
RICE UNIVERSITY 

An Efficient Algorithm For Total Variation Regularization 
with Applications to the Single Pixel Camera and 

Compressive Sensing 

by 

Chengbo Li 

A THESIS SUBMITTED 

IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE D E G R E E 

Mas te r of Arts 

A P P R O V E D , THESIS COMMITTEE: 

Yin Zhang, Professor, Chair 
Computational and Applied Mathematics 

flliam W. Symes, Noah G. Ha: illiam W. Symes, Noah G. Harding Professor 
Computational and Applied Mathematics 

Wotao Yin, Assistant Professor 
Computational and Applied Mathematics 

Kevin Kelly, Associate Professor 
Electrical and Computer Engineering 

HOUSTON, TEXAS 

SEPTEMBER 2009 



UMI Number: 1486057 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMT 
Dissertation Publishing 

UMI 1486057 
Copyright 2010 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



Abstract 

An Efficient Algorithm For Total Variation 
Regularization with Applications to the Single 

Pixel Camera and Compressive Sensing 

by 

Chengbo Li 

In this thesis, I propose and study an efficient algorithm for solving a class of compres

sive sensing problems with total variation regularization. This research is motivated 

by the need for efficient solvers capable of restoring images to a high quality captured 

by the single pixel camera developed in the ECE department of Rice University. Based 

on the ideas of the augmented Lagrangian method and alternating minimization to 

solve subproblems, I develop an efficient and robust algorithm called TVAL3. TVAL3 

is compared favorably with other widely used algorithms in terms of reconstruction 

speed and quality. Convincing numerical results are presented to show that TVAL3 

is suitable for the single pixel camera as well as many other applications. 
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Chapter 1 

Introduction 

This thesis concentrates on developing an efficient algorithm which solves a well-

known compressive sensing (also known as compressed sensing or CS) problem with 

total variation (TV) regularization. The main application of this algorithm is to 

reconstruct the high-resolution image captured by a single pixel camera (SPC). The 

basic questions are: what is the background and motivation of this research, what 

methods are used, why is a new algorithm necessary, and how does this new algorithm 

behave compared with other existing solvers or algorithms? All of these questions 

will be answered step by step in this thesis. 

The basic background including compressive sensing and single pixel camera, ex

isting reconstruction algorithms, and the general methodology are introduced in this 

chapter. The second chapter, one of the most essential chapters in this thesis, de

scribes the main algorithm in detail and introduces the corresponding solver TVAL3 

[98]. A structured measurement matrix correlating to the single pixel camera and 

how this measurement matrix is able to improve the algorithm will be discussed in 

the following chapter. The algorithm described in this thesis compares favorably with 

several state-of-the-art algorithms in the fourth chapter of this thesis. Numerical re-

1 
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suits and the following discussion will also be covered. Last but not least, some related 

topics such as the TV minimization algorithm for dual problems and hyperspectral 

imagery which will require further research during my Ph.D. studies, are proposed in 

the last chapter. 

1.1 Compressive Sensing Background 

Compressive sensing [4] is a technique which reconstructs or obtains a sparse or 

compressible signal. A large but sparse signal is encoded by a relatively small number 

of linear measurements, and then the original signal is recovered from the encoded one. 

It has been proven that computing the sparsest solution directly generally requires 

prohibitive computations of exponential complexity [46], so several heuristic methods 

have been developed, such as Matching Pursuit [51], Basis Pursuit [53, 54], log-

barrier method [55], iterative thresholding method [57, 58], and so forth. Most of 

these methods or algorithms fall into three distinct categories: greedy algorithms, l\ 

minimization, and TV minimization. 

1.1.1 Greedy Algorithms 

Generally speaking, a greedy algorithm refers to any algorithm following the meta-

heuristic of choosing the best immediate or local optimum at each stage and expecting 

to find the global optimum at the end. It can find the global optimum for some opti

mization problems, but not for all [50]. Mallat and Zhang [51] introduced Matching 

Pursuit (MP) in 1993, which is the prototypical greedy algorithm applied to com

pressive sensing. This algorithm decomposes any signal into a linear combination of 

waveforms in a redundant dictionary of functions so that selected waveforms optimally 

match the structure of the signal. MP is easy to implement and has an exponential 
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rate of convergence [66] and good approximation properties [65], However, there is 

no theoretical guarantee that MP can achieve sparse representations. Pati et al. pro

pose a variant of MP, Orthogonal Matching Pursuit (OMP) [52], which guarantees the 

nearly sparse solution under some conditions [67]. A primary drawback of MP and 

its variants is the incapability of attaining truly sparse representations. The failure 

is usually caused by an inappropriate initial guess. This shortcoming also motivated 

the development of algorithms based on t\ minimization. 

1.1.2 £i Minimization 

In 1986, Santosa and Symes [7] suggested l\ minimization to recover sparse spike 

trains for the first time. In the next few years, Donoho and his colleague [8, 9] also 

discovered some early results related to i\ minimization for signal recovery. The ques

tion why £i minimization could work in some special setups was further investigated 

and answered in a series of paper [10, 11, 12, 13, 14, 15]. 

Grounded on those early efforts, a new CS theory was proposed by Candes, 

Tomberg, Tao [2, 3], and Donoho [4] in 2006, which theoretically guarantees l\ mini

mization is equivalent to £Q minimization under some conditions on signal reconstruc

tion. Specifically, they claim that a signal which is K-sparse under some basis can 

be exactly recovered from cK linear measurements by t\ minimization under some 

conditions, where c is a constant. The new CS theory has significantly improved 

those earlier results. How big the constant c is here directly decides the size of linear 

measurements, important information needed to encode or decode a signal. The in

troduction of the concept restricted isometry property (RIP) for matrices [1, 4] gives 

the theoretical response. E. Candes, Tao, and Donoho prove that if the measurements 

satisfy the RIP of a certain degree, it is sufficient to recover the sparse signal exactly 
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from its decoded signal. However, it is extremely difficult to verify the RIP property 

in practice. Fortunately, Candes et al. show that RIP holds with high probability 

when the measurements are random. However, is RIP truly an indispensable property 

for CS analysis? For instance, measurement matrices A and GA in £\ minimization 

should result in exactly the same recoverability and stability as long as matrix G is 

square and nonsingular, but their RIP could vary a lot. A non-RIP analysis, studied 

by Y. Zhang [5], proves recoverability and stability theorems without the aid of RIP 

and clarifies prior knowledge can never hurt but possibly enhance recovery via l\ 

minimization. Usually t\ minimization algorithms require fewer measurements than 

greedy algorithms. Basis Pursuit (BP) [53, 54], which seeks the solution that min

imizes the £i norm of the coefficients, is a prototype of l\ minimization. BP can 

simply be comprehended as linear programming solved by some standard methods. 

Furthermore, BP can compute sparse solutions in situations where greedy algorithms 

fail [54]. 

All this work enriches the significance of studying and applying t\ minimization 

and compressive sensing in practice. The related studies [21, 22, 23, 27, 28] have also 

inspired the nourishing research in the compressive sensing area. Many applications 

have been studied, such as reconstruction or denoising of Magnetic Resonance Images 

(MRI) [29, 30], analog-to-information conversion [31], sensor networks [34, 35], and 

even homeland security [68]. 

1.1.3 TV Minimization 

In the broad area of compressive sensing, l\ minimization has attracted intensive re

search activities since the discovery of l§jl\ equivalence. However, for image restora

tion, recent research has confirmed that the use of total variation (TV) regularization 
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instead of the l\ term in CS problems makes the recovered image quality sharper by 

preserving the edges or boundaries more accurately, which is essential to characterize 

images. The advantages of TV minimization stem from the property that it can re

cover not only sparse signals or images, but also dense staircase signals or piecewise 

constant images. In other words, TV regularization would succeed when the gradient 

of the underlying signal or image is sparse. Even though this result has only been 

theoretically proven under some special circumstances [3], it stands true on a much 

larger scale empirically. 

Rudin, Osher, and Fatemi [6] first introduced the concept total variation for image 

denoising in 1992. From then on, total variation minimizing models have become one 

of the most popular and successful methodologies for image restoration. A detailed 

discussion on TV models has been reported by Chambolle et al. [25, 26]. However, the 

properties of non-differentiability and non-linearity of TV functions make them far less 

accessible computationally than solving t\ minimization models. Geman and Yang 

[33] proposed a joint minimization method to solve half-quadratic models [32, 33], 

which are variants of TV models. Grounded on half-quadratic models, Wang, Yang, 

Yin, and Zhang applied TV minimization to deconvolution and denoising problems 

[18] and successfully extended their idea to image reconstruction [36] and multichan

nel image deblurring or denoising problems [37, 38]. Their reconstruction algorithm 

for TV minimization is very efficient and effective, but it restricts the measurement 

matrix to the partial Fourier matrix. In 2004, Chambolle [24] proposed an iterative 

algorithm for TV denoising and proved the linear convergence. Furthermore, Cham-

bolle's algorithm can be extended to solve image reconstruction problems with TV 

regularization while the measurement matrix is orthogonal. 

Due to the powerful application of TV regularization in the edge-detection and 

many other fields, researchers kept trying for several years to explore algorithms for 
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solving TV minimization problems. However, these algorithms are still either much 

slower or less robust compared with algorithms designed for 4 minimization. The 

algorithm proposed in this thesis has successfully overcome this difficulty and led to a 

new solver (named TVAL3) for TV minimization which is as fast as or even faster than 

most l\ minimization algorithms and accepts a vast range of measurement matrices. 

1.2 Single Pixel Camera 

A significant application of compressive sensing in recent years is the successful design 

of the single pixel camera. This concept was initially proposed by Baraniuk, Kelly, et 

al. [39]. As shown in Figure 1.1, this new-concept camera is mainly composed of two 

Scene 

Bitstream 
Reconstruction ->- Image 

DMD 
Array 

Figure 1.1: Single pixel camera block diagram [39]. 

devices: the digital micro-mirror device (DMD) [43] and the photodiode (PD). The 

desired image (camera man) is projected on a DMD array which is fabricated b y m x n 

little mirrors and oriented in the pseudorandom pattern decided by random number 

generators (RNG). Then the lightfield goes through a lens and converges to a single 

PD by which one pixel value is obtained. Each different mirror pattern produces 

one measurement. Repeating this process M times, M pixel values corresponding 
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to M measurements are captured. A sparse approximation to the original image 

can be recovered from known pixel values and random measurements by means of 

compressive sensing techniques. Some extended research related to a single pixel 

camera has been done including infrared imaging [44], laser-based failure-analysis 

[45], and others [40, 41, 42] at Rice University. 

Why should people care about the single pixel camera considering the fact that 

the traditional digital camera with ten mega pixels is ubiquitous and low-priced? As a 

matter of fact, imaging at wavelengths where silicon is blind is much more complicated 

and costly than imaging at visual wavelengths. This results in the unaffordable price 

of a digital camera for infrared with comparable resolution. On the other hand, the 

infrared camera has wide applications in industrial, military, and medical domains, 

such as heat energy detection, night vision, internal organ examination, and so on. 

The manufacture of single pixel infrared cameras could greatly decrease in price so as 

to be affordable for everyone and applicable everywhere. All of these reasons motivate 

researchers to focus on the development of the single pixel camera with respect to 

both hardware and software. Here, the software refers to the core recovery solver. An 

efficient and robust solver, which is able to reconstruct a clean and sharp image in a 

relatively short time, is intensely expected. 

