
N O T E  

ON THE DETERMINATION OF PERIODIC FUNC- 
TIONS BY MEANS OF THEIR INITIAL 

VALUES 

1. Purpose of this Note 
Consider a trigonometric series containing (for greater 

2a,cos nx. 
simplicity) only cosine terms, 

We know, by what has preceded, that  if the coefficients a, 
satisfy a law of decrease which is sufficiently rapid, the sum 
of the series is an analytic function of x .  Suppose tha t  we 
assign a priori  the initial values C,, C2, C,, . . . of a function 
f ( x )  and its successive even derivatives for x = 0; it will in 
general be impossible to  satisfy these conditions with a 
periodic function whose Fourier coefficients decrease rapidly 
enough to make it analytic. In fact, an analytic function 
is defined a t  once in terms of the initial values by means of 
its Taylor development, and this power series represents a 
periodic function only exceptionally. 

On the other hand, if we do not assign a special law of 
decrease for the Fourier coefficients, it is always possible to 
construct a periodic function which, for x = 0, takes on, 
with its successive derivatives of even order, the sequence 
of given values C,, Cz, . , ., whatever they may be. 

It is our plan to prove this statement, and to outline a 
method of constructing such a function. We shall add 
some remarks which relate naturally to this question. 
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164 Approximation of Functions 
2. Theorem I 

Whatever initial values C,, C2, . . ., C2,, . . . are given, it is  
always pofsible to f o r m  a n  even periodic function f ( x > ,  such 
that the diferences 

are bounded f o r  all n. 
Let m,, m2, . , . m,, , . . be an increasing sequence of 

integers and al ,  a2, . . . a,, . . . an arbitrary sequence of 
coefficients. We wish to determine them one after another. 
We write 

f ( " ) ( O )  - C2, ( n  = 1, 2, 3, . . .) 

From this, we have 

j ' v ( o >  = m13a1+ m2a2 + + . . . 
m3 

and so on. 
Let us form the system of successive equations: 

C, = mlaal 4- m2a2 
- C, = mlal  

- C6 = mI5a1 + mz3a2 + m3aa, 
and so forth. This is a recurrent system which determines 
successively the products m,a,, m2a2, . . . m,a,, . , . . When 
these products are known it is obvious that we can always 
take for the first factors m,, m2, . . , m,, . . . an increasing 
sequence of integers, and moreover one that increases fast 
enough so that  the second factors a,, u2, . . . a,, . . , are all 
contained between - 1 and + 1. The function f ( x )  is then 
completely determined by the above trigonometric series, 
and it is evident that  this series satisfies the conditions of 
the theorem. 
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Not only are the differencesj@"'(O) - C,, bounded for all 

n, but in our case they also approach 0 as n becomes 
infinite. 

The preceding theorem reduces the determination of a 
function which is even and periodic and with its successive 
derivatives takes on a sequence of given initial values to  
the same problem where the initial values Co, C2, . . ., 
C,,, . . . are bounded. This problem will be solved in the 
proof of the following theorem. 

3. Theorem I I  

Let m,, m2, . . . m,, . . . be a sequence of positive integers, 
increasing rapidly enough so that for all n, 

where is a fixed positive number. Let then Co, C2, . . ,, 
CZk,  . . . be a sequence of bounded numbers. It  is always 
possible to determine the coeficients of the trigonometric series 
f ( x )  = al cos mlx  + a, cos m z x  + . . . + a, cos m,x + . . . 
in such a way that this series and all i ts  derivatives will con- 
verge, and the sum function and i ts  derivatives of even order 
will take on respectively the given values Co, C,, . . . f o r  x = 0.  

We determine first n coefficients a l ,  a,, . . . a,, by the 
system of n equations 

Co = a l  + a 2  + . . .  + a ,  
- Cz = m12a1 + mzaaz + . . . + mn2an 

Czn-, = mlan-aal + m22n-2a2 + . . . + mnan-2a, 
(1) 1 
and write 

fn(x) = al cos m,x + a2 cos m2x + . . . + a, cos m,x. 
Evidently, i t  suffices to show that  as n becomes infinite, 
f n ( x )  approaches a limit function f ( x )  which satisfies the 
theorem. For this purpose, we shall show that al ,  a2, 



A =  

A,(z) 
A 

(mZ2 - za)(m32 - z'). . . (mn2 - 2') 
(mz2 - mI2)  (m32 - m l z ) .  . . (mn2 - mlz)  

-= - 

1 1 . . .  1 
m 1, maa . . . mn2 
. . .  . . .  . . .  . . .  

maan-= . . . mn2n-2 

According to the theory of equations, the value of the 
unknown al is equal t o  a fraction of which the denominator 
is the determinant A and the numerator is obtained by re- 
placing in this determinant the elements of the first column 
1, mt2,  . . . by C,,, - C,, . . .. Evidently we arrive a t  the 
same result by ordering the numerator of the fraction 
written above according t o  powers of za and replacing zo, 
z2, . . . zZn-' by C,, - C,, . . ., =t Can-, respectively. The 
result of this substitution may be given explicitly with the 
help of a complex definite integral. This will now be shown. 

