
O N  T H E  APPROXIMATION O F  FUNC- 
TIONS O F  A REAL VARIABLE A N D  
ON QUASI-ANALYTIC FUNCTIONS 

I 

SURVEY OF THE ORIGINS AND DEVELOPMENT 
OF THE THEORY OF APPROXIMATION 

1. Weierstra~s’s first theorem. Remarks suggested by the 
title of the Note containing /his theorem 

The  recent investigations on the approximation of func- 
tions take their point of departure in a note of Weierstrass 
presented in 1885 to the Academy of Sciences a t  Berlin and 
containing two theorems of which this is the first: Every 
junction of x continuous in  the interval (ab)  is developable in 
a unifOrmly convergent series of polynomials in that interval. 

This is certainly a perfectly precise and extremely simple 
statement, of which the proof, as we shall see, is also quite 
simple. Yet the theorem seemed quite remarkable to the 
contemporaries of Weierstrass, and created considerable 
stir; and there is no doubt that  it seemed quite remarkable 

Lectures delivered a t  the Rice Insti tute on December 16, 17, and 19, 1924, by 
Professor Charles de la Vallie Poussin of the University of Louvain. Translated 
from the French by Professor Griffith C. Evans of the Rice Institute. 

* W e  have already treated analogous ideas in a lecture delivered a t  a meeting 
of the Swiss Mathematical  Society, held a t  Fribourg, Feb. 24, 1918 (L’Enseigne- 
ment Mathimatique, t. XX, 1918, p. 23), and more recently, in a lecture given to 
the  Accademia Romana dei Nuovi Lincei, a t  Rome, in 1923 (Lezioni publiche 
tenute nella Settimana Accademica, 26 aprile - 2 maggio 1923). 
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106 Approximation of Functions 
to  Weierstrass himself. We find the proof of this in the 
very title which Weierstrass gave to his note, a title which 
excites questions which reach beyond the scope of the 
theorem which was proved. It runs as follows: On the 
analytic representability of so-called arbitrary func t ions  of a 
rcal variable.’ I s  this really the same thing as the special 
proposition quoted above? The terms employed in this 
caption are so vague tha t  it would seem tha t  the first thing 
t o  do would be to find their precise meaning. What  is 
meant, generally, by an “analytic representation ” ?  What 
are the so-called “arbitrary” functions in question ? What 
is this species of antinomy between the words “analytic” 
and “arbitrary” which Weierstrass believes he has dis- 
solved? Indeed, the title selected by Weierstrass refers 
much more to  contemporary concepts than to  the real con- 
tent of the memoir. We shall persuade ourselves of this 
by discovering what was understood a t  the time by “arbi- 
trary function.” 

Previously, a t  the time of Euler, for instance, what one 
called a function was an algebraic expression. The simplest 
sort of function was a power of x ,  like x2, x3, . . . A function 
was thus defined by a certain process of calculation, a 
certain law which enabled one to proceed from the value 
of x to the value of the function, and this law was the same 
for all values of x .  Afterwards were considered functions 
defined by more complicated formulas, for example, by a 
series of powers like the series of Maclaurin or Taylor; but 
mathematicians were persuaded tha t  such a formula defined 
a unique law for proceeding from the value of the variable 
t o  tha t  of the function. It was sufficient t o  know the 
function in an interval no matter how small in order t o  

1 Ubcr die analyiischr Darstcllbarkeit rogenannter willkurlicher Funktionen cincr 
rcdlcn Yeranderlichcn. Bed. Ber. (1885) p. 633, p. 789. 
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deduce tha t  law, and therefore, also, the knowledge of the 
function in an arbitrary interval.' 

T o  this original concept of analytic junction (that is, func- 
tion given by a formula which binds its definitions for dif- 
ferent values of x )  is opposed the concept of arbitrary 
junction, a concept in which precisely this liaison is sup- 
pressed. The definition of arbitrary function is point wise; 
it is made point by point, without there being any longer a 
dependence between the definitions of the function in two 
different points. It  was natural t o  suppose tha t  this 
dissociation of the function would, as a consequence, render 
its representation by one single formula impossible. Thus 
i t  was in early days tha t  the two concepts of analytic and 
arbitrary functions were contrasted. 