Because the number of measurements M is much less than the original resolution 

while dealing with the desired image using the single pixel camera, it is natural to 

model the recovery process as a compressive sensing problem. Thus, compressive 

sensing algorithms can be applied to the single pixel camera. Before the emergence of 

TVAL3, which is the new solver based on the algorithm described in this thesis, the 

single pixel camera adopted £i-Magic [3, 2, 1] and FPC [17] as the core recovery solver. 

Solvers for £\ minimization and TV minimization are named l\ solvers and TV solvers 

respectively. £i-Magic, implemented by Candes and Romberg, is one of pioneer TV 
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solvers for compressive sensing. It was the initial solver to recover images for the 

single pixel camera due to its good reputation for stability and edge-preservation. 

However, the disadvantage is the much longer reconstructing time compared with 

i\ solvers. For instance, it is impractical to deal with an image whose resolution 

is 512 x 512 using ^-Magic. In contrast, as one of the fastest 4 solvers, FPC [17] 

implemented by Hale, Yin, and Zhang is capable of recovering the high-resolution 

image in a relatively short time. However, as mentioned before, the edges of images 

recovered l\ solvers cannot be preserved as well as those recovered by TV solvers, 

especially when high noise level exists. Besides, wavelet transformation is necessary 

for £i solvers, but not for TV solvers. Thus, the single pixel camera highly desires a 

high-quality TV solver whose running time is comparable with t\ solvers. 

1.3 Methodologies of T V Solvers 

Contrary to abundant t\ solvers, only a limited number of TV solvers are available. 

To the best of my knowledge, only SOCP [19], 4-Magic [3, 2, 1], TwIST [57, 58], 

NESTA [56], and RecPF [36] are publicly available for image reconstruction with TV 

regularization. 

The approach behind SOCP solver is to reformulate TV minimization as a second-

order cone program, which is solvable by interior-point algorithms. This solver is easy 

to adapt various convex TV models with distinct terms and constraints and able to 

achieve high accuracy. However, it is very slow since SOCP embeds the interior-point 

algorithm and directly solves a linear system at each iteration. 

Similar to SOCP, £i-Magic also focuses on second-order cone reformulation of TV 

models, but it is implemented by the log-barrier method. At each log-barrier iteration, 

Newton's method proceeds with the approximate solution at the last iteration as the 
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initial guess. Compared with SOCP, ^i-Magic solves the linear system in an iterative 

way, which is more efficient than directly solving the linear system. However, applying 

Newton's method at each iteration is still time-consuming when facing a large-scale 

problem. 

In the last few years, iterative shrinkage/thresholding (1ST) algorithms were inde

pendently proposed by several authors [60, 61, 62, 63, 64]. 1ST is able to minimize CS 

models with some non-quadratic and non-smooth regularization terms. The conver

gence rate of 1ST algorithms highly relies on the linear observation operator. TwIST 

implements a nonlinear second-order iterative version of 1ST algorithms, which ex

hibits much faster convergence rate than 1ST when the linear observation operator 

is ill-conditioned. This solver can also be regarded as alternating algorithm of two 

steps, one of which is a denoising step. For TV minimization, Chambolle's denoising 

algorithm [24] is coupled to TwIST. Chambolle's algorithm is an iterative fixed point 

algorithm based on a dual formulation. This scheme converges quite fast at the first 

iteration, sometimes bringing on a visually satisfactory result, but the remaining it

erations tend to be quite a slow convergence. The denoising step is the dominating 

time-consuming part while running TwIST. Therefore, the efficiency of Chambolle's 

algorithm mostly determines the efficiency of TwIST. 

In April 2009, Bobin, Becker, and Candes developed a new solver NESTA, a first-

order method of solving BP problems. They were notably inspired by Nesterov's 

smoothing technique [16], whose essential idea is a subtle averaging of sequences of 

iterates. Their algorithm is easily extended to TV minimization by slightly modifying 

the smooth approximation of the objective function. However, the current version 

of NESTA still requires that AT A is an orthogonal projector where A represents 

the measurement matrix. Further investigation may extend this method to the non-

orthogonal cases as indicated in their paper [56]. 
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As mentioned before, Wang, Yang, Yin, and Zhang [18] have proposed a new 

alternating minimization method for deconvolution and denoising problems with TV 

regularization. The key feature of this algorithm is the splitting idea, which is brought 

to approximate the TV regularization. Yang, Zhang, and Yin [36] extended the same 

scheme to the compressive sensing area and implemented the solver RecPF. A distinct 

merit of this solver is low cost at each iteration, which requires only two matrix-vector 

multiplications per iteration as the dominant computation. As a TV solver, RecPF 

is competitive in speed to most l\ solvers, which is a surprising discovery motivating 

my work on the new TV algorithm, but it can only accept the partial Fourier matrix 

as its measurements. 

The splitting idea originated from [18] is also the springboard to exploit a new 

efficient and robust TV solver which is able to lead the single pixel camera one step 

closer to practical application. A detailed description of the algorithm will be given 

in next chapter. 



Chapter 2 

TVAL3 Scheme and Algorithms 

A chief contribution of this thesis is regarded as proposing a new efficient TV min

imization scheme based on augmented Lagrangian and alternating direction algo

rithms, short for "TVAL3 scheme". It is presented in detail in this chapter for solving 

the compressive sensing problem with total variation regularization: 

minV^ ||I>iw||, s.t. Au = b, (2.1) 
i 

where u 6 R" or u € Rsxt with s • t = n, DiU € E2 is the discrete gradient of u at 

pixel i, A £ Rm x n (777, < 77) is the measurement matrix, and / <G Mm is the observation 

of u via some linear measurements. ||.|| can be either 1-norm (corresponding to the 

anisotropic TV) or 2-norm (corresponding to the isotropic TV). TVAL3 scheme is 

able to handle different boundary conditions for u, such as periodic, Neumann, and 

other boundary conditions. The periodic boundary condition is used here to calculate 

Y,i \\Diu\\ for simplicity. 

This model (2.1) is very difficult to solve directly due to the non-differentiability 

and non-linearity of the TV term. The algorithm proposed in this chapter is derived 

11 
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from the classic approach of alternating direction method [69], or ADM, that mini

mizes augmented Lagrangian functions [70, 71] through an alternating minimization 

scheme and updates multipliers after each sweep. The convergence of such algorithms 

has been well analyzed in the literature (see [81], for example, and the references 

therein). 

The background of the augmented Lagrangian method is reviewed in Section 2.1 

and the TVAL3 scheme is developed step by step in Section 2.2, 2.3, and 2.4. 

2.1 Augmented Lagrangian Method Review 

For constrained optimization, an influential class of methods seeks the minimizer or 

maximizer by approaching the original constrained problem by a sequence of uncon

strained subproblems. The quadratic penalty method which could be regarded as the 

precursor to the augmented Lagrangian method, should be traced back to Courant 

[20] in 1943. This method puts a quadratic penalty term instead of the constraint in 

the objective function where each penalty term is a square of the constraint violation 

with the multiplier. Due to its simplicity and intuitive appeal, this approach is widely 

used. However, it requires multipliers to go to infinity to guarantee the convergence, 

which may cause the ill-conditioning problem numerically. In 1969, Hestenes [70] and 

Powell [71] independently proposed the augmented Lagrangian method which suc

cessfully avoided this inherent problem by introducing explicit Lagrangian multiplier 

estimates at each iteration into the objective function. 

Let us begin with considering the equality-constrained problem 

min/(a;), s.t. h(x) = 0, (2.2) 
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where h is a vector-valued function and both / and hi for all i are differentiable. The 

first-order optimality conditions are 

V£(x,A) = 0, (2.3) 

h(x) = 0, (2.4) 

where £(x, A) = f(x) — XTh(x). We say the linear independence constraint qual

ification (LICQ) holds at the point x* if and only if the set {V/ij(x*)} is linearly 

independent. The optimality conditions are necessary for the optimal points of (2.2) 

if LICQ holds there. When the primal problem (2.2) is convex, the optimality condi

tions become also sufficient. 

In light of the optimality conditions, a solution x* to the primal problem (2.2) 

is both a stationary point of the Lagrangian function and a feasible point of the 

constraint, which means x* solves 

min£(rc,A), s.t. h{x) = 0. (2.5) 

According to the idea of the quadratic penalty method, it is likely to make x* an 

unconstrained minimizer by penalizing the constraint violations. For example, it 

may approximately solve 

min£^(x, A;/i) = f(x) — XTh(x) + —h(x)Th(x). 
x 2 

Minimizing this alternate problem is well-known as an augmented Lagrangian method, 

and CA(X, A;/X) is called the augmented Lagrangian function. 

The augmented Lagrangian function differs from the standard Lagrangian function 

by adding a square penalty term, and differs from the quadratic penalty function 
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by the presence of the linear term involving the multiplier A. In this respect, the 

augmented Lagrangian function is a combination of the Lagrangian and quadratic 

penalty functions. 

An iterative algorithm implementing the augmented Lagrangian method will be 

described next. Fixing the multiplier A at the current estimate Xk and the barrier 

parameter [i to fik > 0 at the kth iteration, we minimize the augmented Lagrangian 

function £A(X, Xk;/ik) with respect to x and denote the minimizer as xk+1. Hestenes 

[70] and Powell [71] have suggested formula 

Xk+1 = Xk - fj,kh(xk+1), (2.6) 

in order to update the multiplier estimates from iteration to iteration and they have 

proven the convergence of the generated sequence to the true multiplier A*. 

This discussion motivates the following algorithmic framework [78]: 

Algorithm 1 (Augmented Lagrangian Method). 

Initialize fi0, X°, tolerance tol, and starting point x°; 

While ||V£(:rfc,Afc)|| > tol Do 

Qpf Tk+1 _ k . 

Find minimizer xk+l of £A(X, Xk; jik), starting from x^+1 

and terminating when WVXCA(X, Xk;fj,k)\\ < tol; 

Update the multiplier using (2.6) to obtain Xk+1; 

Choose the new penalty parameter /j,k+l > /ik; 

End Do 

At each iteration, we theoretically achieve 

VxCA(xk+\Xk;vk) = 0. 



15 

This can be expanded as 

V/(xfc+1) - Vh(xk+1)Xk + nhVh(xk+1)h{xk+1) = 0, 

which is equivalent to 

Vf(xk+l) - Vh{xk+l)[\k - fikh{xk+1)} = 0. 

Following the update formula of multiplier estimates (2.6), this can be rearranged as 

V/(xfc+1) - Vh{xk+1)Xk+1 = 0, 

which is the variant of 

V£(xfc+1,Afc+1) = 0. 

This equation means the optimality conditions for (2.5) are partially satisfied. There

fore, Algorithm 1 terminates while 

VxC{xk+\ \k+1) = -h(xk+1) = 0, 

or in practice, 

\\h(xk+1)\\ <tol. 

Some basic properties of the augmented Lagrangian method will be reviewed next. 

The following result given by Bertsekas [79, 80] provides a precise mathematical de

scription on some error bounds which help quantify the rate of convergence. 

Theorem 1 (Local Convergence Theorem). Let x* be a local solution of (2.2) at 

which the gradients Vhi{x*) are linearly independent, and the second-order sufficient 
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conditions are satisfied for A = A*; i.e., VxxC(x*, A*) is positive definite. Choose 

p, > 0 so that VIXCA{X*, A*; ft) is also positive definite. Then there exist positive 

constants S, e, and M such that the following claims hold: 

1. For all (Xk,/dk) E V where V = {(A,//) : ||A — A*|| < Sfi, // > JJL), the problem 

min£^(a:, Afe;/ifc) s.t. \\x — x*\\ = e 
X 

has a unique solution xk. It satisfies 

M, 
\ik 

| :r f c-x*| |<-| |A f c-Al. 