Let A4 be a positive quantity greater than the absolute 
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values of all the quantities CZk. We describe a circle (C) 
of radius M around the origin of the 2 s .  Outside and on 
the boundary of this circle we may define 

since this series is convergent in that  region. If now we 
integrate along the circle (C) we have (according to  the 
theory of residues) 

In  order t o  study this expression and its analogs, we write 

whence we have, without difficulty, +’ being the derivative 
of 4, 

-= A 1b) 4, (z2) 
A (2 - m12)+’fl(m12)’ 

and accordingly 

The corresponding values of az, aa, . . , are obtained by a 
Permuting m, and mk, simple permutation of the letters. 

we have 

The denominators, only, depend on k. 
As n grows indefinitely great, the product denoted by 

+,,(z2) acquires new factors and is developed as a product 
with an infinite number of factors, which we may denote 
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Since this product converges, ak approaches a definite limit 
LYk which is expressed by the integral 

In order to complete the demonstration it remains to show 
that  as n varies the sum (2) and its derivatives are uni- 
formly convergent. For this purpose we shall seek an 
upper bound of the I a k  I, which, when put  in place of ax in 
this sum, will insure the absolute convergence of this sum 
(extended to  infinity) and its successive derivatives. 

In order t o  
obtain an upper bound for this expression we must look 
for a lower bound of the absolute value of its denominator, 
or (what amounts to the same thing) of 

We return to  the expression ( 3 )  for the a k .  

m k 2 $ l ( m k 2 >  - 
This expression, like 4(Z ’ ) ,  is a product of factors. We 

The first group, formed from divide them into two groups. 
the first k - 1 factors, has the form 

It can be put in the form 

and consequently exceeds in value the expression 
mkk - 1 

m 1 m 2 . .  .mk-l 
)’( 1 - +) (1 - S) . . . . 

The second group, made up of the remaining factors, has 
the form 
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and exceeds the definite quantity defined by the convergent 
infinite product 

(1- $)(1-$) . . . .  

From this it follows that  we can assign a constant h, and 
then a second constant h' (independent of k and n )  so that  
we have 

and consequently 

This upper bound (for K infinite) is an infinitesimal of 
higher order than any negative power of the mk; it  guar- 
antees therefore the conditions of convergence which we 
have demanded. 

We notice finally that  the f fk ,  which are limits of the ak, 
have the same upper bounds. 

Theorem I1 is thus completely proved. 

4 .  On the law of limitation for the Fourier coeficients 

We shall make the calculation of the last section more 
Let the numbers m,, mp, . . ., definite in a particular case. 

mk, . . . be successive powers of the same integer > 1. 
We consider in this case the trigonometric series 
f(~) = ~1 COS x x  + COS X2x + . . . + f f k  COS X'"X + . . . 

in which the upper bound of the ak, found a t  the end of the 
preceding section, takes the form 
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The series which we have just considered comes under 

the general type of trigonometric series 
al cos x +  a2 cos 2 x + .  . . + an cos n x + .  . ,, 

where all the coefficients vanish except when n = Xk, in 
which case a, = Ok. Let us express the law of limitation 
of the a,, as a function of n. We have k = log n/log X; 
consequently 

I a,, I < h’e-Iogn(S-1). 

We can accordingly fix two constants A and a so that we 
shall have for any n 

(4) I a,  I < Ae-a[logn)a. 

This gives us the following theorem: 
There are always a n  infinity of periodic functions which 

with their successive derivatives take on for x = 0 an  arbi- 
trarily given bounded sequence of valuer, and such that their 
Fourier coejicients an obey a law o j  limitation of the f o r m  (4). 

5. On certain classes of functions determined by the 

It is possible to define, in terms of the form of their 
trigonometric development, certain classes of functions which 
are neither analytic nor quasi-analytic, and yet such that  a 
function of the class is determined by its value and that  
of its successive derivatives a t  x = 0. 

system of init ial  values 

We have,’ in fact, the following theorem: 
Let ml, ma, . . . mn . . . be a sequence of positive integers, 

increasing suficiently fast  so that the quotient 

m1m2. . . mn 
mn+1 

approaches 0 as n becomes infinite. 
representable by the trigonometric series 

The functions which are 
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al cos mlx+ a, cos m,x +. . . + a, COS m,x+. . . 

x4h  the condition of limitation 

f o r m  a cla55 in which every func t ion  is determined by its value 
and those of its derivatives at x = 0. Moreover we f i nd  that 
these values remain arbitrary, provided they are bounded. 

We notice first that  the sum of two functions of the class 
considered belongs to the same class. With this fact, it is 
enough to  prove that a function of this class vanishes 
identically if all its initial values are zero. 

Suppose then that  all the initial values are zero. The  n 
first coefficients a,, a,, . . ., a, must satisfy the equations (1) 
of section 3, provided we consider there the first members 
Co, - Cz, . . . as representing, with opposite signs, the por- 
tions of infinite series discarded from the second members 
(or the remainders of those series). The calculation made in 
section 3 shows (on letting n become infinite) that  al ,  a,, . . . 
are all zero, if these remainders themselves approach zero. 

The two conditions in the statement of the theorem allow 
us t o  satisfy ourselves easily that the first term of the re- 
mainder in the last equation of the system approaches 
zero. The whole remainder also approaches zero on account 
of the rapidity of decrease of the coefficients. All the re- 
mainders approach zero a fortiori  in the other equations of 
the system. The theorem is therefore proved. 

For example, the class of functions which may be given 
by trigonometric series 

a ,  cos x +  a, cos 2, x+  aa cos 3a x +  . . . + a, cos n"x+ . . . 
with the limitation condition 
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is of the preceding kind: a function of this class is com- 
pletely determined by its value and tha t  of its successive 
derivatives for x = 0. 

The functions of this class are neither analytic nor quasi- 
analytic. 
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