But the validity of this distinction was put  in doubt in a 
remarkable manner, in the early part of the nineteenth 
century, by Fourier's researches on trigonometric series. 
I n  fact, Fourier showed tha t  one could represent by a single 
trigonometric series, built up with a single set of coeffi- 
cients, functions which were up to that  time considered as 
different; e.g., s inx  between 0 and .rr and cosx between 
.rr and 2 1. Thus was set the problem of the analytic repre- 
sentation of so-called arbitrary functions. 

Fourier's series did not completely solve the problem. 
Even a continuous function is expressible in a trigonometric 
series only by means of certain conditions which are not 
always satisfied. The  problem of the analytic representa- 
tion of a continuous function, given arbitrarily, was solved 
for the first time in the memoir in question, of Weierstrass; 
and this is the explanation of the somewhat ambitious 
title which the author gave to it. 

'This is the property which is possessed by functions of a complex variable 
which we speak of now as analytic. We shall return to it in regard to quasi- 
analytic functions. 
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We may, nevertheless, point out that  Weierstrass’s theo- 

rem is not paradoxical a t  bottom. We are dealing in fact, 
only with continuous functions. But a continuous func- 
tion is not completely dissociated; the function is com- 
pletely determined by the values which it takes for rational 
values of x, and, therefore, by a denumerable infinity of con- 
ditions, since the values for x irrational may be inferred from 
the others in view of the continuity. Moreover, a series of 
polynomials contains a denumerable infinity of parameters. 
The infinity of parameters and the infinity of conditions are 
aggregates of the same power. Hence it is not surprising 
that  such a series can represent any continuous function. 

But in his caption Weierstrass does not say continuous; 
he merely says: On the analytic representability of so-called 
arbitrary funct ions.  If then we take the title as it stands, 
we may properly ask what truth there may be in the state- 
ment of this general possibility. 

The very special analytic representation which is used 
by Weierstrass is that  by means of a series of polynomials. 
If further we suppose, with Weierstrass, that  the series is 
uniformly convergent, i t  is an elementary theorem that  
that  representation applies only to continuous functions. 

Let us now discard the condition of uniformity of con- 
vergence and ask what will then be the functions which are 
developable in series of polynomials. The  answer to this 
question is found in the fundamental investigations made 
by Baire. In  his thesis (1899), Baire published a classifi- 
cation of functions of the highest importance. It runs as 
follows : 

Continuous functions form the class 0; discontinuous func- 
tions which are limits of continuous functions form the 
class 1; the functions which are limits of functions of class 1 
and are not of class 1, or class 0, are of class 2 ;  and so on. 
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The  functions which can be expressed in series of poly- 

nomials are those of classes 0 and 1, and no others. Baire 
in his thesis gave a celebrated theorem for the purpose of 
characterizing the functions of class 1, which bears his 
name,’ and which is one of the most profound and fertile 
of the theory of functions of a real variable. Thanks to  this 
theorem it is easy to  define the functions which are not 
of class 1, and which, therefore, it  is not possible to repre- 
sent by a series of polynomials. Perhaps they will admit 
some other sort of analytic representation than this. But 
what then, speaking generally, do we mean by analytic 
representation? 

Weierstrass would perhaps have been much embarrassed 
in replying to  this question. The  question is in fact rather 
vague. Nevertheless there is a paper, by Lebesgue, en- 
titled : On the junc t ions  which arc representable analytically,2 
where we can find the basis of an answer to the question. 
If we accept Lebesgue’s point of view, and it would be 
difficult t o  do otherwise, the analytically representable 
functions are those which may be defined in terms of con- 
tinuous functions by means of a denumerable infinity of 
processes of passing to the limit, - in other words, they are 
the ones which come under Baire’s classification. 

