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A B S T R A C T 

Forecasting Geomagnetic Activity Indices using the Boyle Index 

through Artificial Neural Networks 

by 

Ramkumar Balasubramanian 

Adverse space weather conditions affect various sectors making both human lives 

and technologies highly susceptible. This dissertation introduces a new set of algo-

rithms suitable for short term space weather forecasts with an enhanced lead-time 

and better accuracy in predicting Kp, Dst and the AE index over some leading mod-

els. Kp is a 3-hour averaged global geomagnetic activity index good for midlatitude 

regions. The Dst index, an hourly index calculated using four ground based magnetic 

field measurements near the equator, measures the energy of the Earth's ring current. 

The Auroral Electro jet indices or AE indices are hourly indices used to characterize 

the global geomagnetic activity in the auroral zone. Our algorithms can predict these 

indices purely from the solar wind data with lead times up to 6 hours. 

We have trained and tested an ANN (Artificial Neural Network) over a complete 

solar cycle to serve this purpose. Over the last couple of decades, ANNs have been 

successful for temporal prediction problems amongst other advanced non-linear tech-

niques. Our ANN-based algorithms receive near-real-time inputs either from ACE 

(Advanced Composition Explorer), located at LI, and a handful of ground-based 

magnetometers or only from ACE. 

The Boyle potential, $ = —)2 + U-7^ sin3 (0/2) kV, or the Boyle Index 

(BI) is an empirically-derived formula that approximates the Earth's polar cap po-

tential and is easily derivable in real time using the solar wind data from ACE. The 
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logarithms of both 3-hour and 1-hour averages of the Boyle Index correlate well with 

the subsequent Kp, Dst and AE: Kp = 8.93 log1Q<BI> - 12.55, Dst = 0.355<BI> -

6.48, and AE = 5.87<BI> - 83.46. Inputs to our ANN models have greatly benefitted 

from the BI and its proven record as a forecasting parameter since its initiation in 

October, 2003. 

A preconditioning event tunes the magnetosphere to a specific state before an 

impending geomagnetic storm. The neural net not only improves the predictions but 

also helps the prediction by capturing the influence of preconditioning. Two of our 

models have been running in near-real-time forecast mode already, and the BI and 

Kp predictions can be obtained from h t t p : / / s p a c e . r i c e . e d u / I S T P / w i n d . h t m l . 

http://space.rice.edu/ISTP/wind.html
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Chapter 1 

Introduction 

"Space weather" forecasting commonly refers to efforts to monitor the prevailing con-

ditions at the Sun, the solar wind, energetic particles of solar-origin, and to predict 

changes in fields and particles in the Earth's magnetosphere and ionosphere. Re-

searchers using ground and space-based imagers monitor the Sun for active solar 

structures that are likely to erupt with a solar flare and/or Coronal Mass Ejection 

(CME); predicting the time of occurrence of a CME before it erupts is extremely diffi-

cult today. These eruptions can now be observed by the Extreme-ultraviolet Imaging 

Telescope (EIT) onboard SOHO, and reconstructed in 3D by imagers aboard the 

STEREO spacecraft. SOHO orbits around the Lagrangian point LI which is locked 

to the Sun-Earth line to provide uninterrupted observations of the Sun. These ini-

tial signatures are crucial for space weather forecasters as they can provide input 

into magnetohydrodynamic (MHD) models of the solar wind, which allows an ap-

proximate prediction of the timing and intensity of the CME as it approaches Earth. 

Such a Sun-to-Earth model is the principal output of the Center for Integrated Space 

Weather Modeling (CISM) [Baker et al., 2004], and the Michigan Center for Space 

Environment Modeling (CSEM) [ht tp : / /csem.engin .umich.edu/] . 

However, these state-of-the-art models do not yet run routinely in real time. Fur-

thermore, one key unknown even in these models is the magnetic field polarity and 

strength at the leading edge of the CME as it nears Earth. The strength, and even 

more importantly, the direction of the Interplanetary Magnetic Field (IMF) are cru-

http://csem.engin.umich.edu/
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cial parameters for the interaction between the CME and the Earth's magnetosphere. 

If the field at the leading edge of the CME (or magnetic cloud) is large and southward, 

a strong electrical connection between the Earth and the Sun is effected, triggering 

magnetospheric storms and accompanying auroral substorms. On the other hand, 

if the leading edge has a northward field, the electrical connection and associated 

geomagnetic activity is significantly less, although plasma can still be loaded on the 

dayside [Oieroset et al., 2008], leading to a more energetic substorm later when the 

southward field at the trailing edge of the cloud hits the magnetosphere. Thus, there 

is a critical need for an accurate upstream solar wind monitor that can measure the 

speed of the solar wind and its magnetic field direction. Although the strongest effect 

is within the first hour of the impact of the solar wind with the magnetosphere, the 

effect of mass loading during periods of northward IMF and the effects of previous 

injections of plasma into the ring current also make the time history of the interac-

tion important, and introduce crucial non-linearities into the system. At present, the 

ACE (Advanced Composition Explorer) spacecraft is the farthest upstream monitor, 

lying 1.5 million km from the Earth on the Sun-Earth line, that reliably provides the 

critical data on the in-situ solar wind and IMF conditions. 

Acute space weather and geomagnetic conditions can impact the precise opera-

tion of various civil- or defense-related communication and navigation systems, power 

grids, and the health and safety of astronauts venturing out in space, thereby expos-

ing them to radiation hazards. In general, just as in the case of regional terrestrial 

weather and climate forecasting, space weather forecasting is a coordinated attempt 

to acquire data by placing instruments both on the ground and in space and combine 

them with science-based empirical, semi-empirical or numerical models to generate ac-

curate and uninterrupted forecasts of the highly variable conditions in the near-Earth 

space environment; e.g., solar X-ray flux, auroral activity. Today, space weather fore-
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casters rely on a variety of forecasting tools ranging from simple non-linear regression 

techniques to empirical, semi-empirical and physics-based models which are primarily 

physical approximations of the system at the electrodynamic, MHD or kinetic level 

[Vassiliadis, 2007]; forecasters themselves come from various government, academic or 

private sectors. A major milestone in today's space weather forecasting is the techno-

logical capability to have data acquisition systems at strategic points in near-Earth 

surroundings that provide data in real time for an instant evaluation of the geospace 

environment. Unfortunately, such technological capabilities are only as good as their 

tolerance to potential radiation hazards in space; technical glitches are also not un-

common, if not widespread, causing operational delays. While accurate long-term 

end-to-end forecast models of the solar-terrestrial system are being developed by ma-

jor research facilities such as the CISM, it becomes more of a necessity than a matter 

of interest within the forecasting framework to have short-term predictions of specific 

parameters to satisfy the needs of various end-users (e.g., satellite, electric power grid 

operators, and manned space flight missions). This provides the focus and motivation 

for the work reported in this thesis. 

1.1 Geomagnetic Activity Indices 

An index can be defined as a global number aimed at representing the amplitude of 

a physical parameter [Menvielle and Berthelier, 1991] or as a local number represent-

ing the state an isolated system (e..g, medical indices: temperature, blood pressure; 

money market indices: Dow Jones). Geomagnetic activities are succinctly character-

ized by a variety of magnetic indices. Geomagnetic activity indices provide simple 

yet physical characterizations of global geomagnetic activity. They can also be used 

as input parameters to various models. The Earth's magnetic field is usually de-
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fined by seven parameters: the declination (D), the inclination (I), the horizontal 

intensity (H), the vertical intensity (Z), the total intensity (F) and the north (X) 

and east (Y) components of the horizontal intensity. The geomagnetic field near the 

surface of the Earth is known to vary under the influence of the solar wind, and its 

variation, when measured, offers an estimate of the total solar wind energy input 

into the magnetosphere. The observed variation in the geomagnetic field comes from 

two principal sources, namely, secular variations, which are due to internal sources 

within the Earth, and transient variations such as those generated by atmospheric 

processes, magnetospheric storms and substorms under the influence of solar wind; 

secular variations do not contribute as much. 

With several decades of ground-based observations of magnetic perturbations 

available, it is possible to delineate the different morphological signatures observed as 

being due to regular or irregular variations [e.g., Mayaud, 1978]. Regular variations 

are mainly related to ionospheric current systems and to the atmospheric dynamo 

processes [e.g., Kamide, 1988] while irregular variations are related typically to, solar 

cycle influence on the magnetosphere causing reconnection events and to convection 

in the polar caps. Irregular variations, on the other hand, produce magnetic pertur-

bations whose morphology and duration varies with latitude [e.g., Berthelier, 1979]. 

For instance, a specific auroral activity is caused by variations in auroral currents 

and associated field-aligned currents, triggering substorms. Therefore, different geo-

magnetic indices are chosen to represent the level of geomagnetic activity at different 

latitudes owing to contributions from both regular and irregular variations. The most 

commonly used geomagnetic activity indices are the Kp index, Dst index and the AE 

index. The Kp index is a 3-hour index derived from magnetometers, located in sub-

auroral latitudes, measuring variations in the H-component traces of the geomagnetic 

field. The Dst index, measured at equatorial latitudes, depends on the intensity of 
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the ring current, which is a large scale current due to charged particles trapped in-

side the magnetosphere, while the AE indices, calculated at auroral latitudes, give 

information about the intensity of auroral currents (or the auroral electro jet). 

1.1.1 The Kp Index 

Kp is a 3-hour geomagnetic index used to characterize activity at auroral and subau-

roral latitudes, although mostly relevant to subauroral latitudes. It is derived from 

the 3-hour K index, originally designed by Bartels et al. [1939] to represent a "plan-

etary" index. The K index (0, 1, 2 ...., 9) is site-specific and thus cannot be regarded 

as a true global characterization of the observed perturbations at those latitudes. The 

Kp index, however, is a quasi-logarithmic scale calculated using the weighted averages 

of 13 ground-based magnetometers situated between 48° and 60° magnetic latitude, 

making it a standardized "global" index; the network comprises observatories located 

mostly in Western Europe and North America along with a couple of observatories 

located in the southern hemisphere, and covers a wide longitudinal range (figure 1.1). 

The duty of each observatory is to register the maximum variation in the amplitude 

Figure 1.1 : Kp Network Stations 
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of the horizontal component of the Earth's magnetic field (given in nT) over a 3-hour 

interval (figure 1.2), and because of the latitude dependence of the magnetic activity 

level, each observatory or station uses its own look-up table where a locally measured 

range can be scaled to a corrected geomagnetic latitude. In its final form, Kp ranges 

from 0 (signifying a very quiet period) to 9 (severe activity) in 28 quantized levels 

and therefore take values from 0, 0+, 1-, 1, 1+, 2-, ... 9. The official keeper of the 

Kp data is GeoForschungs Zentrum, Potsdam, Germany. 

Figure 1.2 : An illustration of the typical diurnal variation of the horizontal compo-
nent of the Earth's magnetic field as seen at a Kp station [McPherron, 1997]. 

Kp Proxies 

In spite of its crucial role in space weather for being a convenient measure of the 

geomagnetic activity and as a parameter used in the magnetospheric and ionospheric 

models [e.g., Carbary, 2004], the Kp index also has several disadvantages. The official 

values of Kp are not made available until the end of every month and therefore, due 

to processing delays, are less suited for real time applications, such as space weather 

forecasts; however, it should be noted that some near-real-time proxies are now being 

made available. 

Recently, a large number of researchers have tried to address the issues involv-

ing Kp and to bridge the gap so it can be made to serve in real time. Kp prox-

ies are now becoming common and a particularly useful one is the estimated 3-
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hour Kp provided by the NOAA (National Oceanic and Atmospheric Administra-

tion)/SWPC (Space Weather Prediction Center). It is available through h t t p : 

/ /www.swpc.noaa.gov/r t_plots/kp_3d.html where the estimated Kp index is de-

rived at the U.S. Air Force 55th Space Weather Squadron using data obtained through 

tele-links from ground-based magnetometers across the US and Canada (Meanook, 

Canada; Sitka, Alaska; Glenlea, Canada; Saint Johns, Canada; Ottawa, Canada; 

Newport, Washington; Fredericksburg, Virginia; Boulder, Colorado; and Fresno, Cal-

ifornia) along with one European station (Hartland, UK). These are made available 

through the cooperation of the Geological Survey of Canada (GSC) and the US Geo-

logical Survey. They report their final real-time and best estimates of Kp at the end 

of the prescribed 3-hour interval (0000-0300, 0300-0600, , 2100-2400). While this 

provides a significant improvement for space weather forecasting over the monthly 

official releases, the limitation of this proxy is the lack of homogeneity in the distribu-

tion of the observatories which can result in an underestimation of a magnetic storm 

intensity or in the worse case, may even fail to record a storm. Moreover, these are 

low-resoultion Kp, approximated to the nearest integer values (0, 1, ..., 9) and are 

therefore, not true depictions of the official Kp. 

Kp: A Magnetospheric Activity Index 

The Kp index, taken at midlatitudes, responds to both equatorial and auroral dis-

turbances and thus is considered a true global index. This, coupled with the fact 

that it has the longest history of recorded measurement (continuously since 1932), 

means that it is one of the most commonly used in geophysical research as a mea-

sure of various magnetospheric properties [Menvielle and Berthlier, 1991]; it is also 

used for the study of the solar wind-magnetosphere interaction [Papitashvili et al., 

2000]. One of the earliest studies on the auroral oval demonstrated the dependence 

http://www.swpc.noaa.gov/rt_plots/kp_3d.html
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of the equator-ward auroral boundary, Am, on Kp: Xm — 65.2 - 1.04Kp [Feldstein and 

Starkov, 1967]. Among other earlier works, both ground-based whistler observations 

[e.g., Carpenter, 1967] and space-based measurements [e.g., Binsack, 1967; Gringauz, 

1969] have shown a Kp dependence of the size of the plasmasphere. Another magne-

tospheric phenomenon that is strongly dependent on the Kp index is the Earth's cross 

polar cap potential drop [e.g., Heppner, 1973; Reiff et al., 1981]. Kp is also viewed 

as a monitor of the strength of magnetospheric convection (discussed in chapter 4), 

given its dependence on the latitude of the auroral current [Thomsen, 2004], All of 

these studies indicate the importance of the Kp index to the characterization of the 

state of the geomagnetic environment. 

Due to its uniformity and accessibility, Kp is often used as an input parameter to 

other magnetospheric and ionospheric models. For example, the Costello Kp model 

[Costello, 1997] developed at Rice University to provide critical input to the Rice 

Magnetospheric Specification and Forecast Model (MSFM). Another application to 

the Kp index is the radiation belt model [Fok et al., 2001], which is a comprehensive 

computational model of the Earth's ring current. Recently, the OVATION (Oval Vari-

ation, Assessment, Tracking, Intensity, and Online Nowcasting) model developed by 

Newell et al. [2002] has been adapted to use Kp as an input parameter for determining 

the equatorial boundary of the auroral oval. 

1.1.2 The AE index 

The Auroral Electro jet indices or "AE indices" are used to characterize the global elec-

trojet activity in the auroral zone and are derived from 1-min averages of northward 

H component traces of a series of ground-based magnetometers. However, similar to 

Kp, one of the deficiencies in reporting the AE index precisely is due to the lack of 

uniformity in the location of these observatories along the auroral zone. For example, 
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auroral oval contraction or expansion during weak or severe activity respectively falls 

outside the range of these observatories, thereby offsetting the H component of the 

magnetic field measured by each observatory. Nonetheless, it has been widely used 

for research in geomagnetism, aeronomy and solar-terrestrial physics since its intro-

duction by David and Sugiura [1966]. It was introduced to provide an index that 

relates strongly to the auroral regions and to provide a better time resolution than 

some other indices like K and Kp. It is a collection of four separate indices AL, AU, 

AE, and AO. While AU and AL represent the largest positive and negative measured 

Figure 1.3 : AE Network Stations (Figure courtesy: World Data Center C2 for Geo-
magnetism, Kyoto, Japan) 

horizontal field and thus, strongest current intensity of the eastward and westward 

electrojets, respectively, the AO index, defined as AO=(AU+AL)/2, gives a measure 

of the equivalent zonal current, and the AE index, defined as AE=AU-AL, provides 

the overall measure of auroral ionospheric current (World Data Center C2 for Geo-

magnetism, Kyoto, Japan); both AU and AL indices have different dependencies on 
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universal time and season [Li et al., 2007]. The AE index varies over a free range with 

minimum at 0 nT. The 12 observatories that contribute to AE are located between 

62° and 77° N latitudes (figure 1.3). 

AE and magnetospheric activity 

There are two main components contributing to the AE index: one that is directly 

related to the solar wind energy input into the magnetosphere and the other that 

arises due to reconfiguration of the tail magnetic field, causing internal magneto-

spheric instability. Geomagnetic storms are temporary magnetic disturbances inside 

the Earth's magnetosphere (see chapter 4) caused by the Sun. Magnetospheric sub-

storms, another basic class of geomagnetic activity along with the geomagnetic storm, 

occur over intervals of hours and are common during storms [Russell, 2000]. The AE 

index responds well to magnetospheric substorms and accompanying auroral displays 

in the high-latitude ionosphere, because of its sensitivity to the auroral electrojets. 

AE measures the global activity level of the auroral zone by finding the maximum per-

turbation around the oval, and it is particularly valuable as an indicator of magnetic 

substorms [Hargreaves, 1992], Moreover, the AE index has significant contributions 

from the AL index because it is driven both directly and indirectly from substorm 

expansion phase activity [Li et al., 2007]. Although the exact triggering mechanism 

of the substorm is still unknown, it is generally believed that global substorm onset 

signatures can be identified using sudden and persistent decreases in the AL index 

which are characterized by intensification of auroral electric currents. 

It is also true, however, that AE indices "alone" cannot provide accurate de-

scriptions of substorm onset, but perhaps with the aid of Pi2 pulsations, which are 

fluctuations in the geomagnetic field occurring with periods 40-150 seconds and in 

succession [Saito, 1969], detecting the onset accuracy can be increased [Hsu and 
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McPherron, 2003]. In another study, Lyons et al [1997] have also suggested the dis-

tance of solar wind monitors (e.g., satellites like WIND, IMP-8) perpendicular to the 

Sun-Earth line as another important parameter in determining whether a possible 

trigger is detected. They found that spatial structures in the plane perpendicular to 

the Sun-Earth line critically affects whether or not a trigger is observed from a par-

ticular satellite. Though Hsu and McPherron [2003] have argued that the probability 

for triggered substorms and nontriggered substorms is about the same regardless of 

the distance to the Sun-Earth line. 

AE Availability 

The AE index is available in three different forms at present: the quick-look or near-

real-time, the provisional, and the final; they are made available at the World Data 

Center C2 for Geomagnetism, Kyoto, Japan webpage (h t tp : / /wdc .kugi .kyoto-u. 

a c . j p / a e d i r / i n d e x . h t m l ) . The first form, or quick-look AE index, is made available 

in quasi-real time mostly for non-commerrical purposes of monitoring and forecasting 

i.e., it is derived based on the number of stations that are currently reporting at 

a given point of time, and as more information becomes available for use they are 

updated periodically. At present, the maximum number of AE observatories reporting 

in real time is eight. Therefore, due to lack of sufficient longitudinal coverage, the 

data might lead to an underestimate. Therefore, the quick-look AE index is neither 

a reliable real-time monitor nor good for scientific analyses. The second form is the 

provisional index that is published after a period of few months [Source: NOAA], The 

problem of provisional AE index is difficulty in obtaining data from stations especially 

the Russian observatories. The last and the final form is the final AE index updated 

from the provisional form in about 6 to 12 months, suitable for scientific research. 

http://wdc
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1.1.3 The Dst index 

The ring current and the Van Allen radiation belt consists of high-energy particles 

trapped inside the Earth's magnetosphere, where the peak energy of the particles 

in the ring current can reach up to 200 keV while the energy of the particles in the 

radiation belt can reach relativistic energies [Moldwin, 2008]. The shape and strength 

of the Earth's dipole field cause these trapped particles to flow eastward (electrons) or 

westward (ions) depending upon their charge, thereby constituting the ring current. 

The ring current in turn generates a field that opposes the magnetic field of the Earth 

which is measurable using instruments at the surface of the Earth. Therefore, the 

strength of this net magnetic field provides a good measure of the energy content of 

these circulating particles and the resulting toroidal currents. 

The disturbance storm-time index or the Dst index, calculated using four ground 

based magnetic field measurements near the equator, measures the energy in the ring 

current as the average depression of the horizontal component of the magnetic field 

around the Earth at low latitudes [Russell, 2000]; the Dst index is greatly enhanced 

(more negative) during geomagnetic storms. These electric currents flow about 5.6 

Earth radii above the equatorial region. A storm sudden commencement (ssc) is seen 

as a sharp positive peak in Dst before the main phase of the global storm produces 

large negative values. However, the conditions in the solar wind and the magneto-

sphere during a storm are such that the other current systems, such as the magne-

topause currents and tail currents, influence the strength of the measured field, and it 

is therefore customary to apply corrections to the Dst by removing their contribution. 

Once the corrections have been applied, the Dst index provides a good estimate of 

the overall energy in the ring current [Dessler, 1967]. 
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Dst Availability 

Presently, the Dst index is released every hour by the World Data Center C2 for 

Geomagnetism, Kyoto, Japan, which is available from their webpage in near real time, 

and as provisional and final values; the final values are released after about a year 

and a half because of the delay in obtaining data from all observatories. Each hourly 

value of the index is the average symmetric disturbance amplitude, projected onto 

the equator, of the horizontal component recorded at 4 mid-latitude stations. Values 

are given in nT and are near 0 during quiet times [Geomagnetic Indices Bulletin, 

January 2009]. Large negative values signify highly disturbed magnetospheric states. 

Dst Corrections 

During times when the solar wind dynamic pressure is high, the magnetopause moves 

closer to the Earth causing the currents associated with it to contaminate the Dst. 

Burton et al. [1975] gave a formal algorithm to estimate the Dst correction, which is 

written as: 

Dstcorrected = Dst _ + (L1) 

called the BMR equation, where b is the measure of the response to dynamic pressure 

(Psw) changes in the solar wind and c is the measure of quiet day currents. Through 

empirical analysis, they provided a pressure correction term b of 16 nT(nPa)""1/2 

and c of 20 nT. While various values for b and c were given by different authors 

over the years, disagreements tend to exist over their precise values. Recently, Brien 

and McPherron [2000] performed an empirical phase space analysis of ring current 

dynamics to obtain values of b = 7.26 and c — 11, which I will use throughout this 

dissertation; their results apply for Dst greater than -150 nT. 
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Figure 1.4 : A severe geomagnetic activity is shown here as an example indicating 
the values of various solar wind parameters and the geomagnetic indices. 

1.2 Motivation 

In the United States, the SWPC of the National Weather Service (NWS), an entity 

of NOAA, is the "official source" for space weather alerts and warnings, and is one of 

the nine National Centers for Environmental Prediction. It provides real-time moni-

toring and forecasting of solar and geophysical events (figure 1.4). It also explores and 

evaluates new models and products and transitions them into operations. SWPC is 

also the primary warning center for the International Space Environment Service and 

works with many national and international partners with whom data, products, and 

services are shared [Source: http://www.swpc.noaa.gov]. However, given the copi-

http://www.swpc.noaa.gov
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ous data available to SWPC for space weather forecasting, the data processing and 

subsequent scientific analysis can be tackled better through local and international 

alliances; for instance, sometimes, the SWPC's Kp nowcast model is prone to process-

ing delays. A possbile approach to space weather forecasting should include issuing 

short-term forecasts through event-driven (e.g., solar flares, geomagnetic storms, pro-

ton events, electron events) alerts and warnings, offering daily forecasts of solar and 

geomagnetic activity. 

The launch of NASA's ACE spacecraft in 1997 [Vogt et al., 2006] truly revolution-

ized space weather forecasting, and because of its ability to provide IMF conditions 

upstream of Earth and solar wind data in real time, it has become possible and rela-

tively straightforward to issue short-term alerts and warnings, of say, a geomagnetic 

storm. ACE orbits the LI libration point of the Sun-Earth gravitational equilibrium, 

which is approximately 1.5 million km from the Earth, and therefore, assuming an 

average solar wind velocity of 400 km/sec, one can get about 1 hour lead time on 

existing IMF conditions which will impact the Earth. 

Unfortunately, a major limitation to using the geomagnetic indices is that their 

official values are only available after a fair amount of delay (months in some cases), 

whereas most real-time space weather applications require instantaneous estimates. 

Since reliable forecasts are not yet developed, "nowcast" algorithms are becoming 

common to better serve near-real-time applications by means of ground- or space-

based instruments. The term "nowcasting" generally refers to specifying the state of 

a certain physical parameter in near real time by means of a ground- or space-based 

instrument. For example, NOAA/SWPC routinely provides instant estimates of 3-

hour Kp derived by the US Air Force using magnetometers located mostly in the US 

and Canada. These are low-resolution Kp proxies, quantized in units of 1, and does 

not necessarily represent the official ones, which are quantized in units of 1/3, and 
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because they are measured using magnetometers residing within North America, they 

are not sufficient to provide accurate descriptions of the worldwide planetary activity. 

Often, as a result, the intensity of a magnetic storm could be over- or under-estimated 

depending upon the local time of that storm. 

Space weather research can be viewed as a cross-disciplinary scientific effort or 

as a hybrid of basic space science research and applied science [Behnke, 2008]. A 

clear distinction between basic science research and space weather research is the 

predictive nature of the latter. As space weather forecasters and researchers explored 

the use of advanced techniques of information processing, Artificial Neural Networks 

(ANNs) were found to be particularly useful for both classification and prediction-

type problems. ANNs have been used by several authors for over the last twenty 

years to develop models in geophysics (e.g., Newell et al. [1990] to classify geospace 

physical boundaries in the plasma data) and to devise time predictive algorithms 

for space weather (e.g., Koons and Gorney, [1991] computed relativistic electron flux 

at geosynchronous orbit and Wu and Lundstedt, [1997] for predicting Dst index). 

ANN methods have also been suitable to model and predict solar cycle activity using 

high-time resolution data from SOHO/MDI [Lundstedt, 2001]. Very recently, Valach 

et al. [2009] have used an ANN-based model to predict geomagnetic activity using 

solar energetic particle flux measurements. Most importantly, ANN-based models 

have been successful in making predictive estimates of Kp, Dst and AE ahead of time 

using real-time solar wind data inputs [e.g., Bala et al., 2009; Boberg et al., 2000; 

Costello, 1997; Wing et al., 2005; Wu and Lundstedt, 1997]. 

The NOAA Space Weather Scales were introduced as a way to communicate to 

the general public the current and future space weather conditions and their possible 

effects on people and systems (http://www.swpc.noaa.gov/NOAAscales/). They 

describe the space environment for three different event types: geomagnetic storms, 

http://www.swpc.noaa.gov/NOAAscales/
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solar radiation storms, and radio blackouts. This dissertation aims to address the 

category of geomagnetic storms using a physical measure in Kp; the duration of the 

event influences the severity of the storms, and the space weather advisories are is-

sued using scales ranging from G1 (Minor; Kp = 5) to G5 (Extreme; Kp = 9). Minor 

events can cause power grid fluctuations and cause minor impacts to satellite oper-

ations. Under extreme conditions, power systems could collapse causing blackouts, 

spacecraft and satellites may experience surface charging along with problems re-

lated to orientation, uplink/downlink, and passengers and crew in aircraft traveling 

across the poles may experience hazardous radiation levels. Therefore, forecasting 

geomagnetic indices, given the upstream solar wind conditions, has crucial impor-

tance from a space weather standpoint, not only as an indicator of the severity of the 

global magnetic disturbances but also as a relevant parameter currently used in the 

magnetospheric and ionospheric models, and to study the effects of space weather 

on satellite drag and help mitigate the risks of ground induced currents for electric 

power utilities, for example. 

1.2.1 Solar Wind Coupling Functions 

The ability to predict the geomagnetic response to the solar wind requires an un-

derstanding of how the two systems are coupled. One of the ways to characterize 

and quantify the coupling is through the use of solar wind-magnetosphere coupling 

functions. These are functions that represent the interaction between the solar wind 

and the magnetosphere while accounting for much of the energy needed to drive the 

different physical processes (e.g., energetic ion behavior, auroral power dissipation) 

in the magnetosphere. Specifically, they represent the dayside reconnection rate in 

terms of the upstream solar wind parameters, because dayside magnetic reconnection 

is largely responsible for the solar wind-magnetosphere coupling [e.g., Dungey, 1961; 
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Kamide and Slavin, 1986]. While some of these parameters are expressed in terms 

of the solar wind electric field [e.g., Burton et al., 1975 for v~Bz, Doyle and Burke, 

1983 for VB t; Reiff et al., 1981 for vBTsin2(#/2)], some are expressed in energy rate 

or power [e.g., Perreault and Akasofu, 1978 for e = t>L0
2B2sin4(#/2); Gonzalez et 

al., 1989 for (pV2)1-6vBTsm4(d/2)]. Regardless of how they are quantified, these 

parameters are basic derivatives of the solar wind and the interplanetary magnetic 

field. 

In several published works on forecast models of magnetic indices, authors have 

only worked with basic solar wind parameters such as the magnitude of the solar 

wind velocity, solar wind pressure etc. in a variety of combinations. Recently, Pap-

itashvili et al. [2000] used the 36-year long OMNI* dataset to show the correlation 

between the solar wind electric field and Kp and found a correlation coefficient of 

r = 0.82 suggesting that Kp can be derived from the solar wind velocity and IMF. 

More recently, Newell et al. [2007] have reported results of a solar wind coupling 

function (d&Mp/dt = vtw B^3sin8^3(6/2)) which appears to have good correlations 

with a number of geophysical parameters. The work presented in this thesis will test 

another similar function, the Boyle Index (BI) [Boyle et al., 1997], for its effectiveness 

in predicting values of various geomagnetic activity indices for use in real-time space 

weather forecasting. 

A major motivation for this study was to use a single optimal solar wind coupling 

function to predict global magnetic indices. The BI is an empirically-derived scalar 

*The OMNI data set contains hourly resolution solar wind magnetic field and plasma data from 

many spacecraft in geocentric orbit and in orbit about the LI Lagrangian point. The data set also 

contains hourly fluxes of energetic protons, geomagnetic activity indices (AE, Dst, Kp) and sunspot 

numbers [http: //omniweb. gsfc. nasa. gov]. 
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functional form given by 

$ = 1 0 " 4 ^ + 11.7Bsin3{6/2) kV, 6 = arccos(Bz/\B\) (1.2) 

where 8 is the IMF clock angle, B is the magnitude of the IMF in nT, vsw is the solar 

wind velocity in km/sec. The first term is a non-magnetic "viscous" term while the 

second term, called the magnetic "merging" term, stands for the effect of magnetic 

reconnection (detailed discussion to follow in chapter 4). Through the IMF data, 

the BI can characterize the asymptotic steady state potential drop across the Earth's 

polar cap. The BI was derived by selecting events in which the IMF had a nearly 

"steady" direction for four hours, e.g. each component was either > 1.5 nT, or 

< -1.5 nT, or between -1.5 and +1.5 nT, over a four-hour long interval before the 

measurement of the cross polar cap (CPC) potential from the Defense Meteorological 

Satellite Program (DMSP) spacecraft. Boyle et al. obtained the four-hour steadiness 

criteria of the IMF as a reasonable representation of the convection pattern over the 

polar cap, in order to get the best quality of fit between the IMF and DMSP data set. 