Moreover, the function x(X, fi) is continuously differentiate in the interior of 

V. 

2. For all (Xk, / / ) eV, 

| |A f c + 1 -A* | |<^ | |A f c -A* | | , 

no

where Xk+l is attained by (2.6). 

3. For all (Xk,/j,k) e V, V2
xxCA{xk,Xk\iJLk) is positive definite and Vhi(xk) are 

linearly independent. 

A detailed proof for local convergence theorem can be found in [79], pp. 108. 

The local convergence theorem implies three features of Algorithm 1. First, the 

algorithm converges in one iteration if A = A*. Second, if /ifc is large enough to satisfy 

jfc < 1, the error bounds in the theorem are able to guarantee that 

||Afc+1-A*|| < ||Afc-A* 



17 

i.e., the multiplier estimates converge linearly. Hence, {xk} also converges linearly. 

Last but not least, if l im/ / = +00, then 

,. ||Afc+1 - A* 
hm 

fc^+oo | |A f c-A*|| 

i.e., the multiplier estimates converge superlinearly. 

The convergence rate mentioned above is not comparable to the other methods in 

general, because the augmented Lagrangian method requires solving an unconstrained 

minimization subproblem at each iteration, which is probably more expensive than 

the iterations of other methods. Thus, designing an elaborate scheme to solve the sub-

problem efficiently is one of the key issues while applying the augmented Lagrangian 

method. 

In practice, it is unlikely to exactly solve the unconstrained minimization sub-

problem at each iteration. Rockafellar [72] has proven the global convergence in the 

convex case for an arbitrary penalty factor and without the requirement of an exact 

minimum at each iteration of the augmented Lagrangian method. 

Theorem 2 (Global Convergence Theorem). Suppose that 

1. (2.2) is a convex optimization problem; i.e., f is convex and hi are linear con

straints; 

2. the feasible set {x : h(x) = 0} is non-empty; 

3. nk = fi is constant for all k; 

4- a sequence {e/c} °̂ satisfies 0 < ê  —> 0 and 

Ĵ V f̂c < °°-
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Set tolerance to e^ and update multiplier following (2.6) at iteration k in Algorithm 

1. Then attained sequence {xk} converges to the global minimizer of (2.2). 

A detailed proof for global convergence theorem can be found in [72], pp. 560-561. 

This theorem confirms the global convergence in the convex case even though 

only approximate solutions for unconstraint subproblems are available in numerical 

computation and completes the theory of the augmented Lagrangian method. 

Other than (2.6) proposed by Hestenes and Powell, Buys [73] and Tapia [74, 75] 

have suggested another two multiplier update formulas (called Buys update and Tapia 

update respectively) which both involve second-order information of CA(X, A; //). Tapia 

[76] and Byrd [77] have shown that both update formulas give quadratic convergence 

if one-step (for Tapia update) or two-step (for Buys update) Newton's method is ap

plied to minimizing the augmented Lagrangian function instead of the usual infinite 

number of steps for exact minimization. However, each step of Newton's method 

can be computationally too expensive for applications in this thesis since it requires 

computing the Hessian of the augmented Lagrangian function. 

2.2 Augmented Lagrangian Algorithm for TV Min

imization 

In stead of employing the augmented Lagrangian method to minimize the TV model 

(2.1) directly, we consider an equivalent variant of (2.1) 

min^y \\vJi\\, s.t. Au — b and Dtu = W{ for all i. (2.7) 
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Its corresponding augmented Lagrangian function is 

CA(wi,u) = y^(|[tt>i|| ~ vJ{DjU - uij) + ~-\\DjU - Wj\\l) 
i 

-\T(Au-b) + ^\\Au-b\\l (2-8) 

Since (2.7) is still a convex problem, the global convergence theorem is able to guar

antee the convergence while applying the augmented Lagrangian method to it. Ac

cording to Algorithm 1 described above, z/j and A should be updated as long as (2.8) 

is minimized at each iteration. Let u* and w* represent the true minimizers of (2.8). 

in the light of (2.6), the update formulas of multipliers follow 

Oi = Vi - Pi(DiU* - w*) for a l i i , (2.9) 

A = X-fi(Au*-b). (2.10) 

An alternating minimization algorithm for the image deconvolution and denois-

ing has been proposed by Wang, Yang, Yin, and Zhang [18]. They introduced the 

variable-splitting technique to the compressive sensing area for the first time. In that 

paper, the TV regularization term is split into two terms with the aid of a new slack 

variable so that an alternating minimization scheme can be coupled to minimize the 

approximate objective function. The algorithm described in this thesis can also be 

derived under the variable-splitting technique. 

If the augmented Lagrangian method is applied directly to (2.1), the corresponding 

augmented Lagrangian function is 

CA(u) = ^ | | A « | | - A T ( A « - 6 ) + ^ | |Au-6 | |2 . (2.11) 
% 
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If we introduce a slack variable Wi G 1Z2 at each pixel to transfer DiU out of the 

non-differentiable term ||.|| and penalize the difference between them, then it results 

in splitting every term in the first sum of (2.11) into three terms: 

II II Tl T\ \ i rA 11 r-i 112 
||u>i|| - V\ [DiU - Wi) + —\\DiU - Wi\\2. 

Bringing these three terms back to (2.11) leads to the same objective function for the 

subproblem as (2.8). 

The algorithmic framework of the augmented Lagrangian method indicates that it 

is essential to minimize CA(WI,U) efficiently at each iteration to solve (2.1). The sub-

problem is still hard to solve efficiently in a direct way due to the non-differentiability 

and non-linearity. Therefore, an iterative way is proposed in the next section—the 

alternation minimization scheme. 

2.3 Alternating Direction Algorithm for the Sub-

problem 

The subproblem is to minimize the augmented Lagrangian function; i.e., 

mmCA(uii,u) = y^[\\wi\\ - vj(D{u - Wi) + ̂ \\DiU - Wi\\\) 
Wi,U *• ' Z 

i 

-\T{Au-b) + ̂ \\Au-b\\l (2.12) 

The alternating direction method [69], which was originally proposed to deal with 

parabolic and elliptic differential equations, is embedded here to solve (2.12) effi

ciently. 

file://�//DiU
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2.3.1 Shrinkage-like Formulas 

Suppose that uk and w^k respectively denote the approximate minimizers of (2.8) at 

the kth iteration which refers to the inner iteration while solving the subproblem. 

Assuming that Uj and wy are available for all j = 0 , 1 , . . . , k, w^+i can be attained 

by 

min£A(wi,uk) = J~](\\wi\\ ~ vIiDiuk ~ w%) + 7rllA«fc _ wi\\t) 
i 

-XT(Auk-b) + ^\\Auk-b\\l 

which is equivalent to solve the so-called "u>-subproblem" 

miny~](||iUi|| - vJ{D{uk - Wi) + -£\\DiUk - Wi\\\)- (2.13) 
i 

The w-subproblem is separable with respect to Wj. In what follows, we argue that 

every separated problem admits a closed form solution. 

Lemma 1. For x G W, the subdifferential of f(x) = \\x\\i is given component by 

component 

sqnixi), if Xi ^ 0; 
(df(x))i = 

{h : \h\ < 1, h G R} , otherwise. 

The proof of Lemma 1 is easily extended from the subdifferential of absolute value 

in R. Detailed proof is omitted here. 

Lemma 2. For given (5 > 0 and u,y G R9, the minimizer of 

min||z||i - vT(y - x) +-x\\y ~ x\\l (2.14) 
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is given by the ID shrinkage-like formula 

x* = m&xUy--\--,0\sgn(y--). (2.15) 

Proof. Since the objective function is convex, bounded below and coercive, there 

exists at least one minimizer x* for (2.14). According to the optimality condition 

for convex optimization, the origin should be included in the subdifferential of the 

objective function at the minimizer. In light of Lemma 1, each component x* must 

satisfy 

sgn(xi) + (3(x* -yi) + vi = 0 if x* ^ 0; 

\vi ~~ Pv%\ < 1 otherwise. 
(2.16) 

If x* ^ 0, (2.16) gives us 
• , sgnfa) _ _ v_i_ 

which leads to 

I - i _ Yi Fil + 73 = \Vi 

Combining above two equations together, we have meanwhile that 

atmf„*\ - sMxi)\x*\+sg^i)/P _ S j+sgnfc) / /? _ yt - Vj//3 _ , _ Ui. 
& { i ) " 1*1 + 1//? ~ \x*\ + l/(3 -\yi-Ui/p\-asfXW p>-

Hence 

i *, x* i AVi-Vi/P) (\ v%\ 1"\ / Vi. , . 



Furthermore, according to (2.16), x* — 0 if and only if 

n \Vi - —I < 
0l- P 

Coupling this to (2.17), we instantly conclude that 

xt = max<t\yi-—\--,Of>sgn(yi--), 

It can be written in a vector form; i.e. 

x* = max<j \y- - | - - , 0 Ugn(y - - ) . 

In light of Lemma 2, w-subproblem (2.13) can be explicitly solved when 

1-norm; i.e., 

wiik+i = max I \DiUk - -j\ - —, 0 > sgn(A«* -

Lemma 3. For x E W, the subdifferential of fix) = ||:r||2 is 

. x/\\xh, if x ¥" 0/ 

df{x) = { /{l ll2' 
{h : \\h\\2 < l,h E MP} , otherwise. 

The proof of Lemma 3 is elementary and can be found in [18]. 

Lemma 4. For given j3 > 0 and v,y E M.g, the minimizer of 

mm ||x||2 - vT{y -x) + -\\y-x\\l 
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is given by the 2D shrinkage-like formula 

* - H " - ? » " M £ * (2-20) 
where it follows the convention 0 • (0/0) = 0. 

Proof. We use ||.|| for ||.||2 for simplicity in this proof. Similar statements to Lemma 

2 lead to the fact that there exists at least one minimizer x* for (2.19) and the 

subdifferential of the objective function at this minimizer should contain the origin. 

In light of Lemma 3, x* must satisfy 

x*/\\x*\\+0(x*-y) + u = O i f z * ^ 0 ; 

\\u — By\\ < 1 otherwise. 
(2.21) 

If x* ^ 0, it holds 

x*+X*/(3\\x*\\)=y-^ (2.22) 

which leads to 

M + i^-^ll. (2-23) 

Dividing (2.22) by (2.23), we obtain that 

x* _ x* + x*/(3\\x*\\) _ y-vjQ 
|x*|| _ ||x*|| + 1/6 _ \\y-p/0\[ 
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This relation and (2.23) imply that 

" " M l ' \\y-v/P\\ V P PJ h-v/PW 

Moreover, x* = 0 if and only if 

v„ 1 \y < -

according to (2.21). Combining this with (2.24), we instantly achieve 

v 1 1 (y-u/P) 
x = max < \\y — —1| — — ,0 *• 

P P J \\y-v 

D 

In light of Lemma 4, the closed form solution of u>-subproblem (2.13) can also be 

given out explicitly when ||.|| is 2-norm; i.e., 

wiMi = max<\\DiUk- —\\- —,0}-— -— (2.25) 
L Pi Pi ) WDiUk-Vi/fJiW 

where 0 • (0/0) = 0 is followed here as well. 