Now there exist, a t  least theoretically, functions which 
do not come under this classification. Thus  it follows tha t  
the title of Weierstrass’s memoir announces a possibility 
open to  debate. Weierstrass is the one among mathema- 
ticians most concerned with rigour, and the one who has 
given the best models of it. Is it not, therefore, quite startling 
to see him put, as he did, such a precise and simple theorem 
under a somewhat ambiguous title, - one which leads to 

Baire’s theorem: A function of class 1 is punctually discontinuous on every 
perfect set. 

* Journal de Mathimatiques, t. 60 (1905), p. 139. 
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the most thorny problems of mathematical philosophy, and 
moreover, one which, taken literally, would seem to be 
incorrect ? 

2. Original proof of Weierstrass'r theorem 
Let us turn now t o  the proof first given by Weierstrass 

for his theorem, reproduced by E. Picard in the first vol- 
ume of his Trai t i  d 'dnalyse,  and become classic. 

Weierstrass endeavors first, given a function f ( x )  contin- 
uous in an interval ab, to construct a polynomial which 
comes arbitrarily near to  the function in tha t  interval. He  
takes his point of departure in the integral, familiar in the 
calculus of probabilities, 

By changing t into t&, i t  becomes 

If we suppose tha t  n is a positive integer increasing in- 
definitely, the only values o f t  which give an effective con- 
tribution to  the integral are those infinitely near to  zero. 
It follows tha t  if a and @ are two numbers of different signs, 
the integral 

will have the same limit as the preceding when n tends to  
infinity, and this limit will therefore be unity. 

Let nowf(x) be a function of x continuous in the interval 
(a,  b), and x a value between a and b. We form the integral 
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It is the same as 

(3) F ( x )  = 6 r-2 j( t  + x ) P 2 d t .  
(I-2 

When n is ailowed to  become indefinitely great, we see, by 
comparison with (l), that the value of the integral (3) is a 
mean among the values taken by j ( x  + t )  as t ranges be- 
tween the two limits of opposite sign a - x and b - x.  
But since only the infinitely small values of t contribute 
anything, the mean value of j ( x  + t )  approaches j ( x )  uni- 
formly, the function being continuous. Hence F ( x )  ap- 
proaches j ( x )  uniformly as n becomes infinite, through any 
interval interior t o  (a, b) .  

But the end in view is not yet attained, since F ( x )  is 
not a polynomial; and this is in fact the objection to Weier- 
strass’s method. In  order to substitute a polynomial for 
F ( x )  i t  is necessary to replace the exponential e-n(t-z)2, in 
the integral (2), by its uniformly convergent development 
in powers of x - t ,  and to  keep in this development merely 
the number of terms necessary to get the desired approxima- 
tion. By taking n sufficiently great, and taking in the 
development of the exponential a sufficient number of 
terms, we are able then to construct a polynomial which 
comes as near as we please to  j ( x ) .  

The problem of expressing j ( x )  in a series of polynomials, 
and that  of constructing a polynomial which approximates 
it t o  any desired degree are entirely equivalent. In fact, 
if P,, is a polynomial of degree n, and we have a sequence 
of polynomials PI, Pa, . . ., Pn, . . . approaching j ( x )  uni- 
formly as n becomes infinite, we also have an expression 
for f ( x )  in a uniformly convergent series of polynomials, 
as follows: 

Hence Weierstrass’s theorem is proved. 
j ( x )  PI + (P2 - PI) + - .  . + (Pn - Pn-J + * - - 
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3. Landau's integral 
The  inconvenience of Weierstrass's method is that  the 

function I;(.) defined by the integral (2) is not a polyno- 
mial in x.  T h e  properties of the integral which are used by 
Weierstrass relate to the presence of the exponential factor 
& e-n(z-D2 , which has been called the factor of discontin- 
uity. Hence i t  occurred to  me to  construct an integral 
similar to  (2), but with another factor of discontinuity 
which should be a polynomial in x. Thus I was led to  
form an integral which since has received the name of 
Landau's integral, since Landau used it a few months be- 
fore me for the same purpose.1 However, this integral was 
considered even earlier by Hermite, and is found in his 
correspondence with Stieltjes, - a fact which Landau 
pointed out himself. 

