It is possible to construct a series

Za, xn, for which
Ii.l'—n— ()‘n+1 - )\n) = 00, (5)

n—>00
and which has only one singularity in the entire plane.

In order to prove this, we state without proof two theo-
rems on which the demonstration is based.

Tueorem 4 (Leau): Given an integral function g(z) of
order <5< 1, e, | gz)|< e for r>r, r=|2zl; then the
Sfunction

fx) = Zg(n)xr
has the point 1 as its only singularity, and is accordingly
regular at infinity!

THEOREM 5: Given a sequence {a,} such that Z'I‘!"TH-; con-
an

verges. It 15 possible to construct an integral function of order
<5, having the o, as zeros, and no others.*

t See Chapter VIIL 2 Borel: Fonctions entidres, 2d ed. {1921), p. 56.
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Proof of Theorem 3. Let s be chosen so that 1 < s< 1.
Consider the sequence of series

Z(n—i— om0 2 ©)

n=0

Each of these series, being dominated by the series

Z - 1s convergent.
Let -
Ye.=1
n=0

be a convergent series of positive terms. For each m,
choose n,, such that

z(n +m < €m

nnm

,g[i(wrm)]”'

Let 4, = n%+ m, n = n, The series
LE

is absolutely convergent. Sum this series by taking the

. . . 1 1
terms in the order of decreasing magnitude: AR
1 Us

Then

uMS

(In case two or more terms are equal, we remove all except
one of them.) Then the series

E 1

k=lUi
converges. By Theorem 5, we can construct an integral
function g(z), of order < s, having the U, as zeros, and no
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others. Hence, by Theorem 4, the series
Ye(n)xn
n=0
has the point 1 as its only singularity. We write
Y e(n)xn = Zb,‘nx“n, (10)
n=0 n=0

and show that the sequence {),} has the property (5).
Let 7 be an arbitrary integer. Corresponding to each 1

choose an integer p, such that
D> Moy Nyt vty Mg

The zeros U, being of the form n® + m, n = #n,, are given

by
R N

For if m < 1, n takes on the values n,, 7, + 1,----, thus
including n = p,. Hence, for1=0, 1, 2,-- -, we have
g(pd) =
g(Plz) = 0 g(p? + 1) =0 (11)
g(pf) =0, glp’+ 1) 0,----, g(p*+14) =0

The integers in (11) are the X', of the series (10). Select
a partial sequence {\,} as follows: Let \, = p®— 1,
M, = 08— 1 M= p1* + 2, and so on; let ), be the last
subscript before p which is not a zero of g(n) and let
Mng+1 De the first subscript after p® + 4 which is not a zero

of g(n).
With the A, so chosen, we have

im (A, 4 — Ns) = ®.

4900
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In the case just considered, since the singularity is not a
pole, and is unique, it cannot be a branch point, and must
be an essential singularity.

Faber ! has given an example of a series for which

lim = = 0

s
n—oo N

and the function defined by the series has only the point 1
on the circle of convergence as a singularity, but has the

lemniscate
lx(x—1)|=2

as a cut.

The theorem just proved shows that properties (4) and
(5) are entirely distinct, since a consequence of (4) is that
the circle of convergence is a cut. We also note that the
condition (5) gives no information relative either to the
number or the position of the singularities of a function.
In fact, if £ is an arbitrary positive integer, we can form a
series Za,x" having exactly % singularities, arbitrarily situ-
ated, in the entire plane. For if we let

1 1 1
= g(”)<s';+ gt BZ)’
where the g(n) is as before, and the §; are arbitrary, but
distinct, then the function defined by

oo [+e]
Yaxm= Yo"

n=0 n=0

has 8, Bs,-- -+, B as essential singularities. On the other
hand, the sequence {),} satisfies (5), since Za,x" is the sum
of k series, all of which have the same lacunae.

As Montel ? has remarked, the author’s theorems show
that the “magnitude’” of the lacunae give information

1 Sitzungsberichte de ’Ac. de Baviere, t. 36 (1906).
2 Comptes Rendus, 27 mai, 1925,
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about the nature of the singularities, whereas their arith-
metical distribution affects the number of singularities. By
the magnitude of a lacuna of subscript #; is meant the
integer k such that

D t1 = 0, 2 = 0,--, Db = 0,
a"n,- ¥ O, a)‘n‘+k+1 #= 0.

23. The following theorem is a generalization of one of
the author’s theorems. It is a theorem of Ostrowski?; a
part of the proof is due to Tchebotareff.