Thus, the BI gives the value of the "asymptotic polar cap potential". In other words, 

it is the value that the electric potential across the ionospheric flow would reach if the 

solar wind is steady for 4 hours. The BI was determined to be a good, statistically 

constrained, function for predicting the potential from the solar wind measurements, 

an improvement on previous such estimates [e.g., Reiff et al., 1981, Wygant et al., 

1983]. Thus, although the BI was derived only to predict the polar cap potential, it 

is reasonable to use it as a possible coupling function to predict other measures of 

geomagnetic activity because geomagnetic indices can be modeled using solar wind 

derivatives. The following section provides justification for the proposed research. 
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1.3 Linear Predictor 

The simplest way to use the BI, which is a linear index only dependent on the solar 

wind velocity and IMF, to predict Kp, which is a logarithmic index, is to correlate 

Kp with the log of BI (figure 1.5). Each point in the figure refers to observed values 

of 3-hour averages of the BI and the Kp index during the same time interval (e.g., 

between 0600-0900 Universal Time). The easiest approach to model Kp from the BI 
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Figure 1.5 : Plot shows the 3-hour averaged log(BI) versus the subsequent 3-hour Kp 
for 2003 and 2004 with a linear correlation coefficient of 0.785 [Bala et al., 2009]. 

is from a linear fit because it uses a single value of the BI at a certain time interval 

to relate with the subsequent Kp rather than a long time history of the BI. The Kp 

index can be approximated from the BI by 

K p L i n e a r = 8 . 9 3 l o g 1 0 ( B I ) - 1 2 . 5 5 ( 1 . 3 ) 

Figure 1.6 shows the linear predicted Kp versus the official Kp index for April 2001, 

2006 and 2007 using a 3-hour average BI (linear correlation r = 0.766), plotted by 

applying the fit from equation 1.3. Similarly, the linear predicted Kp versus the 

official Kp index for 2006 using a 1-hour averaged BI has a linear correlation of r = 
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0.69. Clearly, it can be seen from the above equation that this simple linear-fit model 

predictions are only valid (i.e., Kp>=0) for BI>25.4 kV. This deficiency can been 

overcome by the more efficient ANN models (discussed later in chapter 5). 

Figure 1.6 : Linear predictor: Official Kp vs Predicted Kp for April 2001, 2006 & 
2007 using 3-hour averages of the BI. Solid line represents the best linear fit (y — 1.1 
x - 0.17). 

A similar linear relationship can also be established between the BI and the Dst 

and AE, (figure 1.7) in the following manner: 

DstLinear = -0.252 BI + 3.29 (1.4) 

AELinear = 4.244 BI- 33.11 (1.5) 

Using these fits from equation 1.4 and 1.5 we can plot the predicted Dst (figure 

1.8) and AE (figure 1.9) for 2006 and 2007 using 1-hour averages. These fits becomes 

a standard against which we will compare the ANN results. The fact that the linear 

correlation coefficient between the predicted and observed is quite significant, encour-

ages us to use the BI as the basis for the neural network formalism to follow, and sets 
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Figure 1.7 : 1-hour averaged BI versus the Dst (left panel) and AE (right panel). 
Note the value of Dst is deliberately multiplied by -1 for easy plot comparison. 

150 

-1*Dst(nT) 

Figure 1.8 : Linear predictor: Measured Dst vs Predicted Dst for 2006 & 2007 using 
1-hour averages of the BI. Solid line is the equality line and the dashed line is the 
linear fit. 
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Figure 1.9 : AE Linear predictor: Measured AE vs Predicted AE for 2006 & 2007 
using 1-hour averages of the BI. Solid line is the equality line and the dashed line is 
the linear fit. 

a benchmark for judging significant improvement over this baseline. However, the 

temporal correlations between the BI and the geomagnetic indices still remains to be 

explored, which will be discussed explicitly in chapter 5 using cross-correlations. 

1.4 Persistence forecasting 

Persistence forecasting is a useful scheme in which the conditions about the near-

future can be characterized using the prevailing or near-past conditions. It is the 

easiest way to predict the future. In other words, we are forecasting using common 

sense! Persistence can be defined as the existence of statistical dependence among 

successive values of the same variable or an event [Wilks, 1995]. It works best for 

short-term predictions, especially during times when the conditions are fairly quiet. 

A series of large positive values is likely to be followed by another large value, and 

the same can be said of a series of small values. This behavior is known as "positive 
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dependence" or "persistence". 

For example, given that Kp is a 3-hour index, it has a strong tendency for persis-

tence. In other words, for a certain 3-hour interval when the Kp was reported to be 

above average, the probability that the Kp for the next 3 hours is very likely to be the 

same or higher is high. However, while it is true that this forecasting scheme works 

roughly about two-thirds of the time, such an unsophisticated forecasting scheme is 

neither acceptable nor entirely useful. This is critical to this dissertation because 

two of the Kp models (to be introduced in chapter 3) will utilize the time history 

of Kp. Even though it might improve the predictions, it is imperative to distin-

guish a good "prediction" from a true "forecast". The only way one can demonstrate 

this effect of "persistence" or "persistence contamination" is by using autocorrelation 

arguments (see chapter 3). The statistical consequences of persistence are further 

explored through examples in chapter 5, since two of my models utilize previously 

known values for prediction. A more sophisticated and accurate forecasting can be 

achieved through artificial neural networks. In particular, they are powerful enough 

that good predictions can be made only using inputs constructed from solar wind. 

1.5 A N N and forecasting 

In the field of space physics, ANNs have consistently proved effective for temporal 

prediction problems particularly those which may be described as highly dynamic 

and non-linear, where the goal is to derive what the future information of a specific 

parameter of interest will look like given sufficient and necessary information leading 

up to the current time. We represent the available information using time series of 

measured values which may be continuous or discrete in time e.g., B{t) where 1 < t 

< n for n instances in time. A network that is trained to make predictions based on 
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consecutive inputs from B(t) uses a set of r recent values to predict the next time 

step, B(t — r +1). This is a short-term one-lag prediction problem where we forecast 

the next value from the recent history. 

A magnetospheric "preconditioning" can be described as a mechanism that tunes 

the magnetosphere to a certain state, prior to a storm over a period of several hours. 

Since neural networks are inherently learning machines, this gives the algorithms the 

ability to learn the effects of preconditioning and other nonlinearities residing in the 

system. In this dissertation, I have explored the possibility of using bivariate time 

series that are concurrently changing with time. To be successful, forecasting must be 

based on all available correlations and empirical interdependencies among different 

temporal sequences [Mehrotra, 1997]. I use feedforward networks for forecasting and 

these will be discussed in chapter 2. The BI, with a long timeline of observations from 

ACE, thus, provides an excellent platform to develop such an ANN-based forecast 

model. 

1.6 Related Work 

In the past, several studies have demonstrated a good correlation between various 

geomagnetic indices and the IMF and with other parameters of the solar wind and 

it is now a fairly well-accepted fact that the magnetosphere responds to variations 

in the solar wind parameters [e.g., Papitashvili et al., 2000]. Recently, Johnson and 

Wing [2005] have discovered a significant nonlinearity in the Kp time series and have 

attributed this to solar cycle dependence of internal magnetospheric dynamics. With 

the presence of the ACE spacecraft and its ability to provide IMF conditions of 

upstream Earth and solar wind data in real time, it has become possible to estimate 

geomagnetic indices up to 3 hours in advance [e.g., Wing et al., 2005]. Motivated 
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by the aforementioned facts, several algorithms have been developed to nowcast Kp 

[e.g., Takahashi et al., 2001] and forecast Kp, Dst, and AE [e.g., Boberg et al., 2000; 

Costello, 1997; Pallocchiaet al., 2007; Wing et al., 2005; Wu and Lundstedt, 1997], In 

fact, one such algorithm based on an ANN, developed by Costello [1997] and currently 

being used by the US Air Force, takes solar wind data as inputs and generates Kp 

every 20 minutes with an early warning of up to 30 minutes in advance (see section 

1.5.2 for details). Given the accuracy of these estimates and the generally short 

forecast times, there is an opportunity for significant improvement. 

The following sub-sections will describe the evolution of these models over time 

and some work related to that presented in this thesis, highlighting their important 

results. These models were built to operate in a variety of modes meant to satisfy 

different operational constraints using solar wind parameters as their primary data 

stream. The common denominator in these prediction models is the use of ANNs. 

1.6.1 Takahashi Kp Nowcast Model 

Takahashi et al. [2001] developed a one-of-a-kind algorithm to derive Kpest (for 

estimated Kp) using magnetometer data from nine ground observatories which can 

transmit data in near real time. Their algorithm involve routines to clean the data, 

estimate and remove a quiet-day-curve (QDC) and eventually convert the data to 

Kpest. The stations that they chose were the same ones that provide near-real-time 

data to the NOAA/SWPC through satellite or phone link. Their estimated values 

are consistent with Kp showing a linear correlation coefficient of 0.93. Even in the 

event of technical glitches and malfunctions at the stations, their robust design still 

allows them to derive Kp proxies and offer a good estimate. It has become popular 

with several forecasters and is routinely in use today (e.g., see the APL models 1 and 

2 in section 1.6.4). 
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1.6.2 Costello N N Kp Model 

The Costello ANN Kp model [Costello, 1997] was developed at Rice University pri-

marily to provide input data for the Rice Magnetospheric Specification and Forecast 

Model (MSFM) which uses Kp as one of its basic input parameters. NOAA routinely 

uses this model to provide real-time short term Kp forecasts which are available from 

h t tp : / /www.swpc .noaa .gov / rpc /cos te l lo / . It uses the solar wind speed, IMF B^ 

and |£?| inputs from ACE to provide Kp proxies once every 15 minutes with a lead 

time of approximately one hour. The actual predicted lead times are bound to vary, 

given variations in the solar wind speed. For comparison purposes, I use the value 

for the correlation coefficient, i.e., between the Costello NN forecast Kp and official 

Kp, evaluated by Wing et al., [2005], namely r = 0.75 as a base result indicating a 

strong correlation. However, my own evaluation of this model from a head-to-head 

test with one of my models will be discussed later in chapter 5. 

1.6.3 Boberg N N Kp Model 

The Boberg Kp model (Boberg et al., 2000) is also an ANN model which uses the 

solar wind and IMF data, just like the Costello model. Here, the model inputs the 

IMF Bz, solar wind density n, and the solar wind velocity v to produce an output 

that is a predicted 3-hour Kp index and is achieved using multilayer feed-forward 

neural network. The live results are obtained from h t t p : / / rwc . lund. i r f . se / rwc/ 

kp/models.php. With a correlation coefficient of r = 0.765, their model performance 

during both active and quiet times closely resembles that of the Costello Kp model. 

It must be noted, however, that unlike the Costello NN Kp model, I do not have 

the means to access the Boberg model or its output for a personal evaluation, and 

therefore rely on the figures and numbers quoted in their paper. 

http://www.swpc.noaa.gov/rpc/costello/
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1.6.4 APL Kp Models 

Wing et al. [2005] developed three real-time Kp models called the APL models: (1) 

a model that take inputs from ACE to nowcast Kp (from Takahashi algorithm) and 

predicts Kp 1 hour ahead (r = 0.92); (2) a model with the same inputs as model 

1 and predicts Kp 4 hours ahead (r = 0.79); and (3) a model that predicts Kp 1 

hour ahead using inputs from solar wind only (r = 0.84, see figure 1.10). Their 

forecasted Kp can be obtained in real time from h t t p : //sd-www. jhuap l . edu/UPOS/ 

Forecast ingKP/index.html. Fundamentally, their models include IMF |B|, Bz, IV Î 

and the dynamic pressure term, n in their inputs. Unlike models 1 and 2, model 3 

best compares to the Costello NN Kp and Boberg NN Kp models since it does not 

include or input the nowcast Kp, but the Wing et al model clearly outperforms the 

Costello and Boberg models. 

APL model 3 

Official Kp 

Figure 1.10 : Plot showing Predicted Kp vs Official Kp for the APL model 3, r = 
0.84. [Adapted from Wing et al., 2005] 

The APL model 2 uses the time history of Kp but does not have the luxury of using 

the last value because of lack of instant availability of any nowcast Kp data, leading 
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up to the forecast time of four hours, and the maximum solar wind propagation time 

for any algorithm using ACE is approximately 45 minutes to an hour. Therefore, 

their model 2 has a good "time" advantage over their own model 1. The success 

of their models 1 and 2 is largely attributed to the presence of the target index in 

their input stream. In general, using measured Kp to predict following Kp causes 

"persistence contamination" which means that predictions over-rely on the previous 

measured Kp. The effects of that contamination are seen as a "lag" feature in plots 

5 (g) and 5 (h) of their paper (shown here in figure 1.11). However, their model 3, 

which depends only on the solar wind and not on Kp, does not exhibit this lag or 

show evidence of persistence contamination. 

Wing et al. [2005], while describing their model results, plot the predicted Kp 

as the Kp not directly from the NN, but rather as the best-fit Kp linear function as 

shown in figures 6,7 and 8 of their paper. It is not clear whether this best-fit function 

is then fitted back at the end using error bars, and in which case, might possibly skew 

their own validations. Nevertheless, a real testimony to the success of their models 

can be described in terms of the wide acceptance they receive. 

1.6.5 Wu and Lundstedt N N Dst model 

Wu and Lundstedt [1997] studied the solar wind-magnetosphere coupling by predict-

ing geomagnetic storms (Dst) using partially recurrent neural networks; here again, 

a variety of combinations of the solar wind parameters can be used to give accurate 

predictions. They applied statistical correlation studies to find the best coupling 

functions, and concluded that the best combinations giving accurate predictions are 

Bs (if Bz < 0, Bs = -Bz), psw, vsw and B2, psw, vsw. For predictions 1 hour and 2 hour 

ahead, they claim the linear correlation between the real and predicted Dst is 0.90, 

and also claim that all phases of geomagnetic storms can be predicted accurately in 
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Figure 1.11 : The performance of the APL models are shown here for comparison. 
Note that the models 1 and 2 which includes Kp history as inputs appears to lag the 
real data (black curve) [Adapted from Wing et al., [2005]]. 
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that time range. For 3 to 5 hour predictions, the linear correlation varies from 0.88 to 

0.84. While for predictions 6-8 hours ahead, the correlation varies from 0.82 to 0.77. 

1.6.6 Temerin and Li Dst Model 

Following the BMR equation, several attempts, mostly through empirical studies, 

have been made to test and improve the values of the constants obtained by Burton 

et al., notably Gonzalez et al., 1994, O'Brien and McPherron, 2000. Among the other 

models that are not based on ANN is the Temerin and Li [2002; 2006] model. They 

provided a new model for the Dst based on the solar wind parameters through rigorous 

empirical studies. Their model predictions are made available in near real time, based 

on data from ACE, which are currently available at h t t p : / / l a s p . c o l o r a d o . e d u / 

~l ix. However, this is largely a nowcast rather than a forecast. 

1.6.7 Gleisner and Lundstedt N N AE model 

Gleisner and Lundstedt [2001] used an Elman recurrent network [Mehrotra, 1997] for 

the prediction of the auroral electrojet index AE from solar wind data. They used 

the solar wind parameters Bz, psw, vsw as inputs to show that an Elman recurrent 

network can predict around 70% of the observed AE variance using single sample of 

solar wind density, velocity and magnetic field as input. 

1.7 Scientific Objective 

ACE data include a broad spectrum of conditions responsible for geomagnetic activity. 

This study will use the unprecedented quality of solar wind data provided by ACE to 

determine the best function since the storm drivers during the ACE era have been the 

strongest or at least as strong as those observed by spacecraft during the pre-ACE 

http://lasp.colorado.edu/


era [Vogt et al., 2006], A long timeline of observations from ACE, with up to one 

minute resolution, and the history of Kp, Dst and AE data, provides an excellent 

opportunity to develop a prediction algorithm for the next upcoming time intervals. 

Furthermore, data from a complete solar cycle, and over a variety of solar events will 

facilitate the ANN training (please see chapter 3 on Research Methodology). 

In the past, various statistical correlation techniques have been used to infer the 

magnetosphere's response time to the changing IMF and solar wind conditions. In 

this study, the statistical correlations between the natural logarithm of BI and Kp, 

correlations between the BI and Dst and AE are explored. Since the BI was derived 

using steady-state conditions, we exploit the neural network to explore the effects of 

time variability, including preconditioning, which may be non-linear. 

The main content of my thesis and the ways it contribute to short-term space 

weather forecasting are summarized as follows: 

• To show that the logarithm of BI, with its viscous and merging terms, is linearly 

correlated with Kp and that it can be used to predict Kp when coupled to an 

Artificial Neural Network. Likewise, Dst and AE can also be predicted from 

the time history of the BI. 

• To successfully demonstrate that it has an enhanced forecasted-time range over 

the popular forecasting algorithms available today. 

• To investigate the effects of "persistence contamination" in some of the existing 

algorithms, including my own, and that it is indeed possible to issue a reliable 

forecast from solar wind data alone, just as successfully as algorithms that use 

the previous time history of the target index. 

• To successfully integrate the near-real-time predictions from my models to 
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Figure 1.12 : Shown here is a typical BI plot as seen in real time, reporting the most 
recent 72 hours of its history. 

h t t p : / / s p a c e . r i c e . e d u / I S T P / w i n d . h t m l (courtesy of the Rice Space Insti-

tute), originally dedicated in October, 2003 to show the BI in real time and 

its past history (figure 1.12). Further, I will improve the "spacalrt" system so 

that subscribers receive email notices of "red alerts" from well defined thresh-

olds e.g., whenever the 10-minute BI average exceeds 200 kV, or whenever the 

predicted Kp exceeds 6 . 

1.8 Thesis Organization 

My thesis introduces a novel, fully-automated time predictive algorithm with pre-

diction capabilities for moderate (e.g., 3 < Kp < 6) to severe storms (e.g., Dst < 

-120 nT, Kp > 6) and to forecast Kp, Dst and AE up to approximately 3 hours 

ahead in near-real time. In the work chapters, I focus on training the ANN using 

http://space.rice.edu/ISTP/wind.html
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solar wind data, drawing insights from correlation analysis; chapter 5 deals with this 

effort. Chapters 2 and 3 give a thorough overview of the ANN fundamentals and 

the research methodology to produce to best architecture. Chapter 4 provides us the 

basic physical processes behind "magnetospheric convection", and then introduces 

the Boyle Index. Chapter 5 deals with the algorithms, verification and validation 

tools applied to the developed models. I also perform a head-to-head test with the 

Costello ANN Kp model and show the results. A final summary of my results and 

future research directions are provided in chapter 6. 

Although, in colloquial speech, the terms predict and forecast are often used in-

terchangeably, technically the term forecast refers to making a prediction of future 

events based on the recent past, whereas a numerical prediction can be used in ret-

rospective analyses of historical data [Singer et al., 2001]. Therefore, this thesis uses 

predictive analyses of such historical data to create a functional form that is now 

being used in real time to routinely, and accurately forecast space weather. 



Chapter 2 

Artificial Neural Networks 

In this chapter, the primary intent is to elucidate the minimization technique used 

to train our models. To begin our discussion, I will introduce some of the oft-used 

terminology and outline the fundamental concepts behind an ANN (Artificial Neural 

Network). 

2.1 Artificial Neural Networks 

Neural Computing or "neural networks" is a branch of computing that is designed to 

adopt the basic structural architecture of a human brain to perform a certain task or 

function. Typically, the framework for such networks are built on simple mathemati-

cal functions. The fundamental property or building block that an ANN shares with 

a human brain is called the neuron. In humans, any mechanical or non-mechanical 

task such as perception, recognition or memory requires the use of our brain. An 

ANN, of course, uses an artificial neuron to learn from data samples that require 

short- or long-term memory (e.g., classification, forecasting, pattern identification). 

In order to understand an ANN, we need to know what a neuron is. 

2.1.1 Biological Neurons 

A biological neuron fundamentally comprises a cell body, an axon, and a large number 

of dendrites as shown in figure 2.1. Neurons process information using electrochemical 

signals received through their dendrites which are further propagated or suppressed 
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depending upon the threshold level of the cell. A propagated signal, "fired" by a 

neuron, is carried to the neighboring neuron across a synapse; the synapse sits at a 

junction between the dendrite of a neuron and an axon of another neuron allowing 

the flow of information. The axons carry the processed information away from a 

neuron to another neuron. However, the neurons in the human brain have a far more 

complex structure than the simple picture painted here, for there are more than 100 

billion neurons each with over 7000 synaptic weights. Yet, this simple analogy is an 

effective way to introduce an artificial neuron, given the scope of this dissertation. 

Figure 2.1 : A biological neuron (dotted oval) is composed of a cell body, a multitude 
of dendrites, synapses and an axon. 

2.1.2 Artificial Neurons 

The notion that ANNs are not meant to replicate the neurological details of a human 

brain but rather use it as a basic design platform to build mathematical models is 

generally underappreciated. An artificial neuron is a function-processing unit that 
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is key to the operation of a network of artificial neurons. Here, a set of inputs or a 

pattern (dendrites' synapses) is propagated through a corresponding set of "synaptic" 

weights. The incoming weighted information is then summed before being activated 

by a transfer function, which is usually non-linear, to produce an output signal of 

that node ("neuron"). Each node has a single output value which can either be fed 

back or passed on to another neuron. This process can be modeled using equation 

2.1 for a single neuron. 

A single neuron, however, may not be useful to solve a complex problem. In 

such instances, and in order to increase the available resources, the necessary com-

putational power or "artificial intelligence" is derived by marshaling a network of 

processing elements or nodes, and such networks are designed based on the prob-

lem in hand. This will be illustrated by examples in section 2.3. Each neuron can 

be connected with many others through different topologies (e.g., layered networks), 

though not necessarily with its own neighbors [Mehrotra et al., 1997]. However, the 

laws of solid state physics imposes a limit on the computational power of the pro-

cessors used, which in turn, limits the network size and the number of neurons that 

can be accommodated, significantly smaller compared to the tens of billions of bio-

logical neurons available to a human brain. An example of a processing element as a 

non-linear neuron model is shown in figure 2.2 (details in section 2.2) . 

Biological neurons acquire knowledge through basic perception and experience, 

and when posed with a problem, are able to respond and react remembering from 

their acquired knowledge base. So let us raise the fundamental question of how an 

artificial neural network learns. In short, the answer is through adjustable "weights". 

More specifically, an ANN learns by adjusting its weights in response to the input-

output patterns through a process called "learning". Learning is said to be complete 

when the output response reaches a desired level of accuracy specific to an input 
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pattern. The field of neurocomputing has achieved considerable progress over the 

last few decades to the extent that there exists a multitude of learning techniques. 

The learning rules or the adaptation of the weights of an ANN can be classified 

into two large domains: supervised and unsupervised. In supervised learning, the 

network is initially provided with targets or "correct" answers which may be linear 

or non-linear functions of a specific set of inputs (e.g., forecasting to predict a future 

event based on past history). The weights are adjusted based on the error at the 

output after data are propagated from inputs to outputs. The process is iterated 

until the error between the actual and desired outputs is minimized. The weights are 

now said to be optimized. Unsupervised learning, unlike the supervised learning, does 

not have the luxury of knowing the target value or the "correct" answer beforehand 

e.g., vector quantization where the process is to divide up space into several connected 

regions and each point in space belongs to ones of these regions, clustering where it 

requires grouping together objects that are similar to each other [Mehrotra et al., 

1997]. The system is expected to teach itself until it arrives at the "best" answer 

as determined by the optimized weights i.e., the error between measured and target 

values fall within an asking range. The technique that is germane to the examples 

below and eventually to my ANN forecast models, is a supervised learning rule. 

2.2 A Non-linear Neuron Model 

A simple perceptron is essentially a pattern-recognition machine whose learning rule 

was first discussed by Rosenblatt in 1962 and is illustrated through figure 2.2. For the 

pth input pattern, say, xp = {xj, x^,...., x£}, the output cP is written in this simple 

mathematical form by 
n 

(2.1) 
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where ip() is known as the "activation" or "transfer" function, Wji represent the synap-

tic weights of their corresponding inputs af, vp denotes the net input, and cP is the 

output of the neuron where there are n total inputs, XQ, called as the bias neuron, 

here set at 1 (please see Haykin, 1999). 

Figure 2.2 : A non-linear neuron Model. £ and ip are defined in equation 2.1. 

The activation function can be a linear function, non-linear functions such as the 

step function or the hyperbolic-tangent, and is chosen based on the specific problem 

at hand. The single most popular activation function used to build an ANN is the 

sigmoid function because it renders great advantages to any learning algorithm not 

only by being differentiable with non-zero values everywhere but also by the ease with 

which its derivatives are computed. It is also easy for algorithms to take advantage of 

the smoothness it offers. In fact, their input-output curves are similar to their biolog-

ical counterparts. Experimental observations have shown that biological neurons and 

their neuronal firing rate is roughly sigmoidal, when plotted against the net input to 

a neuron [Mehrotra, 1997]. These "S-shaped" functions come in a variety of flavors 
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whose output is non-linear and asymptotically tends to lower and upper bounds at 

-oo and +00. This property can be appreciated later in section 2.3 when we discuss 

multilayer perceptrons as each neuron in such an architecture requires the knowledge 

of the derivative of the activation function for weight updates. Figure 2.3 illustrates 

the output of a commonly used sigmoid function called the hyperbolic-tangent, 

tanhix) = 6 ~~e_ . (2.2) 
ex + e x 

The resulting output of this configuration op is also known as the "firing" of a 

Figure 2.3 : A sigmoid function tanh(x) and its derivative (dashed curve). 

neuron. The weight vector is adjusted each time a training pattern is presented, and 

in proportion to the error at the output until the algorithm converges. The weights 

for the next training cycle are adjusted according to 

ApWji = jx?(Dp — (/), (2.3) 

where 0 < 7 < 1 is the learning rate or step size and Dp is the desired target. The 

following sections will explain how these work through examples. 
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2.3 The Backpropagation Algorithm 

A simple perceptron learning technique or perceptron-convergence procedure, unfor-

tunately, is useful to solve only a limited set of problems i.e., problems that are linearly 

separable, because their inputs and outputs are linked directly and no other layers of 

processing elements lie between the input and output layer. The advantage is that 

the learning rule is relatively straightforward to develop. However, in dealing with a 

higher order problem or problems that are linearly inseparable (please see example in 

figure 2.4), one needs to effectively raise the learning potential by tapping a network 

of such perceptrons, the basic premise behind which a human brain functions. There 

are three different ways of how one can choose their network architecture to intimately 

connect a cluster of neurons in pursuit of better learning architectures: single-layer 

feedforward networks, multilayer networks, recurrent networks. For my work, I have 

(a) two linearly separable classes by a simple perceptron 

I I I IOO — >0 OOOO 
(b) not separable by a simple perceptron 

Figure 2.4 : An example of a two-class classification (black and open circles) : (a) 
is linearly separable by a simple perceptron, and (b) is not separable by a simple 
perceptron. 



42 

chosen the multilayer perceptron (MLP) architecture, a form of feedforward network, 

which can accommodate one or more layers besides the input and output layers. A 

layer that connects the input layer with the output layer is called hidden layer. A 

MLP network consists of an input, output and one or more hidden layers. An input 

layer is a non-computation layer consisting of input nodes, an output layer is a com-

putation layer from which the final outputs of the network can be read, and hidden 

layers are also computation layers that are not part of either the input or output 

but intervene between the input and output layers. Having hidden layers helps to 

represent important features within a task [Rumelhart et al., 1986] i.e., to extract 

complex and useful features between input-output patterns. This was a motivating 

concept that first came into existence in the 1960's, but largely remained theoretical 

until 1974. The goal then, was to identify a way for synaptic weight modification 

in the context of a multilayer perceptron (MLP) as the simple perceptron learning 

rule cannot be implemented in an MLP with such extended network connectivity. An 

example of a two-layer MLP architecture is shown in figure 2.5. Here, the weights are 

indicated by arrows, for they represent the connection topology where the processing 

elements are the units that are connected. 

The first original training algorithm for a MLP, which was considered one of the 

major breakthroughs in ANN history, was proposed by Paul Werbos in 1974, but did 

not catch on until 1986 when Rumelhart et al. popularized it in their book "Parallel 

Distribution Processing". They effectively demonstrated this training algorithm on 

a multilayer perceptron using a new learning rule called the backpropagation (BP) 

algorithm or simply called "backprop", a new formulation based on the old gradient 

descent technique. In a backprop algorithm, unlike a simple perceptron, there are 

two phases: a feedforward phase where the function signal propagates forward and 

a backprop phase where the error signal propagates backward. In the feedforward 



43 

Figure 2.5 : Shown here is a generic architecture of a two-layer feedforward network 
which may be extended to any number of hidden layers. 

phase, an input pattern presented to the input layer is processed by the neurons in 

the hidden layer where the weighted sum of its inputs is passed to the activation 

function before presenting their final outputs to the adjoining layer which may be 

either another hidden layer or the output layer. Function signals continue to flow 

across each layer until it reaches the output layer where the errors are computed 

based on the knowledge of the final output and the desired target. Once the errors are 

known, the weight corrections in each layer will be made during the "backpropagation 

phase" as the error signal propagates back and towards the input layer carrying the 

error. To understand the backprop algorithm, it is important to understand the 

weight-update rule based on the gradient descent procedure. 
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2.3.1 Learning through Gradient-descent Technique 

A very easy-to-implement and a general purpose weight-minimization rule applicable 

to various flavors of the backprop algorithm is the gradient-descent. The main objec-

tive of this learning rule is to minimize the mean squared error or the cost function, a 

function of all the free parameters such as the weights and thresholds, at the output 

layer. Let us consider a two-layer feedforward network as the one in figure 2.5 with 

i, j and k denoting the nodes in the input, hidden and the output layer respectively, 

and where there are n, m and K total number of nodes in each layer. 

Let's propagate a certain input pattern xp = {a^, , xp} forward; x1-

represents a certain input from the ith node to the hidden layer. The net input to the 

jth node in the hidden layer is then Wjitf, where â  = 1; the weights connecting 

the ith node of the input layer to the jth node of the output layer is denoted by Wji. 