We replace the integral (l), which is the basis of Weier- 
strass's method, by the following, 

2.4 . . .  2 n  
1-3 . . .  2 n - 1 '  2 J:~(I - t2)ndt = I, k, = 

in which n is an integer. As before, when n increases 
indefinitely the only values o f t  important for the value of 
the integral are those infinitely near to  zero. 

Let now f ( x )  be a function continuous in the interval 
(a, b). We shall assume this interval interior to  (0, 1). 
This hypothesis is indeed legitimate, since if it does not 
happen to  be verified, we can satisfy it by a linear change 
of variable, which transforms a polynomial into another of 
the same degree. 

With this understood, Landau'J integral is the following: 
1 

0 
P&) = 2 J f ( t )  [l - ( x  - t)2]ndt. 

1 Uber die approximation rincr sktiger Funktion durch rine ganw rationale 
Funktion. Rend. di Palermo, vol. 25 (1908), p. 337. 
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This can be substituted for the integral F ( x )  of Weierstrass, 
for i t  yields exactly the same reasoning on the mean values. 
But it resolves precisely into a polynomial in x ,  PZn(x) ,  of 
degree 2 n, which consequently approaches f ( x )  as n be- 
comes infinite. Thus the end is attained. 

4. Two problems studied by means of Landau’s integral 
Landau’s integral lends itself t o  the solution of interesting 

problems, of which I proposed to myself the two following: 1 

1. What  is the order of approximation of P,,(x) tof(x)  
relative to 1/n as n becomes infinite? 

2. Are the successive derivatives of f ( x )  represented ap- 
proximately by those of the approximate polyno- 
mial P,,(x) ? 

The  first question, which Lebesgue 2 studied contempo- 
raneously with me, is t ha t  of the order of approximation. 
It  became the starting point of a theory which has since 
received great development, to which I will return in a few 
moments. 

The  second question, concerning the dijerentiability of 
the representation, was not new. Painlevi 3 had solved it 
in 1908 in the case of continuous derivatives. But, as I 
showed, Landau’s integral furnishes a solution of the prob- 
lem which is much better, and indeed almost perfect; the 
derivative of Pzn of any order p converges towards the deriv- 
ative of the same order of f ( x )  a t  the point x under the 
single condition of the existence of the latter derivative a t  

Sur l’approximalion des fonctions de variables riellcs et de leurs dirivies par des 
Bull. de I’Acad. Roy. de Belgique 

* Sur la rrpriscntation approchie dcsfonctions. Rend. di Palerrno, vol. 26 (1908), 

J Comptes Rendus, t. 126 (1898), p. 459. 

polynomcs et des miter limitics de Fourier. 
(Classe des Sciences), No. 3, Mars, 1908. 

p. 325. 
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the point. T h a t  is quite the most remarkable property of 
Landau’s integral, since as process of approximation of f ( x )  
it is only of mediocre value. I n  fact, the greatest value of 
Landau’s integral for me was to suggest the construction 
of another integral which is its analogue for trigonometric 
approximation. This integral, analogous to Landau’s, 
initiates investigations decidedly more interesting than 
Landau’s integral itself. We may then naturally turn to  
the consideration of trigonometric approximation and the 
investigations which I have just mentioned. 

5 .  Trigonometric approximation and the analogue of 
Landau’s integral 

The  problem of trigonometric representation is as old as 
t ha t  of representation in terms of polynomials, and goes 
back to the original note of Weierstrass of 1885, that  note 
containing a second theorem, as follows : Every junction, 
continuous and periodic, of period 2 a, is developable in a uni- 
formly convergent series of finite trigonometric expressions. 

A finite trigonometric expression of degree n is a polyno- 
mial of degree n in s inx  and cosx, or, what is the same 
thing, an expression of the form 

sin x )  + (az cos 2 x+ b2 sin 2 x )  + . . . ao+ (a1 cos x+ 
+ . . . + (a,  cos nx + 8, sin nx) ,  

in which the coefficients a, @ are constants. 
It  is well t o  notice that, whenever we are concerned with 

trigonometric approximation, the function f ( x )  is always 
assumed to  be periodic. 