Therefore, the w-subproblem derived from the process of minimizing either anisotropic 

or isotropic TV model can be solved exactly. For convenience, updating formulas 

(2.18) and (2.25) are uniformly denoted as 

wiMi = shrike(A«fc;^i,A), (2-26) 

which is also the minimizer of to-subproblem (2.13). Here, the operator "shrike" is 

named from the abbreviation of "shrinkage-like formulas". The complexity of (2.26) 

primarily focuses on computing the finite differences, which are almost negligible 

file:////y-v
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compared with the same-size matrix-vector multiplications. 

2.3.2 One-step Steepest Descent Scheme 

In addition, with the aid of w^k+i, Hfc+i can be achieved by solving 

mmCA{wiMi,u) = y](l|wi,A!+i|| - ^f(Aw - tu»,*+i) + - J | | A M - ^.AH-III-D 
i 

-XT(Au~b) + ^\\Au-b\\l 

which is equivalent to solve the so-called "w-subproblem" 

A l l n ,,2x 
mm 

u i 

-XT(Au-b) + ^\\Au-b\\l (2.27) 

Clearly, Qk(u) is a quadratic function and its gradient is 

dk(u) = ^2{f3iDj{-Diu-wi,k+l)-Djvi)+ixAT{Au-b)-ATX. (2.28) 
i 

Forcing dk(u) = 0 gives us the exact minimizer of Qk(u) 

uUi = ( E A^fA + ̂ ATA j (V^i&fui + fiiDfwiM1) + ATX + fiATb\ ,(2.29) 

where M+ stands for the Moore-Penrose pseudoinverse of matrix M. Theoretically, 

it is ideal to accept the exact minimizer as the solution of the u-subproblem (2.27). 

However, computing the inverse or pseudoinverse at each iteration is too costly to 

implement numerically. Therefore, an iterative method is highly desirable. 

The steepest descent method is able to solve (2.27) iteratively by applying recur-
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rence formula 

u — u — ad, 

where d is the gradient direction of the objective function. Each iteration of the 

steepest descent method demands updating the gradient direction, whose complexity 

is principally two matrix-vector multiplications on computing ATAu. Thus, n-step 

steepest descent to obtain the minimizer of Qk(u) requires 2n matrix-vector multi

plications at least. For large-sale problems, it is still too costly to be an efficient 

algorithm. In fact, the augmented Lagrangian function (2.8) is expected to be min

imized by solving w-subproblem (2.13) and w-subproblem (2.27) alternately. There

fore, solving the it-subproblem accurately at each sweep may be unnecessary. Instead 

of adopting multi-step steepest descent, we only take one aggressive step starting off 

with Uk, the approximate minimizer of Qk-i(u), and accept the iterate as the roughly 

approximate minimizer of Qk(u) (named one-step steepest descent method); i.e., 

uk+i = uk- akdk, (2.30) 

where dk = dk(uk) for simplicity. 

The only remaining issue is how to choose ak aggressively. Barzilai and Borwein 

[82] suggested an aggressive manner to choose step length for the steepest descent 

method, which is called the BB step or BB method. As can be seen, the BB step 

utilizes the previous two iterates and achieves the superlinear convergence [82, 83]. 

Surprisingly, Barzilai and Borwein's analysis also indicates that the convergence rate 

is even faster as the problem is more ill-conditioned. However, the one-step steepest 

descent is not able to offer two iterates, so we provide uk and uk-i by way of required 
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iterates to derive the BB-like step, which leads to 

a* = 4 A (2-31) 

or 

a* = 4 K (2-32) 
VkVk 

where sk = uk - uk^x and yfc = rffe(wfc) - 4(«fc-i). 

To validate the BB-like step, a nonmonotone line search algorithm (NLSA) ad

vanced by Zhang and Hager [84] is integrated. They modified the scheme of Grippo, 

Lampariello, and Lucidi [85] on nonmonotone line search and demonstrated their new 

algorithm was generally superior to the traditional one [85] according to a large num

ber of numerical experiments. Prom iteration to iteration, NLSA requires checking 

the nonmonotone Armijo condition, which is 

Qk(uk - akdk) < Ck - 5akdldk. (2.33) 

where Ck is recursively set by an average of function values; i.e., 

Pfc+i = rjPk + l, 

Ck+l = (vPkCk + Qk{uk+l))/Pk+1, (2.34) 

and 8 and 77 are chosen between 0 and 1. 

So far all issues in the process of handling the subproblem have been settled. 

In light of all derivations above, the new algorithm to minimize the augmented La-

grangian function (2.8) is stated as follows: 
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Algorithm 2 (Alternating Minimization Scheme). 

Initialize 0 < 5, p, n < 1 and starting points u^o, u$; 

Set Q0 = 1 and C0 = CA(wifi, u0); 

While inner stopping criteria unsatisfied Do 

Compute Witk+i based on shrinkage-like formula (2.26); 

Set ak through BB-like formula (2.31); 

While nonmonotone Armijo condition (2.33) unsatisfied Do 

Backtrack a^ = pa^\ 

End Do 

Compute Uk+i by one-step steepest descent method (2.30); 

Set Cfc+i according to (2.34); 

End Do 

About selecting the inner stopping criteria, there are at least two optional ways: 

• HV/^u^fc, ttfc)||2 is sufficiently small; 

• relative change \\uk+i — Wfclh is sufficiently small. 

2.4 Overall Algorithm and Extensions 

By means of a combination of Augmented Lagrangian Method and Alternating Min

imization Scheme, the TV model (2.1) can be efficiently optimized. More precisely, 

the new TV solver TVAL3 implements the following algorithmic framework: 

Algorithm 3 (TVAL3 Scheme). 

Initialize v®, /3f, A0, pP, and starting points ty°, u° for all i; 

While outer stopping criteria unsatisfied Do 
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Set wk^1 = wk and u^+1 = uk; 

Find minimizers wk+1 and uk+1 of the augmented Lagrangian function (2.8) 

by means of Algorithm 2, starting from wk^1 and UQ+1; 

Update multipliers using (2.9) to attain uk+1, Xk+1; 

Choose new penalty parameters (3k+l > (3k and fik+1 > /ifc; 

End Do 

Similar to the inner stopping criteria, there are also at least two ways to choose 

the outer stopping criteria: 

• optimality conditions of (2.7) are approximately achieved; 

• relative change \\uk+1 — uk\\2 is sufficiently small. 

This algorithmic framework is flexible; in fact, it could be extended to some other 

TV models with various constraints in the field of compressive sensing. For instance, 

For the TV model with nonnegativity constraints, 

mm 
u 

in 7 ||Dj«||, s.t. Au = b and u > 0, (2.35) 

we take one step of the projected gradient method [86] instead of the steepest descent 

method while updating u. Except for this modification, all the other details in Algo

rithm 3 remain the same to deal with the TV model with nonnegativity constraints 

(2.35). 

With slight modifications on updating formulas, but following the same deriva

tions, Algorithm 3 can also be used to recover complex signals or images, which means 

solving (2.1) under u e Cn or u e Csxt with s -t = n and A e Cmxn with m < n. 

A new solver TVAL3—a main contribution of this thesis—implementing algo

rithms grounded on the TVAL3 scheme has been published at the following URL: 
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http://www.caam.rice.edu/~optimization/Ll/TVAL3/. 

The theoretical conclusions on convergence or convergence rate have not yet been 

thoroughly investigated, even though solid numerical evidence reveals that these al

gorithms do converge. Theoretical investigations on convergence would be part of 

my future research. In the fourth chapter, the results of a large number of numerical 

experiments, which aim at ID and 2D, noisy and noise-free, real and complex, and 

regular and SPC signals or images (generated by the single pixel camera), will strongly 

indicate the convergence of the TVAL3 scheme in practice. Before that, a type of 

measurement matrices with special structure which could significantly accelerate the 

TVAL3 scheme, will be well studied in the following chapter. 

http://www.caam.rice.edu/~optimization/Ll/TVAL3/


Chapter 3 

Fast Walsh Hadamard Transform 

In this chapter, a type of structured measurement matrices, which is adopted by the 

single pixel camera, is taken into account to accelerate the TVAL3 scheme for CS 

problems. As proposed in Chapter 2, Algorithm 3 is essentially based on the following 

two recursive formulas 

wiik+i = shx\ke{DiUk]uh(5i), 

Uk+i = u k - akdk, 

where 

dk = ^ ( A A T ( - A « f c - witk+1) - Djui) + iiAT{Auk -b)- AT\. 
i 

Because computing the finite difference is much less expensive than matrix-vector 

multiplication in MATLAB, two matrix-vector multiplications Auk and AT(Auk — b) 

dominate the running time at each iteration. Specifically, assuming that the size of 

matrix A i s m x n and that computing Ax takes c(m, n), then the running time of the 

32 
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new algorithm is briefly c(m, n) xp where p is the number of total iterations. For the 

fixed image size and recovery percentage (i.e. fixed m and n), obviously two ways are 

available to accelerate the algorithm: making p smaller or making c(m, n) smaller. 

Making p smaller requires modification of the algorithm, and even the core part, 

to improve the convergence rate. This is a difficult task, especially for a completed 

algorithm. Perhaps the adjustment of parameters would make some differences or 

even some improvements, but the optimal parameters are hard to find and vary from 

case to case. It can be considered as an independent and open research topic. Making 

p smaller is correspondingly easier. It requires a fast way to handle the matrix-vector 

multiplication. Some structured measurements, originated from special transforms 

such as Fourier, Cosine, or Walsh Hadamard transforms, are able to handle the fast 

computation of matrix-vector multiplication. 

The measurement matrix A generated by the digital micro-mirror device (DMD) 

of the single pixel camera is programmed as a permutated Walsh Hadamard matrix. 

In fact, during the hardware implementation, the matrix entries —1 and 1 are shifted 

to 0 and 1 so that DMD can correctly recognize. It is essential to explore the Walsh 

Hadamard transform and find a fast fast way to implement it. This chapter therefore 

starts with introducing the basic concept of the Hadamard Matrix. 

3.1 Hadamard Matrix 

The Hadamard matrix or transform is named for the French mathematician Jacques 

Solomon Hadamard, the German-American mathematician Hans Adolph Rademacher, 

and the American mathematician Joseph Leonard Walsh. It belongs to a generalized 

class of Fourier transforms and performs an orthogonal, symmetric, involutional, lin

ear operation on 2fc real numbers. 
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The Hadamard matrix of dimension 2k fox k £ N are given by the recursive 

formula 

#o = [1], 

Hl = vi 
i i 

i - i 

and in general, 

Hk = V2 
Hk-i Hk-i 

Hk-i —Hk-i 

According to this formula, for instance, 

H* = 
_1_ 

7s 

1 1 1 1 1 1 1 1 

1 - 1 1 - 1 1 - 1 1 - 1 

1 1 - 1 - 1 1 l - i - i 

1 - 1 - 1 1 1 - 1 - 1 1 

i i i 1 - 1 - 1 - 1 - 1 

1 - 1 1 - 1 - 1 1 - 1 1 

1 1 - 1 - 1 - 1 - 1 1 i 

1 - 1 - 1 1 - 1 1 i - i 

This is also known as the Hadamard-ordered Walsh Hadamard matrix. There are also 

other orders, such as sequency order, dyadic order, and so forth. Different orders can 

be achieved by re-ordering the rows of the Hadamard matrix defined above. Walsh 

Hadamard matrices in various orders have recently received increasing attention due 
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to their broad applications in the field of engineering. The hadamard and dyadic 

orders are more appropriate for applications involving a double transform (time-

space-time) such as logical autocorrelation and convolution [47]. The sequency order 

can be applied to sequency filters, sequency power spectra, and so forth. In the single 

pixel camera, each pattern of DMD corresponds to a row of the permutated sequency 

orderded Walsh Hadamard matrix after shifting entries from —1 and 1 to 0 and 1. 