TueoreM 6: If the series (1) has the property that

lim (Ay41 — 2°N,) = o0, (12)
N+
where p 15 a positive integer, or zero, then the function defined
by the series cannot be represented as

o)
[P(x)]7ri

where P is a polynomial, and the radius of convergence of the

series for ¢(x) exceeds that of (1).
If p = 0, the theorem states that

¢(x)
flx) = PG

which is Theorem 2; the function f(x) cannot have poles
exclusively on its circle of convergence.
By hypothesis there exists a partial sequence {M\} for

which
hm (A0 — 272,) = o0, (13)

1 Jahreshuch der deutschen Math.-Verein., Bd. 35 (1926), 9-21 Heft, p. 269.
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Suppose the theorem false. If P(x) has zeros elsewhere
as well as on the circle of convergence of (1) we can write

$(x) _ $1(x) ,
[Pl [Pux)]eFi

where the radius of convergence of the series for ¢;(x)
exceeds that of (1), and where the roots of P,(x) are situ-
ated only on the circle of convergence of (1).

Case 1. We assume that there is at least one zero, «, of

P for which ¢;(a) = 0.
LemMma: Given

o ©
fily) = Y ahatn= Y cn,

n=0 n=0

fx) =

f2(x) = Z b)‘”x)\" = Z dnx™,

n=0 n=(
both series satisfying the requirement (13). Then

fl(x)f2(x) = i l“nxun = i knxﬂ)

n=0 n=0
where

h—n—l (l"n-{-l”‘ zp‘lﬂn) = 0.
n—r0
As before, let {N,} be the sequence complementary to

{\}. Then ¢y = dy = 0. Let {m,} denote an increasing

sequence of positive integers. From (13), we have, for each
m;
Augp1 > 270, + myy, 1 >0

Then every integer ! such that ), </ < 27\, + m; be-
longs to {N,}. Hence

Crp bl = 0, Ongt2 = 0,---, Cony, = 0, Cop ot = 0, CoPay tm; = 0,(14)

with a similar set of equations for the d’s.
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NOW kn = Cnd() + Cn—ldl +eet Codm

which may be written
kn= Cndo+ Cn_1d1+""+ CE d§+""+ Codn (15)

when # is even, and

k= cdo+ cpordi 400+ C[g]d(_;_) + C(g)d[g] Feeet C‘cchné)

when 7 is odd. The symbol (g) denotes the largest integer

less than Z, and [g] the smallest integer greater than ?2—1

From (15) and (16), it follows that if we place, con-

secutively,
n=2 An; -+ 1,
....... i> (17

n = 2”)m,~ -+ My
all the corresponding &, vanish. For in (15) all the ¢, pre-
ceding and including ¢, vanish, by (14), and in the remain-
2

ing terms the d, vanish. Similarly for (16). Hence all the
integers
2 >‘n‘~+ 1, 2 )\n,-+ 2,000, 2pkn‘~ + m;
belong to the sequence {4’,} complementary to {u,}.
If we let

2 Xﬂ.‘- = Hap ZPM‘ + mj + 1 = “n‘--‘-l)
we have

2pxﬂ" = 2?-1#7”’ zp_ll-‘n‘ + mJ + 1 = “"i+1’

and consequently
~1
g1 = 207 ng > My

Since this inequality holds for all 7, we have the con-
clusion stated in the lemma.
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Returning to the proof of the theorem, we have, from
the lemma,

[P = [ a0 | [ Zayat] = e,
where it is possible to find a partial sequence {u,} such that
lim (#n,’-{—l - Zp_lﬂn.) = X,
i— oo M
Denote by v, the sequences
..... 1> 4, 7=1,2,--,
and by o, the complementary sequences. Then, by (14)

and (17), we may write

fx) = Bl [fF = Zaljaon
Now we can find a partial sequence {g,} such that

}Lfg (Ungg1 = ¥) = 0.
If we replace p by p — 1 in the lemma, we obtain
[F)I = FR 1 = [ Ealx ] layx]
= Zaxnx
where we can form a partial sequence {K, | such that

1im (Kp1 — Kp) = 0.
Proceeding in this way we obtain, finally,

()P = Za"’*”x'"
where there exists a partial sequence {r,} for which

llm (Tn;-H - 11',,‘,) = 0.
i—00
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We have consequently arrived at a contradiction. For
we have assumed that

s _ L@

[f(x)] P ®(x),

and since ¢;1(a) = 0, the function ®(x) has the point « as
a pole on the circle of convergence. Moreover, ®(x) has only
poles as singularities. This, however, we have just seen to
be impossible, and the theorem is proved.

