
MEROMORPHIC FUNCTIONS 

16. If, in a region D, the function f ( x )  defined by the 
series ~a ,x "  can be represented as 

I("> = fl ( x )  + f2(& 
where fi(x) has only poles in the finite plane, and f2(x) is 
regular in D, thenf(x) is said t o  be meromorphic in D. 

A series having only poles as singularities on its circle 
of convergence is said to  be meromorphic on the circle of 
convergence. 

M7e shall obtain necessary and sufficient conditions, due 
to Hadamard, that  a series be meromorphic on the circle 
of convergence. 

Denote by On,, the symmetric determinant 

a n  ant1 a,,+, 
a,+1 * * * * 

%+in aILf2m 

.... 

. . . .  . . . .  
.... . . . .  . . . .  . . . .  

. . . .  . . . .  

where the ai are the coefficients of the series Za,xn.  If R is 
the radius of convergence, then 

The proof of this statement depends on two lemmas 
which we proceed to  establish. 

t. 8 (1892), p. 101. 
1 For the theorems in this chapter, see Hadarnard, Journal de Liouviile, ser. 4, 

248 



Meromorphic Functions 249 
LEMMA 1: Given k sequences of positive numbers, 

(1) (2) ( k ) ,  
a n  9 %L ,'"', ffn 

- Then 
l& . . a~b) I; I& a:l) . . . lim a;'), 
n-+ m 1 n+m n-+m 7 1 - r n  

Let l& all' = pi, i = 1, 2, .  - - e ,  k. By definition there 
n-xu 

exists a number no such that, for n >  no, we have 

a? < pi (1 + e), 

a:1'Cr:2'. * - .*y< p l p 2 ' .  * ' PR(1  + t ) k ,  i = 1, 2,. * * ', k. 
For an arbitrary q >  0, we may choose e so small that  

(1 + e)k < 1 + 4. Then 
- _. 

a;)arf). * . .aib) < lim at) lim ak2). - lim a~') ] (1 + q ) ,  [ -  n-+m n-bm n-+ 30 

and therefore 
- - 

lim 
n-b -c w 1 n-bm n-xo n+ ZQ 

. .a($ I; lim lim af ) .  . . . lim a;'). 

A consequence of this lemma is that, for an arbitrary 
positive integer m, 

where aj = n + ij, ij being a fixed number depending on j ,  
and such that  0 I; ij 5 2 m. The  inequality holds for each 
value of j .  

I n  fact, for a given i, 
n +ij 

~ i m  3m = lim ~ m ,  
n-+ m n+ m 

since 
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Hence 

so that  for a given m, 

LEMMA 2 :  Given p Taylor’s series, with coeficients 
{Af) i ’  {Aj?Jj,. ’ e ,  {A?’), 

respectively. If 
-n- 1 

lim A!:) I = -3 k = I,z,. * * e ,  p ,  
n - w  Pk 

tRen 
n 1 I& 211 A:;’ + A(?’+ ‘ * .+ A?) I 5 - 9  

n-+ UJ P 

where p i s  the smallest of the numbers Pk. 

The series c ALk’xn 

converges for I x 1 < Pk, hence for I x 1 < p. The series 

c [Ail’ + A?) + * * . .+ ALP’] X “  

has, therefore, a radius of convergence R which is a t  least 
as great as p :  

n lim1/1AI:’+A~’+ . . . .+A!P’j  = - <  1 1  -. 
n-co R -  P 

Let us write D,, in the form 

On,, = Af) + . . .+ Ar,(m+l)l 

where each term is of the form 
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Then, as a consequence of the lemmas, we have, for every m, 

a n + p - 1  b n + p  

b.+2P 

. . . .  a n  
. . . .  .... .... .... 

.... 
a/k+p ' * * 

1 lim $ m s  IZm+l' k = 1, 2, '  * e ,  (m + 1) !, 
n-+ m 

. 

and 

17. THEOREM 1: If a series has, on  the circle of conver- 
gence, p poles and no other singularities, then 
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in the same way as for (1). 
choice of P,(x) ,  

Moreover, we have, by the 

an+m-l .... an-1 a n  
a n  a,+l a - . an+m .... .... .... D n - l , m  = . . . . 

an+2m-1 .... an+m-l . - - 

Hence, finally, 

. 

COROLLARY: The preceding inequality holds ;f p i s  replaced 

18. THEOREM 2:  If there exists an integer m such that 
by any m > p .  

then, f o r  that m, 
n 1 

iim ViZZ-i = Rm- 
n-+ 03 

We wish to  show that  given E >  0, no matter how small, 
there exists a number no such that  

Consider the determinant 
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Here the m is of course fixed. We shall first use the iden- 

tity (3) to show that  for n large enough we can obtain an 

where, by taking e small enough the k will be a positive 
constant < 1 .  For this purpose we introduce temporarily 
quantities E', e l ' ,  q', q", all of which may be made arbitrarily 
small with n large and E small enough. Indeed, we may 
take E as small as we like. 