The output of the neuron j at the hidden layer is a ^ = <fi(X^lLo where ipi() is 

the tanh function. Next, the net input to the kth node in the output layer is given by 

J2jLo again £q = 1; the weights connecting the jth node of the hidden layer 

to the kth node of the output layer is denoted by Wkj. The output of this node k is 

°fc = ^EjLo i)) with ip2() the tanh function. The desired target output at the 

kth node is Dp
k. For the given pattern, the total error can be written as a sum of the 

squared error (or the cost function) of all the output neurons using 

K = \iPi - o»ky (2.4) 

where Ep
k defines the squared error. The total error for a pattern p is given by 

Ep=^2k = 1 E^. Subsequent weight states are computed depending on the propagated 

error at the output layer in proportion to the local gradient of the cost function. 

The weight adjustment is made based on the knowledge of the direction of the local 

gradient of the error surface i.e., if the gradient is positive then the weights are 
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adjusted in the negative direction to decrease the error and vice versa. Thus, the 

weight-update rule requires computation of the partial derivatives of the local error 

with respect to the weights in the network. 

Mathematically, the weight change to be applied to the output layer is 

dEp 

A p w k j = - 7 ( 2 . 5 ) dwkj 

Similarly, the weight change to be applied to the hidden layer is 

dEp 

= - 7 ^ (2.6) 

Further, expanding (2.5) using the chain rule, we get 

dEp _ dEp do\ dip2 

dwkj d<?k d(p2 dwkj 

after calculating the appropriate partials, we get 

dEP 

(2.7) 

i i 

ip'2 denotes the partial derivative, which when inserted into (2.5) yields the weight 

update rule for the output layer 

A ^ , = (2.9) 

where 

k j j 

represents the local error at the output node(s) also known as the "delta". Similarly, 

we can write down the weight corrections to be applied to the hidden layer through 

A pWji = - 7 a j ( 1 ) s? (2.11) 
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where (m \ n 

fc=0 / i=0 

The presence of the <// term facilitates the rate of change of weights to accelerate in 

those regions of the weight space where <p' is large. One beauty of this technique lies 

in the sleek way of computing the partials. This procedure is much more accurate 

than the simple perceptron weight-update rule presented earlier in equation 2.3 and 

is only slightly harder to adapt into a numerical problem. 

Epochs 

Figure 2.6 : An example of a learning curve for a function approximation problem 
(y = i) . Shown here is the RMSE Error for the training (thin curve) and test data 
(thick curve), recalled at the end of each time step. 1 epoch = 100 training patterns. 

Figure 2.6 is an illustration of the time evolution of the performance of the net-

work as the error function is minimized. Ideally, one would want the algorithm to 

recall the error periodically on both the training and validation set to conduct an 

instant evaluation of the network as the training proceeds, i.e., as the cost function 

is minimized. This, to a large degree, helps the network from under- or over-fitting 

the data, and ensures the algorithm produces the best weight-minimization possible 

(figure 2.7). 
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Figure 2.7 : Cross-validation: recalling the error on the training and validation data 
simultaneously as training proceeds. Learning is terminated as soon as the error on 
the validation set begins to rise. 

A simplified version of the working architecture of my proposed models involving 

a two-layer feedforward network can be best represented using the figure 2.5 earlier. 

My actual models, however, involves a network with one output node and a set of 

nodes in the hidden layer; the number of neurons in the hidden layer for each model 

is determined based on trail and error. The crux of the proposed forecast algorithms, 

to be discussed later in the thesis, involves backpropagation as its principal learning 

technique, and the fundamental training steps applicable to our model specifications 

are outlined as follows: 

1. Initialize weights randomly in both layers -0.9 < Wji, wkj < 0.9; set the learning 

rate 7. 

2. Choose an input pattern and apply it to the input layer. 

3. Propagate the pattern through the weights and the activation function forward 

at the hidden layer and then on to the output layer. 

Note: The output layer activation function is typically a bounded function of 



the form given by figure 2.3 and whose derivative is also bounded. Even though 

I did not notice a significant difference in the model performance when the two 

functions were used interchangeably (sigmoid versus linear) at the output layer, 

all my models employ a linear activation function at the output layer and a non-

linear activation function (sigmoid) in the hidden layer. In nonlinear regression 

analysis, the output layer transfer function is preferred to be linear. In this 

case, the approximation error at the output can be modeled as white Gaussian 

noise [Haykin, 1999], and this property means that the amplitude falls in the 

range (-00, 00) requiring the output layer neuron to be linear. 

4. Once at the output layer, compute the error 5p
k using (2.10) and the target value 

Dp
k corresponding to the input pattern; p denotes each pattern; the function </?'() 

reduces to a constant value. 

5. Now compute the error at the hidden layer nodes using <5?̂ . 

6. Update the weights using A p ^Wkj = -l^k(2)xPj(i)> — 7 is the 

learning rate and takes values between 0 and 1. 

Note: It is easy to see that the weight update equation for the hidden layers 

has the same form as the output layer. However, the way the local errors are 

computed at the hidden layer is unique to the backprop algorithm. 

7. Go through steps 2 to 6 for all patterns until the error reaches a desired minimum 

value. 

These step-by-step instructions are easy to implement and could be generalized to 

any MLP network with a BP rule. Larger backprop-based networks may take several 

iterations and sufficiently longer to train. A walk through of the detailed algorithm 
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is illustrated in the following subsection, and can be adapted to any problem with a 

two-layer backprop network. 

2.3.2 Backpropagation algorithm for a two-layer network 

1: set number of hidden layer neurons; output layer neuron 

2: set learning rate 

3: set batch /* number patterns for batch learning */ 

4: set goal /* set performance goal */ 

5: set activation function hyperbolic — tangent 

6: initialize weights /* both layers */ 

7: old weights <= weights /* recalled during weight update */ 

8: set bias <= 1 

9: while error > goal do 

10: for i = 1 to batch do 

11: x 4= (pattern, 1) /* the bias always equals 1 */ 

12: output <= desired output 

13: output at hidden layer y <= activation function(hidden layer weights * x) 

14: output at output layer yo <= activation function(output layer weights * y) 

15: delta at output layer <= (1 — yo * yo) * (output — yo) 

16: error error + (output — yo)2 

17: k <= output layer weights * error at output layer 

18: compute delta at hidden layer 

19: weights at output layer 4= learning rate * delta at output layer * y 

20: weights at hidden layer <= learning rate * delta at hidden layer * x 

21: end for 

22: end while 
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23: store weights 

2.3.3 Notes on Backprop 

One of the problems I encountered during the course of this work is finding an algo-

rithm that has the right mix of speed and stability. The standard backprop algorithm 

based on the gradient-descent procedure used to train a MLP NN, by the virtue of 

its simplicity, is one of the most successful and widely used algorithms [Ham and 

Kostanic, 2001], though its minimization procedure is often blamed for its poor speed 

of convergence and stability. Constant learning rates throughout the procedure com-

pound the problem of slower learning rate. But, because of the greater flexibility they 

offer, one can restrict some user-specified parameters such as momentum (a positive 

constant to increase the rate of convergence by minimizing the oscillations in the 

weights space during training) or learning rate to guarantee convergence. Unfortu-

nately, there are no easy nor automatic ways to specify the initial conditions, and 

even if there are, such moderate reforms do not provide the thrusts to accelerate the 

rate of convergence significantly. 

Furthermore, initial conditions are critical to numerical problems based on stochas-

tic processes; standard guidelines do exist in the literature that one can choose from 

to set some of the initial conditions (e.g., the Nguyen and Widrow's weight initial-

ization algorithm [Ham and Kostanic, 2001]). From what was discussed earlier, the 

backprop procedure is based on one such format that relies on its initial conditions. 

It is the single most popular algorithm that provides a wide range of controls (e.g., 

initial weights, learning mode, learning rate, stopping criterion) to the user prior to a 

training process; the user also gets the choice over the weight-search algorithms. How-

ever, the gradient-search directions in the weight space are performed using defined 

learning rules. 
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There exists a range of techniques in the literature for supervised learning which 

were primarily motivated by the slow rate of convergence observed in the backprop. 

Second-order optimization techniques such as the conjugate gradient or Newtonian 

method offers significant improvement to the speed of convergence while being ap-

plicable to large-scale problems [Haykin, 1999]. Typically, the rate of convergence is 

quadratic and at least an order of magnitude faster than the gradient search. During 

the course of this dissertation, I had the opportunity to experiment with both these 

classes before eventually settling down with a flavor of the quasi-Newton method 

called the Levenberg-Marquardt (LM) technique upon which my entire work is based 

[Ham and Kostanic, 2001]. The fundamental idea behind the LM technique can be de-

rived from the conjugate gradient algorithm, a combination of the method of steepest 

descent and the Newton's method, described below. 

2.4 Conjugate Gradient Algorithm 

A superior technique, compatible with the backprop procedure, useful to accelerate 

the learning rate and suitable for any large-scale problems is the conjugate gradient 

algorithm, hereafter called the CG algorithm. A CG method performs a unique 

gradient search in the weight space utilizing second-order derivatives for the cost 

function minimization (or the Hessian); the inclusion of the Hessian in the algorithm 

could be memory expensive, but its computation can be overcome through some 

implicit means which may be fast and inexpensive, through numerical approximations 

instead of first principles. As opposed to the gradient-descent method which uses an 

instantaneous estimate of the gradient of the error function, the CG algorithm uses 

the knowledge of the eigenvalues and eigenvectors of the Hessian at a given point 

of time in the weight space. The new search direction is a linear combination of all 
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the previous search directions while the learning rate is a function of the eigenvalues. 

Obviously, the new search direction is always non-interfering, and the weights are, 

therefore driven from an arbitrary state to the minimum of the weight space in a 

finite amount of steps and along those directions. 

2.4.1 Newton's Method 

As mentioned earlier, any explicit way to calculate the Hessian could be compu-

tationally taxing, and in some large-scale problems it could even prove practically 

impossible. Nonetheless, the prescription for the Newton's method aims to bring out 

the role of the Hessian in any Newton, quasi-Newton, or CG-based algorithms as 

they attempt to find the directions of fastest error descent by computing the Hessian 

through explicit or implicit means. 

Consider a quadratic form of the error function as the one described in (2.3) where 

E(iw) = E(u>i, W2,-...WN) is a function of all the available weights in the network. For 

a small change going from w to w*, we can write E(w) through a Taylor series as 

E(w) = E(w*) + (W- W*)TVE\W=W. + HW- W*)TH\w=w. (W - w*) + 0 ( w 3 ) (2.13) 

where H is the Hessian given by 

d2E 

duiidwj (2-14) 
with V£=0 at the minimum where w = w*. Ignoring third and higher order terms, 

(2.13) becomes 

AE = E(w) - E(w*) ss hw - W*)tH\w=w.(W - w*) (2.15) 
z 

If we describe a set of eigenvectors (c,) for the Hessian, H obeying H%ct = AjCj, then 

Aw* = w - w* — Y2iaici> where ctj are some coefficients determined by the Aw* and 
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the Cj. Then (2.15) becomes 

AE= (2.16) 
i 

implying that the change of error is largest along the directions where the eigenvalues 

are greatest. Further, from (2.13), 

V E ^ ^ a i X i d (2.17) 
i 

Recall the weight update rule from (2.5) and (2.6), 

Aw = - 7 V E = - 7 V , (2.18) 
i 

The weights are adjusted in accordance with the above equation until a t approaches 

close to 0 as w proceeds toward w*. In other words, the rate of convergence will be 

decided by the eigenvalues computed through the explicit knowledge of E and H, 

with a constant step size 7. This procedure lays the foundation for the CG algorithm 

which in and of itself is the Newton's method for quadratic E{w). 

2.4.2 Conjugate Directions 

This method proposes to find a set of conjugate vectors {di, d2) ,dn} in non-

interfering directions, i.e., directions that do not "zig-zag" or point to the old search 

direction (section 2.3.1 earlier), corresponding to each weight vector in the network 

such that 
n 

Aw = - w* = ^ aidi (2-19) 
j 

where w\ is some arbitrary starting point; the weight update rule is analogous to 

that of Newton's method, a, is any scalar that minimizes the cost function, typically 

evaluated from a line search and can be computed without the explicit knowledge 

of the Hessian, provided the cost function is quadratic. The weight vector at each 
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iteration is a linear combination of all the previous search directions and the weight 

updates are parallel to the conjugate directions dj. We can write every successive 

conjugate direction as a linear combination of the previous conjugate direction as 

dj+1 = -gj+1 + fodj (2.20) 

where /3j denotes a scaling factor and gJ+\ denotes the old search direction. Again, 

the scaling factor can be computed without calculating the Hessian explicitly using 

the Polak-Ribiere or the Fletcher-Reeves formula [Ham and Kostanic, 2001]. 

Thus, a slight modification of the backprop procedure to include the CG procedure 

would, in principle, minimize the cost function, assuming it is quadratic, guaranteed 

to converge in a small number of steps (< number of weights in the network), thereby 

greatly accelerating the rate of convergence. 

2.4.3 The CG Algorithm 

The following CG algorithm offers the proposed modification to the backprop proce-

dure discussed earlier. 

1. Initialize the weight vectors to some random values, Wi 

2. Select a pattern and apply it to the network and compute the errors at the 

output and hidden layers using the backprop procedure, and compute the cost 

function. 

3. Set the initial search direction d\ — - g\\ gi = ^\w=w(i) 

4. Update the weight vector through u>(j+i) = ?%•) + 77 dj. Typically, rj is estimated 

through a line search that minimizes the cost function. Terminate the algorithm 

when ||dj || is sufficiently small. 
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5. Compute the new gradient from gj+1 = §§U=iu(j+i) 

6. Compute new search direction from dj+1 = - gJ+\ + (3j dj 

7. Calculate /3j, which has different forms. The form I chose is the Polak-Ribiere 

formula given by fy = . This has the ability to "self-reset" when the 

search hits a flat surface. 

8. Go to step 4 and repeat until it converges. 

2.4.4 Levenberg-Marquardt Method 

The Levenberg-Marquardt method (LM) is a highly reputable member of the family of 

Newtonian minimization techniques, especially known for its fast rate of convergence. 

It is an optimization technique that is very similar to the CG method in that both 

offer a quadratic rate of convergence without computing the Hessian explicitly. Here, 

like in CG, we approximate the Hessian using the Jacobian, J, which is a matrix 

comprising the first order derivatives of the network error with respect to the weights. 

The difficulty in implementing this technique on a NN MLP is the computation 

complexity it presents. However, with the help of sufficient processing resources, 

this can be implemented with ease. All my forecast models were trained using this 

quasi-Newton algorithm available from the MATLAB Neural Network Toolbox of The 

MathWorks, Inc.. The weights are updated according to: 

wj+1 = Wj - Hjl
9j (2.21) 

with the Hessian approximated by H « JTJ, we can then rewrite (2.21) as 

wj+i=wj-ajgj, (2 .22) 
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Figure 2.8 : A comparison of the speed of convergence using different methods. 

reminiscent of the gradient descent method. Here, ct,- = l / f i j , where f i j is learning 

rate parameter. Computing the Hessian directly from first principles can be compu-

tationally challenging. Therefore, the simplest approach is to calculate the partial 

derivatives, the components of the Jacobian matrix and the resulting Hessian, using 

numerical approximation. 

As an example, I use the function approximation problem x = [0.51, 3.50], 

Ax = 0.01) as a benchmark to compare the typical performance curves (figure 2.8) 

of all the techniques addressed in this chapter, and clearly, LM is the fastest by far. 

This is a single input-single output problem solved by 4 neurons in the hidden layer of 

a tanh function and 1 neuron in the output layer of a linear function. We refer again 

to equation 2.4 for the cost function. The data is subdivided randomly into three 

equal parts for training, testing and model validation. Figure 2.9 shows the learning 

histories, performed using the LM method, on both the training (smooth curve) and 

test (dashed curve) set as the cost function is minimized. The training continues 
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Epochs 

Figure 2.9 : Learning history for the function approximation problem performed using 
the LM routine. Training RMSE (thin curve) is shown along with the test RMSE 
(thick curve). 

until it reaches its maximum allowed time of 400 epochs (1 epoch = 100 training 

patterns before each weight update), at which point the RMSE on the training data 

approaches the desired precision of « 0.002; the results are reproducible with different 

sets of random samples. Note that here, in order to look closer at the time evolution 

of the training histories, the RMSE was allowed to reach a much higher precision 

from that shown in figure 2.8. 

We now turn our attention to building a research methodology aimed at exploiting 

the properties of the feedforward neural architecture discussed here. 



Chapter 3 

Research Methodology 

This chapter broadly describes the problem tackled, approach taken and the data 

needed to develop the proposed prediction models. It is divided into three sections. 

The first section will be a description of the data gathering efforts, specifically outlin-

ing the satellites and instruments providing the data. The second section introduces 

the research methodology and raises hypothetical questions in the hope of finding 

an optimal solution. The last section describes the key terms and statistics used to 

validate and verify the models. 

3.1 Data and Instruments 

In this study, I used two kinds of data: (1) solar wind velocity and interplanetary 

magnetic field (IMF), and (2) geomagnetic indices: Kp, Dst and AE, which were gath-

ered from different observatories around the world. The Boyle Indices (BI's) used in 

this study were derived using archived data from ACE. To stretch the timeline, I also 

used solar wind and IMF data from WIND and IMP-8 (discussed in succeeding sub-

sections) respectively to derive the Bis [Boyle et al., 1997]. Thus, the total available 

time line of observations spanning 13 years enabled me to train the network over a 

complete solar cycle. Though it was easy and straightforward to derive the Bis, data 

gaps and other undesirable features caused hiccups to an otherwise continuous data 

stream. Therefore, a thorough inspection was needed before the data could be used 

effectively. 
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3.1.1 W I N D 

WIND was launched in 1994, and one of its mission goals is to provide conplete 

plasma, energetic particle, and magnetic field input for magnetospheric and iono-

spheric studies. Its data is maintained by the MIT Space Plasma Group and is 

publicly available from h t t p : / / f t p b r o w s e r . g s f c . n a s a . g o v / w i n d _ s w e _ 2 m . h t m l . I 

used three years of solar wind data from WIND for this work (1995-1997). 

3.1.2 IMP-8 

IMP-8 or IMP-J was one of the oldest-serving satellites for the space physics commu-

nity. Launched in 1973, it was designed to measure magnetic fields, plasmas, and ener-

getic charged particles of the Earth's magnetotail and magnetosheath and of the near-

Earth solar wind. The IMP-8 data is also publicly available from the Space Plasma 

Group at the MIT ( f t p : / / s p a c e . m i t . e d u / p u b / p l a s m a / i m p / w w w / i m p . h t m l ) . The 

data I used from IMP-8 (1995-1997) complemented the data obtained from WIND. 

3.1.3 ACE 

ACE stands for Advanced Composition Explorer. It was launched in 1997 with nine 

science instruments including six high resolution spectrometers to measure the ele-

mental, isotopic, and ionic charge state composition of nuclei from H to Ni originating 

from solar photospheric and coronal material transported to 1 AU and other sources 

elsewhere in the galaxy. One of the primary mission objectives of ACE is to pro-

vide continuous measurements of the solar wind, low energy solar and interplanetary 

particles, and cosmic rays, requiring an orbit outside the Earth's magnetosphere. 

The modified halo orbit about the Sun-Earth system's libration point, LI meets this 

requirement [Stone et al., 1998]. 

http://ftpbrowser.gsfc.nasa.gov/wind_swe_2m.html
ftp://space.mit.edu/pub/plasma/imp/www/imp.html


60 

ACE level 2 data products (ht tp : / /www.sr l .ca l tech.edu/ACE/ASC/level2/ 

index.html) of SWEPAM (solar wind plasma) and MAG (magnetic field) gave an un-

interrupted data set to derive the BI. Unlike WIND and IMP-8, ACE is strategically 

placed at the LI point to constantly monitor the upstream solar wind conditions. As-

suming an average solar wind velocity of 400 km/sec, this position allows a 45 minutes 

to an hour lead time before the solar wind hits the Earth. I used the 1-minute data 

from ACE which was in turn used to derive 1 and 3 hour integrated-time averages; 

the data covers 1998 to 2007. 

3.1.4 Kp 

The official values of 3 hour averaged Kp were obtained from GeoForschungsZentrum 

(GFZ), Potsdam, Germany. They have been maintaining records that date back to 

1932 and are publicly available. Unlike the solar wind and IMF data, the official Kp 

record is fairly uninterrupted. For my analysis, I used the Kp data from 1995 to 2007. 

Since Kp is a three-hour index, we construct a new 1-hour cadenced time series 

using quadratic interpolation through splines, a technique preferred over oversam-

pling. These newly constructed averages will henceforth be denoted as the measured 

"1-hour" Kp index. For example, corresponding to a certain three hour period say 

between 0600 and 0900 UT, centered at 0730, the new 1-hour Kp index will have 

points centered at 0630, 0730 and 0830. In the following discussions, Kp* is the ANN 

predicted Kp. 

3.1.5 Dst and AE 

The Data Analysis Center for Geomagnetism and Space Magnetism, World Data 

Center for Geomagnetism, Kyoto provides AE and Dst in real time or "quick-look" 

(h t tp : / /wdc .kug i .kyo to -u .ac . jp /wdc /Sec3 .h tml ) ; it also maintains the official 

http://www.srl.caltech.edu/ACE/ASC/level2/
http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
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Figure 3.1 : Shown here are the 3-hr Kp and 1-hour Kp smoothed quadratically. 

archived Dst and AE data. 

3.1.6 Real-time data 

Finally, for our operational needs, the Space Weather Prediction Center (SWPC) of 

the National Weather Service ( h t t p : / / s w p c . n o a a . g o v / ) provides regular updates of 

planetary Kp (3 hour average) or Kp proxies (see chapter 1). As far the solar wind 

and IMF is concerned, the online data is available from h t t p : / / w w w . swpc . n o a a . g o v / 

ace/. Data in Level 2 format is downloaded at regular intervals to the Rice Space 

Institute's (RSI) website to feed the real time models. The data summary is shown 

in table 3.1 

3.2 Problem Definition 

The goal of this dissertation is to design a set of computer algorithms with good 

prediction capabilities for moderate to severe storms and to forecast Kp, Dst and AE 

http://swpc.noaa.gov/
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Table 3.1 : Summary of Data 

Source Type Span Average resolution 

ACE Solar wind + IMF (BI) 1998-2007 1 hour 

WIND Solar wind (BI) 1995-1997 1 hour 

IMP-8 IMF (BI) 1995-1997 1 hour 

GFZ Kp 1995-2007 3 hour 

OMNIWeb Dst 1995-2007 1 hour 

OMNIWeb AE 1995-2007 1 hour 

up to 3 hours ahead in near-real time, and further to be significantly better than the 

existing models. To achieve this goal, I primarily focus on training and validating 

an ANN, using the time histories of the BI and the corresponding target indices or 

the BI on its own. Here, I have chosen the standard multilayered backpropagation 

network for the purposes of training, validation and testing, particularly adapting 

Levenberg-Marquardt, a flavor of conjugate gradient algorithm, for training [Haykin, 

1999], 

Given the ANN's success in short term space weather forecasting, as mentioned in 

chapter 1, I propose to investigate the following as a feasible research methodology: 

(1) to predict Kp with a lead time of 1 hour from solar wind only, 

(2) to predict Kp with a lead time of 3 hours from solar wind only, 

(3) to predict Kp with a lead time of 1 hour from solar wind and previous time 

history of Kp, 

(4) to predict Kp with a lead time of 3 hours from solar wind and previous time 
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history of Kp, 

(5) to predict Dst with a lead time of 1 hour from solar wind only, 

(6) to predict Dst with a lead time of 3 hours from solar wind only, 

(7) to predict AE with a lead time of 1 hour from solar wind only, 

and (8) to predict AE with a lead time of 3 hours from solar wind only. 

3.3 Hypotheses to Test 

1. I will investigate the effectiveness of the BI in raising the baseline further in 

short-term (3 hours or less) geomagnetic activity index forecasting. I will further 

investigate whether legitimate forecasting is plausible beyond lead times of over 

3 hours, perhaps up to 6 hours. 

2. Given that the new algorithms developed will be quantified and tested against 

historic data for new performance standards, I will investigate the feasibility 

of issuing probabilistic forecasts so that key discriminator levels can be stated 

with well defined confidence limits. 

3.4 Proposed Models 

Part of the job of a space weather forecaster is to aid the process of decision making 

during critical times and to make the available space weather information more useful. 

In order to achieve this goal, one would want to forecast at different cadences. Here, I 

choose to forecast at Kp, Dst and AE at 1-hour and 3-hour cadences. Recall, Kp is a 

3-hour index while AE and Dst are hourly indices. The purpose of a 1-hour cadenced 

prediction is to provide a short-term warning to certain end-users for whom such 

a warning can be of benefit; for example, satellite operators, electrical transmission 

line companies, and airlines with polar routes. A 3-hour predicted AE and Dst will 
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Figure 3.2 : Each input to the ANN is weighted according to equation 3.1. The most 
recent value of the solar wind/target index is given the maximum weight of unity. 

be regarded as a new baseline for further studies since most of the best estimates 

available in the literature are delivered for the next two hours from the predicted 

time. 

3.4.1 Training Parameters 

In addition to the basic ANN parameters we saw earlier, some of the key terms and 

operational definitions that will also help interpret the recipe behind the models are 

defined here. 

Input Weights 

Inputs to the ANN architecture will follow a simple rule that the most recent value 

of the BI and Kp receives the maximum weight (w) of unity, the second most recent 

value receiving 0.9 (0 < w < 1) of the previous, and so on (wn , n — 0, 1, 2, ....) 

[equation 3.1 and figure 3.2]. This procedure is an arbitrary choice. The weighting 

scheme explicitly: 

Input weights = [1.0 0.90 0.81 0.73 0.63 0.59 0.53 0.48 0.43 0.39] (3.1) 
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The rationale behind this scheme of weighting the inputs is based on constructing 

models aimed at having the most recent solar wind values contribute the most to 

the predicted results. We will revisit (chapter 5) this weighting scheme after further 

analysis. 

Error Measure 

As a reminder, a couple of key terms related to network optimization, and which are 

useful to track the time evolution of the network training error, are the RMSE (Root 

Mean Square Error) and the ARE (Average Relative Error), computed at the end of 

each epoch before the weights are updated. They are given by: 

RMSE = \ 
1 N 

— 52 (tar9ett ~ outputt)2 (3.2) 
t=I 

ARE=^Y \^9ett-outputs 
N j ^ \targett\ V 7 

where target,, is the desired value and output, is the measured value at the output 

layer. N is the total number of training samples. Testing the quality of the final result 

will not be based just on the RMSE error. However, initial network diagnostics and 

pruning can be done through observing the learning curves based on monitoring the 

RMSE. 

Data for Training 

Copious data are available for this study, covering more than a full solar cycle. A 

3-hour average means having over 30000 points covering almost 100000 hours worth 

of data. Therefore, a good approach to building a steady network is to judiciously 

stratify the data into three smaller but distinct samples, one for training, one for 
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validating the error and the other for testing the model. The inputs and the outputs 

to the ANN are both normalized to fall in the range [-1, 1], An ideal network is 

one which can generalize "unseen" data that is not represented in the training. The 

models will be trained, tested and validated from a random selection of samples. All 

models using hourly cadenced dataset will have approximately 47% of the total data 

participating in training and approximately 36% and 17% will be reserved for testing 

and validation purposes respectively. Similarly, models running on 3-hour cadence 

will have approximately 59%, 22% and 19% of the total data reserved for training, 

testing and validation respectively. Furthermore, while using the Kp index as inputs, 

the most recent Kp value is not used deliberately keeping in mind that there will be 

delays in obtaining the "nowcasted" Kps during real time operations, and we do not 

want the algorithm to depend on a value which is not available in real time. 

All the models use a "hyperbolic-tangent" transfer function in their hidden layer 

and a "linear" transfer function in their output layer, and employs the LM mini-

mization technique for training. The number of neurons in the output layer is held 

constant at 1, because this is a time-prediction problem. Furthermore, one "epoch" 

is defined as the time between any two successive weight updates corresponding to 

a batch size or sample size of the training set. However, the number of neurons in 

the hidden layer and learning rate will be decided based on the training performance 

using trial and error. 

3.4.2 Model 1: Kp prediction with 1-hour lead t ime using only the BI 

We seek to find the optimum look-back time for the best predictive power i.e., how 

much of the solar wind history is needed in order to get the best prediction. We apply 

the standard method of a "sliding window" procedure to the feedforward network to 

get the best predictive estimate. This procedure is represented by equation 3.4, i.e., 
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given the values of t, t-1 t-2, ..., t-n, we want to forecast t+1. In other words, we want 

to determine the value of the optimum n in equation 3.4. The following function is the 

generic form of the exploratory tests performed, whose parameters are summarized 

in table 3.2. 

Kp*t+1 = f{BIu BIt-U ..., BIt-n), 7i = 0,1,...., 9. (3.4) 

represents the epoch in question while 't-1', ' t+1' means 1 hour behind and 1 

hour ahead of t respectively. Kp,*+, is the forecasted value, and each BIt, BIt_i etc 

are hourly averages of the BI. Figure 3.3 is a schematic representation of the model 

architecture, shown here for the case n = 6. The training set (input-output pairs) 

were chosen randomly. The LM routine adopts batch processing, wherein the weights 

are updated only after all the elements in the batch, defined by the number of training 

samples, have been propagated to the output layer. Figures 3.4 and 3.5 show their 

learning histories based on the RMSE error for both training (black) and test (blue) 

data set. Based on the training histories, we can see that the best function is possibly 

n = 8, 9 or 10 or equivalently 8, 9 or 10 hours of the BI history (lower RMSE and ARE 

for Kp > 4); any input time history beyond 10 hours fails to improve the performance. 

The optimum value of n can be given only following further analysis. 

3.4.3 Model 2: Kp prediction with 3-hour lead t ime using only the BI 

This model follows model 1 except that it predicts Kp 3 hours ahead and uses 3-hour 

averages of the BI, giving us the advantage of using longer time history in inputs. 

The ANN parameters are shown in table 3.3 and the learning histories in figures 3.7 

and 3.8. The generic form is given by the following equation: 

Kp*t+3 = f(BIt, BIt.-s, BIt-n*), n = 0,1,..., 9. (3.5) 
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Table 3.2 : Predict Kp*t+1 from BI. 