Weierstrass’s second theorem has since received a large 
number of different demonstrations. But here I am only 
concerned with the one which I gave in 1908.1 It is based 

1 Bull. Acad. Roy. de Belgique (Classe des Sciences), loc. cit. 
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on the consideration of an integral analogous to Landau’s, 
possessing all of its advantages. 

Let f ( x )  be the continuous periodic function to  be repre- 
sented. The  integral which defines a finite trigonometric 
expression Qfl(x) of order n is the following: 

Qfl (x )  = Z, [>(t) 0 (cos Y ) ” d t ,  

where the factor Zfl is the reciprocal of the value of the 
well-known integral 

1 . 3  . . . (2 n- 1)2  s. 
2 . 4  . . .  2 n  

In  this new integral Qfl(x), the factor of discontinuity 
t -  x 

2 COS2n __ , which is a finite trigonometric expression 

is 

of 

order n in x .  We can treat  this factor exactly in the same 
way as tha t  which appears in Landau’s integral, and we 
show in this way tha t  Qn(x) converges tof (x)  when n be- 
comes infinite, and possesses exactly the same properties as 
the polynomial Pan(%) of Landau with respect to  the ap- 
proximation and differentiability of the representation. 

But what is most interesting in this new integral is tha t  
it leads, as I showed in my memoir of 1908, to  the definition 
of a new method of summing divergent series. 

6 .  A new method of summing divergent series 

T h e  trigonometric polynomial Qfl(x), defined by the above 
integral, is connected in a very interesting way with the 
Fourier’s series of f ( x ) .  In  fact, if we designate by ak 
and bk the Fourier constants forf(x), t o  wit: 
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the  expression Q,,(x) is resolved into the  finite trigonometric 
sum of order n 

Now the calculation of this sum and of i ts  limit for n = 00 

constitutes a process of summation for the Fourier series. 
I n  fact, each term of this sum is obtained by multiplying 
the term of the same rank of the Fourier series by a nu- 
merical factor. These successive factors, for a given tt, 

are continually decreasing, are < 1, and all approach 1 
as n is let approach infinity. Since all these factors vanish 
from the (n + 1)” on, this method yields the advantage of 
having a finite sum for each value of n. I n  accordance 
with what  we have said, this process enables us to  sum the 
Fourier series and its successive derivatives at  a given 
point, under the single condition of the existence of these 
derivatives at the point. 

Since 
then, several skilful geometers have concerned themselves 
with this process of summation and have shown tha t  i t  
has a power, importance and interest which I did not 
expect. 

T h e  process was applied by Plancherel to the summation 
of the series of Laplace and Legendre.’ Kogbetliantz has 
applied i t  quite recently to  ultraspherical functions.2 
Gronwall has made investigations even more searching. 
Some years ago he showed tha t  this method of summation 
has a t  least all the  generality of those by the  Cesaro means.’ 

These are the results to  which I attained in 1908. 

1 Sur I’application PUX sirirs dr Laplacr du procidc’ dr M. de la Vallir Poussin. 
Cornptes Rendus, t. 152 (1911), p. 1226.-Rend. di Palermo, vol. 33 (1912), p. 41. 

2 Sur la sommation des fonciions ultrasphiriqtts p w  la mithodc (20) de M .  de la 
J’allie Poussin. Rend. di Palermo, vol. 46 (1922), p. 146. 

8 Ubiber cinige Swnmationmretiioden und ihre Anwendung auf die Fo’ouriersche 
Reihc. Journal fur die reine und angewandte hlathernatik, Bd. 147 (1917), p. 16. 
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But  I have learned, through a kind communication from 
Dr. Gronwall, t ha t  he has continued his researches in this 
direction, and has obtained most important results, which 
he has not yet published. With his permission, I indicate 
one of them which throws considerable light on the question. 