Case 2. To show that f(x) cannot be represented in the
form

Pi(x) ¢2(x),
1
[Pr(x) ]
where the radius of convergence of the series for ¢a(x)
exceeds that for f(x). We now admit multiple zeros of
Pi(x), but require that there exist at least one simple zero

a of Pi(x) which is not a zero of ¢o(x).
Unless the theorem is true, we have

J(2) = [PA(x)] ¢2(), r = ;—_{—i

J/(x) = 1 [Pi(x) 7 P/ (%) ¢a(x) + [Pi(2)] 2 ()

_ TPy’ () pa(%) + Pr(x) 69" (%)
[Pi()]
$3(x) ,
[Py()]T

where ¢;(x) has the same properties as the function ¢;(x)
in Case 1. For, by hypothesis, « is not a zero of P,'(x) ¢2(x),

hence not of ¢3(x).
On the other hand, the derivative series has lacunae

which are characterized by (12).



Lacunary Series 273

Case 3. The function f(x) cannot be written in the form
(_x;m
[Pl(x)]pﬂ

i.e., assuming that ¢(¥) = (¥ — o) ¥iga(x), where ¢s(e;) # 0,
ki is an integer, and «; is a zero of P,(x) of order %, > &|.

Let Py() = A(x — o)+ (6 — )% -+ - (x — )", and
suppose

(% = 0;)"i¢9(x)

( ) = k; 1
I (% — o) 5[ Pa(x)]r1
R 1O 46 e b Rl )
v [Pz(x)]p+1 N p+1

The number r may be taken as positive; otherwise we
have Case 1. Suppose for the present that » <1. Then

() = (x — a)—0D ¢2(x) b — @) 4 ¢a(x)
fix) = (% ) (Pa(s)] 1_)1_+1 (x 2 o —-————[Pz(x)] p_i_l
éa(%)

= l b
(x = a)![Pa(®)
which reverts to Case 1 by virtue of the statement at the
end of Case 2. If r> 1, we need only consider ™+ (x)
instead of f'(x).
By combining these three cases, we have the general
theorem.
Tsuji? has generalized the lemma, Theorem 2 and Theo-
rem 6, in that “pole” is replaced by ‘“algebraic singularity.”
! Japanese Journal of Mathematics, vol. iii, no. 2 (1926), p. 69. Generalizations
of Theorems 2 and 6 have also been given by Polya, C. R., t. 184 (1921), p. 502,
who proved that a series having the property (5) cannot have singularities of the
same kind as those of a linear differential equation of Fuchsian type.
For other proofs and different generalizations of the lemma, Theorem 2 and

Theorem 6, see Ostrowski, Jahresbuch der deutschen Math.-Vereinigung, Bd. 35
(1926), 9-12 Heft, p. 269, and Obrechkoff, Comptes Rendus, t. 184 (1927), p. 271.
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24. TueoreM 7: If, for the series (1),

lim 224 = o, (18)
n—00 >‘n
the function defined by the series has as singularities only
unbounded continua.

We state, without proof, two theorems on which the proof
is based. The first is due to Ostrowski, the second to
Weierstrass.

TueoreMm 8:1 If the series (1) has the property (18), i.e.,
if there exists a partial sequence {\,} such that
Anitt
M o P

3

lim

00

and if we let

3
S}(x> = E a)‘n'xkn;
n=1

then the sequence {S(x)} converges uniformly in each closed
region interior to the region of existence of f(x); moreover,
f(x) is uniform.

THEOREM 9:2 If a sequence of functions f,(x) holomorphic
in a closed region D is uniformly convergent on the boundary,
then the sequence converges uniformly in the closed region D.
The limiting function F(x) is holomorphic within D, and
F®(x) = lim f$(x).

n—o0

LemMa: Let E be a bounded closed set, not a Cantor con-
tinuum. Then there exist two regions without common points,
and at a distance not zero from each other, such that within
each region is at least one point of E, and such that each point
of E belongs to at least one of the regions.

Construct about each point of E a circle of radius e

t Abh. aus dem Math. Seminir der Hamburgischen Universitic (1922), p. 327.
2 Montel, Series des polynomes, Paris (1910), p. 16.
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There 1s a finite number of these circles, Cy, Cy,---+, Cy
such that each point of E is interior to at least one of them.
Denote by D, the region composed of the interior points of
these circles.