# Model 1 Inputs 

ANN Parameters 

# Model 1 Inputs 
Total 

Inputs 

Hidden 

Nodes 

LR 

7 

RMSE 

Training 

RMSE 

Test 

ARE* 

Test 

1 Bit 1 58 0.01 0.904 0.907 0.247 

2 B I t , B I t _ ! 2 58 0.01 0.803 0.803 0.205 

3 B i t , B I * - ! , B I t _ 2 3 58 0.01 0.742 0.753 0.188 

4 B I t , B I t _ i , . . . . , B I t - a 4 58 0.01 0.719 0.732 0.176 

5 B I t , B I t _ i , . . . . , B I t - 4 5 58 0.01 0.716 0.722 0.179 

6 B I t , B I t - i , . . . . , B I t _ 5 6 58 0.01 0.712 0.723 0.181 

7 B i t , B I t - i , . . . . , B I t - 6 7 60 0.01 0.700 0.710 0.173 

8 B i t , B I t - i , . . . . , B I t _ 7 8 60 0.01 0.702 0.712 0.174 

9 B i t , B I t - i , . . . . , B I t - 8 9 62 0.01 0.692 0.710 0.172 

10 B i t , B I j _ i , . . . . , B I t - g 10 62 0.01 0.687 0.709 0.171 

+Kp > 4 
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Model 1: 1-hour lead time Kp predictions using the BI 

1-hour averages 

BI t=-6 t=-3 t=0j 
-e—e—e—e—e—e—e-+-

Kp 

Network Output 
Predicted t = + 1 

Time 
Network Inputs 

Kp*t+1 = / (BI t = 0 , BI t=1, ..., BI t 6) 

Figure 3.3 : Diagram showing an input vector and its corresponding output, consti-
tuting a pattern. Here n=6 is chosen for example. 

Since this procedure adopts 3-hour binning it gives tremendous advantage in terms 

of the available time history of data before each prediction. The number of hidden 

nodes were adjusted based on trial and error and the learning rate has been lowered 

(50% of model 1), given the low volume of training samples here, to provide the same 

opportunity as model 1 received. Figure 3.6 shows the network inputs (7) and its 

corresponding desired output at the predicted time of t = +3, for case n = 6. The 

data has been organized by constructing 3-hour averages of the BI and Kp over the 

entire 11-year time length and the input-output pairs are constructed by applying 

the standard sliding window techique. The model has been designed by training ~ 

19000, testing PS 7000 and validating « 5000 input-output patterns chosen randomly 

from the 11-year period. It appears that the best function here has either n = 7 or 

8 (21 or 24 hours of input history). 
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Figure 3.4 : Model 1 learning histories to predict Kpt*+1 using hourly averages of BI, 
corresponding to table 3.2 (thick curve is the test data and thin curve is the training 
data). Kp*t+1 = f(BIt, BIt_i, ..., BIt-n), n = 0,1,..., 7. 
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Figure 3.5 : Model 1 learning histories to predict Kpj+1 using hourly averages of BI, 
corresponding to table 3.2 (thick curve is the test data and thin curve is the training 
data). Kp*t+1 = f(BIt, BIt_!, ..., BIt-n),n = 8,9. 

Table 3.3 : Predict Kp* 3 from BI 

ANN Parameters 

# Model 2 Inputs 
Total 

Inputs 

Hidden 

Nodes 

LR 

7 

RMSE 

Training 

RMSE 

Test 

ARE* 

Test 

1 Bit 1 48 0.005 0.846 0.854 0.219 

2 Blt, BIt - 3 2 48 0.005 0.834 0.848 0.222 

3 BIt, BI4_3, BIt_6 3 48 0.005 0.822 0.851 0.228 

4 BI i ; BIt_3, ... Bit - 9 4 48 0.005 0.818 0.823 0.213 

5 Bit, BIt_3) ••• , BIt_ -12 5 50 0.005 0.816 0.824 0.220 

6 Bit , Bl f_3 , ... , BIt_ -15 6 52 0.005 0.806 0.826 0.218 

7 Bit, BI*_3, ••• , Bit. -18 7 52 0.005 0.796 0.811 0.199 

8 BIt, BIt-s, ••• , BIt_ -21 8 52 0.005 0.796 0.825 0.213 

9 Bit, BIt_3, ••• , BI t. -24 9 54 0.005 0.806 0.819 0.208 

10 Bit, Blf_3, ... , Bit. -27 10 54 0.005 0.789 0.829 0.209 

+KP > 4 
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Model 2: 3-hour lead time Kp predictions using the BI 

3-hour averages 

BI t=-18 t=-9 t=0 
-e—e—e—e—e—e— 

Network Inputs 
Network Output 

Predicted t = + 3 

Time 

Kp*t+3 = / (BI t = 0 , BIt=_3, . . . , BIt 18) 

Figure 3.6 : Diagram showing an input vector and its corresponding output, consti-
tuting a labeled pattern. Here n = 6. 

3.4.4 Model 3: Kp Prediction with 1-hour Lead-Time using the BI and 

Kp history 

Here, I propose a slight variation to the models described above in that we introduce 

the time history of the target index to the network along with the solar wind data, 

i.e., for a set of BI in the input there is a corresponding set of Kp values lagged 

relative to the Bis. Predictions improve with the usage of the past history of Kp in 

inputs [e.g., Wing et al., 2005]. The general form of the tests performed is given in 

equation 3.6, the testing parameters in table 3.4 and the learning histories in figures 

3.10 and 3.11. Since this is a 1-hour model, we use Kp values as described in section 

3.1.4. Note that the history of Kp values are weighted, using the scheme applied for 

the BI, and lagged 3 hours relative to the BI because of non-availability of Kp at f=0 

(and at t = -1 and t = -2 in some cases). 

Kp*t+1 = f(BIt, BIt.-i, BIt-n, Kpts, Kpt_A)..., Kpt-n-s), n — 0,1,..., 9 (3.6) 
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Figure 3.7 : Model 2 learning histories using 3-hour averages of the BI, corresponding 
to table 3.3 (thick curve is the test data and thin curve is the training data). Kp*t+3 = 
f{BIt, BIt-3, BIt-na), n = 0,1,..., 7. 
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Epochs Epochs 

Figure 3.8 : Model 2 learning histories using 3-hour averages of the BI, corresponding 
to table 3.3 (thick curve is the test data and thin curve is the training data). Kp\+ 3 = 

Training is conducted in the same manner as we would perform real-time opera-

tions and hence, Kpt has been left out. In the training (and of course in the real-time 

predictions), I never use a known Kp index value to predict itself; if the previous 

hour's Kp index is not known, the prior measured Kp index is just duplicated. It is 

also worth noting that in order to provide greater credence to the models, network 

validation and testing were performed on two distinct subsets of the data. This, to a 

large degree, reflects the network's competency in generalizing new data and, to some 

degree, helps set a new performance standard against which any future models may 

be tested. 

We use the official Kp values for model development and validation. However, 

for real time operational purposes, the time history of Kp will be obtained from the 

estimated 3-hour planetary Kp index derived at the U.S. Air Force Space Forecast 

Center using several ground-based magnetometers serving in near real-time, which can 

be downloaded from h t t p : / / w w w . s w p c . n o a a . g o v / r t _ p l o t s / k p _ 3 d . h t m l . There is, 

however, a 30-40 minute lag before the data is publicly available, mainly owing to 

processing delays but still usable within an hour. Therefore, we create the model 

http://www.swpc.noaa.gov/rt_plots/kp_3d.html
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Model 3: 1 hour lead time Kp predictions using BI and Kp 
r=-6 t=-3 /=0 t=+2 

BI 

_Kp 
-e—e—e—©—e—e—& 

•©—e—e—e—e—e—o | • 

BI 

Kp] 
-e—e—G—e—e-

©—e—©—©—©—©—o j o 

BI ! -©—©—©—©—0—0—^ 
KP r ©—©—©—©—©—©—e- "9" 

• Unavailable in real time 
O Available in real time 

0300UT 

'0340UT" 

0400UT 

0500UT 

Kp*t+1 = / (BI t = 0 , BI t=1, ..., BIt_6; Kpt=_3, Kpt=.4, . . . , Kpt.9) 

Figure 3.9 : Diagram showing an input vector and its corresponding output, consti-
tuting a pattern. Here n = 6. 

keeping the real time operations in mind and exclude the last known Kp value both 

in training and retrospective analysis. Figure 3.9 illustrates this. For example, at 

0300 UT the last value of Kp during the interval 0000-0300 UT is unknown in real 

time. At around 0340 UT, the last value of Kp becomes available. Yet, only two out 

of the three points are available at 0400 UT. Moving the window further by another 

hour to 0500 UT, only one out of three points is available. In retrospect, we therefore 

force the network to learn from what is available at that time and start at t = -3 

instead of t = 0. 

We pair the input vectors and its corresponding target as shown as "dotted win-

dow" in figure 3.9. For example, taking n = 6, we have a set of 7 Bis and 7 Kps as 

inputs to the network, and for which, the desired target is Kp (+3 . This constitutes 

a training pattern. We then slide the window, incrementing by 1 hour, to generate 
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the next set of training vectors, and the process is repeated sequentially over the 

entire volume of data. Training patterns are shuffled randomly and then chosen and 

designated for training («47%), testing («36%) and validation («17%). This model 

consumes more training time because of the addition of Kp in the inputs. However, 

the results are much improved compared to model 1, as can be inferred from table 

3.4 with remarkably low RMSE and ARE for n = 6. 

n =0 n =1 

0 9 
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HI 0.7 
CO s 
1 1 0.6 

0.5 
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0.725-
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Figure 3.10 : Model 3 learning histories using hourly averages of BI and Kp, corre-
sponding to table 3.4 (thick curve is the test data and thin curve is the training data). 
Kp*t+1 = f(BIt, BIt_i,.., BIt_n; Kpts, Kpt^4,..., Kpt-n-z), n = 1,2,..., 5. 
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Figure 3.11 : Model 3 learning histories using hourly averages of BI and Kp, corre-
sponding to table 3.4 (thick curve is the test data and thin curve is the training data). 
KPt+i = f(BIt, BIt-U .., Blt.n-Kpt_3, Kpt-4,..., KPt_n_3), n = 6, 7, 8, 9. 

3.4.5 Model 4: Kp Prediction with 2-hour Lead-Time using the BI and 

Kp history 

The proposed model 4 is similar to model 3 in the input sequence but for the 3-hour 

averages used here. Equation 3.7 describes the generic form of the experiments per-

formed. Table 3.5 lists the model parameters and the learning histories are illustrated 

in figure 3.13 and 3.14. Just like in model 3, the history of Kp values are lagged 3 

hours relative to the BI because Kp in not available at t=0 in real time. We apply 

the similar sliding window technique explained in model 3 for sampling the training 

vectors (figure 3.12). 

Kp*t+3 = f(BIt, BIt-3,..., BIt-n*3; Kpt-3, Kpt-6,..., Kpt-{n+1)*3), n = 0,1,..., 9 (3.7) 
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We do see a slight improvement in the results by bringing Kp time history in inputs. 

However, interestingly, longer time history of inputs does not guarantee a major 

improvement (RMSE and ARE for n = 0 and 9 are not significantly different). A 

clear distinction can be made after further statistical analysis through skill scores and 

hit/miss rate etc. 

Model 4: 3-hour lead time Kp predictions using BI and Kp 

3-hour averages 

BI t=-18 t=-9 t=0 
—e—e—e—e—e—e—e-i 

Kp t=-21 
—e—©—e—©—e—e—e-

Unused at t=0 

Network Inputs 
Network Output 

Predicted t = + 3 

Time 

KP*t+3 - / ( B I t = 0 , BIt=_3, ..., BIt_18; Kpt=_3, Kpt= 6, ..., Kpt_21) 

Figure 3.12 : Diagram showing an input vector and its corresponding output, consti-
tuting a pattern. Here n = 6. 

Different learning parameters were experimented in order to get the lowest RMS 

error possible on the test set. It appears that the uncertainties in the predictions 

increase with the lead time. The pick of the models and their validations will be 

discussed in detail in chapter 5. Since the Kp index is quantized (28 total bins), we 

will show the exact hit versus misses statistics through histograms. We will test the 

network performances using a couple of case studies involving geomagnetic storms. 

We will also examine the effect of persistence in models 3 and 4. 
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Figure 3.13 : Model 4 learning histories using 3-hour averages of BI and Kp, corre-
sponding to table 3.5 (thick curve is the test data and thin curve is the training data). 
Kp*t+3 = f(BIt, BIt-3, BIt-n*3; Kpt-3, Kpt~6,..., Kp t-(„+i),3), n = 0,1,..., 7. 
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n =8 n =9 

Figure 3.14 : Model 4 learning histories using 3-hour averages of BI and Kp, corre-
sponding to table 3.5 (thick curve is the test data and thin curve is the training data). 
Kp*t+3 = f{BIt, Bit-3,BIt-nrt] Kpt-z, Kpt-e,..., Kpt-{n+!)*3), n = 8, 9. 

Furthermore, we will see how the new models can be implemented into the exist-

ing "spacalrt" system. The following subsections will discuss the proposed research 

methodologies to get the best functions for predicting the Dst and the AE index. 

3.4.6 Model 5: 1-hour lead t ime Dst predictions from BI 

This model is similar to the Kp model 1 in that it uses 1-hour averages of the BI but 

predicts Dst one hour ahead. We want to determine the optimum n in equation 3.8. 

The model inputs and the corresponding ANN training parameters are shown in table 

3.6. Figures 3.15 and 3.16 show the ANN learning histories and are similar in trend 

to the Kp models. Here, the Bis are scaled linearly as opposed to the logarithmic 

scale used in the Kp models. However, the inputs are still weighted using equation 

(3.1). 

Dst*+l = f(BIt, BIt-i, ..., BIt_n), n = 0 ,1 , . . . , 9 (3.8) 

From table 3.6, we can see a clear trend emerging: as the number of inputs increase, 

the performance increases. The ARE threshold is set at Dst < -40 nT. It is also worth 

noting that, however, beyond 10 inputs the network performance fails to improve. 
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Figure 3.15 : Model 5 learning histories corresponding to table 3.6 (thick 
curve is the test data and thin curve is the training data). Dst*t+l = 
f(BIt, B I t . . . , BIt_n), n = 0,1, ....,7. 
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Table 3.6 : Predict Dst* , from BI 

ANN Parameters 

# Model 5 Inputs 
Total 

Inputs 

Hidden 

Nodes 

LR 

7 

RMSE 

Training 

RMSE 

Test (nT) 

ARE* 

Test 

1 Bit 1 59 0.05 18.05 18.91 0.491 

2 BIt, Bit - l 2 59 0.05 16.72 16.83 0.454 

3 Bit, BIt_i, BIt-2 3 59 0.05 16.41 16.66 0.439 

4 Bit, BIt_!, ... BIt--3 4 60 0.05 15.72 15.91 0.420 

5 Bit, BI t_i, ... BIt_ -4 5 64 0.05 15.33 15.46 0.397 

6 Bit, Blt_!, ... Bit. -5 6 64 0.05 14.87 15.75 0.383 

7 Bit, Bl t_i, ... Bit--6 7 64 0.05 14.72 15.06 0.371 

8 Bit, BIt_i, ... Bit. -7 8 66 0.05 13.89 14.61 0.371 

9 BI(, 61^! , ••• Blt--8 9 66 0.05 14.27 14.34 0.354 

10 Bit, BI t_i, ... Bit--9 10 66 0.05 14.05 14.68 0.349 

+ Dst < -40 nT 

3.4.7 Model 6: 3-hour lead t ime Dst predictions from BI 

This model is similar to the Kp model 2, but predicts Dst 3 hours ahead. Since the 

final measured Dst are 1-hour averages, for this model, we construct 3-hour averages 

using the conventional 1-hour average. The model 6 inputs and the corresponding 

ANN training parameters are shown in table 3.7. Figures 3.17 and 3.18 shows the 

ANN learning histories. We want to determine the optimum n in equation 3.9 shown 
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Figure 3.16 : Model 5 learning histories corresponding to table 3.6 (thick 
curve is the test data and thin curve is the training data). 
f(BIt, BIt-!, ..., BIt-n), n = 8,9. 

Dst*t+1 = 

below 

Dst*t+3 = f(BIt, Bits,BIt-n*), n = 0,1,..., 9 (3.9) 

Given the preliminary results, it is rather difficult to come to a conclusion about 

the best performing function. Interestingly, the overall RMSE (measured in nT) and 

ARE (Dst < -40 nT) are better here compared to the 1-hour Dst model. 

3.4.8 Model 7: 1-hour lead time AE predictions from BI 

This model is also similar to the Kp model 1 in that it uses 1-hour averages of the 

BI, but predicts AE one hour ahead. We want to determine n in equation 3.10. 

AE*+1 = f(BIu Bit-i, BIt-n), n = 0,1,....,9 (3.10) 

The model inputs and the corresponding ANN training parameters are shown in table 

3.8 with figures 3.19 and 3.20 showing the ANN learning histories. The RMSE values 

are large here. One possibility is that only the solar wind component of the AE index 

has been modeled well here. 
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Table 3.7 : Predict Dst?,, from BI 

ANN Parameters 

# Model 6 Inputs 
Total 

Inputs 

Hidden 

Nodes 

LR 

7 

RMSE 

Training 

RMSE 

Test 

AREt 

Test 

1 Blt 1 48 0.001 15.47 15.75 0.463 

2 Bit, BIt - 3 2 48 0.001 14.31 14.63 0.379 

3 BIt, BIt_3) BIt-6 3 50 0.001 13.84 10.85 0.371 

4 Bit, BIt-3, ... Bit. - 9 4 50 0.001 13.14 13.92 0.383 

5 Bit, BIt-s, ... , BIt_ 12 5 50 0.001 12.97 13.65 0.361 

6 Bit , B I t - a , ... , BIt_ 15 6 52 0.001 12.84 12.87 0.380 

7 Bit, BIt_3, ... , BIt_ 18 7 52 0.001 12.51 13.29 0.338 

8 Bit, BIt_3, ••• , BIf_ 21 8 52 0.001 12.29 13.02 0.321 

9 Bit, BIt-3, ... , BIt_ 24 9 54 0.001 12.19 12.77 0.342 

10 Bit, BIt_3, ••• , Bit--27 10 54 0.001 11.73 12.83 0.338 

tDst < -40 nT 
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Figure 3.18 : Model 6 learning histories corresponding to table 3.6 (thick 
curve is the test data and thin curve is the training data). Dstl+3 = 
f (BIt, BIt-3,...,BIt-n*), n = 8,9. 

3.4.9 Mode l 8: 3-hour lead t ime A E predictions from BI 

The last model, model 8, resembles the Kp model 2, but predicts AE 3 hours ahead. 

Since the final measured AE are 1-hour averages, for this model, we construct 3-

hour averages using the conventional 1-hour average. The model 8 inputs and the 

corresponding ANN training parameters are shown in table 3.9. Figures 3.21 and 

3.22 shows the model 8 learning histories. We want to determine n in equation 3.11. 

AE*t+3 = f(BIt, Bit-3, BJ t_„,3), n = o, 1,..., 9 (3.11) 

3.5 Model Validation 

At this juncture, it is important to point out the different criteria used by various 

authors for model validation and testing; the results of the models discussed in section 

1.3 are mostly stated in terms of a linear correlation of the predicted versus the 

actual values. However, inferences as to the accuracy of the models cannot be drawn 

from linear correlation coefficients alone. Also, performance standards differ based 

on whether or not their measurements were propagated to the Earth during their 
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Figure 3.19 : Model 7 learning histories corresponding to table 3.6 (thick curve is the 
test data and thin curve is the training data). AEf+1 = f(BIt, BIt-1, ..., BIt-n), n = 
0,1,....,7. 
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Table 3.8 : Predict AE* from BI 

# Model 7 Inputs 

ANN Parameters 

# Model 7 Inputs 
Total 

Inputs 

Hidden 

Nodes 

LR 

7 

RMSE 

Training 

RMSE 

Test 

AREt 

Test 

1 BI, 1 58 0.005 126.77 127.99 0.289 

2 Bit, Blt-i 2 58 0.005 122.72 124.47 0.277 

3 Bl t, BIt_!, Blt-2 3 58 0.005 120.74 124.29 0.292 

4 BIt, BIt_!, BIt-3 4 60 0.005 121.83 123.88 0.294 

5 Bit, BIt_l5 ...., BIf_4 5 62 0.005 120.45 124.32 0.284 

6 Bit, BIt-i, ...., BIt-5 6 62 0.005 121.53 124.85 0.287 

7 BIt, BIt_i, ...., BIt_6 7 64 0.005 121.15 121.95 0.282 

8 BIt, BI t_i, ...., BIt-7 8 64 0.005 119.33 122.10 0.288 

9 Bit, BIt_!, ••••, BIt-8 9 66 0.005 121.99 125.70 0.303 

10 Bit, BI t_i, ...., BIt_9 10 66 0.005 117.03 123.67 0.290 

tAE > 500 nT 

analysis. Time-propagated models allow usage of solar wind data from satellites 

located potentially anywhere and not just at LI alone (for example APL Kp models 

offer that advantage). Therefore, unless models are tested on a level ground, it is 

often difficult to bring out their accuracies and inaccuracies specific to a storm and the 

discrepancies they might exhibit. One of the ways to eliminate model discrepancies, 

which I will show later in the discussion, is through a cross-correlation analysis. 

I did not branch out too much while looking for different metrics to validate 
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Figure 3.20 : Model 7 learning histories corresponding to table 3.6 (thick curve is the 
test data and thin curve is the training data). AE*+1 = f(BIt, BIt-1, ..., BIt-n)> n — 
8,9. 

Table 3.9 : Predict AE*+3 from BI 

ANN Parameters 

# Model 8 Inputs 
Total 

Inputs 

Hidden 

Nodes 

LR 

7 

RMSE 

Training 

RMSE 

Test 

ARE* 

Test 

1 BIt 1 50 0.001 134.05 131.16 0.356 

2 BIt, BI4 - 3 2 50 0.001 134.32 133.22 0.364 

3 BIt, BI t_3, BI*_6 3 52 0.001 131.03 135.82 0.369 

4 Bit, BIt-a, ••• Bit. - 9 4 52 0.001 131.21 133.06 0.355 

5 Bi t , BI t -3 , ••• , BIt_ 12 5 52 0.001 130.90 137.71 0.370 

6 Bi t , BIt_3, ... , BIt_ 15 6 52 0.001 129.73 130.72 0.362 

7 Bi t , BI t -3 , ••• , BIt_ 18 7 52 0.001 131.67 138.81 0.361 

8 Bit, BIt-3, ••• , BIt_ 21 8 52 0.001 127.92 132.89 0.334 

9 Bi t , BI t -3 , ••• , BIt_ 24 9 52 0.001 127.77 132.71 0.367 

10 Bi t , BI t -3 , ••• , BIt_ 27 10 54 0.001 128.44 133.41 0.347 

*AE > 500 nT 
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Figure 3.21 : Model 8 learning histories corresponding to table 3.6 (thick curve is the 
test data and thin curve is the training data). AEf+3 = f(BIt, BIt~3, --., BIt-n*3), n = 
0,1,...,7. 
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Figure 3.22 : Model 8 learning histories corresponding to table 3.6 (thick curve is the 
test data and thin curve is the training data). AE^+3 = f(BIt, BIt~3,..., BIt-n*3)1 n = 
8,9. 

these models, but remained mostly within the confines of the basic statistics that are 

commonly noted in the literature. 

3.5.1 Skill Scores 

Forecasts that are based on a well-defined set of threshold limits are known as cat-

egorical forecasts; "categorical" means that the forecast consists of a flat statement 

that one and only one of a set of possible events will occur [Wilks, 1995]. Predictions 

that require "Yes/No" answers, for example, "Will Kp exceed 6?" are needed for 

certain applications, for example, protection of hardware resources or mobilizing an 

observer network. For some of these applications (e.g. alerting observer networks), 

one wants to minimize "false alarms"; for other applications, such as protecting del-

icate equipment, one wants to minimize "misses" while allowing a few false alarms. 

One can determine a discriminator level (in BI) for each trigger level (in Kp), that 

either minimizes the misses or minimizes the false alarms. 

A skill score can be computed that takes all the above-mentioned factors into 

account. Conventionally, in a categorical forecast the outcome of the forecast events 
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Table 3.10 : Contingency Table 

Observations 

Yes No 

Forecasts 
Yes a b 

Forecasts 
No c d 

are conveniently displayed using an i x j contingency table with i x j representing the 

possible combinations of all possible events. Table 3.10 displays a definitive way to 

quantify the performance scores of the training set using total skill statistics (TSS), 

a most commonly used skill score to summarize a 2 x 2 contingency table. In this 

study, I choose the Heidke Skill Score (HSS) to represent my forecasting scheme. HSS 

is defined by [Wilks, 1995]: 

H S S = (a + c)(c + rf) + (a + 6)(6 + rf) ( 3 ' 1 2 ) 

where a is the number of "hits", c is the number of "misses", b is the number of "false 

positives" and d is the number of "correct rejections" for a given sample, thereby 

constituting the 2 x 2 contingency table. A perfect forecast receives a HSS score of 1 

while a random forecast receives a score of 0. 

We can also express the probability of detection (POD) using the entries in table 

3.10 as 

POD = (3.13) 
a + c 

For a perfect forecast the POD is 1, and 0 for the worst. Similarly, the false-alarm 

rate (FAR) is expressed as 

FAR = (3.14) 
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Perfect forecast get a FAR of 0, and the worst FAR is 1. In concurrence with the 

Heidke skill score (given by equation 3.12) and the linear correlation coefficient r, the 

forecast accuracy of the models is also characterized by RMS error as defined by 

RMSE = \ 
1 N 

(3.15) 
t=I 

and, prediction efficiency (PE) defined as 

PE = y/r, (3.16) 

where 
N 
£ P W ] 

^ = „ " , (3-17) 
[ £ X t ' 2 ] V 2 [ E y / 2 ] 1/2 
t=i t=i 

where r, Xt, Yt represent the linear correlation coefficient, predictions and the actual 

values respectively. X' = Xi — X and Y' = Yi — Y represents the deviation from the 

mean. 

3.5.2 Tests of Significance 

The linear correlation coefficient r can be useful in assessing the significance of a 

linear fit intrinsically; for "good" correlations (r values close to +1), the points have 

the tendency to be on a straight line. However, inherent data uncertainties or a few 

outlying data points could worsen the fit. Moreover, one cannot make an objective 

judgement on the fairness of a fit merely based on correlation coefficient alone. Non-

linear relationships between the two variable X and Y mentioned above may not 

be recognized using linear correlations, and the correlations may be too sensitive to 

one or a few outlying pair of points [Wilks, 1995]. Therefore, model comparisons 

and analysis of verification statistics performed through linear correlations using a 
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joint distribution of the forecasted and the observed values should go beyond simple 

correlation coefficients to substantiate their significance. 

A fair number of test choices, formally known as "tests of significance", are avail-

able to unravel the quantitative significance of a statistical sample. To start off a 

hypothesis test, we define a "null distribution" along with the test level, a 5% re-

jection level is commonly chosen. Typically, a "null hypothesis" will be a trivial 

argument that one wants to defeat while defining it will be most crucial step in any 

tests of significance. 

For example, a t-test of a correlation coefficient can investigate whether the dif-

ference between the sample correlation coefficient and zero is statistically significant. 

Naturally, the "null hypothesis" is defined for the linear correlation of the sample 

as being zero. One can then calculate the one-sample t-statistic using the student's 

t-distribution through [Kanji, 1999] 

where n - 2 represents the total degrees of freedom, and n being the sample size. 

The t probability distribution is similar to, but has heavier tails than the Gaussian 

distribtution [Wilks, 1995]. If the t-statistic value ends up in the region that is 

sufficiently far from the rejection level, then the null hypothesis is rejected as too 

trivial to have been observed. 

Z-tests are more appropriate to investigate the level of significance of r with 

respect to a specified value say po where, r and po are both derived from the same 

distribution. One can write the Z-test statistic using 

(3.18) 

Zi ~ Hzi (3.19) 
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where 

Zi = ogez ; /xzi = ~loge- ; aZi = , ? (3.20) 2 1 - r 2 1 - po y / n - 3 

Further, we also assume that the sample distribution of the variables, used to 

arrive at r, are both normal distributions, have independent variances and have a 

linear relationship between them. 

3.5.3 Autocorrelation Function 

An autocorrelation function or a temporal autocorrelation computes the correlation 

of a variable with its past and future values of a time series or waveform. It is given 

by 

N—k 

E (XtXt+k) - (N - k)X2 

Tk = (3.21) 
£ X't2-NX2 

t=I 

where rk denotes the autocorrelation coefficient and k denotes the lagged time step. It 

is done by comparing two time series i.e., a given series is compared with itself except 

they are time shifted by a unit in time relative to each other; the time shifts are called 

"lags" and the unit of time is defined by the sampling interval. The equation (3.21) 

is the most commonly used function to compute lagged correlations and resembles 

the form of (3.17). An autocorrelation of a time series with itself is 1 i.e., TQ = 

1 meaning unshifted time series produces perfect correlation with itself. Thus, the 

autocorrelation function is simply the collection of correlations at various time lags. 

In order to study the effects of "persistence", one would want to know the lagged 

correlation at a time step of +1 or -1. However, it is also very common to compute 

the correlations at other time steps to understand other effects. For example, it is 

used to study the magnetospheric response time to the solar wind, which is roughly 
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non-linear and varying over several hours. In forecasting terminology, if the auto-

correlation plot doesn't decay towards zero after a few hours/days then making a 

reasonably accurate forecasts in that time range should be fairly easy [Wilks, 1995]. 

A cross-correlation on the other hand compares two distinct time series at various 

lags. Conceptually, it is similar in idea to using linear correlations but with various 

lags as in autocorrelations. We simply extend the idea of autocorrelation to a bivari-

ate time series in order to understand the inherent associations, between solar wind 

data and geomagnetic activity, for example. 



Chapter 4 

Solar Wind-Magnetosphere Coupling 

This chapter presents a brief overview of the fundamentals of the Earth's magneto-

sphere, physics of the solar wind-magnetospheric coupling, and the physical processes 

governing magnetospheric convection. It will also discuss the BI's applicability to 

space weather. 

4.1 Solar wind-Magnetospheric Interactions 

The Earth's magnetosphere is a giant cavity in the interplanetary space above the 

Earth's atmosphere where the energy density is dominated by the geomagnetic field. 

One of the key constituents of the causally coupled solar-terrestrial system is the solar 

wind, a supersonically flowing magnetized plasma originating at the solar corona. It 

is a continuous stream of ionized gas composed primarily of hydrogen, secondarily 

of helium and traces of other heavier elements. In the vicinity of the Earth, the 

solar wind speed is highly variable, typically falling in the range of 200-800 km s - 1 . 

When the supersonic solar wind flow interacts with the magnetosphere, it forms a 

standing bow shock that slows and deflects the solar wind. Furthermore, it alters the 

size and shape of the magnetosphere, and the energy input into the magnetosphere, 

making the system quite complex. The boundary between the solar wind and the 

magnetosphere is called the magnetopause. 

The three principal pressure components of the solar wind which determines the 

size and shape of the magnetosphere, in addition to being responsible for the momen-
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turn transfer into the magnetosphere, are the dynamic pressure (pt%w), the thermal 

pressure (nkT) , and the IMF pressure (B2/2p0). The magnitude of dynamic pres-

sure typically far exceeds the thermal and magnetic pressures by at least an order of 

100 [Russell, 2007], and as a result, it plays a significant role in controlling the gen-

eral morphology of the magnetosphere. Under steady-state conditions, the resulting 

configuration of the magnetosphere is such that the distance to the dayside mag-

netopause (the standoff distance) is compressed at « lOR^, where the geomagnetic 

field pressure (B 2
M S /2 f i 0 ) balances the solar wind pressure (figure 4.1). On the night 

side of the earth, the solar wind stretches the magnetosphere into an elongated tail. 