I n  fact, given E', we have from ii), by taking n large 
enough, 

I D n - 1 ,  m 1 < [ s] n-'j 

and since 1 Dn+l,m-2 I < [(l + ~ " ) / R m - l ] ~ + l  for n large 
enough, we have 

( 1  + t')"--'(l + E " ) n + l  
Rln-l R am,t--n-i I D n - 1 , m  D n f 1 , m - Z  I < 

[a,;-& Rm ] 
1 1  2n 

<------ R5+G l + q l  9 

1 1  1 1  
where 1 + q '>( l  + d)S-G(l  + E'')5+g, 

1 1  
< [ 4' -___ "'1 2n, where 1 + T]" > RcR'g(1 + q'), 

R' Rm 
2n E 

2n  

1 + ql' ,where 1 + q = -e  

1 - €  
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.- 

By writing then k = (1 + q ) i $ ,  a =(1- $ / R m  the desired 

inequality is proved. 
From (3) and (4), for all n sufficiently large, we have 

therefore the inequality 

Given E, no matter how small, there will be infinitely 
many n for which I Dn,m-l I > an, by i). If this is true 
for all n, n sufficiently large, the theorem is proved; other- 
wise there will be an E ,  and i t  may be taken as small as we 
please, for which there will be a Dno,nl-l exceeding ana in 
absolute value, preceded by a Dno-l,m-l which in absolute 
value is a t  most as great as an'-', and this for no arbitrarily 
large. 

But from ( 5 ) ,  taking n = no, we have 

Since, however, 1 Dno,m--l I > ana, I Dno-1,m-I 1 *no-1 this 
inequality gives the following: 

(6 )  I Dflof1,m-1 I > ano+l (1 - k)Zno,  

and for the same reason also the following: 
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In  particular, for no sufficiently large, k being < 1, we may 
write (6) in the form 

(6’) 
no+l 1 - E  

1 - -  
2 

211 Dno+l.m-l I > -* -E 

We wish to  obtain inequalities of the form (6), ( 7 ) ,  ( 67 ,  
holding for no + i, where i is arbitrary, provided n o  is 
sufficiently large. These inequalities are the following : 

> a [1 - p o ]  [1 - /p+l)]. . , . [1 - p(R@+i-l) I, (8) 

I, (9) 

Dno+i, m-1 I Dno+i-l, m-11 

I Dno+i, m-11 
, DLno+i [I - k h ] i  [I - kZ(no+l)]i-l, . . . 

[1 - k z ( R o + i - l )  

and we shall prove them by mathematical induction. They 
hold for i = 1; if they hold for i, we shall prove that they 
hold for i + 1. 

If we apply (lo), in the form 

to (S), we have 

- 1 / <  



D n o + i + l , m - l 1 >  1 D na+t, ' m-1 

keno 

>l--, 1 - k2 

11 - h%no+i)], 

If then, finally, we take r to  great enough so that 
k2no 

E 

1 - k 2 < 2 T  

the inequality (10) will be established as a consequence of 
($) and (9), whatever the value of i. 
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The  inequality (10) is the one sought. I n  fact, replacing 

CY by its value, CY = (1 - ;)/I+, we have 

which is what we wished to  prove. 

sequence {a,) : 

the  sequence converges regularly to a. This terminology is 
due to  Hadamard. 

19. THEOREM 3: Under  the hypotheses of Theorem 2, the 
series has on the circle of convergence exactly m poles and no 
other singularities. 

I n  the first place, suppose that  the series, having only 
poles on the circle of convergence, has m - r poles, r being a 
positive integer. 

It is natural to  say that  if CY is the unique limit of the 

lim an = CY, 
n-+m 

Then, by the corollary to Theorem 1, 
n 1 

tb-+cO VI Dn,(m-v)+(r-l) I < R(rn-r)+(r-l)+l’ 

n that  is, 1 111 D n , m - I \  c s’ 
n-+ a 

which contradicts hypothesis i). 
We seek next t o  determine a polynomial of degree m, 

m 

P,(x) = 1 + CAiXi, Am # 0, 
i- 1 

such tha t  the series representing the function 

C P ( ~ )  Pm(X) j (X )  = Z bnx-3 

where, except for a finite number of terms 

bn+m = an+* + an+m-lAl  +I * * .+ a d r n ,  
converges in a circle of radius greater than R. 
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We have, by Theorem 2, 

so that Dn,m-l is not zero for n 2 no. Consequently there 
exist sets of numbers A?), Ap), . - e ,  A&') which satisfy sys- 
tems of equations of the form 

where 

- H n + m  + a,,+zm + an+zm-1A?' + *  * a +  an+,A2' = 0. (16) 

Eliminating A?),. + e ,  A:) from (14) and (16), we obtain 
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where DA$1,m--2 is a determinant with m - 1 rows, composed 
of the coefficients of the given series. It follows tha t  

for n sufficiently large. Then, since 

im 1 
n-w 1 41 D n , m - l l =  - R m ,  

and 

there must exist an integer n’, independent of h, such tha t  
for n 2 n’ we shall have 

&+I, m-1 

Accordingly, for n 2 n‘, 

and we shall suppose tha t  c is so small tha t  the quantity 

in brackets is < 1. Then the series c sP) converges. 
eQ 

nww 

Let A h  = lim A t ) ,  h=I ,  2, - .  . , rn. This limit exists, 
n-+p  

since 
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We now show that  the series zb, xn for + ( x )  converges in 

a circle of radius greater than R. We have 

1 Ah I Jp+k) I = I  E @ I  
j=no+k 

The inequality shows that 

Consequently 

and the proof is complete. 