A series uo + u1 + u2 + . . . is summable in my way and 
has for its sum the value s if the expression 

Y " = & , ( n - k ) ! ( n + k ) ! U "  

n n !  n !  

tends towards s as n becomes infinite. 
the generating identity for the 7,. 

Gronwall found 
It is the following: 

This striking identity directed Gronwall along the road to  
interesting generalizations of my method of summation. I 
cannot elaborate them here; but  the identity exhibits 
directly an important fact, viz., tha t  if Yn has a limit, 
zunxn necessarily approaches the same limit, as x approaches 
unity.' 

If we apply this remark to the summation of Fourier's 
series, it  follows tha t  Poisson's method of summation must 
offer all the  advantages of my own. I noticed the fact in 
1908 and proved it in my Memoir, retracing all the proofs 
in detail. It is seen, thanks t o  Gronwall's elegant formula, 
tha t  it was only the particular application of a general 
property. 

7. The  problem of the order of approximation 
T h e  most important of the problems which have been 

attacked in the study of approximation is t ha t  of the order 
1 We see in fact that we have 
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of approximation. Let us define first what we mean by 
approximation. For example, let a continuous function f ( x )  
be represented by means of a polynomial of degree n, and 
let E',,(.) be such a polynomial. The difference f - P,, is 
the error of the approximation, and is a function of x ;  it's 
maximum value in the interval of representation is the 
approximation p n .  This positive number approaches o as 1/12. 
approaches zero, if the polynomial P,, is well chosen. It is 
therefore an infinitesimal of a certain order with respect to 
l / n .  The problem of the order of approximation is the 
following: To determine the relation which exists between the 
order of approximation p,,, which f ( x )  m a y  admit f o r  afiizite 
expression of order n, and the differential properties of the 
funct ion.  

I offered myself the beginnings of an answer to this very 
problem in 1908, while studying the approximation given 
by Landau's integral. I showed also that the function 
I x I admits an approximation to the order of l / n  by a 
polynomial of degree n, and I raised the question of decid- 
ing whether or not t ha t  was the order of the best possible 
approximation.' This definite question had much more 
ilnportance for the development of the subject than had 
the few isolated results which I had obtained, because tha t  
question caused the writing of the two most important 
memoirs on the subject, one by D. Jackson and the other 
by S. Bernstein. 

The problem can be set in two inverse formulations: 
the direct problem, the only one which I had attacked, has 
for its object t o  find the possible order of approximation in 
terms of the assumed properties of the function; the innerre 

1 Sur la convergence dcs formules d'interpolation Entre ordonnies iquidistantcs. 
Bull. Ac. Roy. de Belgique (Classe des Sciences), 1104 (1908). This memoir ends 
with a note Sur l'approximation par un polynome d'une fonction dont la dcriule 
c ~ t  d variation bornie, the  note which was the  occasion of the question cited. 
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problem, more difficult, consists in repassing from a given 
supposedly possible order of approximation to  the differ- 
ential properties resulting for the function which is 
represented. 

It is the memoir by D. Jackson 1 which answers most 
completely the direct question, and tha t  of S. Bernstein 2 

which answers most completely the inverse problem. 
The results contained in these two memoirs constitute 

the essential matter of the volume of the Bore1 Collection 
which I had the privilege of publishing under the title: 
Legons sur l’approximation des fonctions de variables rielles.3 
I combined the results obtained by the two authors above 
named, and filled them out  in many points; I changed or 
simplified the proofs; but I contributed little in the way of 
new materials to the construction. 

There will be found in tha t  volume quite a number of 
results connected with the problem proposed, some concern- 
ing functions which possess merely a finite number of suc- 
cessive derivatives, others relative to functions which are 
indefinitely differentiable, or even analytic. It will suffice 
for me here to reproduce merely one of these results, - 
the one which makes apparent in most striking fashion the 
mutual dependence which exists between the order of 
approximation and the differential properties of the func- 
tion. It is the subject of a theorem which I gave for the 

Ubcr dic Gcnauigkeit der Annahrrung stctigcr Funktionen durch ganzc rationnalc 
Funktionen gegebcncn Grades und trigonometrischc Summcn gcgebrner Ordnung. 
Inaugural Dissertation, Gottingen (1911). This memoir was crowned by the 
Academy of Sciences of Gottingen to which it had been presented in answer to a 
problem set by the Academy identical with mine. 