Since E is not a continuum, ¢ may be taken so small
that D, is not connected. Otherwise each pair of points of
E can be joined by a polygonal line of a finite number of
segments, each of length less than 4¢, and such that each
vertex is in E. Hence E is a Cantor continuum, contrary
to hypothesis. Hence De consists of at least two connected
regions.

There is at least one of these regions which occludes none
of the others from the point at . Let this be the first
region. The other regions may be connected by polygonal
lines which have no point in common with the first region,
and are therefore at a finite distance from it. These can
be covered by a finite number of overlapping circles of

. ] . .
radius less than X and with centers on these lines; these

circles, together with those not of the first region, consti-
tute the second region.

CoROLLARY: If, for every ¢ a circle of radius e is described
about each point of a closed set E, and if, for every e, the region
formed by application of the Borel-Lebesgue theorem is con-
nected, it 15 a continuum.

TaEOREM 10: Given a closed curve C. Let Cy, Coy+ -+ be a
set of polygonal lines within C, all having a common vertex P.
Suppose that each C; has a vertex P; such that lim 9, =0,

1—0
where n; is the distance from P;to C. Denote by ¢ the length
of the longest segment of C;, and suppose lim ¢ = 0. Let E
I— 0

be the set of vertices of the C;. Then E' is a continuum which
contains P and a point of C.
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We note first that E’ is not a null set, and is closed;
further that it contains the point P, and some point of C.
Describe a circle of radius » about each point of £’. Then
there exists a finite number of these circles such that each
point of E’ is interior to at least one of them. Let Th be
the region composed of all of these circles. This region
must contain all the vertices of all the C;, 1> 1,, where 1,
is sufficiently large. In fact, if there were a vertex P;, out-
side or on the boundary of T, for some ¢ arbitrarily large,
the points P; would have a limiting point P’, outside or on
the boundary of 7', which is contrary to hypothesis.

The set E’ is chained. For if 4 and B are two of its
points, there will be a C4 of sides < 2 5, of which one vertex
is distant from A by less than 2, and a Cp of sides < 2 4,
of which one vertex is distant from B by less than 2 »;
moreover, every vertex of C, will be distant by less than
2 n from some point of E’, and similarly for Cp, if these
are C;, 1> 1y, and C4 and Cj both contain P; this proves the
statement.

Since E’ is closed and chained, it is a continuum,

We proceed to the proof of Theorem 7. Let E denote
the set of singularities of f(x). Since, by Theorem 8, f(x)
is uniform, £ is closed.

Moreover, E is perfect. For suppose an arbitrary point
P, of E is not a limiting point. With P, as center describe
a circle Cy within which P, is the only singularity. Let
C: be a smaller circle concentric with C,. Within the ring
thus formed, f(x) is regular. By Theorem 8, the sequence

ny
Si(x) = Z axnx%"
n=1

converges uniformly in the closed ring, hence, by Theorem 9,
within Ci, and consequently at P,, which contradicts the
hypothesis,
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With center at an arbitrary point P, of E, describe a
circle Cy of radius R, arbitrarily large. Denote by & the
closed set of points composed of the circumference of Cp
plus those points of E which lie within Cp.

The set & is a Cantor continuum. Otherwise there will
be a closed curve K, lying within Cp, such that there is at
least one point of & exterior to K, at least one point of &
interior to K, and no point of & on K. Hence we can con-
struct a ring surrounding K, lying within Cg, and having
the same property. Then S;(x) converges uniformly within
K, so that the points of & lying within K are regular.

We wish to prove that any point P of E belongs to a
Cantor continuum Py which is not bounded. Choose R
large enough so that P is an interior point of the circle Cj.
Let Q be a point on the circumference. Then P and Q are
points of & and can be joined by a polygonal line whose
vertices belong to &:

P = Plis P2i; ) P;u ) PZ:: Q’

where

P;P;.H <e,;,j= 1,2,"",]@'—1,

and where P, P,,-. .-, P are all within and not on Cp,
and P} is the last such vertex. Then a point P of E may be
joined to some point P’ of E on Cy by a continuum con-
sisting of points of E. The theorem is therefore proved,
since P and R are arbitrary.

25. We have seen that a series for which the condition

lim ()\n;“}'l - )\"i) = 0
§— 00

is verified, has, on the circle of convergence, at least one
singularity which is not a pole. But a priori there may also
be poles on the circle of convergence. In this connection
the following theorem is useful:
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Tueorem 11: If the series Za,x™ represents a function
having exactly one singularity on the circle of convergence,
then the series Zb,x™n, where the b, are arbitrary, can not
have a pole with principal part

4y

(x —~ xo)p.