Hence the sequency order is the main focus in this chapter. 

To convert a given sequency integer number s into the corresponding index number 

k in Hadamard order, one needs the following steps [94]: 

• Represent s in binary form: 

n - l 

S = (sn_iSn_2 • • . S0)2 = YL Si^-
z=0 

• Transfer the binary form to Gray code [48]: 

g% = Si © si+i i = 0 , 1 , . . . , r c - 1, 

where © stands for exclusive or and sn = 0. 

Specifically, 

l ff i l = 0 © 0 = 0; 1 8 0 = 0 0 1 = 1. 

• Reverse ^ ' s bit to achieve &,'s: 

^i = 9n—l—i-

For example, n = 3 we have 
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s 

binary-

Gray code 

bit-reverse 

k 

0 

000 

000 

000 

0 

1 

001 

001 

100 

4 

2 

010 

Oil 

110 

6 

3 

Oil 

010 

010 

2 

4 

100 

110 

Oil 

3 

5 

101 

111 

111 

7 

6 

110 

101 

101 

5 

7 

111 

100 

001 

1 

Let A(i) denote the (i + l)th row of matrix A. Based on the above form, define 

i.e., 

W3(i) = H3(s(i)); 

W3 = [H3(0y H3{Af H3(6Y H3(2Y H3(3Y H3(7Y ff3(5)J H3(l) 
\ T i T 

1 

/8 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

-1 

-1 

-1 

-1 

1 

1 

-1 

-1 

-1 

-1 

1 

1 

1 

1 

-1 

-1 

1 

1 

-1 

-1 

1 

-1 

-1 

1 

1 

-1 

-1 

1 

1 

-1 

-1 

1 

-1 

1 

1 

-1 

1 

-1 

1 

-1 

-1 

1 

-1 

1 

1 

-1 

1 

-1 

1 

-1 

1 

-1 

W3 is sequency-ordered Walsh Hadamard matrix. 

Based on this process, 2k x 2fc sequency-ordered Walsh Hadamard matrix can be 

simply generated for any integer k. 

To achieve the fast Walsh Hadamard transform, it is necessary to understand the 

so-called " Kronecker product", which will be discussed in the next section. 
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3.2 Kronecker Product and Fast Walsh Hadamard 

Transform 

For any two matrices A = [dij\pxq a n d B — [bij]rxi, the Kronecker product of these 

two matrices is denned as 

A®B = 

anB ax2B ... aXqB 

a<i\B a^B ... a2qB 

av\B ap2B ... apqB 
-I prxql 

To study an essential property of the Kronecker product, I need to define two 

new operators vec and mix. Specifically, vec is the operator that stacks the columns 

of a matrix to form a vector, and mix separates the vector into several equal-length 

vectors and forms a matrix. The size of the reshaped vector or matrix depends on the 

size of matrices before and after it when computing matrix-matrix or matrix-vector 

multiplication to guarantee the success of computation. The following example and 

therom would make this point more clear. Literally, mix is the inverse operator of 

vec. 

For example, 

X = 

1 2 

- 1 4 

6 7 
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then 

x = vec(X) = and mtx(x) = X. 
6 

2 

4 

7 

With the aid of two new operators, the following well-known theorem can be 

concluded: 

Theorem 3 (the Basic KP theorem). Matrix A G R n x m is constructed by the Kro-

necker product formula 

A = AX®A2, 

where Ax € ^mMx(-n/^ and A2 E Mpxq. m and n are chosen to satisfy that m 

and n are divisible by p and q, respectively. Then matrix-vector multiplication can be 

computed by 

Ax = vec(A2mtx(x)Aj), 

ATy = vec{Almtx{y)Al). 

Proof. Define s = m/p, t = n/q, and A\ = (aij)axt. 

Furthermore, denote x = \x\,..., xt]
T, then mtx(x) = [xi,..., xt]. 



Ax = (Ai <g> A2)x 

By the definition of Kronecker product, 

Xi 

xt 

anA2 a12A2 ... auA2 

a2XA2 a22A2 ... a2tA2 

a3iA2 as2A2 ... astA2 

According to the matrix-vector multiplication, 

anA2xi + ai2A2x2 + ... + auA2xt 

a2iA2Xi + a22A2x2 + ... + a2tA2xt 

as\A2xi + as2A2x2 + . . . + astA2xt 

By the definition of two new operators, 

= vec([onA2Xi + ax2A2x2 + ... + auA2xt,..., asiA2xi + as2A2x2 

By the simple reorganization, 

= vec([i42[a;i,..., xt][an,..., a u ] T , . . . , A2[xu . . . , xt][asl, 
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Rewriting in the matrix form, 

/ 

vec A2[xi,...,xt] 

V 
= vec(A2XAj 

an ai2 

0,21 a 2 2 

&sl as2 

ait 

02t 

ast 

T \ 

J 

The same argument can prove 

ATy = vec(^mtx(y)A 1 ; 

D 

Using the Kronecker product, the formula (3.1) can be rewritten as 

Hk = Hi (g> Hk-i-

For any given vector x with the length of 2fe, denote x = [xj x^]T, where Xi and x2 

are of equal size. The Hadamard-ordered Walsh Hadamard transform (WHT/J can 

be written as 

Hkx = (Hi <g> Hk_i)x. 
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Due to the Basic KP theorem, it follows 

Hkx vec z(Hk-imtx.(x)H'[) 

= vec(#fc_![xi x2}Hf) 

= vec([Ffc_1xi Hk_xx2]Hj) 

( 

V2 
vec 

V 
[Hk-iXi Hk^x2] 

1 1 

1 - 1 

\ 

/ \ L J / 
= -j=-vec{[Hk„ixx + Hk_1x2 H^xXx - Hk-ix2]) 

71 
Hk-iXi + Hk„ix2 

Hk-\X\ — Ek-\x2 

(3.1) 

A naive implementation of the WHT\ would have a computational complexity 

of 0(N2), but the fast WHT^ implementation according to recursive formula (3.1) 

requires only 0(N log N). Notice that only additions and subtractions are involved 

while implementing the fast WHTV Sequency-ordered Walsh Hadamard transform 

(WHTS) is directly obtained by carrying out the fast WHT\ as above, and then 

rearranging the outputs by bit-reverse and Gray code conversion. 

I will show some comparison results in the next section to illustrates how fast the 

newly implemented Walsh Hadamard transform is based on the running time. 

3.3 Comparisons 

I implemented the fast Walsh Hadamard transform in C++ and then compiled and 

linked it into a shared library called a binary MEX-Sie from MATLAB software. The 

fast Walsh Hadamard transform was also carried out since the version of MATLAB 

R2008b, which is known as function fwht and its inverse function ifwht. The following 
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Figure 3.1: Running time comparison between newly implemented FWHT and MATLAB function 
fwht. Clearly, newly implemented FWHT is around 100 times faster than FWHT provided by 
MATLAB. 

experiments compare the newly implemented FWHT and its inverse with MATLAB 

functions. All experiments were performed on a Lenovo X301 laptop running Win

dows XP and MATLAB R2009a (32-bit) and equipped with a 1.4GHz Intel Core 2 

Duo SU9400 and 2GB of DDR3 memory. 

Figure 3.1 illustrates that my newly implemented code to compute the fast WHT 

is much faster than MATLAB function fwht and fwht (around 1/100 running time on 

average), and Figure 3.2 illustrates that the fast WHT can be even faster than the 

fast Fourier transform (around 1/2 running time on average), which clearly shows the 

efficiency of the newly implemented fast WHT. 

Obviously, computing the matrix-vector multiplication in such a fast way can 

accelerate the TVAL3 scheme. More numerical results to demonstrate the efficiency 

and robustness of the corresponding algorithms will be shown in next chapter. 

New fwht MATLAB fwht 

200 400 600 800 1000 1200 
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New inverse fwht 
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length (A2) 



43 

New fwht 
MATLAB fft 

400 600 800 

length (A2) 

035 

2 °3 

0> 0.25 

~ 0.2 

3 0 15 

O °-i 
0.05 

New inverse fwht 

^s^^ 
v r\ /^/^ru-1 , , | !_ 

Ur^_ 

• 

-

. 
' 

400 600 800 

length (A2) 

400 600 800 

length (A2) 
MATLAB inverse fft 

400 600 800 1000 

length (A2) 

Figure 3.2: Running time comparison between newly implemented FWHT and MATLAB function 
fft. Clearly, newly implemented FWHT is even faster than fft provided by MATLAB, which is nearly 
the most efficient transform implemented by MATLAB. 



Chapter 4 

Numerical Results and Discussions 

In this chapter, the effectiveness and efficiency of TVAL3 on image reconstruction is 

demonstrated by reporting the procedure and results of a large number of numerical 

experiments. TVAL3 is compared with other state-of-the-art TV solvers, as well 

as l\ solvers to validate its advantages. All experiments fall under two categories: 

reconstructing test images obtained from public domain and recovering images from 

real data generated by the single pixel camera (SPC) or by related techniques. The 

true solutions can be predefined for the first category whereas that is unlikely for 

the second category. That means true images are rarely available for reference while 

recovering real data. However, the single pixel camera is the main application of 

TVAL3 and its data is much closer to practical applications. Thus, simulating results 

based on SPC data or other real data are more indicative and convincing. 

4.1 State-of-the-art Solvers and Test Platform 

TV solvers have been introduced in Section 1.3. Since SOCP [19] is much slower than 

others and RecPF [36] is restricted to partial Fourier measurements only, these two 

44 
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solvers will be omitted from the comparison. In other words, comparisons are pri

marily made among TVAL3 (version beta2.1), TwIST (version 1.0) [57, 58], NESTA 

(version 1.0) [56], and £i-Magic (version 1.1) [3, 2, 1]. It is noteworthy that there are 

two available reconstruction codes in the current version of NESTA—NESTA.m and 

NESTA-.UP.rn. The only difference is NESTA.m requires ATA to be an orthogonal 

projector but NESTA-UP.m has no particular requirements on measurement matrix 

A. Therefore, NESTA-UP.m is adopted whenever NESTA is involved in any numer

ical experiment. Additionally, the two state-of-the-art l\ solvers, FPC (version 2.0) 

[17] and YALL1 (version beta5.0) [59], are involved in some experiments to indicate 

the merits of TV solvers compared to l\ solvers. FPC and YALL1 are among the 

best solvers for l\ minimization in terms of both speed and accuracy. 

While running TVAL3, we uniformly set parameters 5 = l.e — 5, p = .6, and 

Tj = .9995 presented in Algorithm 2, and uf — 0, A0 = 0, u° = ATb, w® = 

shike(DiUo; v®, (3®) presented in Algorithm 3. Additionally, penalty parameters fif 

and fxk are chosen without continuation but kept constant equal to the initial values 

(3f and fjP, respectively. The values of /?f, //*, and tolerance might vary according to 

distinct noise level and required accuracy. 