Sur I’ordrc dc la rneillcurc approximation der fonctions continues par dcs poly- 
nomeI de degri donni. Memoires publids par la Classe des Sciences de I’Academie 
Royale de Belgique. Collec. in-4, 28 sgrie, t. IV, 1912. Crowned memoir 
presented for a prize question set by the Class in 1911 at my instigation. 

a Paris, Gauthier-Viilars (1919). 
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first time in a meeting of the Swiss Mathematical Society a t  
Fribourg in 1918,l and deals with the trigonometric repre- 
sentation of a periodic function f ( x ) .  
If f ( x )  admits a derivative of order r satisfying a Lipschitz 

condition of order a! (0 < a! < 1),2 then whatever n, f ( x )  ad- 
mits  a trigonometric representation of order n, with a n  ap- 
proximation 

( M  const.). 

Conversely, ;f it iZ possible to satisfy this last condition for  
every n, f ( x )  po33esse.r a derivative of order r which satisfies 
a Lipschitz condition of order a!. 

This theorem deals with trigonometric approximation, 
but there is an analogous theorem for representation in 
terms of polynomials in an interval (a, b) .  In  fact the two 
methods of representation lead each to  the other, a fact 
which Bernstein brought out most clearly by his use of 
trigonometric polynomials. 

We show in fact, following Bernstein, that  the represen- 
tation of f ( x )  in terms of polynomials may be derived from 
its trigonometric representation, We can always assume 
that  the interval of representation is ( -  1, + l), since any 
other may be reduced to  it by a linear transformation. We 
make then the transformation x = cos 4. We have then for 
the function f(cos +), which is periodic and an even func- 
tion, the trigonometric development 

f(cos 4) = a. + al cos + + , . . + an cos n4 + . . . 
But cos n4 is a polynomial of degree n in cos +; and it is 
this polynomial P,(cos +), which Bernstein calls a trigono- 
metric polynomial, Hence if we return to the variable X ,  

1 L'Enseignement Mathcmatique, t. 20 (1918), p. 23. 
*That is to say, one can assign a constant A such that for all x and 6 we have 

If'") ( x  + 6) -f" ( x )  I <Asa. 
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we have the redresentation off(%) in a series of trigonomet- 
ric polynomials 

fb) = a, + alPl(x) + . . . + a$,(%) + . . . 
T h e  transformation moreover applies directly to  a finite 
sum as well as  to a series, a fact which justifies our state- 
ment. 

As we have already had occasion to  notice, the theory 
of approximation has been the cause of the discovery of 
important theorems which retain a very considerable 
interest even outside that  theory. One of the most re- 
markable in this way is a theorem about trigonometric 
expressions, discovered by Bernstein; i t  plays the essential 
rBle in the solution of the inverse problem mentioned above. 
It runs as follows: 

If the absolute value of a trigonometric expression of ordcr n 
does not exceed M ,  the absolute value of its derivative does not 
exceed nM, and, consequently, the absolute value of i ts  pth 
derivative does not exceed npM. 

T h e  algebraic character of this theorem was brought out  
by Marcel Riesz in 1914.1 I also pointed out  this algebraic 
character in my book, not being aware of Riesz’s theorem 
a t  t ha t  time. 

I have already given the most characteristic theorem on 
the order of approximation. It is interesting only for 
functions which possess merely a finite number of succes- 
sive derivatives. I n  my book on approximation, I at- 
tacked the problem of obtaining results of similar precision 
for indefinitely differentiable functions, and in particular, 
for analytic functions. I was not able t o  solve i t  com- 
pletely. I shall not describe these results here, because I 
am inclined to  think tha t  f o r  these cases i t  is just as 

Eine trigonometrischc Interpolationsformel und einige Ungleichungen f u r  Poly- 
Jahresberichte der deutschen Mathernatiker-Vereinigung, Bd. 23 (19141, nome. 

p. 354. 
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interesting to study the convergence of their Fourier series. 
This study, moreover, is made by similar methods, and will 
be the object of our second lecture. 