In particular, there are no simple poles on the circle of con-

vergence.t
The proof is based on the following theorem:

TueoOREM 12: If, corresponding to the series
o
IR

n=0
we have a series

with unit radius of convergence, having the property that the
series

=] o0 , o

Y duam= Y cxn 4+ ) aM

m=0 n=0 n=0
where dy = ¢,y dy, = 1, is regular at the point 1, then the
Sfunction

W) = 3 ann,
n=0

where the a, are subject only to the condition that the series
shall have unit radius of convergence, has at least two singular
points on the circle of convergence.

1 Polya has generalized this theorem by showing that on the circle of converg-
ence the funcrion can have neither an algebraico-logarithmic point nor an isolated
singular point about which the function remains uniform. Comptes Rendus,
t. 184 (1927), p. 504. See also Gergen, American Journal of Mathematics, vol. 49
(1927), p. 407, for a generalization by means of “generalized lacunae,” a concept
introduced by the author. Bull. de la Soc. Math. de France, t. 53 (1925}, p. 235.
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This theorem, as we have stated, implies the preceding.
Otherwise there will exist a series

]
Y aun

n=0

having one and only one singularity, and a corresponding
serles

¥ b (19)

n=0
having a pole with principal part
4,
(x — xo)”
Integrate (19) p — 1 times. The resulting series,

co
A’ -1
Z blx nt? ,
n=0
which we assume to have unit radius of convergence, will
have a simple pole at a point xy = ¢**. The series

1 & y ’ kg L4 r
el L Wt (20)
n=0 n=0

has a simple pole at x = 1, and may therefore be written

in the form
A

1 —=x

+ 3 ban, 1)

n=0

the last series being regular at x = 1. On the other hand,
its radius of convergence is unity. For the series (20) has,
on the unit circle, at least one singularity other than the
pole x = 1. Otherwise we have an immediate contradiction.
For lim (M.e1 — N,) > 1, which means that there must be
at least two poles on the circle of convergence. Hence every
singularity of (20), other than the pole x =1, is also a
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singularity of the series in (21), that is, the latter series has
a unit radius of convergence. We have the following re-
lations:

}. - Ny = S No —1 —_ S kﬁ n
T B R r - B
Yot St ot ¥ (14
n=_0 n=0 n=0 n=0
1&3
= kn ",
a Bhe

The series Zx** accordingly satisfies the hypothesis of
Theorem 5, where ¢, = 1+ b,. Hence the series Za,x*"
has, contrary to hypothesis, at least two singularities on
the circle of convergence.

We proceed to the proof of Theorem 12. If the theorem
is false, there will exist a series Za{ x™ with unit radius of
convergence, having only one singular point, say ¢*, on the
unit circle.

Denote by H the operation by which Za,b,x" is obtained

from Za,x" and Zb,x™:
* o0 oo
H Z axm Z boxn ) = E ab.xm.
n=0 n=0 n=0
Since, by hypothesis, Zd,x" is regular at x = 1, we may

write ® o
H, ( pIELD) dnx"> = Y boxn,

n=0 n=0

a series which, by Hadamard’s theorem,! has, on the unit
circle, singularities only of the form y = ¢%¢”, where ¢*

1 The proof of Hadamard's theorem given in Chapter III assumes that the
functions f(x), ¢(x) involved are uniform. But here all three series in question
have radius of convergence 1. Hence it may be shown that the curves C, Cg may
be drawn so that if x; is a regular point on the circumference for f(x), and x; for
(%), then the point xov; will be included in the region of regularity for F(z), from
which the desired conclusion follows. [Eprror.]
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is a singularity of 2d,x". But we have

i baxt = f: a; %™, (22)
n=0

n=0
from the way in which the d, are defined. Consequently
o' = o =1,
which contradicts the hypothesis that x = 1 is a regular
point for Zd,x".
From the fact that the series (22) has at least two singu-

larities on the unit circle, it follows that if ¢ is one of
them, there will be another, say ¢, such that

6% = %™, (23)

Thus for example, if the sequence {\,} contains only a
finite number of multiples of an integer p, the series Za,x*
has at least two singular points on the circle of conver-
gence.! For consider