In an effort to make the comparisons fair, for other tested solvers mentioned above, 

different choices of parameters have always been tried and at the end we pick out the 

ones that provide the best performance measured by recovery quality and running 

time. 

All experiments were performed on a Lenovo X301 laptop running Windows XP 

and MATLAB R2009a (32-bit) and equipped with a 1.4GHz Intel Core 2 Duo SU9400 

and 2GB of DDR3 memory. 

http://NESTA-.UP.rn
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Figure 4.1: Reconstructed ID staircase signal from 20% measurements. The noise level is 4%. 
Relative errors recovered by TVAL3, FPCbb, and YALL1 are 3.31%, 6.37%, and 7.41%, and running 
times are 2.61s, 4.17s, and 2.62s, respectively. 

4.2 Comparisons Based on Synthetic Data 

In this section, the test sets cover ID staircase signals, 2D Shepp-Logan phantom 

images, and the 2D MR brain image, with various sampling ratios. In each test, the 

observation / is generated by firstly stacking the columns of the tested image to form 

a vector and then applying the fast transform or general random matrix to it. The 

additive Gaussian noise on / has mean 0 and standard deviation 1 in all tests. In 

MATLAB, the noisy observation is explicitly given by 

/ = / + a • mean (abs (/)) • randn (m, 1), (4.1) 

where a represents the noise level and m represents the length of / . 

Let us begin with recovering ID staircase signals. In test 1 (corresponding to 
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Figure 4.2: Recoverability for ID staircase signals. The measurement rate is 40% and the noise 
level is 8%. Left: average relative error. Right: average running time. Relative error and running 
time are measured simultaneously with the growth of the number of jumps. 

Figure 4.1), the length of the tested signal is 4096 with 27 jumps, the measurement 

matrix is Gaussian random matrix whose measurement rate is 20%, and the noise 

level is 4%. The current versions of all the other TV solvers except TVAL3 can only 

reconstruct 2D square images, although the methods behind some of these solvers can 

be extended to reconstruct non-square images. Therefore, TVAL3 is compared with 

the two i\ solvers—FPC_bb (FPC with Barzilai-Borwein steps) and YALL1. Since 

the signal is dense, it is sparsified by the Haar wavelet before FPC_bb or YALL1 is 

applied. 

The parameters are set as default except assigning opts.mu — 8, opts.beta = 8, 

and opts.tol = le — 3 for TVAL3; assigning opts.tol = le — 2 for FPC_bb; assigning 

opts.nu = 35 and opts.tol = 5e — 3 for YALL1. Since the stopping criteria vary from 

solver to solver, we used different tolerance values for different solvers to achieve a fair 
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comparison. The guiding principle here is either to make running time approximately 

equal while comparing quality or the other way around. If the shorter running time 

and higher accuracy can be reached at the same time for one solver, it is also favorable 

for a fair comparison. As mentioned before, these parameters were chosen after multi-

trials to provide the best observed results. 

Figure 4.1 indicates that the new TV solver TVAL3 achieves higher accuracy 

within shorter running than the two £x solvers, and the signal recovered by TVAL3 

is less oscillatory. 

The above statements are again validated by test 2 (corresponding to Figure 4.2). 

Fixing the length of ID staircase signals to 4096, measurement rate of Gaussian 

random matrix to 40%, and noise level to 8%, we run the test when the number of 

jumps is 10, 20,30, . . . , 400 respectively. We take 5 trials at each testing point and 

plot the average relative error and running time with respect to the number of jumps. 

The parameters of three solvers are set exactly the same as mentioned in test 1. 

Figure 4.2 clearly demonstrates that relative error generated by TVAL3 increases 

much slower than relative error generated by either of the two t\ solvers with the 

increase in the number of jumps. Meanwhile, the running time of TVAL3 is much 

less than either of the two l\ solvers when the number of jumps is more than 30. 

When the number of jumps is relatively small (roughly less than 30 in this case), 

which correlates with the very sparse Haar wavelet coefficients, YALL1 becomes very 

efficient. Generally speaking, the TV solver TVAL3 gives better recover ability and 

higher efficiency compared to t\ solvers, at least for ID staircase signals. 

A series of experiments on 2D images which compare among TV solvers are de

scribed as follows. Test 3 and 4 are on noise-free cases, while test 5 and 6 on noisy 

cases. 

In test 3 (corresponding to Figure 4.3), a 64 x 64 phantom image is encoded by an 
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SNR: 77.64dB, CPU time: 4.27s SNR: 46.59dB, CPU time: 13.81s 

SNR:34.18dB, CPU time: 24.35s SNR:51.08dB, CPU time: 1558.29s 

Figure 4.3: Recovered 64 x 64 phantom image from 30% orthonormal measurements without noise. 
Top-left: original image. Top-middle: reconstructed by TVAL3. Top-right: reconstructed by 
TwIST. Bottom-middle: reconstructed by NESTA. Bottom-right: reconstructed by £i-Magic. 
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SNR: 73.22dB, CPU time: 6.86s SNR: 0.35dB, CPU time: 2.75s 

SNR: 0.35dB, CPU time: 23.49s SNR:-69.03dB, CPU time: 908.75s 

Figure 4.4: Recovered 64 x 64 phantom image from 30% non-orthonormal measurements without 
noise. Top-left: original image. Top-middle: reconstructed by TVAL3. Top-right: reconstructed 
byTwIST. Bottom-middle: reconstructed by NESTA. Bottom-right: reconstructed by £i-Magic. 
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orthonormal random matrix generated by QR factorization from a Gaussian random 

matrix. The images are recovered by TVAL3, TwIST, NESTA, and £i-Magic from 

30% measurements but without the additive noise. The quality of recovered images 

is measured by the signal-to-noise ratio (SNR), which is defined as the power ratio 

between a signal and the background noise. Mathematically, 

SNR = 201og10fll^,-mean(Y)1"FV 
V \\Ucal — Uref\\F J 

where ucai and urej represent the recovered and original images respectively, 1 rep

resents the matrix of all ones whose size is the same as uref, \\.\\p calculates the 

Frobenius norm, and the operator mean calculates the mean value of all entries in a 

matrix. 

The chosen parameter settings for this test after multi-trials are opts.mu = 28 and 

opts.tol = l e - 4 for TVAL3; tan = 1/2000 and tolA = l e - 4 for TwIST; mu = 2 e - 3 , 

Lambda = 1/2000, La = \\A\\l, and opts.TOlVar = le - 4 for NESTA; mu = 2 and 

Ibtol = le — 2 for £i-Magic. All other parameters are set up as default. 

From Figure 4.3, we observe that TVAL3 achieves the highest-quality image 

(77.64dB) but requires the shortest running time (4.27 seconds). The second highest-

quality image (51.08dB) is recovered by £i-Magic at the expense of the unacceptable 

running time (1558.29 seconds). TwIST and NESTA attain relatively midium-quality 

images (around 46.59dB and 34.18dB respectively) within reasonable running times 

(13.81 and 24.35 seconds respectively). This test validates that TVAL3 is capable of 

high accuracy within an affordable running time for noise-free images. 

Test 4 (corresponding to Figure 4.4) carries out the same experiment as test 3 

except for replacing the orthonormal random matrix by the Gaussian random matrix 

as the measurement matrix. All the parameters are set exactly as described in test 3. 

file:////Ucal
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50 100 150 200 250 50 100 150 200 250 
SNR: 9.40dB, CPU time: 10.20s 

50 100 150 200 250 50 100 150 200 250 
SNR: 4.66dB, CPU time: 142.04s SNR: 8.03dB, CPU time: 29.42s 

Figure 4.5: Recovered 256 x 256 MR brain image. Both the measurement rate and the noise 
level are 10%. Top-left: original image. Top-right: reconstructed by TVAL3. Bottom-left: 
reconstructed by TwIST. Bottom-right: reconstructed by NESTA. 

It turns out that the non-orthonormal measurement matrix caused failures in TwIST, 

NESTA, and ^i-Magic, as evidenced in Figure 4.4. However, TVAL3 can still recover 

the phantom with high quality (73.22dB) within a reasonable time (6.86 seconds). 

This experiment attests to the versatility and robustness of TVAL3 with different 

measurement matrices. 

In the next two tests, we focus on reconstructing a MR brain image to reveal 

the potential of TVAL3 in the field of medical imaging. Since £i-Magic is hardly 

applicable to large-scale problems as shown in test 3 and 4, TVAL3 is only compared 

with TwIST and NESTA. 
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Figure 4.6: Recoverability for 256 x 256 MR brain image. The noise level is 10%. Left: average 
SNR. Right: average running time. SNR and running time are measured simultaneously with the 
growth of the measurement rate. 
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In test 5 (corresponding to Figure 4.5), a 256 x 256 MR brain image, which 

is more complex and harder to reconstruct than phantom images, is encoded by 

a permutated Walsh Hadamard matrix. The sequency-ordered Walsh Hadamard 

transform as described in Chapter 3 is performed here to shorten the running time 

for all solvers. In order to investigate the robustness, we try to push solvers to the 

limit by adding a lot of noise and using a small number of measurements. More 

precisely, noise level and measurement rate are both set to 10%. 

The parameter settings are as follows: opts.mu = 29, opts.beta = 28, and opts.tol = 

4e - 3 for TVAL3; tau = 1/50, tolA = le - 3, and MaxiterA = 200 for TwIST; 

mu = 5e - 3, Lambda = 1/50, La = 1, and opts.TOlVar = le - 3 for NESTA. 

Others are automatically set as default. 

From Figure 4.5, we can only recognize the outline of the image recovered by 

TwIST even though the running time is longest. Nevertheless, the image recovered 

by either TVAL3 or NESTA keeps the rough sketch and some details of the original 

brain image. In comparison with NESTA, TVAL3 achieves better accuracy (higher 

SNR) in shorter running time statistically, and provides higher contrast visually. For 

example, some gyri in the image recovered by TVAL3 are still distinguishable but 

this is not the case in images recovered by either TwIST or NESTA. Furthermore, 

the image recovered by NESTA is still noisy while the image recovered by TVAL3 is 

much cleaner. This validates that TVAL3 is capable of better denoising effects while 

reconstructing than NESTA. This fact will be reconfirmed by those tests related to 

the single pixel camera in next section. Actually, this is an advantage when handling 

data with lots of noise, which will always be the case in practice. 

Fixing noise level to 10%, test 6 (corresponding to Figure 4.6) repeats test 5 at 

90 different measurement rates from 9% to 98%. Testing points are uniformly chosen 

and all parameters are set the same as in test 5. 
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Figure 4.6 indicates that TVAL3 always achieves the best quality (highest SNR) 

with the least running time among three TV solvers for that brain image. TwIST 

and NESTA attain close accuracy, but TwIST is much slower especially when the 

measurement rate is relatively low. These facts are consistent with what we discovered 

from Figure 4.5. 

The above tests validate that TVAL3 is more efficient and robust in comparison to 

other TV solvers and even the two state-of-the-art l\ solvers when reconstructing some 

testing signals and images with Gaussian noise. More complicated data measured in 

practice are taken into account in next the section. 

4.3 Comparisons Based on Measured Data 

The following tests are focusing on the measured data, which were measured and 

provided by the Single-Pixel Camera Group from the ECE department of Rice Uni

versity. 