8. The best approximation 
Given a function j ( x )  continuous in an interval (a ,  b ) ,  

there exists a polynomial which furnishes the best possible 
approximation in this interval among all those of degree n 
and this polynomial is unique: it is called the polynomial o j  
minimum approximation of degree n. This polynomial Pn 
is completely characterized by the fact that  the difference 
f - P, takes on its maximum value n + 2 times, with 
alternation of sign. These results were given long ago by 
Tchebycheff,l and the proofs were made rigorous by Kirsch- 
berger and Borel.2 Analogous theorems hold for the best 
trigonometric approximation of order n. The trigonometric 
expression of order n, S,, which gives the best approxima- 
tion is characterized by the fact t ha t  j - Sn takes on its 
maximum value 2 n + 2 times, with alternation of sign, in 
its interval of periodicity. Certainly, Bernstein has suc- 
ceeded in determining the polynomial of minimum approxi- 
mation in some quite remarkable cases. But, in general, 
the exact determination of this polynomial is an inacces- 
sible problem. There isn’t any really practicable method 
for the approximate calculation of this polynomial; and of 
course there is the same state of affairs in the case of trigo- 
nometric approximation. 

Nevertheless, it is quite important, when we consider an 
approximate expression of a certain order, t o  know if it 
gives a good approximation; t ha t  is to say, whether or 

l SUT Its questions de minima qui sc rattachent d la srprisentation approximativr 
M h o i r e s  de I’Acad. Imp. des Sciences de St. Petersbourg, Sciences des fonctions. 

Math. et Phys., Si+ 6, t .  VII, 1859. Collected Works, vol. I. 
Lepns  s w  les fonctions dc variables rieller, Paris, Gauthier-Villars (1905).  
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not the approximation obtained differs too much from the 
best possible one. To decide this, it is necessary to  know 
a lower limit to the best approximation. There are, as a 
matter of fact, quite a number of criteria which I developed 
in my Legons sur tapprox imat ion .  1 shall mention the three 
most characteristic. In  order of date, the first belongs to  
Lebesgue, the second to  myself, and the third to  Bernstein. 

Lebesgue’s criterion 1 concerns trigonometric approxima- 
tion. It is stated as follows: If the sum of order n of the 
Fourier series f o r  the periodic func t ion  f ( x )  does not exceed 
4(n) ,  the best approximation of order n i s  not less than  
At$(n)/log n, where A is a numerical constant which can be 
determined once f o r  all. 

A second criterion, which I published some months later,2 
concerns polynomial approximation. It may be stated as 
follows: If the polynomial  Q,, of degree n i s  such that the 
diference f - Qn takes values of alternating sign in n + 2 
consecutive points in the interval (a ,  b ) ,  the smallest in absolute 
value of these n + 2 values i s  a lower l imi t  f o r  the best ap-  
proximation.  

Finally, Bernstein’s criterion 3 deals again with trigono- 
metric representation. It is connected with the well-known 
minimal property of the Fourier sums. This  is the state- 
ment of i t :  Let a,, b, be the Fourier constants f o r  the con- 
t inuous periodic func t ion  f ( x ) ;  the best approximation f o r  
this func t ion  by a trigonometric sum of order n i s  not less than 
the square root of 

1 ”  c b k 2  + bk2). 5 n+l 
We shall see in the next lecture tha t  this criterion is par- 

ticularly interesting when we apply it t o  analytic functions. 
1 Ann. de la Fac. des Sciences de Toulouse, sirie 3, t. 1 (1910). 

* S. Bernstein (1912), loc. cit. 
Bull. Acad. Roy. de Belgique Classe des Sciences (1910). 