The solar wind transfers momentum and energy by applying forces normal to the 

Figure 4.1 : Pressure balance between solar wind dynamic pressure and magnetic 
pressure of the magnetosphere. Plasma pressure is normal to the magnetopause. 

magnetopause or tangentially stressing across the magnetopause to produce various 

large-scale processes of the Earth's magnetosphere ranging from auroras to particle 
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injection in the magnetotail causing ring currents. Although most of its energy flux is 

diverted away by the magnetosphere, a sufficient fraction of it is trapped by the mag-

netosphere where it is temporarily stored, and eventually dissipated through a range 

of different mechanisms (e.g., Joule heating in the high-latitude ionosphere, particle 

precipitation). The solar wind-magnetosphere coupling transfers the available energy 

into the magnetosphere via both "magnetic" or "non-magnetic" processes. Magnetic 

processes are those which imply interaction between the solar wind magnetic field 

and the geomagnetic field, whereas non-magnetic processes are those which involve 

viscous-like interactions generated via some micro- or macro-instabilities [Baumjo-

hann and Paschmann, 1987]. 

We can apply the laws of ideal MHD fluid dynamics to learn about the solar 

wind-magnetosphere interactions because the scale lengths existing within the plasma 

(e.g., ion gyroradius, collisional length) are small compared to the size of the space 

structures such as the magnetopause or the bow shock. Since the solar wind con-

stituents are ionized, and therefore highly conductive, it is generally safe to assume 

that the flux within the plasma is "frozen into" the plasma, a result first obtained 

by Hannes Alfven in 1942 using an ideal MHD fluid approximation. Moreover, in an 

infinitely-conducting magnetized plasma, a steady bulk flow with velocity v requires 

the existence of an electric field in its rest frame, satisfying the ideal MHD condition 

E = - d x B (4.1) 

where v is the velocity in km/s, E is the electric field in pV/m, and B is the mag-

netic field in nT. A property of equation 4.1 is that, particles in a plasma attached 

to a certain field line will continue to remain on that field line, with their particle 

motions perpendicular to the field. Thus one can imagine a "flux tube" moving as 

a single entity. The following section describes various processes driving the solar 
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wind-magnetosphere coupling. 

4.2 Magnetospheric Convection 

One of the main processes that results from the solar wind-magnetospheric interac-

tions is magnetospheric convection. In MHD, while the term "convection" refers to 

the bulk motion of the plasma, "magnetospheric convection" describes the circula-

tion of plasma in the magnetosphere and in the magnetically-connected ionosphere. 

Plasma flow patterns over the polar regions have been recorded by ground-based in-

struments to show that it flows anti-sunward (noon to midnight) in the outermost 

layer of the magnetosphere and in the high-latitude regions of the ionosphere and then 

back to the dayside in the inner magnetosphere and in the low-latitude ionosphere, 

thereby completing the circulation [Hill, 1983]. It has been realized since the 1950s, 

that these are roughly stationary magnetospheric flow patterns occurring on both the 

dawn and dusk side which appear to mimic thermally driven convection cells, and 

hence the term convection. The magnetospheric convection system, hereafter called 

simply, convection, can be described either in terms of the local electric field E or the 

plasma bulk velocity v using equation 4.1 which may be measurable using any low 

orbiting spacecraft that can detect ionospheric flow patterns. 

This bulk motion has been ascribed to two leading mechanisms: magnetic recon-

nection of terrestrial field lines and the IMF (open-model); and viscous interaction-

driven closed-model magnetosphere. 

4.2.1 Open and Closed Models 

Axford and Hines (1961) proposed a "closed-model" where they assumed a "viscous-

like" component being responsible for the solar wind and magnetosphere interaction 
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to generate streamlined convective flows as shown in figure 4.2. They pointed out 

that viscous-like "non-magnetic" interactions arise from viscosity generated through 

macro- or micro-instabilities occurring near the magnetopause (e.g., Kelvin-Helmholtz 

instability, gradient drift, diffusion) as the solar wind flows past the Earth and carried 

to depth by a form of hydromagnetic eddy viscosity [Axford and Hines, 1961]. Any 

friction along the boundary would provide a mechanism for solar wind to transfer 

momentum into the magnetosphere. This fluid-like behavior is reminiscent of a falling 

raindrop experiencing viscous drag near the droplet/air interface which led them to 

suggest the resulting closed circulatory patterns inside the magnetosphere. It is a 

classical view that isolates the planetary magnetosphere from interplanetary space 

and IMF through a closed magnetic boundary, and is therefore called a "closed-

model" . The geomagnetic field lines at low-latitudes having both ends on the Earth 

with a roughly dipole shape are referred to as "closed" field lines; the model also 

includes longer high-latitude lines diverging from the Earth to the magnetospheric 

tail. 

Figure 4.2 : Equatorial convection pattern in a closed magnetosphere due to viscous 
interaction between the solar wind (Sun is to the left) and the magnetosphere, as 
envisioned by Axford and Hines (1961). 



104 

Here, the magnetopause is assumed to be a closed boundary and the magnetic 

field lines are not allowed to cross the solar wind-magnetosphere interface. Their 

model postulates that a part of the solar wind momentum is transferred across the 

boundary of the magnetosphere to the plasma within. A convective flow carries the 

plasma anti-sunward and towards the tail, and is constrained to remain within the 

magnetosphere as the material is tied to the geomagnetic field. But under steady 

state conditions, an excess build-up of the material near the tail cannot continue 

forever. Consequently, a tail pressure build up causes a return sunward flow then 

completes the convection around the region closest to the Earth, resulting in a two-

cell circulatory flow pattern with the field lines mapping to the polar cap as shown in 

figure 4.3; the anti-sunward flow occurs on the geomagnetic field lines just within the 

magnetopause boundary. Taking E = — i n (2.1) implies = 0, and therefore, 

the observed plasma flow lines are also the electric equipotentials. 

Several in-situ measurements (e.g., AE-C, AE-D and S3-3 satellite data) have 

confirmed two-cell convection patterns and obtained voltage drops of 40-70 kV [Stern, 

1996]. The observed efficiency from this mechanism , however, can only explain 10% of 

mass and momentum transfer overall [Baumjohann and Paschmann, 1987]. Therefore, 

there must be some other mechanisms besides the viscous processes contributing to 

the convection, especially during strong IMF conditions. 

In an alternate model, Dungey (1961) applied magnetic reconnection, rather than 

viscous-like interaction, to magnetospheric physics to propose a new theory of convec-

tion, called the "open-model"; it "opens" the magnetosphere for magnetic flux and 

solar wind to cross the magnetopause at magnetic neutral points and lines [Parks, 

1992], It introduced the idea of polar cap convection produced by magnetic recon-

nection between the Earth's magnetic field and southward IMF. Here, the magnetic 

tension due to newly-reconnected field lines near the subsolar X-line (denoted by 1 
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Figure 4.3 : Schematic view of the two-cell convection pattern over the polar cap 
shown in the geomagnetic latitude coordinate system [Kivelson and Russell, 1995]. 

and 1' in figure 4.4) transfers the solar wind momentum to the magnetosphere and 

ionosphere by dragging the field lines and plasma with it. A second X-line is formed 

in the distant tail where an open field line from each pole reconnects and allows the 

sunward flow of the flux. The resulting solar wind electric field E (directed from dawn 

to dusk for southward IMF) maps down along the open equipotential field lines over 

the polar cap ionosphere. A schematic sketch representing a reconnection process for 

a purely southward IMF is shown in figure 4.4. As opposed to the closed-model, the 

anti-sunward flow here occurs on magnetically "open" field lines (one foot on each 

pole and one in the solar wind). The rate of energy flow in to the magnetosphere 

is then directly proportional to the rate at which southward IMF flux is convected 

to the magnetosphere and to the dawn-dusk asymmetry of the electric field result-

ing in strong convection. Conversely, for northward IMF, the model predicts a weak 
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Figure 4.4 : Dungey's model of the reconnecting magnetosphere for a purely south-
ward IMF [Adapted from Kivelson and Russell, 2007], N denotes the neutral point 
(B = 0), formed near the equatorial plane. 

polar cap convection and solar wind electric field E, and therefore, does not pro-

vide a strong coupling between the solar wind and the magnetosphere. This model 

also proposed two-cell convection patterns which qualitatively resemble those of the 

closed-model. Its major success over the closed-model is that it predicts both an in-

crease of strength with the negative z component of the IMF and a skew in direction 

with the y-component. Spacecraft observations have successfully associated various 

IMF orientations with the magnetic merging mechanism and resulting convection pat-

terns [e.g., Crooker 1979; Reiff and Burch, 1985]. Some of the effects associated with 

dayside merging that have been observed are dayside magnetopause moving inward, 

auroral zone displaced equatoward, substorms etc. 

While both these models can coexist continuously and, by no means, are mutually 

exclusive [Cowley, 1982], their relative importance is very different. Tests of these 

predictions show that open-model or the IMF-dependent dayside merging mechanism 
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is dominant with theoretical and observational estimates suggesting that it accounts 

for roughly 80% of the total potential required to drive convection. Nevertheless, for 

over four decades, both the models have stood out for their contrasting, but deep 

insights to magnetospheric convection, and for providing the fundamental basis that 

the electric field across the antisunward flow region is a good measure of the solar 

wind-magnetsosphere coupling efficiency. 

4.3 Role of the Ionosphere 

The ionosphere, a partially ionized region in the Earth's atmosphere above 60 km, 

is another important component of the flux transfer process whose role in convection 

cannot be overstated. Field aligned currents (called "Birkeland" currents) are an 

important component of the electrodynamic structure of the magnetosphere that is 

involved in the energy extraction process [Vasyliunas, 1982]. The two major com-

ponents to the field-aligned currents are known as Region 1 and Region 2 currents: 

region 1 currents flow at high-latitudes poleward, flowing down into the ionosphere on 

the dawn side and up on the dusk side, and are produced as a result of the solar wind 

and IMF driving the magnetosphere; region 2 currents, caused by pressure gradients 

in the inner magnetosphere, are the equatorward component of the field-aligned cur-

rents flowing in the low-latitude ionosphere. The Region 1 current system appears to 

persist even during periods of low geomagnetic activity and has a strong correlation 

with the Kp index, while region 2 currents show variable intensities besides being an 

important element of auroral electrojets [Iijima and Potemra, 1976]. 

While the region of the ionosphere over the poles (auroral zone) contains the low-

altitude portion of the open field lines that connect to the solar wind and tail lobes, 

the region around the poles at lower geomagnetic latitudes contain closed field lines 
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threaded to the Earth. In the ideal case, the boundary between open and closed field 

lines is defined by the foot points of the "X lines" (N's in figure 4.4). These field lines 

allow the magnetosphere currents to flow into the ionosphere through the field aligned 

currents to close the circuit, thereby completing the convection process [Iijima and 

Potemra, 1976]. The field-aligned currents related to the sunward return flow in the 

Figure 4.5 : A schematic view toward the sun and over the north polar cap showing 
the region of field-aligned currents. Region 1 and region 2 currents are labeled as Ri 
and R2 respectively [Adapted from Russell, 2007]. 

magnetosphere is shown in figure 4.5. 

The other two important current systems inside the ionosphere are the Pedersen 

current and the Hall currents, both flowing across the field lines. The Pedersen 

current flowing along E, driven by the dawn-dusk electric field, produces enough 

force to maintain the anti-sunward convection. The Hall current is the component of 

E but flows in the direction of -E x B. The amount of current flowing (e.g., magnitude 

of the Birkeland currents) in the ionosphere is largely determined by the ionospheric 

conductivity which varies with solar flux, seen as particle flows; observations have 

Solar Wind 

Dusk D a w n 
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pointed out the existence of conductivity gradients in the ionosphere [e.g., Moses et 

al., 1987; Ridley et al., 2004], The effects of conductance and conductivity gradients 

are such that it creates a dawn-dusk asymmetry in the polar cap potential which, 

in principle, could eventually decide the maximum potential build up over the polar 

caps [Hill et al., 1976]. 

An active area of research that will enhance our understanding of the solar wind-

magnetosphere coupling besides shedding light on processes such as auroras and sub-

storms is the magnetosphere-ionosphere coupling ("MI") coupling. 

4.4 Polar Cap Potential 

The Earth's polar cap is a region of anti-sunward convection, produced primarily as a 

result of the two crucial processes discussed in section 4.2. The measure of the polar 

cap potential (PCP) is a direct measure of the rate of plasma flow through the mag-

netospheric convection system [Reiff and Luhmann, 1986], The convection, if steady, 

can be expressed as an electric field with its integral across the antisunward flowing 

portion called the PCP. This convection persists for nominal solar wind conditions (v 

~ 400 km s - 1 , B ~ 10 nT). PCP, driven by the solar wind, is the fundamental mea-

sure of the coupling rate between the solar wind and the Earth's magnetosphere; it 

also corresponds to the ionospheric plasma flow that is a low-altitude magnetospheric 

phenomenon. The existence of convective cell patterns over the polar cap have been 

duly confirmed and measured through high latitude observations from low-orbiting 

spacecraft (e.g., OGO-6 [Heppner, 1972]; AE-C and AE-D [Reiff et al., 1981]; S3-2 

data [Doyle and Burke, 1983]; S3-3 data [Wygant et al., 1983]; DMSP data [Boyle et 

al., 1997]). Richmond and Kamide, [1988] developed a technique called Assimilative 

Mapping of Ionospheric Electrodynamics (AMIE) combining both ground- and space-
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based measurements for mapping high-latitude electric fields and currents; measure-

ments ranging from electric fields from radars and satellites to magnetic perturbations 

obtained from ground-based magnetometers. Ruohoniemi and Baker [1998] applied 

high-frequency radars of the the Super Dual Auroral Radar Network (SuperDARN) 

to get measurements of the E x B drift of ionospheric plasma over extended regions 

of the high-latitude ionosphere. 

Each of these observational techniques has its own limitations, either spatially or 

temporally. For example, flow or electric field measurements in the upper ionosphere 

of low-orbiting satellites yields a value every 90 minutes from each polar cap, and 

though radars and magnetometers operate on a 24x7, 365-days-per-year basis, their 

spatial resolutions are limited. Geomagnetic perturbations could not be predicted 

using such low-cadence, low-altitude field measurements, however. Instead, space 

weather predictions focus on the search for coupling functions using the solar wind 

parameters such as its mass density, bulk velocity, and its magnetic field strength 

which can be measured upstream from Earth. Estimates of the PCP from the so-

lar wind through empirical [e.g., Boyle et al., 1997; Newell et al., 2007; Reiff and 

Luhmann, 1986] or theoretical approximations [e.g., Hill et al., 1976; Siscoe et al., 

2002a], available in the literature, provide an easy way to characterize the strength 

and magnitude of the convection system. In a closed scalar form ($), its magnitude 

ranges from as low as 10 kV to as high as 240 kV [Hairston et al., 2003]. 

In this dissertation, we focus on functions derived from the solar wind and IMF 

as best estimates of the PCP. Vasyliunas et al [1982] gave a quantitative estimate of 

the PCP, through dimensional analysis, of the form 

$ p c p = vswBTLCfQ{0, M\) (4.2) 

where Br is the projection of the IMF on the solar magnetospheric y-z plane, Lcf is 



I l l 

the Chapman-Ferraro scale length, and Q (9, M^) is a dimensionless function of two 

variables, M^ the Alfven-Mach number, and 9 is the clock angle as shown in figure 

4.6. They also argue that the two other dimensionless quantities that can occur in this 

expression are the Pederson conductivity (EP) and the Reynolds number related to 

measuring the relative importance of the inertial to viscous effects. Several merging 

models of the form of equation (4.2) [e.g. Sonnerup, 1974; Gonzales and Mozer, 

1974] have been developed and tested observationally [e.g., Doyle and Burke, 1983; 

Reiff et al., 1981; Wygant et al., 1984]. The conclusions from these studies are that 

measured potentials during storms are consistent with the theoretical merging rates, 

while during periods of strong northward IMF processes other than reconnection 

mainly contributes to the PCP. 
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Figure 4.6 : The Geocentric Solar Magnetopsheric (GSM) coordinate system. X-axis 
points to the Sun and the dipole is in XZ plane. Y-axis is perpendicular to the 
Sun-Earth line and point towards the dusk side. 

Fundamentally, an effective increase or decrease in solar wind speed, strength of 

field, or a change of IMF orientation causes the cross-magnetospheric electric field 

to change, and hence the PCP. Convection patterns are known to vary with the 
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orientation of the IMF, particularly its Bz, as expected from the merging mechanism, 

and to the magnitude of the solar wind speed. It is now accepted, based on the 

observations discussed above, that as the IMF Bz decreases, the cross polar electric 

field increases and consequently, the PCP increases linearly up to ~160 kV [Reiff 

and Luhmann, 1986] corresponding to an upstream solar wind electric field of ~ 

6 mV m _ I . Convection also arises due to magnetic merging between the IMF and 

magnetotail field lines, during periods of northward IMF (Bz > 0) [e.g., Russell, 1972; 

Reiff, 1982; Zanetti et al., 1984], resulting in convection cells known as "lobe cells" 

[Reiff and Burch, 1985]. However, during such times the measured PCP was strongly 

influenced by the number of hours IMF remained northward [Wygant et al., 1983]. 

All these studies led to two major quantitative conclusions about the extrema of the 

PCP estimates, the existence of "residual" and "saturation" potentials. 
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Figure 4.7 : Hourly averages of PCP are plotted against |B| for 2006-2007 using the 
Hill-Siscoe formulation [Siscoe et al., 2002a]. PCP asymptotes around 160 kV. 

Empirical studies focussing on correlation between the IMF and PCP substanti-

ated the presence of strong residual effects resulting in "residual" potentials, which 
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were later ascribed to "viscous" processes. A observational study by Wygant et al. 

[1983] measured these residual potentials to point out that only 10-20 kV can be from 

viscous sources, consistent with the theoretical expectations [e.g., Hill, 1979; Pu and 

Kivelson, 1983] and experimental data [e.g., Sanders et al., 1980; Mozer, 1984], On 

the other extreme, when the IMF amplitudes are large (\B\ >10 nT), PCP tends to 

saturate around 150-200 kV (figure 4.7). 

The effects of polar cap "saturation" is now quite well understood through several 

observations and techniques, and will be discussed in detail in section 4.6. Thus, a 

simple relationship between the IMF and the PCP cannot be found over their whole 

dynamic range. We now turn our attention to the Boyle potential, another form of 

solar wind-magnetosphere coupling function. 

4.5 The Boyle Index: A Solar wind-Magnetosphere Coupling 

Function 

As large volumes of the IMF data became more and more available, a large number 

of quantitative relationships have emerged to parameterize the coupling between the 

solar wind and the magnetosphere [e.g, Reiff and Luhmann, 1986; Newell et al., 2007; 

Siscoe et al., 2002a; Weimer, 2001; Wygant et al., 1983]. While some of them had 

theoretical motivation, the rest were purely empirical. The details involving the polar 

cap convection processes are becoming clear with a wide array of studies to date, and 

such studies have made the distinction between the "viscous" and "merging" terms 

contributed by solar wind plasma and IMF data respectively; some of the commonly 

noted viscous terms in the literature are n, v, nv, p, p1/3, p1^2, v2 etc, and some 

commonly used merging terms are Bs, vBT, vB2sinA(6/2) etc. One of the benefits of 

applying this concept of coupling functions to space weather is underscored by a recent 
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finding by Newell et al. [2007] that the presence of a solar wind-dependent viscous 

interaction term and the IMF-dependent merging term in a solar wind coupling func-

tion makes it a good candidate to describe the state of the magnetosphere system over 

a wide variety of magnetospheric activity [e.g, vBTsin4(#c/2), v4/3BTsin4(#c/2)p1/ /6, 

vBy2/3sin8/3(#c/2) for merging terms; n, v, nv for viscous terms] . 

One such relationship is the Boyle potential or the Boyle Index (BI), an empirical 

formula derived by Boyle et al. [1997] through an analysis comparing 3.5 years of 

Defense Meteorological Satellite Program (DMSP) flow data to solar wind parameters. 

It approximates the steady state PCP through solar wind and IMF, with its best fit 

formulation given by: 

$ = 1 0 - S L + 11.7Bsin3{9-) kV, (4.3) 

where vsw is the solar wind velocity in km/sec, B is the magnitude of the interplanetary 

magnetic field (IMF) in nanoteslas, and 6 = arccos(Bz/B)c5M [Boyle et al., 1997], 

This is a steady-state model in that they imposed a 4-hour steadiness criterion to 

the IMF in their study. The viscous or IMF-independent term here ( l O - 4 ^ ) is 

proportional to the solar wind flow energy, and it contributes 16 kV (assuming vs„, = 

400 km sec - 1 , 9 — 0 for Bz northward), consistent with observations ranging between 

10-20 kV from viscous contributions [e.g., Wygant et al., 1983] while during extreme 

solar wind conditions caused by high-speed streams, the viscous contribution can 

reach ~30 kV. Furthermore, their IMF-dependent "merging" term does not depend 

on the solar wind pressure significantly. In general, an hourly-averaged BI is a good 

predictor of the polar cap potential drop for sufficiently long and steady periods of 

solar wind and IMF, and for BI less than 160 kV. However, beyond 160 kV, the BI 

overestimates the PCP. 
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4.6 Polar Cap Saturat ion 

One of the earliest studies on polar cap voltage "saturation" was done by Hill et al. in 

1976. They theorized that during periods of sufficiently large IMF, region 1 currents 

driven by the solar wind produce magnetic field perturbations that are comparable 

and opposite to the local field, eventually limiting the rate of dayside reconnection 

and placing an upper bound on the PCP. As a result, ionospheric line-tying restricts 

the convection at larger potentials while the convection due to dayside reconnection 

dominates at lower limits. This result is elegantly put in a simplified form, called the 

Hill model, as follows: 

^ + < & S ' 1 j 

where $p c p approaches $5, the saturation potential for <E>m ^ and (I>pcp approaches 

$ m , the magnetospheric convection potential for <C In other words, $p c p is 

limited by the smaller of and $5. Recently, Siscoe et al., [2002a], starting from 

the Hill limiting expression of (4.4), provided a quantitative expression for the PCP as 

a function of the solar wind parameters and the ionospheric (Pedersen) conductivity. 

They also pointed out that an external mechanism in the form of solar wind Alfven-

Mach number decrease might influence the potential, possibly causing the saturation. 

The quantitative form of the Hill-Siscoe potential is given by: 

57 .QEswPl
sl*D^F{d) 

Ps
l12D + 0.0125£E pEswF{9) 

where Esw = \VSW x Bsw\ is the upstream solar wind electric field, Psw is the ram 

pressure exerted by the solar wind, D is the Earth's dipole field, F(#) = sin2(#/2), 

£ is a dimensionless coefficient based on the currents in the ionosphere, Ep is the 

Pedersen conductivity obeying the relation £ = 4.45 — 1.08 log(Ep/lS). 
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Figure 4.8 : A 11-year data (using 1-hour averages) comparing the Boyle index (black 
diamonds) with the Hill-Siscoe model (open circles) as a function of solar wind electric 
field. While the former shows a linear rise, the latter asymptotes to a constant value 
for large electric fields. 

Polar cap voltage saturation has been studied by several authors in the past us-

ing a variety of observational techniques (e.g., satellite probes, radar measurements, 

magnetic measurements). We now have enough evidence to substantiate the theory 

of saturation. Hairston et al. [2003], using the DMSP spacecraft observations of the 

October and November 2003 superstorms, showed that saturation of the polar cap 

potential generally follows the Hill-Siscoe model [Siscoe et al., 2002a], with satura-

tion potential in the range 160-250 kV. Recently, Ridley [2005], examined 13 different 

events and clearly showed evidence of saturation, and further showed that saturation 

tends to occur when the solar wind Mach number decreases (externally). However, a 

couple of issues still remain to be addressed: the ways of determining if saturation is 

caused by an internal or external mechanism, and to what extent; and determining 

the true value of the saturation potential. Further studies are required to answer 

these questions. I have compared the BI with Hill-Siscoe formulation using 11 years' 



117 

worth of data (1997-2007) using hourly cadence, illustrated in figure 4.8. Here, the 

Pedersen conductivity (Ep) for the Hill-Siscoe model is 10, a model parameter. 

4.7 Newell functions: another coupling formula 

Newell et al. [2008], from a rigorous analysis, have shown that the single coupling 

function from the solar wind is enough to predict a wide variety of magnetospheric 

phenomenon without relying on the time history of the target index. Just like the 

BI, their coupling function contains a magnetic-merging term and a viscous term. 

Using their merging term (d&Mp/dt = VSW Brp sin 8/3(6>/2)) alone, they were able to 

correlate 9 out of 10 indices of magnetospheric activity including the Kp and the 

AE index. However, combining their top-performing viscous function ( n 1 / / 2 ^ ) with 

the merging term provided the best combination overall to predict up to 61% of 

variance across all indices. Their merging term is proportional to the rate at which 

the field lines are convected towards the magnetopause (f), the strength of the IMF 

(B t ) , the length of the merging line and the probability of field lines impacting the 

magnetosphere (obtained from empirical fit). The one index that is of specific interest 

to the work of this thesis is the Kp index. They approximated the Kp index through: 

Kp = 0.05 + 2.244 x + 2.844 x 10~Gn1/2v2 , (4.6) 

withj ^ML = v^B2
T

/3sin8/3(d/2), 9 = coS-l{Bz/\B\) (4.7) 
(JjL 

After studying two 11-year periods for Kp they conclude that their function can 

predict the variance in Kp up to 75%, r = 0.866 (see figure 4.9). Furthermore, and 

interestingly, they claim that it is quite simple to use just two physics based terms to 

predict Kp better than an optimally trained neural network. 
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Figure 4.9 : Kp predicted using equation 4.6, Newell et al., [2008]. 

4.8 Boyle Index: Effect of Preconditioning Events 

Coronal mass ejections (CME) from the sun, large solar flares, magnetic cloud-driven 

storms and high-speed solar wind streams are often responsible for causing dramatic 

disturbances in the magnetosphere resulting in powerful geomagnetic storms. Re-

cently, several studies have examined the geomagnetic storm drivers in the context of 

space weather forecasts [e.g., Lavraud et al., 2006; Borovsky et al., 2006; Wu et al., 

2002]. A preconditioning event tunes the magnetosphere to a specific state as a func-

tion of the preceding solar wind and IMF conditions before the onset of a storm. For 
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example, a prior substorm could increase the ionospheric conductivity and/or provide 

a seed ring current population that will be injected farther in by a following substorm. 

Preconditioning is also caused by a colder and denser plasma that is convected inward 

leading to increased ring current development as well as contributing to the plasma 

sheet during the main phase of a storm. An increased ring current development is 

typically associated with magnetospheric and ionospheric disturbances. 

Figure 4.10 presents an example of a preconditioning event. It shows a time series 

plot of the solar wind, magnetospheric and Kp index values of a storm (BI > 200 

kV; Kp > 6) that occurred on 14 April 2006. The Dst index is commonly used to 

measure the strength of the ring current which in this case is, Dst < —110 nT. This 

event has been chosen for its steady high Boyle index lasting over 5 hours (> 194 

kV). Despite the steadiness of the Boyle Index, the Kp index showed a steady rise, 

remaining at 6 or higher for a duration of 9 hours, illustrating the non-linearity of the 

response. Success of a forecast algorithm, therefore, depends on training the network 

with preconditioning events and the magnetospheric response to such events. Due to 

the limitations imposed by the learning algorithms, it may not be feasible to look back 

into a preconditioning event and the whole storm interval simultaneously beyond 9 

hours-for an average storm, it would mean that one would have to weight the inputs 

for as long as 20-25 hours in order to achieve that. However, the models 2, 4, 6 and 

8 (see chapter 5) have a time resolution of 3 hours and in principle, should be able to 

capture both the preconditioning and the storm more thoroughly. 

4.9 The BI and space weather 

The BI plot (figure 1.11) was launched into real-time mode in Oct. 2003, purely for 

a scientific and educational motive. It is available from h t t p : / / s p a c e . r i c e . e d u / 

http://space.rice.edu/
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Figure 4.10 : Time series plots of the ACE and a few geomagnetic indices following a 
CME in April 2006 (3-hour averages). From top to bottom: (a) derived Boyle index, 
(b) Bz (IMF), (c) official Kp values, (d) the Dst, and (e) the AE index. 

ISTP/wind.html as a courtesy of the Rice Space Institute. Since its inception, the 

subscribers to the "spacalrt" mailing list receive email notices whenever the 10-minute 

BI average exceeds 200 kV, called "red alerts". In over 6 years of real-time operations, 

it has enjoyed a lot of success and no major storm (Kp > 6) has been missed, which 

demonstrates its value as a forecasting tool. 

The BI calls for steady-state conditions to prevail in the IMF for at least four hours, 

whereas this whole study is based on 1 and 3-hour averages of the BI. However, by 

setting up a non-linear neuron model through ANNs, we can capture the non-steady 

states in the solar wind by weighting time-integrated BI over time i.e., looking back 

several hours into the past. This is particularly useful to study the processes driving 
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the convection, which tends to be non-linear. Furthermore, the BI does not exhibit 

an apparent saturation effect, but tends to be linear over its whole dynamic range. 

Interestingly, the general linear response of the BI to the solar wind, the observed 

linear correlation between the log(BI) with Kp (figures 1.4) and the BI with Dst and 

AE (figures 1.5) could be high under extreme conditions and in the domain where 

these indices are large. This could be vital for an operational setup, setting limits 

and thresholds for alerts, etc. This study is unique in that it is the first ANN Kp 
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Figure 4.11 : Real-time "snapshot" of the BI (1-hour average) and the NOAA Kp 
during a recent magnetospheric activity on 22 July 2009. 

prediction model to use only a single input (a coupling function) or, at the most, 

two inputs (a coupling function plus the NOAA nowcast-Kp). These claims will be 

tested in the succeeding chapters. Figure 4.11 is an example of a real time plot, and 

in this case, during a magnetospheric activity (22 July 2009) as the new solar cycle 

24, which started in December 2008, begins to ramp up. The success of our ANN 

predictions during this event will be discussed later in chapter 5. 



Chapter 5 

Scientific Results 

This chapter deals with an in-depth analysis of the Boyle Index (BI) as a potential 

forecasting parameter in order to find statistical correlations between the BI versus 

Kp, Dst and AE. A true correlation and a good performance skill score will enable 

us to characterize the global geomagnetic activity indices in terms of the BI which is 

derived from the solar wind. I will apply the Heidke Skill Score (HSS) for a set of 

defined discriminator levels. Simple linear predictors gave us an idea of how well the 

BI can predict the changes in these indices to their next time step. Further analysis 

through cross-correlations will help us ascertain the average magnetospheric response 

time to changes in the solar wind and interplanetary magnetic field (IMF) conditions. 