For measured data, the quality of recovered images is difficult to quantify due to 

the lack of true solutions. Thus, the following comparisons are more or less relying 

on visual effects. In each test of this section, the same tolerance is adopted for all 

the tested solvers, which means neither similar quality nor close running time among 

the recovered images. The reason for this is simply convenience. Test 7 focuses on 

reconstructing infrared data captured by the single pixel camera [44], and test 8 aims 

at recovering the signal using optical beam-induced current (OBIC) technique for 

laser-based failure-analysis [45]. 

The measurements which are adopted by the single pixel camera to decide the 

patterns of the digital micro-mirror device (DMD) are extracted from the permutated 

Walsh Hadamard matrix. This matrix can be efficiently performed by the sequency-
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Figure 4.7: Real taxget in visible light. 

ordered Walsh Hadamard transform. The data generated by the single pixel camera 

are more complicated and harder to reconstruct since various sources of noise are 

introduced which might be caused by environment, equipment, and so forth. Besides, 

noise level is also usually unpredictable. Therefore, most of theoretical tricks to 

estimate parameters based on the type and level of noise become helpless in practice. 

As we mentioned before, one of the most significant advantages of the single pixel 

camera is to reduce the cost of infrared cameras. Test 7 (corresponding to Figure 4.8), 

demonstrates an infrared image recovery. A canvas board with the characters "IR" 

written on it by charcoal pencil was entirely covered by the blue oil paint which results 

in invisibility of "IR" to human eyes or to ordinary cameras as indicated in Figure 4.7. 

This board was illuminated by a 150 watt halogen lamp and picture was taken by the 

single pixel camera [44]. We respectively applied TVAL3, FPC.bb, YALL1, TwIST, 

NESTA, and 4-Magic hi sequence to 15%, 35%, and 50% data captured by the single 
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Figure 4.8: Recovered 256 x 256 infrared RI image. The six rows are reconstructed by TVAL3, 
FPC-bb, YALL1, TwIST, NESTA, and £i-Magic respectively, for sampling ratios 15%, 35%, and 
50%. 

pixel camera to achieve approximate images. 

The tolerance is uniformly fixed to le — 2. All other parameters are set as default 

except the following ones: opts.mu = 8 and opts.beta = 80 for TVAL3; opts.nu = .6 

for YALL1; tau = 1/4000 for TwIST; mu = .02, Lambda = .01, La = 1 for NESTA; 

mu — 2 for £i-Magic. 

Scrutinizing Figure 4.8, the following facts are observed: TV solvers can recover 

the edges better, make recovered images look sharper, and provide better contrast 

than t\ solvers in general. Among TV solvers, TwIST and £i-Magic is inferior in this 

example since images recovered by TwIST are hard to recognize when measurement 

rate is low and ^i-Magic always requires at least 10 times longer running time than 

others. NESTA and TVAL3 are capable of successful reconstruction whatever the 

measurement rate is and reqiure fairly close running time, but the image recovered 

by TVAL3 is much sharper and cleaner than the one recovered by NESTA at each 

measurement rate which indicates TVAL3 is superior to NESTA in denoising in the 

process of reconstruction. These facts manifest the power of TVAL3 on SPC data in 

some sense. 

As a laser-based failure-analysis technique, the traditional OBIC scans a focused 
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Figure 4.9: Recovered 512 x 512 discrete transistor image. The three rows are reconstructed by 
TVAL3, TwIST, and NESTA respectively, for sampling ratios 5%, 15%, and 24%. 
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laser beam across a sample by means of a laser scanning microscope (LSM). Inspired 

by the single pixel camera, we suggested a new compressive sensing method to ac

quire the same data with no need of a laser or an LSM in [45]. Test 8 (corresponding 

to Figure 4.9) demonstrates OBIC signal recovery, which is a key step for this com

pressive sensing method. The experiment was set up as follows: an arc lamp was 

collimated onto a DMD, and the the DMD was imaged onto a discrete transistor un

der test to create structured illumination matching the digital pattern of the DMD. 

The OBIC signal from the discrete transistor was recorded by an analog-to-digital 

converter and reconstructed by compressive sensing solvers. The measurements here 

which decide the pattern of the DMD are the same as being used in the single pixel 

camera. Since £i-Magic is much slower, the other three TV solvers—TVAL3, TwIST, 

and NESTA—are applied to this OBIC signal in test 8. 

We set opts.mu = 16 and opts.beta = 8 for TVAL3; tau = 1/6000 for TwIST; 

mu = .002, Lambda = .001, La = 1 for NESTA. Besides, we uniformly fix the 

tolerance to 5e — 3 for all three solvers. Other parameters are chosen as default. 

Figure 4.9 validates the fact that TVAL3 is preferable to TwIST and NESTA 

in virtue of better edge-preserving and denosing effects. TVAL3 and NESTA spent 

slightly shorter running time than TwIST in this test. 

Test 7 and 8 illustrate the advantages of TVAL3 in efficiency and denoising effect 

in contrast to other TV and t\ solvers in a practical setting, and substantiate that 

TVAL3 should be adopted as the core reconstruction solver of the single pixel camera. 
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4.4 Initial Tests on Complex Signals and Nonneg-

ativity Constraints 

TVAL3 also implemented subroutines to recover complex signals and settle nonneg-

ativity constraints according to the same TVAL3 scheme described in Chapter 2. 

Though theoretical guarantee is as yet unobtainable, the numerical experiments well 

indicate that it is capable of the image reconstruction containing nonnegativity con

straints and complex signal recovery even when the measurements are complex. 

The following two tests take the permutated Fourier matrix as the measurement 

matrix which is complex and able to be carried out by means of fast Fourier transform. 

The additive Gaussian noise is enforced according to (4.1). Since none of the other TV 

solvers can be directly applied to complex signals encoded by complex measurements, 

we only demonstrate the results achieved by TVAL3. 

Test 9 (corresponding to Figure 4.10) concentrates on a ID complex staircase 

signal whose length is 65536 and number of jumps is 163. It is encoded by permutated 

Fourier matrix with 5% Gaussian noise in both real and complex parts, and then 

recovered from 25% measurements. 

In TVAL3, we set parameters as default except for opts.mu = 24, opts.beta = 25, 

and opts.tol = le — 3. 

Figure 4.10 shows that both the real part and the complex part of the signal under 

test are fully recovered in only a few seconds, which substantiates the efficiency and 

the robustness of TVAL3 even for the complex case. 

Test 10 (corresponding to Figure 4.11) demonstrates an experiment to recover a 

512 x 512 thorax image scanned by CT. It is also encoded by permutated Fourier 

matrix imposing 15% Gaussian noise to generate a complex observation / . The CT 

thorax image is restored by TVAL3 from 10% measurements. Since each pixel of 
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Figure 4.10: Recovered ID complex staircase signal from 25% measurements. The noise level is 
5%. Relative error recovered by TVAL3 is 2.92%, and running time is 8.70s. 

SNR: 16.59dB, CPU time: 85.00s 

Figure 4.11: Recovered 512 x 512 CT thorax image from 10% measurements using TVAL3. The 
noise level is 15%. 
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this image is nonnegative, we can apply nonnegativity constraints on it and use the 

corresponding subroutine. 

The parameter settings for TVAL3 are as follows: opts.mu = 29, opts.beta = 27, 

opts.tol = le —4, and opts.nonneg = true to trigger the subroutine for nonnegativity 

cases. Others are assigned as default. 

Examining Figure 4.11 carefully, we discover that most details of the CT thorax 

image has been restored only from 10% measurements. More precisely, every bright 

spot on the right side of the original image is still distinguishable on the recovered 

one. Furthermore, there are three very tiny bright spots on the left side of the 

original image, and one of them can still be visually recognized. These small details 

are extremely hard to recover when measurement rate is low or noise level is high, 

but might play a pivotal role for disease diagnosis. 

These two tests numerically validate the convergence of extended algorithms to 

handle complex signals and nonnegativity constraints, respectively, although further 

investigation is required theoretically. 

4.5 Discussions 

TVAL3 scheme and its corresponding solver have been presented in detail and favor

ably compared with other state-of-the-art solvers. Its efficiency and robustness have 

been sufficiently substantiated by above experiments. Furthermore, TVAL3 scheme 

has exhibited its better denoising effects while reconstructing the measured data. 

Since the implementation of TVAL3 is considerably flexible, it can be used employing 

fast transforms, can solve many variants of the TV model, and even can reconstruct 

complex signals encoded by complex measurements. Due to its merits in efficiency, 

robustness, and denoising effects, TVAL3 is competent for the single pixel camera and 
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other related devices as the core reconstruction solver. Besides, TVAL3 is capable of 

medical image processing and other related compressive sensing applications. 

How to choose optimal parameters without knowing the true solution and noise 

level has always been a big issue for almost every TV or l\ solvers. Fortunately, 

TVAL3 is not very sensitive to the fluctuation of parameters, which somehow reduces 

the difficulty to manipulate this solver for engineers and researchers. Research on 

this issue as well as the theoretical analysis of the algorithms is still in process. 



Chapter 5 

Future Work 

The TVAL3 scheme has been stated in detail in Chapter 2. A large number of numer

ical experiments reported in Chapter 4 have shown their corresponding algorithms 

succeed in reconstructing images and surpassing other comparable algorithms in both 

running time and quality of recovered images. However, the theoretical analysis on 

convergence and convergence rate of the TVAL3 scheme has not yet been fully in

vestigated. Thus, one of primary tasks in the next stage is to prove the convergence 

and discover the convergence rate of this scheme. More precisely, Local Convergence 

Theorem 1 indicates the convergence of Algorithm 3, as long as the convergence of the 

alternating minimization scheme mentioned in Algorithm 2 can be proven. This pro

posed work would complete the TVAL3 scheme and provide the theoretical guarantee 

for further extensions. 

In the course of studying the TVAL3 scheme, there are two other related topics 

which have drawn my attention and might enrich my Ph.D. research. In particular, 

one is if it is possible to extend the TVAL3 scheme to 3D or hyperspectral image 

reconstruction; the other is how to develop a new algorithm solving the dual problem 

of a TV model with the aid of the TVAL3 scheme. These two issues will be proposed 
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in detail in the next two sections. 

5.1 Hyperspectral Imaging 

Over the past decade, more and more researchers dedicate themselves to the investi

gation of hyperspectral imaging. It has matured into one of the most powerful and 

fastest growing technologies. For example, the development of hyperspectral sensors 

and their corresponding software to analyze hyperspectral data has been regarded 

as a critical breakthrough in the field of remote sensing. However, it is usually in

tractable to collect and store hyperspectral data. I intend to explore if compressive 

sensing algorithms such as the TVAL3 scheme could be extended to help increase the 

efficiency of hyperspectral data collection and storage. 

The basic concepts of hyperspectral imaging will be introduced in Section 5.1.1 

and mathematical formulation will be derived in Section 5.1.2. 

5.1.1 Basic Concepts 

By exploiting the wavelength composition of electromagnetic radiation (EMR), hy

perspectral imaging collects and processes data from across the electromagnetic spec

trum. Hyperspectral sensors capture information as a series of "images". Each image 

represents a spectral band which is a range of the electromagnetic spectrum. These 

images generated from different bands pile up and form a 3D hyperspectral cube for 

processing and further analysis. If each image can be viewed as a long vector, the 

hyperspectral cube will become a big matrix which is more easily accessible mathe

matically. Each column of the matrix records the information from the same spectral 

band and each row records the information at the same pixel. For much of the past 

decade, hyperspectral imaging has been an active research topic and widely devel-
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oped. It has a lot of applications on industry, agriculture, and military, such as 

mineral exploration, food inspection, camouflage detection, environmental monitor

ing, pharmaceutical manufacturing, resource management, and so forth. 