1
1 p}:x"”—————+ $(x),
where ¢(x) 1s regular in the point x = 1. 'We may write

idnx“ = — pix’”’—{—ix"
n=0 n=0 n=0

E x)\,, + Z (1 _ P)x)\’u

n=_ n=0
= ¢(x)’
where np has been replaced by A,. This function has

poles at the points /=, 0< ¢< p, that is, the series Zx*»
satisfies the hypothesxs of Theorem 12.

t See also Ostrowski: Jahresbuch der deutschen Math.-Verein., Bd. 35 (1926),
9-12 Heft, p. 269, and Jour. London Math. Soc., vol. 1, part 4, Oct., 1926, p. 236.
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From the hypothesis concerning the X, the 8 of (23) must
be of the form —2——;—%, 0< g< p. Hence if ¢* is a singularity

of Za, x*n, there will be a singularity eid", of the same series
such that i ggfzgi - 1

26. THEOREM 13: Given a sequence {\,} containing only
a finite number of multiples of each p; of an infinite sequence of
prime numbers {p,}. Then the series Za, x* has an irre-
ducible set of singularities on the circle of convergence.

Without loss of generality, we may assume that x = 1 is
a singular point. From (24) the set E of singularities on the
unit circle consists of the points

2wgi 2y
EP ,eP, e 0L 7, < b,

and these points are distinct, since the p; are prime numbers.
Consequently £’ is not a null set.

We shall prove that if E™ is not a null set, and if to each
" of E™, and for each p, there exists a number g such that

2 q(n)
P2 = p™, (25)
then E®*Y is not a null set, and for each py"* we have
qu(rﬂ-l)

PO(H-I) —_— Pl(n+l)-

Er
The existence of E"*! follows at once from (25), since
there is an infinity of distinct points p{™.

There exists a sequence of points p{”, k=1, 2,.--- for
which lim p{® = p{**". For an arbitrary 7, the set of points
k—0
2wgMs

P, k=0,1,2,

has at least one limiting point:
21rq("+l)

Pl(n—H) - P((]n-f—l)e v

i
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2wq<,-")i
In fact, since 7 is fixed, one of the factors ¢~ must be
repeated an infinite number of times. This ¢/” may be taken
as ¢"™; hence the point p{"*" thus given is distinct
from p{**D,

Generalizations of theorems similar to the preceding have
been given by Ostrowski.! One of his theorems is the
following:

If f(x) = Za.x*, where the sequence {N,} does not contain
any member of the form

ll + nq’ ll < q’
12 + nqg, lZ< g,

------------

where q is a prime number, and where the integers l; are dis-
tinct, then f(x) has at least k 4+ 1 singular points on its circle
of convergence. If x = a is a singular point on the circle of
convergence, then f(x) has, on the circle of convergence, at least
k other singularities oy, ag,- -+ -, ay of the form
2
o = ot 1,

where r; 15 an integer, 0 < 1; < g.
27. We have seen the importance of determining whether

m

the expression V| D,, 41| approaches 1 regularly or not.
For a series Za,x» having an infinity of lacunae, this regu-
larity does not hold for p = 1, but since there is a partial

sequence of coefficients s @5+ such that lim V| an’-‘
00
n
= 1, we say that the sequence \/[ a, | approaches 1 irregu-
larly.

oc, cit.
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It is also natural to say that the series Ta,x* has more
n
lacunae than the series Zb,x", or that V| b, | approaches 1

n
more regularly than V| a,| if, whatever the sequence of

£

positive integers 7; such that lim V}a, | =1, it is also
100
g
true that lim \/} b, | = 1, but not vice versa (i.e., there

=0

exists a sequence {7} such that lim V| . | =1, and

) 0

ny
lim V[ ar]< 1).
00

This terminology has the advantage of permitting the

formulation in a general manner of the law expressing the
influence of the lacunae on the corresponding singularities,
their nature and their number.

If the sequence \/f b,| approaches 1 irregularly so that
the singularities of Zb,x fail to satisfy an arbitrary prop-
erty (A), then, from the foregoing theorems, there corre-

n

sponds to the sequence V|a,| the series Za,x" whose singu-
larities can not satisfy the property (B) less restrictive than
(4), that is, every set of singularities satisfying (4) also
satisfies (B), whereas there are sets satisfying (8) which do
not satisfy (4). Briefly, the set of singularities satisfying
(4) is in general contained in the set satisfying (B).

Conclusions of this kind are, moreover, the only ones
that can be given when the hypotheses refer only to the
absolute values of the coefficients. In particular, a theorem
of Fatou states that it suffices to change the signs of an
infinity of coefficients in order that the circle of convergence
shall become a cut.