These insights are particularly useful as we weight and time-integrate both the BI 

and the geomagnetic indices using an artificial neural network (ANN). Furthermore, 

in order to eliminate the statistical uncertainties in the correlation coefficients and 

to rule out the possibility that the results obtained here are not occurrences of mere 

chance, we rely on a large data set to perform the skill score statistics. 

In order to present an unbiased view, part of the data was withheld by random 

selection for the purposes of testing alone. In other words, the data were not part of 

the ANN training. Otherwise, we run the risk of contaminating our scores by bringing 

an "artificial" skill effect into them. This procedure, where part of the data is withheld 

for the purposes of testing, is called "cross-validation". Earlier in this dissertation, 

I introduced this idea, but in a different context i.e., in training an ANN, wherein 
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their primary purpose will be to ensure the minimization algorithm does not under-

or over-fit the data to avoid memorization rather than generalization. 

5.1 Linear Correlations 

A steady BI for a few hours is a good predictor of the polar cap potential drop, which 

in turn is a predictor of magnetospheric activity [Boyle et al., 1997]. During quiet 

times, the BI can drop below 10 kV, and can reach well over 500 kV before or during 

severe storms. My analysis is facilitated by choosing a logarithmic transformation 

to scale the BI and to be in tune with the Kp index which is quasi-logarithmic. A 

scatter plot of a 3-hour average of the logarithm of BI and the following 3-hour Kp is 

shown in figure 5.1 with each quadrant representing either a hit, miss, false positive 

or a correct rejection. In this figure, as an example, the vertical and horizontal lines 

within the plot represents one arbitrary BI cutoff (discriminator level, here 110 kV) 

and corresponding Kp index (5) cutoff. A more rigorous approach is to compute 

the HSS distribution for a specific Kp threshold, say 4, by sliding the vertical BI 

Misses 
633 \ 

L Hits 
• - 1 525 

Correct Rejections _ 
21912 

"i ' 

False Positives 

• ! 306 

0L . ^ ' 
10 10 10 10 

Boyle Index (kV) 

Figure 5.1 : 3-hour averaged log(BI) versus the following 3-hour Kp of a complete 
data set between 1998 and 2005 (r=0.74) [Bala et al., 2009]. 
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Figure 5.2 : Plot shows the 3-hour averaged log(BI) versus the following Kp for 2003 
and 2004 with a linear correlation coefficient of 0.785. Note that the chosen BI cut-off 
in this case is lOOkV while the trigger level is reduced to Kp = 4 [Bala et al., 2009]. 

discriminator through the entire range of available BI values. The logarithm of the BI 

correlates well with the following 3-hour Kp (r = 0.74). We have already established 

that the BI is an overestimation of the PCP above 160kV, and that it is linear with 

increasing solar wind electric field. Unsurprisingly, the correlation is still valid and the 

trend line continues to be linear at higher Kps, possibly because Kp is logarithmic as 

well but also because perhaps, even though the polar cap potential may saturate, the 

overall magnetospheric response may not. Since the BI does not include a saturation 

term, it will overestimate the true potential for major storms. However, since certain 

measures of geomagnetic activity do not saturate, a BI of 300 does imply a stronger 

storm than a BI of 200, even though the actual polar cap potential may turn out to be 

about the same because of saturation. The cut-off shown here has been deliberately 

chosen to emphasize a fact that in the 8 year period we studied, the likelihood of a 

storm, having a Kp index of 5 or higher, exceeds 95% when the average BI over the 

previous three hours is over 110 kV. However, a good number of "misses" occur with 

that discriminator level. Let us look another scenario (figure 5.2) where we reduce 
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the discriminator level to 100 kV, so the number of "misses" decreases, and the "false 

positives" increase. Depending on the kind of forecast and the level of sensitivity 

desired, one can set these cut-offs arbitrarily by trading a few hits for misses, right 

rejections for false alarms, and vice versa. It illustrates that during 2003 and 2004, 

when the BI fell below 100 kV, the number of "right rejections" dominated, suggesting 

that the magnetosphere is typically quiet (Kp index < 4) for BI<100 kV . 
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Figure 5.3 : 1-hour averaged log(BI) versus the following Kp (r=0.71) for an active 
period during 2000 and 2001 is shown here. BI cut-off in this case is 150kV [Bala et 
al., 2009], 

As another example, during active periods of solar maxima, as shown in figure 5.3, 

hourly averages of the BI and Kp are correlated, where the Kp has been oversampled 

to one hour resolution i.e., values of the 3-hour average were smoothed to each of 

the preceding two hours. We identified 2000 and 2001 to have several severe events 

corresponding to their proximity to the maximum phases of solar cycle 23 [see Cane 

and Richardson, 2003]. During some very active periods, an hourly averaged BI can 

exceed 250 kV, in which case the geomagnetic Kp index could be over 7, causing 

major geomagnetic storms and low-latitude auroras to form within the succeeding 

few hours. This general trend of a linear rise in Kp with the preceding BI, regardless 

. .. 

1.50 kV 
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Figure 5.4 : 3-hour averages of the BI is compared against the Dst index for 2006-07. 
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Figure 5.5 : 1-hour averages of the BI is compared against the Dst index for 2006-07. 

of the cadence chosen, is critical to the training of an ANN as well as to space 

weather forecasters searching for solar wind and IMF-based parameters to predict 

magnetospheric phenomena. 

Unlike Kp, correlations of BI with Dst (figures 5.4 and 5.5) and BI with AE (figure 

5.6) are derived by comparing them on linear scales, because both AE and Dst are 

non-logarithmic and vary over a free range. Due to the large scatter in the plots 

discriminator levels are hard to set. The 
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BI (kV) BI (kV) 

Figure 5.6 : 1-hour (left) and 3-hour (right) averages of the BI is compared against 
the AE index for 2006-07. 

5.2 Cross-correlation Analysis 

The Earth's magnetosphere is a highly non-linear and stochastic system. Cross-

correlation analysis is one of the fundamental forms of time series analysis performed 

in the time domain that can offer clues about characteristic time scales of small- or 

large-scale processes. They offer the best choice in dynamical weather forecasts to 

explore the temporal correlations involved in a linear time series, be it uni- or bivari-

ate. We therefore closely examine the BI and Kp using cross-correlation techniques 

in order to better understand the time scales of the solar wind and IMF and their 

influence on the magnetosphere, and hence the resulting Kp. 

In figure 5.7, I plot the estimated crosscorrelation functions of the logarithm of 

BI with Kp. For a 3-hour average (solid line), the strongest correlation (0.79) occurs 

at a positive lag of 3 hour i.e., the solar wind data for the 3-hour average most 

strongly influences the following 3-hour Kp index. Next, I binned the data in 1-hour 

average bins, and analyzed the 1-hour data set separately since our interest lies in 

training the network using both 1-hour and 3-hour averages. We might wonder if the 
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Figure 5.7 : Cross-correlation function of log(BI) and Kp (oversampled) versus the 
time lag. Both 3-hour averages (solid curve) and 1-hour averages (dash-dot) display 
a strong correlation at 3 hour with the BI leading Kp [Bala et al., 2009]. 

1-hour cadence would produce a different result than the 3-hour cadence. Actually, 

an hourly averaged (dashed-dot curve) log(BI) and Kp also has a good correlation 

between them and the strongest correlation (0.76) still occurs at a positive time lag of 

3 hours. Figures 5.8 and 5.9 shows the crosscorrelation function for the BI vs Dst and 

AE respectively. For the Dst, the 3-hr cadence shows good correlations in the 3 to 6 

hour time lags with highest correlation occurring at a time lag of 6 hours. The hourly 

cadenced Dst shows good correlations in the 3 to 6 hour time lags, just like the 3-hour 

averages. AE index shows good correlations in the 2-5 hour time range. There are no 

significant difference in the plots between 1 and 3 hour averages, and a clear trend line 

is visible. The existence of a clear trend line means that successive values are highly 

correlated with each other [Makridakis and Wheelwright, 1978], implying that the 

time series is predictable. This behavior can be seen for both positive and negative 

lags. For positive lags, there is a strong tendency for persistence. For negative time 

lags, however, the opposite is true and the past values negatively influence the future 
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Time Lags (Hours) 

Figure 5.8 : Cross-correlation function of BI and Dst: 1-hour averages (solid curve) 
and 3-hour averages (dashed). 

Time Lag(Hoursi 

Figure 5.9 : Cross-correlation function of BI and AE: 1-hour averages (solid curve) 
and 3-hour averages (dashed). 

values. We can also note that the lagged correlations are extremely small for large 

lags and decay rapidly after several hours, though it does not decay to zero even 

after several hours. We can therefore infer that with Kp, Dst and AE trailing BI, the 

prediction lead-times are in essence decided by the positive time lags. 
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Therefore, forecasts can be made accurately within a time range of 1-6 hours 

where the correlations are significant at 95% confidence level (r > 0.6 from t-tests), 

in concurrence with the discussions we saw earlier about autocorrelations. Therefore, 

by training the preconditioning events using the BI on time scales imposed by cross-

correlation analysis, reliable proxies can be estimated in advance. From an operational 

standpoint, these results strongly suggest the feasibility of using the BI to make short-

term predictions of the magnetospheric activity. 

5.3 Prediction Algorithms 

In this section, I introduce the four Kp, the two Dst and AE algorithms and describe 

their architecture in detail. Also, I will validate and test these models using the 

skill scores described earlier. Furthermore, we will see whether or not "persistence 

contamination" influences the predictions and, if pure solar wind-driven models are 

better for forecasts. 

The question I would like to find the answer to is, is it possible to create stand 

alone algorithms using "only" the BI and have them predict Kp as "efficiently" as 

algorithms using inputs that also use the time history of Kp? Given the amount of 

data and network resources needed, both Kp-dependent and Kp-independent models 

were large and complex to build, requiring a lot of training time. All our models are 

unique in that, unlike their predecessors which were trained using combinations of 

solar wind parameters, this is the first time ever that ANN-based Kp models were 

trained solely using a single input parameter, the BI. Two of my models, however, use 

both the prior Kp and the BI as input parameters. Organizing the data to the ANN 

means using just two input streams: the BI and either of Kp, Dst or the AE. The 

"final" archived geomagnetic data is fairly uninterrupted, but the solar wind data 
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have data gaps. The gaps were discarded before the training i.e., if the time history 

of the data stream specific to a input pattern had unusable points then that training 

pattern was discarded. 

ANN's are good forecasting machines, provided they are well trained. Recall from 

chapter 2, the LM routine, a superior form of the gradient descent algorithm, offered 

the best choice to train my models. Weight optimization or training was achieved by 

adjusting various input parameters via trial and error, primarily through the research 

methodology prescribed in chapter 3. I was able to achieve my desired target error 

by having the network "cross-validate" as it trained, where the total sample was 

segregated equally for training and validation; cross-validation is the best solution 

to prevent "over-training". The training was halted as soon as the error reached 

the desired minimum or when the error on the validation set was acceptable; any 

overtraining will affect network generalization. Monitoring the instantaneous error as 

the training proceeds, manifested in the form of learning curves, is therefore important 

to the success of any learning procedures. The weights are now said to be at their 

closest to the global minimum. 

As discussed earlier in chapter 3, all my models were developed by probing the 

network with different input time resolutions, using 1-hour and 3-hour averages, to 

know if the prediction accuracy varied with both the integration time (or the cadence) 

and the number of inputs i.e., inputs with different time histories. We shall go 

through the results and performance of each algorithm individually in the following 

subsections. 

5.3.1 Model 1: 1-hour lead t ime Kp predictions from BI 

This model took a straightforward approach to build. Our recent success, with 

only a few false alarms, in providing space weather alerts using BI derived from 
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the solar wind and IMF measurements at the LI point (also available in real time 

from h t t p : / / s p a c e . r i c e . e d u / I S T P / w i n d . h t m l ) provides the means to develop this 

model. Although the use of time history of Kp in addition to solar wind inputs pro-

vides good results (e.g. APL Kp models), from a forecast standpoint, if a model 

using solar wind data alone is essentially as effective as models which also require 

nowcast Kp, then simpler functions should be used which avoid the concerns about 

the availability or quantization of the nowcast Kp. Interestingly, in a very recent 

work, Newell et al. [2008] have shown that the use of a viscous term in addition to 

a merging term dramatically improves the predictability of geomagnetic indices such 

as Kp up to 75% (prediction efficiency with r = 0.866) without prior knowledge of 

the target index. 

We use equation 3.4 to predict Kp approximately one hour ahead. Given that 

official Kps are 3-hour averages, data granularity of an hour or less is obtained by 

splines. The network training and validation was done in the manner described in 

section 3.4.2 and the outputs have a lead-time of 1 hour. Setting n = 9, the best 

function is written as 

Kpt*+1 = f(BI t , BI t_!, ..., BI t_9) (5.1) 

The results from the exploratory tests (based on randomly chosen test set con-

taining 20457 total points) performed is listed in table 5.1 (and figures 5.12 and 5.13) 

giving the linear correlation coefficient, the RMSE of the test data, the HSS (with 

Kp discriminator set at 4), and the ARE. Based on the results, the best outcome 

was achieved using 10 hours of BI history. The prediction efficiency of the network 

using the BI as a stand alone to estimate the next upcoming Kp is 93% with a linear 

correlation coefficient of 0.865 between the real and predicted Kp (figure 5.10). The 

figure shows the 95% confidence limit as "prediction bounds" within which the pre-

http://space.rice.edu/ISTP/wind.html
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Figure 5.10 : Model 1: ANN Kp vs measured Kp, r = 0.865. The dashed lines are 
the prediction bounds with 95% confidence limit and the thick line is the linear fit. 

dictions are likely to fall. It can be seen that the predictions are good for high Kps 

with a large scatter in the mid-range. Setting the Kp discriminator at 4, there are 

1169 hits to 310 misses for a HSS of 0.609. Furthermore, when the Kp discriminator 

is set at 6, the HSS is found to be 0.564. The histogram (figure 5.11) uses the best 

function (n—9) to show the predicted values against the measured in 28 different bins 

spanning over the entire range of Kp. 

My finding is that, for 1-hour averages, when the time history reached 6 hours, 

the prediction efficiency barely changed. This finding is consistent with another anal-

ysis by Johnson and Wing [2005] and Wing et al. [2005]. Therefore, introducing a 

sufficient time history guarantees a drastic change in the network dynamics in terms 

of capturing the nonlinearity in solar wind stream but does little to the prediction 

efficiency when it gets sufficiently large. This implies that the algorithm is approach-

ing an optimal solution i.e., the larger the inputs, the slower and harder it is to 
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Model 1: n =9 

Figure 5.11 : Kp distribution for model 1 using the best function, n=9. 

minimize the cost function. One possibility is that the time evolution of the data 

and the time correlations between the solar wind and geomagnetic activity, as seen 

as a steeply declining trend of cross-correlation functions, is limiting the prediction 

efficiency. It offers a practical alternative to provide Kp proxies in a timely man-

ner, without concerns about nowcast Kp availability. This model has been running 

in real time mode for over 2 years now and the predictions can be obtained from 

h t t p : / / space . r i c e . edu / ISTP /wind .h tml . 

As the new solar cycle 24, which started in December 2008, is ramping up, it 

threw a surprise on 22 July 2009 when the 1-hour BI almost reached 200 kV and the 

corresponding 3-hr BI exceeded 160 kV. The success of our model 1 predictions is 

shown in figure 5.14 as white histograms against the black histograms, which represent 

the measured 1-hr Kp oversampled over the same interval. While the high Kp (>4) 

are well predicted by the network, it overpredicts Kp below 3, in agreement with the 

http://space.rice.edu/ISTP/wind.html
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Figure 5.12 : Model 1 test results : Measured (black) and predicted (white) 1-hour 
Kp distribution with each number representing the number of inputs. 
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Table 5.1 : Model 1 summary of results: Kp*,! from BI 

Results 

# Model 1 Inputs 
Time 

History 

Linear 

Corr. 

RMSE 

Valid. 

HSS 

(Kp > 4) 

ARE 

(Kp > 4) 

1 BIt 1 0.769 0.896 0.479 0.243 

2 Bit, BIt_i 2 0.825 0.798 0.560 0.194 

3 BIt, BI t_i, BIt-2 3 0.844 0.749 0.569 0.181 

4 Bit, BIt-i, ...., BIt_3 4 0.855 0.729 0.588 0.176 

5 Bit, BIt_!, ...., BIt-4 5 0.859 0.717 0.577 0.182 

6 Bit, BI t_i, ...., BIt-s 6 0.864 0.715 0.595 0.174 

7 Bit, BIt_i, ...., BIt-6 7 0.865 0.713 0.588 0.178 

8 Bit, BIt_i, ...., BIt_7 8 0.859 0.711 0.595 0.193 

9 Bit, BIt_x, ...., BIt-8 9 0.863 0.714 0.609 0.177 

10 Bit, BI t_i, ...., BIt_9 10 0.865 0.703 0.609 0.173 

test results in figure 5.10. The statistics for the time interval shown in the figure are: 

r = 0.859, HSS = 0.81, RMSE = 0.82. The corresponding results based on the 3-hour 

predictions will be discussed in the following section. 

5.3.2 Model 2: 3-hour lead t ime Kp predictions using only the BI 

We saw earlier through the cross-correlation analyses that the statistical significance 

of the correlation coefficient lasts a few hours before decaying rapidly. The volatile 

nature of magnetospheric dynamics makes it difficult to capture and forecast any 

impending changes shorter than 3-hour duration (as evidenced by the cross-correlation 
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Figure 5.13 : Model 1 test results contd.: Measured (black) and predicted (white) 
1-hour Kp distribution with each number representing the number of inputs. 
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Figure 5.14 : Results of our model 1 predictions from a recent activity. 
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peaks of Kp, Dst and AE in figures 5.7, 5.8 and 5.9 found between 2-3 hours regardless 

of the cadence chosen), and therefore, it might seem a potential downside to this model 

is, perhaps, its time resolution. However, a more practical approach to any advanced 

warning system is to look for a longer lead-time without compromising too much on 

the accuracy. 

The second model, similar to model 1, inputs solar wind parameters to derive 

the BI and predicts Kp 3 hours ahead, hereafter called model 2. This model not 

only extends the forecast range of model 1 but also offers a full 3-hour Kp prediction 

capability every one hour since the BI is generally available at near-real time. The 

network was trained using 3-hour averages of the BI to forecast Kp a full 3 hours 

ahead. The best function is given by, 

Kpt*+3 = f(BI t , B I t - 3 , Bi t - i s ) (5.2) 

Table 5.2 displays the model summary and Kp histograms in figures 5.17 and 5.18. 

Because of the 3-hour scheme, the longest time history the network was able to 

look back was 30 hours. However, the network's prediction performance gradually 

decreased after peaking at 18 hours, n in this case was found to be 5. Therefore, 

using only 7 inputs and 21 hours of time history, we are able to obtain the best results. 

The scatter plot of the official Kp versus the ANN Kp test results (5524 points) is 

shown in figure 5.15, with r = 0.819 and RMSE = 0.823 overall, and HSS = 0.533 

and ARE =0.218 for Kp > 4. The corresponding Kp distribution is shown in figure 

5.16. From these results, and while the cross-correlations between the BI and Kp are 

significantly high, it can be said that a true 3-hour Kp can be predicted just as well 

as model 1. Our retrospective test shows that when Kp exceeds 6 (HSS is 0.571, FAR 

= 0.174), the hits to miss ratio is 38 to 48. This model may be widely useful, offering 

an ideal substitute for models 3 and 4 which may need special handling during times 
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Model 2: Kp 3-hour prediction from BI 

Figure 5.15 : Model 2: 3-hr ANN Kp vs official Kp, r = 0.819. The dashed lines are 
the prediction bounds with 95% confidence limit and the thick line is the linear fit. 
The model uses 21 hours of solar wind history to make a prediction. 

of non-availability of the nowcast Kp. This model is also running in real time mode 

now at http://space.rice.edu/ISTP/wind.html along with the model 1. 

The magnetospheric activity observed on 22 July 2009 was also predicted well by 

our 3-hour BI model, clearly demonstrating its capability as a true forecasting tool. 

Figure 5.19 describes the results in 3 separate panels. The top panel shows the history 

of the 1-hour averaged BI, the second panel compares the model 2 predictions against 

the NOAA/SWPC nowcast Kp, which is issued in near-real time, and lastly, the 

bottom panel compares the official Kps against our model predictions. The statistics 

for the time interval shown in the figure are: r = 0.842 and RMSE = 0.84 overall, 

and HSS = 1.0 for Kp > 4. 

The next two subsections introduce a new set of models that also incorporates the 

trailing Kp history which may be obtained from any nowcasting algorithms. We will 

further discuss their advantages and disadvantages. 

http://space.rice.edu/ISTP/wind.html
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Figure 5.16 : Kp distribution for model 2 using the best function, n~6. 

5.3.3 Model 3: 1-hour lead t ime Kp predictions using the BI and Kp 

history 

One of the models I developed takes the time history of Kp and the derived BI 

as its inputs, hereafter model 3, to predict Kp approximately one hour ahead. A 

similar model was discussed earlier: the APL model 1 which takes the Takahashi 

Kp algorithm (section 1.6.4), and which was shown to have a great success. As 

motivated earlier, the purpose of having a 1-hour Kp prediction model is that shorter 

time resolution helps to warn users of imminent storms owing to rapidly changing 

conditions in the magnetosphere without having to wait until the next three hour 

conventional Kp. For operational purposes, the time history of Kp is obtained from 

the estimated 3-hour planetary Kp index derived at the U.S. Air Force Space Forecast 

Center using several ground-based magnetometers serving in near real-time, which can 

Model 2: n =6 
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Figure 5.17 : Model 2 test results: Measured (black) and predicted (white) 3-hour 
Kp distribution with each number representing the number of inputs. Note: since 
these are 3-hour averages, the distribution has been multiplied by a factor of 3 for 
easy plot comparison. 
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Kp Kp 

Figure 5.18 : Model 2 test results: Measured (black) and predicted (white) 3-hour 
Kp distribution with each number representing the number of inputs. Note: since 
these are 3-hour averages, the distribution is multiplied by a factor of 3 for easy plot 
comparison. 
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Figure 5.19 : Results of our model 2, 3-hour ahead predictions, from a recent activity. 
The bottom panels compare the NOAA Kp and the official Kp with the model 2 
predictions (white histograms). 
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Table 5.2 : Model 2 summary of results: Predict Kp^+3 from BI 

# Model 2 Inputs 

Results 

# Model 2 Inputs 
Time 

History 

Linear 

Corr. 

RMSE 

Valid. 

HSS 

( K p > 4) 

ARE 

( K p > 4) 

1 B I t 3 0.792 0.858 0.490 0.226 

2 B i t , B I t _ 3 6 0.804 0.842 0.499 0.239 

3 B i t , B I t - a , B I t _ 6 9 0.820 0.813 0.503 0.219 

4 B i t , B I t _ 3 , ••••, B I t - 9 12 0.818 0.822 0.514 0.217 

5 B i t , B I t _ 3 , • • . . , B I t - i 2 15 0.819 0.808 0.545 0.224 

6 B i t , B I t _ 3 , . . . . , B i t - i s 18 0.815 0.823 0.511 0.218 

7 B i t , B I t _ 3 , B I t _ 1 8 2 1 0 . 8 1 9 0 . 8 4 6 0 . 5 3 3 0 . 2 0 1 

8 B i t , B I t _ 3 , ••••, B I t _ 2 i 24 0.820 0.823 0.521 0.219 

9 B i t , B I t _ 3 , . . . . , B i t — 2 4 27 0.814 0.838 0.509 0.233 

10 B i t , BIf_3, . . . . , B i t — 2 7 30 0.811 0.827 0.519 0.253 

be obtained from h t t p : / / w w w . s w p c . n o a a . g o v / r t _ p l o t s / k p _ 3 d . h t m l ; these are not 

true depictions of the actual Kp. There is, however, a 30-40 minute lag before NOAA 

makes them publicly available, mainly owing to processing delays but still usable 

within an hour. The non-linear functional relationship of the time series connecting 

the input elements BI and Kp to their target Kp follows the best function below 

K p t * + 1 = f ( B I t , B I t _ l 5 . . , B I t _ 5 ; K p t _ a , K p t _ 4 , . . . , K p t _ 8 ) (5.3) 

where, again, the time t, t-1, etc. in each case represents the end of the integration 

time period. Therefore, equation 5.3 is very similar to equation 5.1 except for the 
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Model 3: Kp 1-hour prediction from BI and Kp history 

Measured Kp 

Figure 5.20 : Model 3: 1-hour ahead ANN predicted Kp vs measured Kp. Linear 
correlation, r = 0.960. The network uses 6 hours of input history of each BI and Kp. 
The dashed lines are the 95% confidence bounds. Thick black line is the linear fit. 

Kp inputs. The BI and Kp inputs are delayed in time by three hours and the ANN 

has been trained to handle them as individual inputs i.e., for a set of BI, there is a 

corresponding set of Kp that lags the BI by 3 hours. Thus, the time t is the most 

recent BI measurement, and the 1-hour prediction then covers the time frame of t to 

t+1. Note that the solar wind takes roughly 40 minutes to arrive at Earth from ACE. 

With the first used Kp clearly delayed relative to the BI, the BI serves a precursor of 

rises or fall in the Kp to come leading up to the predicted time. The most recent Kp 

value used is (t-3), assuring that the network is not trained to require a value of Kp 

which is not available in real time. The same scheme in equation 5.3 may be used to 

carry out real time predictions. 

The network is designed such that it looks 6 hours into the past to make the 

best predictions (refer tables 3.4 and 5.3 and figures 5.22 and 5.23). It was trained, 

validated and tested using hourly averages of BI and Kp covering an 11 year period 



145 

Model 3: n =5 
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Figure 5.21 : Kp distribution for model 3 using the best function, n=5. 

from 1997-2007 with data sets classified to avoid overlap. In all cases, 20461 randomly 

chosen data points were not part of the training set. In dealing with any missing 

values of Kp or the BI, I have either completely rejected or interpolated the missing 

data in order to minimize their statistical impact. The data are rejected when there 

is a long streak of null data lasting several hours but, if null values occur at some 

isolated instances, the data is interpolated using the two adjacent points. A network's 

prediction efficiency is characterized by its performance on test data that is completely 

new to the network along with the time period over which it is tested. 

In figure 5.20, I plot the network responses as a function of the official Kp (linear 

correlation coefficient of r = 0.960 and overall RMSE = 0.393) with the 95% confidence 

bounds shown as the dashed lines. The network has, in fact, learned to reproduce 

over 92% of the variance of the data presented to it through the retrospective test over 

the whole set. Evidently, adding Kp to the inputs certainly enhances the predictions. 
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This test strictly follows the training in that it does not consider the most recent Kp. 

The histogram shown in figure 5.21 complements the scatter plot. 
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Figure 5.22 : Model 3 test results: Measured (black) and predicted (white) 1-hour 
Kp distribution. Each number here denotes the number of inputs each of BI and Kp. 
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Kp Kp 

Figure 5.23 : Model 3 test results cont.: Measured (black) and predicted (white) 
1-hour Kp distribution. Each number here denotes the number of inputs each of BI 
and Kp. 

Furthermore, from table 5.3, when the observed Kp exceeds 4, the HSS and ARE 

are found to be 0.793 and 0.089 respectively with hits to misses ratio of 1563:500 

(20461 total points). However, when the Kp discriminator is increased to 6, the HSS 

is found to be 0.748, better than what was seen for model 1 for the same threshold. 

In this case, the hits to miss ratio is 170:87. The histogram of Kp distribution 

corresponding to each individual input series is shown in figure 5.17. 

Caution must be used while running model 3 in real time because of the following 

2 factors: (1) Crucial time is lost towards obtaining the nowcast Kp, and (2) the real 

time model uses the NOAA nowcasted Kp, which is only estimated to the nearest unit 

(varies from 0 to 9 in 9 increments unlike the official Kp which increments in steps of 

0.3), and since the network training and model evaluations were based on the official 

Kp record, the network performance is likely to diminish slightly. For example, on 22 

July 2009, during the 3-hour interval when the measured Kp peaked at 5.1, the NOAA 

Kp was measured to be 6.0. Therefore, models utilizing the NOAA Kp can give out 

predictions which may be an under- or overestimate. 
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5.3.4 Model 4: 3-hour lead t ime Kp predictions using the BI and Kp 

history 

According to the tests performed in the preceding section, it is apparent that the 

ANN has a better prediction efficiency while using a 1-hour lead-time that includes 

the time history of Kp as opposed to the model that does not. We have seen earlier 

that the BI correlates with Kp better for 3-hour averages (figure 5.1). Therefore, just 

like model 1, it is a viable and reasonable option to train the network to predict Kp 

approximately 2 hours ahead, in spite of the fact that we lose 45 minutes to an hour 

approximately owing to processing delays. 

The network inputs and training are similar to the description in section 3.4.5 and 

the best working function is written as: 

Kp*+3 = f (BI t, BI t_3 , . . . , BI t_18; K P t _ 3 , Kp t_6 , . . . , Kp t_2 7) (5.4) 

where t denotes the current epoch, and t-3 etc. means actual 3 hours behind the 

current epoch t and so on. Given the availability of 3-hour nowcast Kp and live 

updates of the BI, this design should have the network deliver a prediction for the 

next upcoming 3-hour Kp. Assuming a delay of approximately 40 minutes due to 

processing time for the preceding Kp, the lead-up time is, therefore, only slightly 

more than 2 hours in real-time, i.e., at a time 04:00 UT we predict the Kp which 

will cover the time period 3-6 UT, using the BI up to 03:55 and the previous Kps 

up through 0-3 UT. If for any reason the 0-3 UT Kp is not available, we duplicate 

the previous Kp; however, this has not been necessary at least until now and since 

October 2007, the time we began using the real time Kp from NOAA. Table 5.4 

lists the model 4 prediction summary and figures 5.26 and 5.27 shows the individual 

histograms. A direct comparison of the model outputs with the true Kp shows a drop 

in the prediction efficiency when the lead-time is extended from 1 to 3 hours. 
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Model 4: Kp 3-hour prediction from BI and Kp 

Figure 5.24 : Model 4: 3-hour ahead ANN predicted Kp vs measured Kp. Linear 
correlation, r = 0.839. The ANN uses 27 hours of input history of each BI and Kp. 
The dashed lines are the 95% confidence bounds. Thick black line is the linear fit. 
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Figure 5.25 : Kp distribution for model 3 using the best function, n=8. 

Model 4: n =8 
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The linear correlation coefficient between the real and ANN Kp is found to be 

0.839 with a prediction efficiency of 0.92 (figure 5.24 and corresponding histogram 

in figure 5.25), outperforming the Kp self predictor (r=0.790); a self predicting Kp 

algorithm (see section 5.3.6) is an ANN-based algorithm that predicts Kp from the 

time history of Kp only, providing an extra benchmark for the models based on BI, 

and BI and Kp. As expected, the network estimates did not improve with longer time 

histories. 

Setting the Kp threshold at 4, the HSS is 0.565. Now, if we went from Kp 4 to Kp 

6, our test indicates a drop in the HSS (0.487) and FAR (0.133) over model 2 (HSS 

is 0.571 and FAR = 0.174). Therefore, while there are no significant difference in the 

prediction performances in models 2 and 4, it is safe to say that models using only 

the Bis as inputs are just as efficient as those that uses the time history of both BI 

and Kp (figure 5.19 also substantiates). In the absence of nowcast Kp data, model 

2 is a great substitute for model 4. Even though these results may not comply with 

what were expected from the cross-correlation analysis, the predictions from a 3-hour 

average of the BI are only slightly worse than the predictions from 1-hour averages. 

What is really important is their accuracy in predicting geomagnetic activity and how 

the results can be quantified. Figure 5.28 summarizes the overall results of the four 

Kp models. The following subsection will lead us into discussing "ideal response" 

scenarios in two separate and interesting ways. 

Finally, as another reminder, a similar caution to the one noted in model 3 is in 

order while running model 4 in real time i.e., the official Kps are different from the 

NO A A nowcast Kps which may skew the predictions and there are processing delays 

in obtaining the NOAA Kp. 
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Figure 5.26 : Model 4 test results: Measured and predicted 3-hour Kp distribution 
with each number here denotes the number of inputs each of BI and Kp. Note: the 
distribution is multiplied by 3 for easy of plot comparisons. 
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Figure 5.27 : Model 4 test results contd.: Measured and predicted 3-hour Kp distri-
bution. Note: the distribution is multiplied by 3 for the sake of plot comparisons. 

Model 2: Kp 3-hour prediction from BI 

Measured Kp 

Model 4. Kp 3-hour prediction from BI and Kp 

Figure 5.28 : Summary of the best results from the 4 Kp models. Model 1: r=0.865, 
Model 2: r=0.819, Model 3:r=0.960, Model 4: r=0.839. The dashed lines are the 95% 
confidence bounds. Thick black line is the linear fit. 



156 

5.3.5 Kp models: Understanding accuracy 

It is often difficult if one were to make judgments regarding the ANN predictions 

based on the scatter plots alone. Sometimes, such descriptions would be inept and 

inaccurate, given the scatter in the results. To look at results more closely, figures 5.29 

and 5.30 presents a different perspective of the model performance by displaying the 

predicted and official values over-plotted for randomly chosen 30 day periods each 

from 2006 (December) and 2001 (April). Actually, I deliberately chose these two 

periods to study the network responses as they provide different instances to study 

a few major storms; April 2001 can be classified under increasing and maximum 

phases of solar cycle 23 [Cane and Richardson, 2003] while December 2006 (the Kp 

index reached 8 while the Dst index dipped low to a value of -146 nT) occurs during 

the depths of quiet solar minimum conditions of solar cycle 23. Affected customers, 

because of the December 2006 activity driven by a series of solar flares, included 

numerous satellites (e.g., GOES 13, ACE, Cassini), NASA (astronauts aboard the 

International Space Station and shuttle Discovery remained inside a protected area 

of their spacecraft on 5 Dec. 2006 to mitigate the risk), commercial airlines (significant 

impacts to the network of air traffic control radars in Canada, causing interference 

and false targets of approximately 150 miles in length) and power grids [Source: 

NOAA/SWPC]. 

For the purpose of model verification, and because a good prediction is what 

is sought after, I have listed the results of models 1 through 4 individually. For 

a measured Kp of 6, at a certain time interval 0300-0400 UTC, if the models had 

predicted a value 6 or higher at 0300 UTC then it is considered as a "hit". I have 

shown the results of the model predictions from the two chosen time intervals in tables 

5.5 (April 2001) and 5.6 (December 2006), and the actual predictions themselves in 
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Table 5.5 : Geomagnetic Storm Alerts (Kp > 6). 

Period Covered April 2001 

Kp Model 1 2 3 4 

Hits 19 6 27 6 

Misses 20 8 12 8 

False Alarms 2 0 6 1 

Right Rejections 709 236 705 235 

Total 750 250 750 250 

Maximum Lead Time 1 hours 3 hours 1 hour 3 hours 

Heidke Skill Score 0.620 0.586 0.738 0.555 

Probability of Detection 0.487 0.429 0.692 0.429 

False Alarm Rate 0.095 0.000 0.182 0.143 

figures 5.29 and 5.30. In describing predictions, the x2 equivalent of goodness-of-fit 

can be characterized using the set of parameters defined for a 2x2 contingency table 

(section 3.5.1). 

For the time period covered in April 2001, the best outcome is seen for model 3. 

There have been 27 hits to 12 misses for the base interval of 1 hour. Out of those 

misses, at least 8 of them have been predicted to be Kp 5 or above and some of them 

resulted in an extended alert because the previous predicted Kp value had been over 

5. The overall skill score is found to be 0.738 with a false alarm probability of 0.095. 

For the period covered in December 2006, the best results is seen for model 3. The 

overall skill scores are 0.796 for the HSS with a false alarm probability of 0.091. On 
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Table 5.6 : Geomagnetic Storm Alerts (Kp > 6). 

Period Covered December 2006 

Kp Model 1 2 3 4 

Hits 7 2 10 2 

Misses 7 3 (4-, 5+, 5) 4 3 (4-, 6-, 6-) 

False Alarms 1 0 1 1 

Right Rejections 685 230 685 229 

Total 700 235 700 235 

Maximum Lead Time 1 hours 3 hours 1 hour 3 hours 

Heidke Skill Score 0.631 0.566 0.796 0.492 

Probability of Detection 0.500 0.400 0.714 0.400 

False Alarm Rate 0.125 0.000 0.091 0.333 

the other hand, the performance level diminishes slightly for the base interval of 3 

hours (HSS = 0.429 and 0.566 for the two periods in April 2001 and December 2006 

respectively), but we get a maximum lead time of 3 hours. 

Judging from the network predictions, one can infer that the storms (with Kp > 

5 of interest) have been well predicted both during the sudden commencement of the 

storm and the recovery phases (refer to the time interval between the two vertical 

dashed lines in figure 5.30). Furthermore, we can also quantify the rate of success by 

graphically representing the hits versus misses using absolute error (| Kp — Kp* |) or 

relative error measures, though neither of them can distinguish between 

overshoots and undershoots i.e., predicted values falling above or below the measured. 
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0.8 

Figure 5.31 : The "bulls-eye" plot: Shown here are the relative errors, measured for 
every measured Kp > 6. The results from the models are shown in separate sectors. 

Figure 5.31 combines the results the model predictions during the time intervals 

of April 2001 and December 2006. We see a clear difference in the prediction per-

formances of the two 1-hour Kp models. Model 3, which includes the Kp history, 

is significantly better than model 1. On the other hand, for the 3-hour models, in-

terestingly, performance statistics highly favor model 2 i.e., the BI only model. In 

general, barring a few pitfalls, all these models have demonstrated their prediction 

capabilities to cater to different needs and we constrained well at the mid- to higher-

range of Kps. However, one cannot clearly make a call as to whether these are "true 

predictions/forecasts" or a mere "persistence". The following section investigates 

"persistence" in detail. 



162 

5.3.6 "Persistence" vs. "true" forecasting 

We introduced the idea of persistence earlier in chapter 1. To recapitulate, persistence 

is defined as the statistical dependence among successive terms of the same variable 

or an event [Wilks, 1995]. Let us study the following two cases, both using 3-hour 

averages: (1) a Kp time series, and (2) a time series involving the BI. At zero lag, 

the autocorrelation is of the data stream with itself is always exactly unity (figure 

5.32). For the Kp in panel 2 of figure 5.32, at the next time step of 3 hours, it 

shows an autocorrelation at 3 hours of 0.80. That is, any predicting algorithm can 

predict with 80% efficiency the upcoming Kp by just saying "it will the same as the 

last one". Thus any prediction algorithm that uses prior knowledge of Kp must have 

a correlation coefficient of greater than 0.80 or it does not beat the "persistence" 

prediction. On the other hand, for those algorithms that do not use prior Kp data, 

an 80% correlation coefficient is good. Thus, our one-hour prediction of r=0.888 

Figure 5.32 : Auto-correlation for 3-hour BI (left panel) and 3-hour Kp (right panel) 
and cross-correlation for the self predicting BI and Kp models are shown here. Note 
that both the models (circles) lag the auto-correlation curves (smooth curve). 
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(model 3) and three-hour ahead predicted Kp with r=0.830 (model 4) are significantly 

better than the "persistence prediction". This can be demonstrated using the tests 

of significance (see section 5.5). 

On the other hand, if someone has an algorithm that produces persistence-based 

predictions and then does a cross-correlation between their predictions and the real 

Kp, then their "predictions" will show a maximum cross-correlation at -3 hours. For 

example, a self predicting ANN-based Kp algorithm, an algorithm that uses the time 

history of the Kp index (here, previous 5 Kp values) to predict the upcoming Kp, 

has a correlation of 0.987 at -3 hours and 0.80 at the zero-lag (shown as the lagged 

curve in panel 2); the self predicting Kp algorithm may be a slight improvement over 

the linear predictor (section 1.3), but it is only as good as persistence forecasting. 

That is, their prediction will "lag" the real data, because their predictions are too 

strongly influenced by the value of the previous Kp. This effect on the model outputs 

is known as "persistence contamination". In the second example, we investigate the 

effect of persistence through the BI, by constructing a time series of the solar wind. 

The maximum correlation for this ANN-based self predicting BI algorithm, using 

the previous 5 BI values, occurs at a time lag of -3 hours (0.983) and the zero-lag, 

the correlation is 0.771 (panel 1, figure 5.23), which equals the estimated limit for 

persistence. Again, the predictions clearly "lag" the true values. When it happens 

they are really not true predictions. 

5.3.7 Post-test Correlation Analysis 

Model evaluations and performance indicators based on statistical tests such as skill 

scores, error-bars, linear regression analysis are often sufficient to describe a forecast. 

They are as good as their ability to answer questions such as how far a "miss" strayed 

away from a "hit"? or, how close was a hit to getting a perfect score. However, having 
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seen what persistence implies, models using the known values of its target index should 

not rule out the possibility of a prediction weighing too much on the last known value. 

In a time series forecasting, only post-test analysis based on cross-correlation can offer 

deeper insights. Many existing forecast models found in the literature tend to have 

ignored this fact, however (e.g., the APL model 1 described earlier). This section is 

intended to show how my solar wind-only driven models, and my analysis thereof, 

improves the understanding of the existing work. 

I show the cross-correlation of the predictions versus the observations in terms of 

its time lags for the models 2 and 4 in figure 5.33. It also shows the autocorrelation of 

the 3-hour official Kp, shown as the solid line. It, of course, has a 100% efficiency in 

predicting itself at zero lag. More importantly, though, it shows a high (0.80) auto-

correlation at 3 hours, showing the persistence of Kp from one 3-hour measurement to 

the next, setting the standard for effectiveness of prediction algorithms. The results 

of the cross correlation of our model 2 and model 4 predictions with the official 

Kp are shown here. Both of my model predictions at lag=0 are significantly above 

0.80 (0.819 for model 2 and 0.839 for model 4), showing effectiveness in beating the 

persistence hypothesis i.e., they are effective in predicting faster and slower rate of 

changes between any two successive measurements. For those curves, a lag=0 means 

that we are correctly predicting the following Kp value at the proper time, assuming 

the cross-correlation coefficients are higher than the persistence value at that lag. 

Digression: Statistically, one of the ways to ascertain the significance of a single 

correlation coefficient is through a t-test. For example, in model 2, for a sample size 

of 5821, the t-test yields a good significance at the 1% probability level for both r 

= 0.819 and the auto-correlated Kp at r = 0.800. Alternatively, probabilities can 

also be used to show their significance and, given the sample size of this example, 

the probability that they are uncorrelated is a mere < 0.5%. In other words, their 
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single correlation coefficient is statistically significant. Now, in order to show the 

significance of r = 0.819 from a specified value of, say, r = 0.800, we use the Z-test. 

A Z-test was performed on model 2 to investigate the significance of its correlation 

coefficient (r = 0.819) from the auto-correlated Kp at r = 0.800; both the values are 

derived from the same distribution with independent variance. We start with the 

"null hypothesis" i.e., the two correlations are not significantly different from each 

other. Performing the Z-test, we get a Z-value of 4.10 from 5530 test samples. To 

reject the null hypothesis, assuming 95% confidence limit, we need a Z-value of 1.96. 

Obviously, with a value of 4.10 we can reject the null hypothesis to claim that the 

two correlations are "significantly" different. In fact, setting the confidence level at 

99%, we still beat the null hypothesis. 
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Figure 5.33 : Auto-correlation for 3-hour Kp and cross-correlation for the official Kp 
vs ANN predicted 3-hour Kp is shown here. Note that the model which includes Kp 
history as an input (Model 4) appears to lag the real data. 

However, for my model which uses Kp history (model 4), the best correlation is 

not for the predicted time but actually is for t = -3, that is, the prediction lags the 
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real data. Our neural network model which includes Kp history (model 4) appears to 

overrely on the previous Kp value. Thus a prediction using Kp history significantly 

lags a true prediction. The physical implication of this behavior can be felt during 

times of non-availability of nowcast Kp. In which case, the predictions could be an 

overestimate and inaccurate because we will have to duplicate the previous Kp. The 

model 3 "prediction peaks" clearly lags in time relative to the measured Kp (shown 

between the two vertical dashed lines in figure 5.34), whereas the trend is not visible in 

model 1 (top panel in figure 5.34). This effect can also be seen in other papers which 

use Kp history (e.g. see Fig 5 (g) and (h) of Wing et al. [2005] showing their models 1 

and 2, shown earlier in figure 1.11). But their model (APL model 3), which is purely 

driven by the solar wind alone, does not exhibit this feature. We can now further 

claim that in spite of a small (not significant) drop in linear correlation coefficient 

and the prediction efficiency, model 2 really does forecast (not just duplicate) Kp, 

almost as effectively using BI (and its history) alone as do models which include Kp 

history. Note that a similar decisive trend was hard to notice in our other models. 

The importance of our models 1 and 2, by eliminating the Kp in the input, not only 

eliminates the persistence effects and the fact that the realtime Kp is only given to 

one digit precision, but they also outperform some of the existing models. 

5.3.8 Kp models compared 

In chapter 1, I presented a survey of some of the existing and fully-functional Kp 

models, the APL Model 3 [Wing et al. 2005], the Boberg et al. NN [Boberg et al. 

2000], and the Costello NN [Costello 1997]. All of them use the solar wind to predict 

Kp approximately one hour ahead and therefore, easily compare with our own model 

1. Even though I did not attempt to re-evaluate them model by model, I did conduct 

a head-to-head with the Costello Kp model over the data I found that was common 
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Figure 5.34 : Plot to demonstrate the effect of persistence visible in the models using 
Kp inputs. Prediction "peaks" are clearly shifted relative to the measured values in 
the bottom panel (model 3 which uses Kp as an input). 

to us. As far as the other models, I have used their own evaluations reported in 

the literature for comparison. Of these, the APL model 3 is by far the best (r = 

0.84) while the Boberg et al. NN Kp model reports r = 0.768 for a RMSE = 0.985 

tested over a 11 year period. My model 1 outperforms the Costello NN and the 

Boberg et al. NN models. But the slight edge my model 1 has over the APL model 1 

could be attributed to the fact that the latter was evaluated over a sufficiently longer 

time period. On the other hand, my model 1 has a lower correlation coefficient (r 

= 0.826) than the APL model 1 (r = 0.92). Furthermore, the APL models 1 and 3 

and Costello NN Kp model predict Kp approximately 1 hour ahead every 15 minutes, 

which partly explains the differences in the prediction performance. As mentioned 

earlier, correlation coefficients alone are not good enough for model evaluations when 
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it comes to predictions, but since it is difficult for the actual models to be able to get 

ported for testing, they become the sole metric for evaluations. 

In a head-to-head test of my model 1 with the Costello's ANN Kp, performed 

towards a true comparison, we find that our model 1 predicted Kp versus the real 

Kp is found to be r = 0.84 while the Costello ANN predicted Kp versus the real Kp 

is found to be r = 0.81 for the same time frame (figure 5.35). In order to conduct a 

fair test, I have chosen the data such that it includes both a severe (April 2001) and 

a benign period (Jan-Feb 2007) of solar activity and, to further facilitate the test by 

providing a large dynamic range of Kp values necessary for comparison. Also, prior 

to running the head-to-head test, I reran my model to ensure that the training set 

does not include the test data. However, possibly because of the smaller size of our 

test data, our evaluation of the Costello NN Kp is not consistent with the correlation 

coefficient (r = 0.75) obtained by Wing et al. [2005] through their evaluation of the 

same model and, inconsistent with the trend observed by Detman and Joselyn [1999]. 

5.3.9 "Spacalrt" real-time warning system 

The models that have been just developed are ready for implementation. In fact, 

models 1 and 2 have already been routinely running in real time and the results of 

the predictions are all available from http: //space. rice. edu/ISTP/wind. html. As 

mentioned earlier, the BI plot (figure 1.11) was launched into real-time mode in Oct. 

2003, purely for a scientific and educational motive. We have nearly 600 subscribers 

coming from a variety of backgrounds as of date. 

One of NOAA's Space Weather scales for geomagnetic is based on Kp as a physical 

measure. Based on this measure, a minor geomagnetic "Gl" storm alert is issued if 

Kp reaches 5. Alerts and warnings are issued based on two factors: (1) predicted 
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Figure 5.35 : Head-to-head performance of Model 1 and Costello ANN Kp: (a) Model 
1 predicted Kp versus measured Kp (r = 0.84), and (b) Costello ANN predicted Kp 
versus measured Kp (r = 0.81) [Bala et al., 2009], 

parameter exceeding a certain threshold, and (2) based on persistence i.e., if the 

predicted value continues to be high above a certain threshold for extended periods. 

At present, "Red" alerts are being issued to our subscribers whenever the 10-minute 

Boyle index exceeds 200 kV, provided the preceding 10-minute Boyle index had been 

at least 150 kV. This will provide a rapid response. However, the magnitude of 

the storm to come depends, of course, on the time history of the solar wind. The 

new ANN-based models have been trained to use the solar wind history. Our new 

algorithms now successfully predicts both a 1-hour and a 3-hour Kp, updated each 

half-hour. Accordingly, we will also issue a "Red" alert if either the 1-hour or 3-hour 

Kp is predicted to be 6 or greater, and will be issued continuously until the predicted 

value of Kp subsides. 

We have shown that ANNs are excellent tools for temporal prediction problems 

and established that Kp can be forecasted with good accuracy. The following sub-

sections introduce new formulae that predicts the Dst and the AE with lead times of 
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1 and 3 hours. 

5.3.10 Model 5: 1-hour lead t ime Dst predictions from BI 

We have already established that the solar wind coupling function in the Boyle Index 

correlates well with the Dst, and that their correlations are significant up to a 6-hour 

time range, within which the series is predictable. This model was easy to construct, 

because, unlike the Kp index, inherently, the Dst is an hourly measure. Since nowcast 

Dst data are somewhat unreliable, we prefer simpler functions to avoid any concerns. 

We set out to find the value of n in equation 3.8. The best predicting function was 

derived based on the various performance indicators and statistics listed in table 5.7. 

Our best function can be written as 

Dstt*+1 = f(BI t , BI t_i, ..., BI t_9) (5.5) 

Following a thorough and systematic study, we find that it takes 10 hours of Dst time 

history for the ANN to get the best prediction overall (r = 0.802 and RMSE = 14.46 

nT V values of Dst; HSS = 0.549 and ARE = 0.376 when Dst < -40 nT). I set the Dst 

threshold to -40 nT based on a study conducted by Cane and Richardson, [2003] that 

reported the CMEs between 1996 and 2002 (see figure 5.36) and the corresponding 

minimum Dst values recorded. This data span (1996-2002) covers roughly about 50% 

of the data volume used in this study. 

Figure 5.37 shows the overall results from test samples with the model outputs 

plotted against the measured Dst. Evidently, the model overestimates (large negative 

values indicate severity) Dst below 0 nT. For the Dst threshold set at -40 nT, the hits 

versus miss ratio is 186 to 123 with a 0.505 POD. If the threshold is raised to -80 nT, 

we get a 248:178 hits to miss ratio with a 0.660 HSS. The overall RMSE of 14.56 nT 

(22398 hours of test data) found in this model is better than the Wu and Lundstedt, 



171 

50 

0 

-50 

-100 

p -150 c 
"55 -200 Q 

-250 

-300 

-350 

-400 

Figure 5.36 : Distribution of minimum Dst value due to the passage of various CMEs 
or related sheath regions versus the time (Adopted from Cane and Richardson, [2003]). 
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Figure 5.37 : Model 5: ANN predicted Dst vs measured Dst, r = 0.802. This model 
gives a lead time of 1 hour. The dashed lines are the 95% confidence bounds. Thick 
black line is the linear fit. 



[1997] model value of 14.7 nT (1957 hours of test data), but slightly behind Temerin 

and Li, [2002] value of 7.9 nT (4320 hours of test data). This model's performance 

during some severe events will be discussed in the next section. Furthermore, since 

this model does not include the time history of Dst in the inputs, it offers true 

prediction without the issue of persistence; the peak (0.802) of the cross-correlation 

function is observed at the time lag 0. 

Table 5.7 : Predict Dst?,, from solar wind 

Results 

# Model 5 Inputs 
Time 

History 

Linear 

Corr. 

RMSE 

Valid. 

HSS 

(Dst < -40) 

ARE 

(Dst < -40) 

1 Bit 1 0.653 18.23 0.381 0.485 

2 Bit, Bit - l 2 0.711 16.84 0.418 0.455 

3 Bit, BIt_!, BIt-2 3 0.696 17.52 0.441 0.441 

4 Bit, BIt_i, ... BIt -3 4 0.755 15.85 0.484 0.417 

5 Bit, BIt_i, ... BIt-4 5 0.764 15.85 0.495 0.401 

6 Bit, BIt_i, ... BIt_5 6 0.775 15.45 0.520 0.388 

7 Bit, BIt_!, .. BIt_6 7 0.797 14.63 0.517 0.368 

8 Bit, BIt_i, .. BIt-7 8 0.801 14.76 0.528 0.366 

9 Bit, BI t_i, .. BIt-8 9 0.801 14.45 0.530 0.360 

1 0 B i t , B I t _ 1 ? . . . . , B I f _ 9 1 0 0 . 8 0 2 1 4 . 5 6 0 . 5 4 9 0 . 3 5 1 
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5.3.11 Model 6: 3-hour lead t ime Dst predictions from BI 

We predict Dst 3 hours in advance in the same manner as model 2, which predicts 

Kp 3 hours ahead. Since Dst is a 1-hour average, we compare our results against the 

measured Dst compiled with 3 hour averages. We list the results of the various test 

functions in table 5.8. The best performing function is written as: 

Dst t% = f(BI t , BI t_3 , . . . , BI t_ig) (5.6) 

for its higher skill score (HSS = 0.613 for Dst < -40 nT) and a low RMSE (13.42 

nT) overall (5988 total points). Generally speaking, all our best representations have 

been achieved using 6 to 8 inputs of the solar wind only or with the combination of 

the target index; model 5 has been the only exception to this general trend, which 

has 10 inputs. The ANN limits the model inputs to achieve the best generalization 

of the data presented. The actual predicted Dst values versus the measured values 

are shown in figure 5.38 (r = 0.853). Interestingly, this result indicates that this 

model performs better than model 5 in addition to extending the forecast lead time. 

Furthermore, when the Dst threshold is set at -40 nT, the overall hits:miss ratio is 

303:233 and 68:55 when the threshold is lowered to -80 nT. Overall, this model does 

well compared to model 5. 

Let's take a closer look at the predictions from both the Dst models through 

figures 5.39 and 5.40, which illustrates two unique cases, December 2006 and April 

2001 respectively. The Earth-directed CME, which occurred on December 13, 2006, 

impacted the Earth's magnetosphere at ~ 1500 UT 14 December, 2006 (velocity was 

measured at ~ 900 km/sec). The Dst index dipped to -45 nT at around 0000 UT 

December 15, 2006 before intensifying further to a value of -145 nT at ~ 0700UT 

December 15, 2006. The recovery phase of the storm started around ~1200 UT 15 

December 2006. The April 2001 data presents a different scenario with a series of 
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Figure 5.38 : Model 6: ANN predicted Dst vs measured Dst, r = 0.853. This model 
gives a lead time of 3 hour. The dashed lines are the 95% confidence bounds. Thick 
black line is the linear fit. 

Model 6 

Figure 5.39 : Predictions from models 5 and 6 are overplotted with the measured 
Dst. Data shown here covers all of December 2006. 



175 

Table 5.8 : Predict Dst,*,, from solar wind 

Results 

# Model 6 Inputs 
Time 

History 

Linear 

Corr 

RMSE 

Valid. 

HSS 

(Dst < -40) 

ARE 

(Dst < -40) 

1 BIt 3 0.741 15.33 0.491 0.403 

2 Bit, Bit - 3 6 0.769 14.44 0.511 0.389 

3 Bit, BIt_3, BIt-6 9 0.805 14.20 0.523 0.354 

4 Bit, BIt_3, ... ., Bit-- 9 12 0.820 13.72 0.549 0.366 

5 BIt, BIt_3, ••• , Bit- 12 15 0.846 13.34 0.560 0.337 

6 BIt, BIt-s, , BIt_ 15 18 0.846 13.08 0.567 0.335 

7 Bit, BIt-3, ••• BI, - 1 8 21 0.853 13.42 0.613 0.335 

8 Bit, BIt-3, ••• , BIf_ 21 24 0.828 12.99 0.587 0.315 

9 Bit, BIt-a, ••• , BIt_ 24 27 0.844 12.28 0.605 0.293 

10 BIt, BIt-3, ••• , Bit-27 30 0.840 13.06 0.611 0.307 

geomagnetic storms, the most intense one occurring on April 11, 2001 (Dst dipping to 

-271 nT around 2300 UT). It can be seen that both the models are fairly accurate in 

predicting the initial and recovery phases, implying that the magnetospheric response 

to the change in solar wind conditions happens well within the time limits of the 

predicted interval, and in agreement with the cross-correlation function. However, 

based on the overall prediction summary covering the two events (table 5.9), it can 

be said that our 3-hr Dst model does indeed offer better predictions, given its lead 

time. Finally, this model's cross-correlation function peaks at the zeroth lag. The 

next two subsections provides an overview of the AE prediction models. 
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Figure 5.40 : Predictions from models 5 and 6 are overplotted with the measured 
Dst. Data shown here covers all of April 2001. 

5.3.12 Model 7: 1-hour lead t ime AE predictions from BI 

We trained our 1-hour AE prediction model in the manner such that linear scale was 

chosen to handle the BI inputs and the corresponding AE values at the output. The 

AE index, characterizing the auroral activity in the auroral zone, varies over a free 

range with minimum at 0 nT, while the BI, an approximation for the PCP potential 

drop, also takes non-negative values with no pre-defined maximum. Table 5.10 lists 

the results summary based on different time histories in the input. The best function 

describing our BI-AE relationship can be defined by the following form: 

AEt*+1 = f(BI t , BI t - i , ..., BIt-a) (5.7) 

The model predictions versus the measured values is shown in figure 5.41, with r 

= 0.74. Even though the value of the correlation coefficient might look significant, 

it is quite apparent that the RMSE and the average relative error are large numbers 

Model 5 

Model 6 
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Table 5.9 : Geomagnetic Storm Alerts (Dst threshold: < -40 nT). 

Period Covered April 2001 December 2006 

Dst Model 5 6 5 6 

Hits 115 47 26 9 

Misses 71 17 8 1 

False Alarms 31 10 13 4 

Right Rejections 533 175 653 223 

Total 750 249 700 237 

Maximum Lead Time 1 hours 3 hours 1 hour 3 hours 

Heidke Skill Score 0.607 0.706 0.707 0.771 

Probability of Detection 0.618 0.734 0.765 0.900 

False Alarm Rate 0.212 0.175 0.333 0.308 

(as a comparison, the maximum ARE observed in our other models was ~ 28%). 

The steep decline in the prediction performance of the AE model when compared to 

the Kp and Dst models can be attributed to the fact that AE has two components 

to it. As has been addressed earlier, the two components are the solar wind energy 

input into the magnetosphere and the tail magnetic field reconfiguration, resulting 

in geomagnetic substorms. Therefore, the network's ability to learn input-output 

patterns is impaired because of the effect of the latter, which, perhaps, is somewhat 

causally decoupled i.e., the instantaneous AE response to the solar wind is captured 

well whereas the component of AE due to tail-side reconfiguration is rather slow in 

its response to be modeled by the network. 
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Model 7:1 hour ahead AE prediction from BI 

Measured AE (nT) 

Figure 5.41 : Model 7: ANN predicted AE vs measured AE, r = 0.810. This model 
gives a lead time of 1 hour. The dashed lines are the 95% confidence bounds. Thick 
black line is the linear fit. 

5.3.13 Model 8: 3-hour lead time AE predictions from BI 

This model is very similar in architecture to its Kp and Dst counterparts. Since AE 

is a 1-hour index, we construct 3-hour averages of the AE to perform one-step ahead 

predictions. The best function to predict AE with a lead time of 3 hours is given by: 

AEt*+3 = f(BI t , BIt-a, BIt-15) (5.8) 

Figure 5.42 shows the scatterplot of ANN predicted AE versus the measured AE 

(t = 0.740, HSS = 0.466, ARE = 0.332). The 3-hour ahead predictions are poor 

compared to the baseline set by the 1-hour model, and the quality of the predictions 

are far from being accurate. We again choose to use the time intervals of April 

2001 (figure 5.43) and December 2006 (figure 5.44) to represent our results for closer 

investigation. In general, in both these examples, it can be seen that the network 

certainly does have the ability to predict the rises and fall in the AE but clearly 



179 

Table 5.10 : Predict AE?,, from solar wind 

# Model 7 Inputs 

Results 

# Model 7 Inputs 
Time 

History 

Linear 

Corr. 

RMSE 

Valid. 

HSS 

(AE > 500) 

ARE 

(AE > 500) 

1 BI4 1 0.803 125.32 0.571 0.289 

2 Bit, BIT_! 2 0.805 125.31 0.538 0.291 

3 BIT , BIT_I, BIT_2 3 0.805 123.47 0.535 0.286 

4 BIT , BIT_I, . . . . , BIT-A 4 0.810 124.18 0.554 0.289 

5 Bit, BIT_ 1 ; ...., BIt_4 5 0.801 125.18 0.560 0.289 

6 Bit, BIF_!, ...., BI t_5 6 0.797 126.77 0.544 0.297 

7 Bit, B I T _ i , ...., BI t_6 7 0.810 122.04 0.562 0.281 

8 B i t , BIT_ 1 ; . . . . , B I T - 7 8 0.805 125.37 0.551 0.294 

9 B i t , B I 4 _ i , . . . . , B I t - 8 9 0.799 124.83 0.538 0.302 

10 B i t , BIF_I, . . . . , BIT_9 10 0.810 121.92 0.546 0.292 

lacks the accuracy with the predicted values falling short of the measured values by 

a huge margin (RMSE values of 157.2 nT, 175.8, 162.3 nT and 167.6 nT). Barring a 

few cases, the network's inability to predict peaks larger than ~ 750 nT can also be 

noticed. Nevertheless, the results are quantifiable and significant (see table 5.12 for 

the prediction summary). Our 3-hour AE model offers a new benchmark over other 

existing algorithms which predicts with lead times of 1 hour or less (e.g., Gleisner 

and Lundstedt, 1997; Pallocchia et al., 2008). 
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Model 8 :3 hour ahead AE prediction from BI 

Figure 5.42 : Model 8: ANN predicted AE vs measured AE, r = 0.74. This model 
gives a lead time of 3 hours.The dashed lines are the 95% confidence bounds. Thick 
black line is the linear fit. 

Model 7 

Model 8 

Figure 5.43 : Predictions from models 7 and 8 are overplotted with the measured AE. 
Data shown here covers all of April 2001. 
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Table 5.11 : Predict AEJ", o from solar wind 

Results 

# Model 8 Inputs 
Time 

History 

Linear 

Corr 

RMSE 

Valid. 

HSS 

(AE > 500) 

ARE 

(AE > 500) 

1 Blt 3 0.718 135.19 0.392 0.380 

2 Bh, BIt - 3 6 0.711 137.96 0.350 0.374 

3 BIt, BIt_3, BIt_6 9 0.728 133.86 0.367 0.363 

4 Bit, BIt-s, ••• ., Bit-- 9 12 0.734 132.22 0.428 0.343 

5 Bit, BIt_3, ••• , Blt_ 12 15 0.723 133.42 0.350 0.362 

6 Bit, BIt_3 , • •• Bit - 1 5 18 0.740 131.98 0.446 0.332 

7 Bit, BIt-3, ... , Blt_ 18 21 0.708 136.45 0.404 0.372 

8 Bit, B l t ^ , ••• , Blt_ 21 24 0.717 133.44 0.421 0.349 

9 Bit, BIt_3, ... , Bit-24 27 0.728 135.36 0.446 0.360 

10 Bit, BIt-3, ••• , BIt_ 27 30 0.741 129.59 0.390 0.330 
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Figure 5.44 : Predictions from models 7 and 8 are overplotted with the measured AE. 
Data shown here covers all of December 2006. 

Table 5.12 : Geomagnetic Storm Alerts (AE threshold: > 500 nT). 

Period Covered April 2001 December 2006 

AE Model 7 8 7 8 

Hits 79 20 38 7 

Misses 51 19 43 15 

False Alarms 46 14 12 1 

Right Rejections 584 197 607 214 

Total 760 250 700 237 

Maximum Lead Time 1 hour 3 hours 1 hour 3 hours 

Heidke Skill Score 0.543 0.471 0.539 0.439 

Probability of Detection 0.608 0.513 0.469 0.318 

False Alarm Rate 0.368 0.412 0.240 0.125 
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5.3.14 Green's function test 

We saw earlier that all inputs to the ANN architecture followed a simple rule that 

the most recent value of the BI and Kp receives the maximum weight of unity, the 

second most recent value receiving 90% of the previous, and so on (equation 3.1), thus 

forcing the network to count on the most recent values of the solar wind; however, 

this scheme was an arbitrary pick rather than a standard format. 

A simple test, using Green's function to study the network response, demonstrates 

the effectiveness of this procedure. Let's send a short, yet strong, impulse function 

to the network such as the one defined below: 

{200 kV, t-> to 

20 kV, otherwise. 

The impulse function is simply a solar wind driver, which is a function of the 

BI. We have chosen a value of 20 kV to represent the average minimum solar wind 

conditions, since the models run either in 1- or 3-hour cadences; BI under 10 kV have 

been recorded but they are 10-minute averages. Figure 5.45 show the responses of 

the 6 Bl-only models (2 of each Kp, Dst and AE). Obviously, the network does not 

respond until the onset of the 200 kV spike, as indicated by extremely low values 

of Kp, Dst and the AE. But. as soon as the impulse strikes the magnetosphere, the 

network responds instantaneously. This can be seen as the sudden jump in predictions 

on all 3-hour models and the 1-hour AE model. However, the prediction peaks of the 

1-hour Kp and Dst models is not seen at the next subsequent time step, rather at 

the second time step following the onset of the impulse. This, of course, is because a 

3-hour average is much stronger than a 1-hour average. Interestingly, the predictions 

do not decay before producing a lower secondary peak. Thus, the network predictions 
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Figure 5.45 : A Green's function test reveals the network responding instantly, and 
decaying slowly thereafter, to the short solar wind impulse. 
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are strongly influenced by the most recent solar wind values. Furthermore, proving 

that the network can predict faster rate of change. 

Table 5.13 gives the combined prediction summary of all the 8 models. We can 

claim that the geomagnetic indices (Kp, Dst and AE) are well predictable through 

solar wind coupling functions as inputs, given the scope of neural networks for tempo-

ral predictions. We were able to analyze the time variability of the BI using different 

time resolutions and time histories. Our study reveals that Kp and Dst are more pre-

dictable than the AE. However, despite having rigorously explored various possibilities 

and exploited the ANN to its capacity, a few questions still remains unanswered. The 

best HSS we were able to achieve was close to 80% (model 3). A clear one-to-one 

correspondence between the BI and these indices has not been drawn yet, needing a 

more closer look at the physics of the solar wind-magnetosphere coupling. The next 

section deals with building a new network by exploring the possibility of including 

the dynamic pressure term in the inputs to complement the BI because the BI does 

not contain an explicit solar wind density term. 
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5.4 Pressure term inclusion 

We have investigated and shown that the BI can best characterize the magnetospheric 

activity over three distinct ground-based geomagnetic indices, namely Kp, Dst, and 

AE. The network architecture and free parameters of the ANN have been carefully 

chosen to improve the predictability of these indices. We have further demonstrated 

that these indices can be predicted well without the knowledge of their time histories. 

The basic principle of this work has been to use the v2
w as the viscous term and 

the 11.71? sin3 (0/2) as the magnetic merging term and combine them into a single 

function, the BI, before using as inputs to the ANN. However, this function does not 

contain an explicit solar wind density term. Although it is widely believed that, after 

merging and viscous terms, the next term in the order of importance is the pressure 

term [Newell et al., 2008]. In order to increase the baseline further, we have extended 

the study to accommodate an exclusive dynamic pressure term (equation 5.9) in the 

network inputs. 

Dynamic pressure (Dp), Psw = mpnpv2
sw (1 + 4 n a / n p ) (5.9) 

where np is the number density of the protons and na/np is the alpha to proton ratio; 

Psu, is one of the most commonly used viscous terms besides vsw. Here, we propose to 

bring an extra term into the network in the form of solar wind pressure rather than 

actually modifying the BI i.e., for a set of BI in the inputs there is a corresponding 

set of dynamic pressure term. 

5.4.1 Network Training 

We pair the input vectors and its corresponding target in the same manner as models 

3 and 4, except that we replace the Kp with dynamic pressure. Recall, model 3 

predicts Kp 1 hour ahead using hourly averages and model 4 predicts Kp 3 hours 
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ahead using three hour averages. Data for training were sampled using the "sliding 

window" method described for models 1 through 8. For example, 6 hours of solar 

wind input history means having a set of 6 Bis and 6 Dps as inputs to the network, 

and for which, the desired target is Kp t + i (figure 5.46). We name this a training 

pattern. Training patterns are shuffled randomly and then chosen and designated for 

training, testing and validation («47%, ^36%, and fal7% and «59%, «22%, and 

~19% for 1-hour and 3-hour models respectively). 

The motivation for this technique owes to the success we had developing models 

3 and 4, both of which had two separate input streams. The logistics and the right 

network design, of two input time series, have been explored already. It is enough 

that we experiment with 5 to 10 sets of inputs and evaluate the network performance 

in each case. 

1-hour lead time Kp predictions using BI and Dp 

1-hour averages 

BI j t=-5 t=-3 t=0 
•e—e—e—e—e—e-

Dp 
-e—e—e—e—e—e-tt<>: 

Network Output 
t=+l Network Inputs Predicted 

Time 

KpRam
t+1 = / (BI t = 0 , BIt= l, . . . , BIt 5; Dpt, Dpt=_„ ..., Dpt.s) t=-i' • Wi' • 

Figure 5.46 : An example: an input-output training pattern for the 1-hour Kp model 
that includes the pressure term. The same idea may be extended for different inputs 
and time cadences and, for the Dst and AE models. 



5.4.2 The "Ram" functions 

We evaluated how well different input histories helped the predictions. The following 

equations summarize the best performing functions. 

Kp? + r = f(BI t , BI t_i, . . , BI t_5; Dpt, Dp t_ 1 ; . . , Dp t_ 5) (5.10) 

Kpt
R

+T = f(BI t , BI t_3 , . . . , BI t_24; D P t , Dp t_3 , • , Dp t_2 4) (5.11) 

Dst**™ = f(BI t , Bi t - ! , BI t - 9 ; ^Dp t , v ^ P t - i , v ^ P t - s ) (5.12) 

Dst^3m = f(BI t , B I t - 3 , B I t _ 2 1 ; v ^ p t , v ^ P t - s , v^Pt-21) (5.13) 

AEj^™ = f(BI t , Bit - ! , . . , BI t-6; v ^ p t , v^Pt -1 , v^Pt - f l ) (5.14) 

AEt
R

+
a
3
m = f(BI t , BI t_3 , BI t_18; VDp t , v ^ p t - 3 , v ^ P t - i s ) (5-15) 

Equations 5.10 to 5.15 are quite reminiscent of the Kp models (models 3 and 4) that 

included the Kp time history. The best performing "dynamic pressure" term for 

the new Kp models is the Dp itself. However, for the new Dst and AE models, the 

best predictor is not the Dp term but Dp with power reduced to a third \[Dp. We 

considered different powers of Dp before using VDp. While the motivation for this 

approach was conceived from literature examples, my arrival to this term is merely 

through experimentation. 

The prediction efficiency of the new models is better or at least as good as the 

standalone BI models (table 5.14). The biggest advantage of including the dynamic 

pressure term in inputs can be seen in the Kp models (figures 5.47 and 5.48). The 

overall statistics have improved "significantly" in both the models. On the other hand, 
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the results from the new AE models (figures 5.49 and 5.50) are identical to models 7 

and 8. We did not see a clear winner here as we saw in Kp. On the other hand, the 

Dst models (figures 5.51 and 5.52) are special in that we did see a slight improvement 

in the 1-hour model but the results have worsened for the 3-hour model. It is worth 

mentioning that the Dst index have been corrected for pressure term contamination 

using the BMR equation (chapter 1). To summarize, Kp is best predicted using 

the BI and dynamic pressure and Dst is best predicted an hour ahead using hourly 

cadences of the BI and dynamic pressure; the predictions are also clear of persistence 

contamination. As far the AE indices, the results are inconclusive about using the 

dynamic pressure term, probably making it easier to use the BI as standalone for real 

time predictions. 

Finally, having investigated the effectiveness of the BI in raising the baseline 

further in short-term (3 hours or less) geomagnetic activity index forecasting, we 

now turn our attention, as we originally hypothesized, towards further investigating 

whether legitimate forecasting is plausible beyond lead times of over 3 hours, perhaps 

up to 6 hours. 
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Kp$| : 1 hour ahead Kp prediction from BI and dynamic pressure 1 hour ahead Kp prediction from BI and dynamic pressure 

400 

200 

S 6 7 8 9 

111]. 
0 1 2 3 4 5 6 7 8 9 

Kp 

Figure 5.47 : BI and Dp included: ANN predicted Kp vs measured Kp, r = 0.884 
(left panel). This model gives a lead time of 1 hours. The dashed lines are the 95% 
confidence bounds. Thick black line is the linear fit. Kp histogram is shown to the 
right. 

K p : 3 hour ahead Kp prediction form BI and dynamic pressure 3 hour ahead Kp prediction from BI and dynamic pressure 

Figure 5.48 : BI and Dp included: ANN predicted Kp vs measured Kp, r = 0.841 
(left panel). This model gives a lead time of 3 hours. The dashed lines are the 95% 
confidence bounds. Thick black line is the linear fit. Kp histogram is shown to the 
right. 
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AE^f" : 1 hour ^ iead A£ prediction from 61 s t d dyname pressure 

Measured AE (nT) 

Figure 5.49 : BI and Dp included: ANN predicted AE vs measured AE, r = 0.810. 
This model gives a lead time of 1 hour. The dashed lines are the 95% confidence 
bounds. Thick black line is the linear fit. 

AERgm: 3 hour AE prediction from BI and dynamic pressure 

200 400 6Q0 800 1000 1200 1400 

Measured AE (nT) 

Figure 5.50 : BI and Dp included: ANN predicted AE vs measured AE, r = 0.744. 
This model gives a lead time of 3 hours. The dashed lines are the 95% confidence 
bounds. Thick black line is the linear fit. 
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Dst^™: Dst 1 hour ahead prediction from BI and dynamic pressure 

Measured Dst (nT) 

Figure 5.51 : BI and Dp included: ANN predicted Dst vs measured Dst, r = 0.814. 
This model gives a lead time of 1 hour. The dashed lines are the 95% confidence 
bounds. Thick black line is the linear fit. 

Ds,Ram: 3 h o u r 0 s ( p r e ( j iC t |0 n f r o m g | a n c | dynamic pressure 

Measured Dst (nT) 

Figure 5.52 : BI and Dp included: ANN predicted Dst vs measured Dst, r = 0.811. 
This model gives a lead time of 3 hours. The dashed lines are the 95% confidence 
bounds. Thick black line is the linear fit. 
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5.5 Longer range predictions 

The two important issues relevant to space weather forecasting are accuracy and 

lead time. Thus far, we focussed on the former, improving the accuracy of short-term 

forecasts in the range 1-3 hours. Our results suggests that we have fair deal of accuracy 

in this range and that they are better than some of the better known models available. 

This section deals with the latter, increasing the lead time of forecasts without giving 

up the accuracy. 

The network design and training are similar to the 3-hour models. The only 

novelty is that we predict "2" steps ahead instead of just "1", using three hour 

averages of all the parameters (BI, Dp, Kp, Dst and AE). Figure 5.53 is a generic 

architecture of the 6-hour lead time models. We chose to include the Dp term in the 

inputs, given its performance earlier. The predictions from the 3 "6-hour" models 

will be called Kp^g1, D s t f f i , and AE£a
6

m. The best functions are: 

6-hour lead time predictions using BI and Dp 

Predicted 3-hour averages 

BI t=-3 t=0 
-e—e—e—e—e—e-

Network Inputs 

Time 

Network Output 
t=+6 

Figure 5.53 : An example: an input-output training pattern for the 6-hour ahead Kp, 
AE and Dst models that includes the pressure term. 
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Table 5.15 : Summary of models with 6 hour lead time from BI and Dp. 

Forecast Models Linear Correlation R M S E Test HSSt AREt 

ANN 6-hr Kp predictor 0.730 0.890 0.285 0.292 

ANN 6-hr Dst predictor 0.692 10.97 0.347 0.408 

ANN 6-hr AE predictor 0.553 125.87 0.070 0.548 

* Thresholds: Kp > 4; Dst < -40 nT; AE > 500 nT. 

Kpt^6
m = f (BI t , BI t_3 , ..., BI t_1 5; D P t , DP t _ 3 , .., D P t _ 1 5 ) (5.16) 

Dstf+
a

6
m = f (BI t , BI t_3 , . . . , BI t_1 5; D P t , DP t _ 3 , ..., D P t _ 1 5 ) (5.17) 

AE**™ = f(BI t , BIt-3, BI t_ 15; D P t , D P t _ 3 , . . , D P t _ 1 5 ) (5.18) 

Table 5.15 list the summary of the models. We use the same reference thresholds 

here: Kp > 4, Dst < -40 nT, and AE > 500 nT. It can be seen that the predictions 

have gone down significantly (the best HSS is less than 35%). A deeper analysis 

of the results reveals the statistics shown in table 5.16 (thresholds: Kp > 6, Dst < 

-40 nT, and AE > 500 nT). Furthermore, I have investigated the predictions from 

these 6-hour models against the two storms in April 2001 and December 2006, our 

reference baseline. Interestingly, the Kp and the Dst have been modeled well (figure 

5.54). However, the AE predictions are extremely poor. The HSS is over 74% and 

55% while predicting Kp and Dst respectively, for the period covered in December 

2006. 



197 

j V b p 
1 ¥vv 

- i' -

Figure 5.54 : Predictions from 6-hour models are overplotted with the measured 
values. Data shown here covers all of December 2006. 
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Table 5.16 : Geomagnetic Storm Alerts (Thresholds: Kp > 6; Dst < -40 nT; AE > 
500 nT). 

Period Covered April 2001 December 2006 

Model KPt
R

+
a
6
m Dst**™ A p Ram t+6 T/ r . R a m 

Pt+6 D s t * r AE*a™ 

Hits 3 34 4 3 9 2 

Misses 11 30 31 2 1 20 

False Alarms 1 17 6 0 12 1 

Right Reject. 235 169 209 231 214 213 

Total 250 250 250 235 236 236 

Max Lead Time 6 hours 6 hours 6 hours 6 hours 6 hours 6 hours 

HSS 0.316 0.471 0.123 0.746 0.555 0.141 

POD 0.214 0.531 0.114 0.600 0.900 0.090 

FAR 0.250 0.333 0.600 0.000 0.571 0.333 



Chapter 6 

Discussion and Conclusion 

In this study, I have investigated the behavior of the Boyle Index, an empirical form 

to approximate the polar cap potential, and its role as a forecasting parameter. After 

examining the BI using multiyear data covering a solar cycle (1997-2007), I draw the 

following two conclusions: (1) the BI can characterize the strength and magnitude 

of the magnetospheric convection system as it was originally conceived to be, and 

(2) offers an improvement in the predictability of one of the traditional geomagnetic 

indices Kp, Dst and AE. 

I have used the ACE level 2 data of SWEPAM, IMP-8 and WIND extending from 

1995 to 2007 to derive BI and thus investigated its statistical correlation with three 

magnetic indices (Kp, Dst and AE). I have shown that both 3-hour and 1-hour av-

erages of the natural logarithm of BI and Kp are strongly correlated. In addition, 

using cross-correlation analysis, I have also shown that Kp and BI are strongly cor-

related at lead-times of 1 and 3 hour, depending up on the integration time with the 

optimum lead time around 3 hours for both the one-hour and three-hour predictions. 

My studies have also shown that the BI is strongly correlated with Dst and AE, and 

that they are predictable in the shorter time range (6 hours). One of the key char-

acterizations of a correlation analysis is to obtain quantitative information about the 

time scales involved in the magnetosphere's response to the changing solar wind and 

IMF conditions. I have further analyzed a few preconditioning mechanisms and the 

magnetosphere's response to such mechanisms by using artificial neural networks. In-



200 

corporating sufficiently long weighted input averages into the training process helped 

the network learn the signatures of extended activity, and the evidences were noticed 

in my confirmatory tests. 

Motivated by the extensive amount of in situ data available for research, the space 

physics community is keen on looking for ways to connect various magnetospheric 

processes with solar wind parameters. Therefore, it is not surprising that several 

similar solar wind-magnetosphere coupling functions which can also represent Kp and 

the state of the magnetosphere have been identified in the literature. A recent effort 

by Newell et al. [2007], with their comprehensive list of solar wind-magnetosphere 

coupling functions, is certainly noteworthy. Much more recently, unlike empirical 

approximations like the BI and Newell functions, Borovsky [2008] derived a new solar 

wind-magnetosphere coupling function called as the control function weighing heavily 

on the rudiments of the physics of dayside reconnection. 

Recent research results tend to agree that the benefits of applying the concept 

of coupling functions to space weather is derived from the presence of a solar wind-

dependent "viscous" interaction term in addition to the IMF-dependent "merging" 

term, the two most dominant processes driving magnetospheric convection, thereby, 

making them good candidates to describe the state of the magnetosphere system. 

The results borne out of this dissertation further corroborate to this. I also demon-

strated that from the timeline of the speed of the solar wind and its IMF direction 

using information obtained from an upstream solar wind monitor, one can effectively 

increase the lead-time of forecasts before an ensuing storm and subsequent auroral 

substorms to provide short-term, yet close-to accurate, forecasts. Furthermore, I have 

shown that the forecast accuracies obtained from the ANNs are "significantly" better 

than persistent forecasting. My algorithms have better accuracy and lead time over 

some popular algorithms, especially the Costello ANN Kp model. 
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6.1 Summary 

I have now successfully constructed and evaluated computer algorithms based on an 

artificial neural network to forecast the geomagnetic activity indices Kp, Dst and AE 

in real time from a solar wind coupling function called the Boyle Index. My analyses 

indicate a slight run-down in the prediction accuracy with increasing lead-time; the 

best prediction efficiency was achieved for an 1-hour lead time. However, if the BI is 

coupled with a dynamic pressure term (ni%w), the predictive power increases. 

My retrospective tests and network performance (based on randomly chosen test 

data out of 1997-2007) indicate that our algorithm can give a reliable Kp forecast 

with a lead-time of 1-hour within ±0.7 Kp on an average for Kp > 4, when using the 

past information of the BI and Kp. For predictions with a lead-time of 3 hours, our 

models can predict within ±1.0 Kp on an average for Kp > 4. I have also shown that 

we can predict within ±0.9 of the true Kp (Kp > 4) for a lead-time of an hour and 

within ±1.1 for a lead-time of 3-hours, all while using the solar wind alone. Finally, 

running our models 3 and 4 in real time may not yield the accuracies reported because 

the NOAA nowcasted Kp, at times, may or may not mimic the official Kp. However, 

the models which do not use the history of Kp, but only use the history of the Boyle 

Index, are nearly as good a predictor of future Kp, and do not suffer the lag problem 

of models which include the history of Kp. Furthermore, our 1-hour and 3-hour 

Dst models can offer predictions within ± 13.91 and 13.42 nT RMS uncertainties 

respectively. Finally, our 1-hour and 3-hour AE models can offer predictions of the 

upcoming AE values within ± 122.04 and 129.72 nT RMS uncertainties respectively. 

Two of the Kp-prediction models discussed in this dissertation (models 1 and 

2) have culminated into real time "space weather" forecast systems already. We 

have been running these two purely-solar wind-driven models since October, 2007 
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with good success. We are in the process of implementing a modified version of the 

existing alert system to send out "red-alerts" and "warnings" to the subscribers of our 

"spacalrt" by giving key considerations to the new results of this dissertation. The 

thresholds for email alerts have been modified based on model validations, specifically, 

to include model predictions. Soon, our subscribers will receive notices and warnings 

through this new system in the event of any severe geomagnetic activity that may be 

ongoing or imminent i.e., whenever the 10-minute BI exceeds 200 kV, and whenever 

the predicted Kp exceeds 6. 

To sum up, I have successfully developed real time Kp, Dst and AE forecast 

models operational in the following modes: 

(1*) a model that takes only solar wind and magnetospheric data from ACE to 

derive the Boyle index and predicts Kp 1 hour ahead; 

(2*) a model that takes only the solar wind data and predicts Kp for a full 3 hours 

ahead; 

(3) a model that takes solar wind and magnetospheric data from ACE and Kp 

from the NOAA (http://www.swpc.noaa.gov/rt_plots/kp_3d.html) and predicts 

Kp 1 hour ahead; 

(4) a model that takes the same input as (3) but predicts Kp 2 hours ahead; 

(5) a model that takes only the solar wind data and predicts Dst 1 hour ahead; 

(6) a model that takes only the solar wind data and predicts Dst full 3 hours 

ahead; 

(7) a model that takes only the solar wind data and predicts AE 1 hour ahead; 

* Models 1 and 2 are considered the best among the Kp models because of lack of reliance on Kp 

history and therefore, free of persistence contamination, and also because they do reasonable well at 

predictions. 

http://www.swpc.noaa.gov/rt_plots/kp_3d.html
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(8) and a model that takes only the solar wind data and predicts AE full 3 hours 

ahead. 

6.2 Kp models: Possible applications 

Relativistic electrons trapped in the Earth's radiation belt can influence a variety of 

phenomenon posing radiation hazards to spacecraft and humans on the Earth. Rel-

ativistic Electron Forecast Model (REFM), currently operational at NOAA, predicts 

electron fluxes using solar wind inputs from ACE to produce a three day forecast and 

warning customers of such "killer" electrons. Currently, the REFM is driven by the 

Costello ANN Kp model which has a lead time of approximately 1 hour. One of the 

model deficiencies, however, lies in its forecast uncertainties. 

The Dynamic Radiation Environment Assimilation Model (DREAM) is an ongo-

ing research thrust, based on data assimilation, aimed at improving the radiation belt 

forecasting at the Los Alamos National Laboratory (LANL), of which the physics-

based radial diffusion code is a component. One of the key ingredients of this model 

is the Kp dependent radial diffusion coefficient. As an integral part of the DREAM 

effort at LANL, the radial diffusion model describes the radial evolution of the highly 

energetic electrons in geosynchronous orbits. Presently, this physics model is running 

in 1-dimensional mode with Kp as one of its inputs, through the Costello ANN Kp 

model. The specific form of the equation used in the radiation belt model, derived 

from the original Fokker-Plank equation, is given by: 

where /(L,t) is the phase space density, D L L ( L , K p ) is the radial diffusion coefficient 

and r(L,t) is the loss lifetime. L denotes the L-shell values. The model adopts the 

empirical form of the diffusion coefficient [Brautigam and Albert, 2000] described by 

(6.1) 
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the following power law: 

Dll(L, Kp) = 1 o ^ - 5 0 6 ^ - 9 - 3 2 5 ^ 1 0 (6.2) 

The scope of this model is to study the radiation belt electron enhancements so that we 

can predict the response of the radiation belt given the solar wind conditions. While 

the DREAM effort at LANL is still evolving, data assimilation and tool testing can 

be facilitated with new and advanced procedures. 

Now that it has been established that my models perform better than the Costello 

NN Kp model, in addition to its success in providing a longer lead time of up to 3 

hours, my Kp-prediction models which are all global physics-based models can be 

used to drive the radial diffusion code and the REFM for better accuracy and lead 

time. 

6.3 Future Possibilities 

Contrary to the age-old belief that southward IMF is the only condition for which 

plasma can enter the magnetosphere, recent results from THEMIS spacecraft suggests 

that Earth's plasma sheet becomes colder and denser for the plasma to force their 

way into the magnetosphere all happening when the IMF is northward. If so, the 

new solar cycle might pose a new problem challenging the best algorithms that were 

trained using preceding solar cycles. Since the effects of preconditioning and mass 

loading are critical to predicting the onset of storms, my neural network algorithm 

with its ability to look back up to 18 hrs in time should be effective at being able 

to capture these effects. Therefore, looking near term, a modified algorithm or an 

algorithm based on modified form of the Boyle potential is inevitable as the new solar 

cycle begins to ramp up. 
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6.3.1 Borovsky Function 

Borovsky [2008] derived another coupling function R, called the solar wind "control 

function" (CF), by taking the dayside reconnection rate parameters into account. 

The control function R is given by the following expression, 

R = 0AplJ2sm{e/2)pov2
o{l + 0 .5M~ 2 ) (1 + f3s)~l/2 

. 'Cp0 + (l + ^ ) - 1 / 2 p m ] ~ 1 / 2 [ l + ^ ) 1 / 2 + l ] " 1 / 2 (6-3) 

where p0 is the mass density of the solar wind upstream of the bow shock, vG is the 

velocity of the solar wind upstream of the bow shock, C is the compression ratio of the 

bow shock, Ps is the plasma-/? value of the magnetosheath plasma near the nose, and 

Mm s is the magnetosonic Mach number of the solar wind. Supplements to equation 

6.1 are: 

fa = 3.2 x 10"2M^92; (6.4) 

C = [(1/4]6 + [1/1(1 + 1.38Zo&(MA)))6]-1/6 (6.5) 

Mms = v0 ((B2/p0p0) + 5P0/3p0)1/2 (6.6) 

Ma = v0(fi0p0)1/2/B0 (6.7) 

A simple linear plot (figure 6.1) shows the difference between the two functions, 

the BI (r = 0.72) and the CF (0.81). Clearly, the CF gives a large improvement over 

the existing baseline, at least with respect to predicting the Kp index. Further studies 

are needed to test this function as a forecasting tool. 



206 

Figure 6.1 : Scatter plots of the 3-hour averages of the BI and the CF versus the Kp 
is shown here. 

6.3.2 Improving long term forecasts 

One of my future interests also lies in finding techniques and methodologies to improve 

long-term predictions. Recent trends in space weather research include long-term end-

to-end forecast models that are currently being developed. However, one of the key 

ingredients still unclear in these models is the polarity of the IMF Bz at the leading 

edge of Coronal Mass Ejections (CMEs) emanating from the Sun, which are critical to 

simulating the solar wind magnetospheric interactions, and therefore to space weather 

forecasts. In the absence of reliable methods as yet, either to predict the strength of 

CMEs or to the direction of IMF Bz, photospheric signatures on the surface of the 

Sun offer initial clues (e.g., The Wang-Sheeley-Arge Model). But forecasts based on 

such observations may produce false alarms due to the lack of knowledge of the exact 
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geometry of the CMEs. 

One plausible approach which might offer some valuable insights to the direction 

of the IMF would be identifying the reversal of polarity from northward to southward 

IMF and vice-versa. This can be done through neuro-computing using a Green's func-

tion input of the solar wind parameters to see how they differ. I would like to conduct 

temporal studies of the magnetic vector fields of solar wind following, for example, a 

CME, using data from the ACE or the VSTO (Virtual Solar Terrestrial Observatory), 

so the reversal of the field directions and its timeline during such transient events can 

be investigated in detail. 

An advanced non-linear approach like neural networks is relatively new and has 

delivered good results, especially when traditional statistical approaches based on 

regression analysis have not performed well. In order to leverage the merits of ANN, 

I would also like to pursue and encourage collaborative efforts within the various 

disciplines of space physics including studies related to solar transient events and 

long-term solar activity. 

Finally, the best possibility for long range predictions might be the establishment 

of a more sunward monitor, perhaps solar sails, to increase the solar wind lead time 

from ~45 minutes to 3-4 hours. 



Appendix 

/r 

K /I v- e V XI \y w / 

" N O I j ^^rx^ 
y • / 

Figure 6.2 : Supplement plot to figure 5.30 (page 160). Model vs. data comparison: 
Predictions from all the Kp models are overplotted with the measured Kp. 
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