The fundamental property of hyperspectral imaging which researchers want to 

obtain is spectral reflectance: the ratio of reflected energy to incident energy as a 

function of wavelength [92]. Reflectance varies with wavelength for most materials. 

These variations are evident and sometimes characteristic while comparing spectral 

reflectance plots versus wavelength for different materials. Several libraries of re

flectance spectra of natural and man-made materials are accessible for public use, 

such as ASTER Spectral Library [96] and USGS Spectral Library [97]. These li

braries provide a source of reference spectra helping the interpretation and analysis 

of hyperspectral images. 

However, it is highly possible that more than one material contributes to an indi

vidual spectrum captured by the sensor, which leads to a composite or mixed spec

trum. The mixed spectrum can be decomposed into several endmembers which are 

defined as spectrally "pure" features, such as soil, vegetation, and so forth. In min

eralogy, an endmember refers to a mineral at the extreme end of a mineral series in 

terms of purity. For example, albite (NaAlSi3Og) and anorthite (CaAl2Si208) are two 

endmembers in the plagioclase series of minerals. 

If the endmember spectra are available beforehand, we can mathematically de

compose each pixel's spectrum of a hyperspectral image to identify the relative abun

dance of each endmember component. This process is call "unmixing". However, the 

challenge is how to identify a set of spectral endmembers that correspond to actual 

physical components. It becomes even harder to identify without the aid of prior in

formation. Unmixing the hyperspectral image without aware of endmember spectral 

and even the number of endmembers is called "blind unmixing". Linear unmixing is 



68 

a simple spectral matching approach, whose underlying premise is that a relatively 

small number of common endmembers are involved in a scene, and most spectral 

variability in this scene can be attributed to spatial mixing of these endmember com

ponents in distinct proportions. 

Since the enormous volume of hyperspectral data, it is always hard to process 

and analyze in real time. Each image corresponding to some spectral band of hy

perspectral data is compressible and is able to be reconstructed from a relatively 

small amount of measurements. In fact, the concept of the single pixel camera can 

be extended to the acquisition of compressed hyperspectral data. A straightforward 

way can be described as follows: collect the compressed hyperspectral data; recover 

the hyperspectral cube from the compressed data by compressive sensing techniques; 

detect endmembers by unmixing algorithms. However, due to the massive amount 

of data included in hyperspectral cube, it is usually too costly to recover the entire 

cube. Besides, the cube becomes unnecessary once we have successfully detected 

endmembers. Can we decide endmembers directly form the compressed data without 

recovering the hyperspectral cube? Can we do it in an efficient manner? Can we uti

lize the spectral information to further compress the data? All these open questions 

are challenging and require long-term research. First, the problem is formulated in 

optimization in the next section. 

5.1.2 Initial Formulation 

Suppose that X 6 R"?*"6 is a unknown matrix representing np-pixel by %-band, 

hyperspectral image cube, F E Rmxn<> represents the observation data, A 6 Mmx"p [s 

a measurement matrix with m < np, and £1 G RmXn6 is random noise. Then they are 
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combined by the following data acquisition model: 

F = AX + Q. 

To proceed blind unmixing, it is necessary to assume that the image cube X has 

a low-dimensional representation 

X = HW, H,W>0, # 1 = 1, 

where H G R"pXne, W G M+eX"6, and 1 is the vector of all ones. Here ne is an estimated 

number of endmembers that should be far less than both np and n&. Each row of 

W represents an endmember spectrum, and each row of H consists of abundance 

coefficients for a pixel. 

According to the theory of compressive sensing, H and W might be recovered 

from the following optimization model: 

min Rhw(HW) + Rh(H) + RW{W) + UAHW - F\\2
F (5.1) 

H,W 

s.t. H,W>0, # 1 = 1, 

where Rhw(') 1S a joint regularization function for the product HW, Rh(-) arid Rw(-) 

are individual regularization functions for H and W, respectively. 

How to appropriately choose three regularization functions might be as essential as 

designing the algorithm. Opportune regularization functions can not only guarantee 

the good recoverability, but also help discover an efficient algorithm. Proposing the 

following regularization functions in a TV manner may be appropriate and worthy to 
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further investigate: 

Rhw(HW) = ahw Yl TV(HWej) 
j€JC{l,2,...,nb} 

Rh(H) = ahJ^TV(Hej) 

n e 

Rv,(W) = awJ2\\*wWTej\\1 

3=1 

where tyw € ]Rni>x™6 is an appropriate sparsifying basis, and a's are nonnegative 

balancing parameters. More precisely, one way to sparsify W is to introduce the 

second-order total variation in ID 

TV2(u) = J2\A*u\, 

where A2u — Ui+2 ~ 2ifj+i + Wi is the second-order derivative approximation of it at 

ith position for u G Mn. Then we can define 

RW{W) = awJ2^2(WT
ej). 

3 = 1 

Since the minimization problem (5.1) is bi-convex, it is amenable to alternating 

minimization, i.e., minimizing with respect to W while fixing H and vice versa. The 

two subproblems are 

min Rhw{HW) + Rh(H) + %\\AHW - F\\2
F s.t. H>0, HI = 1, (5.2) 

H Z 

min Rhw(HW) + RW(W) + ^\\AHW - F\\2
F s.t. W > 0. (5.3) 

w 2 
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It appears that the two subproblems are both convex but not further separable 

in terms of their rows or columns. In general, nv S> % and H G R™pXne is the larger 

variable, consisting of ne images of np pixels. An algorithm which can efficiently solve 

this problem requires further study. 

Successfully solving this problem could not only make a big process in hyperspec-

tral imaging, but also inspire the innovation in the other 3D data processing. 

5.1.3 Parallel Algorithms and Implementations on High Per

formance Computers 

In recent years, because of the advances in sensor technology, hyperspectral imaging 

has been further developed and is able to collect hundreds of images corresponding 

to different wavelength channels. With the aid of such detailed spectral information, 

the ability in detection and identification of materials will be significantly improved. 

However, the massive amount of data prohibits efficient storage and even other oper

ations. For example, compared to the regular image reconstruction, the complexity 

of each operation on hyperspectral data increases by rib times, where n& represents 

the number of channels as mentioned before. Suppose that data is collected under 

180 different channels and the unmixing algorithm is as efficient as the reconstruction 

algorithm such as TVAL3. Then it may take half an hour to unmix a hyperspectral 

image while taking only 10 seconds to reconstruct a regular image with the same 

resolution. The storage of these massive data would be another issue. 

Parallel computing refers to the simultaneous use of multiple compute resources to 

solve a computational problem. It requires a single computer with multiple processors 

or multiple computers connected by a network. Specifically, a computational problem 

is divided into discrete parts and each part is further broken down to a series of 



72 

instructions which from each part can execute simultaneously on different processors 

or computers. Implementation of parallel computing would shorten the running time 

significantly. 

Since the massive amount of data is involved in the minimization problem (5.1), 

it provides the potential to develop a parallel unmixing algorithm. Before that, the 

subproblems (5.2) and (5.3) need to be investigated and solved in an efficient way 

in order to propose a serial unmixing algorithm. The way of implementing parallel 

computing correlates to the structure of the serial algorithm. Some existing paral

lelizing techniques (see [93], for example) also improve opportunities for exploiting 

high-performance parallel algorithms. 

The Research Computing Support Group (RCSG) at Rice University provides 

shared computing services including Ada, SUG@R, and STIC. Taking advantages of 

the RCSG resources would greatly help the design and test of parallel algorithms, 

which will be an important subject in my future research. 

5.2 Exploration on Dual Method 

To study the dual problem of a TV model, let us first restate the TV model (2.1) for 

compressive sensing in the complex domain: 

minV^ ||Z?JW|L, s.t. Au — b, (5.4) 
i 

where p G K% p > 1, u G Cn or u G Csxt with s • t = n, and A G Cmxn. 

The dual problem of this TV model will be derived in Section 5.2.1 and the initial 

method to the dual problem will be suggested in Section 5.2.2. 



5.2.1 Derivation of Dual Problem 

Suppose that q e 1Z+ satisfies 

v q 

According to the Holder's Inequality, 

llxIL = max I < y, x > I, 
IMI9<i 

where x,y E CN. 

As we all known, for any x, y G C^, 

I < 2/, £ > | > Re(< y, x >). 

where Re represents the real part operator. Thus, 

\\x\L = max I < y, x > I > max Re(< y, 

The maximizer of (5.5) y will be achieved while y^ = cxk\xk 

such that \\y\\q = 1. Under these circumstances, 

I klip =< V,x >= Re(< y,x >). 

In the light of (5.6) and (5.7), 

||x||p = max Re(< y,x >). 

HZ/II9<1 

file:////x/L
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Based on the above fact, 

5>. iU\\p 

i=i 

— >^ max Re(< v*. Dm >) 

n 

= max > Re(< v;, D{U >) 
I N I « < i ^ 

n 

— max >^Re(< D*Vi,u >). 
\M\q<i*-f 

As a matter of fact, Re(< D*Vi,u >) is bilinear for any i, which leads to, 

max > Re(<D*«j ,u>) = max Re( > < D*vi:u >) 
Vi\\,<l^-f \\Vi\\a<l ^ INI i = l i = l 

max Re(< > D*Vi,u >) 
MI,<1 4 f 

z = l 

Therefore, 

min >^ IIDJUIL 

i= l 

min max Re(< > D*Vi, u >). (5. 
^«=/INI,<i 4 f 

i = i 

In 1958, Sion generalized distinguished John Von Neumann's minimax theorem 

[87] in the theory of simultaneous games as following: 

Theorem 4 (Sion's Minimax Theorem [88]). Let X be a compact convex subset of a 

linear topological space and Y a convex subset of a linear topological space. If f is a 

real-valued function on X x Y with the property that f(x, •) is upper semicontinuous 

and quasiconcave on Y, Vx € X, and f(-,y) is lower semicontinuous and quasi-convex 

on X, \/y E Y, then, 

minmax/(x, y) = maxmin/fx, y). 
x<EX y€Y yeY xeX 
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Proof. See [88, 89, 90, 91] for different proofs. • 

A straightforward analysis indicates that 

• {u : Au — / } is convex, 

• {v = {t>i,i>2, • • • ,vn} : \\vi\\q < 1 VI < i < n} is compact convex, 

• and f(v, u) = Re(< X^=i A * ^ ' u >) ^s bilinear. 

These three facts suggest that the Sion's minimax theorem can be used to exchange 

min and max of (5.8); i.e., 

n n 

min \ ^ llDjttlL <=$• min max Re(< } D*Vi,u>) 
Au=f*—f Au=f \\vi\\q<l *r-f 

n 

i = l 

•^=> max min Re(< > D*v;,u >) 
\\vi\\q<lAu=f ^ 

For the inner minimization, if there exists z € Cm, s.t. 

n 

A*z = YD*Vi, 
i = i 

then 

min Re(< Y^ D*vi} u >) — min Re(< A*z, u >} 
A u = f *•—' Au=f 

i=l 
= min Re(< z, Au >) 

Au=f 

= R e ( < z , / > ) . 

Otherwise, 
n 

min Re(< >^ D*Vt, u >) = —oo. 
Au=f /L^ 

J i= i 
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Therefore, the dual problem of the TV model is 

n 

maxRe(< z, f >), s.t. \\vi\L < 1 and A*z = 1\^D*vi. (5.9) 
Vi,Z *—f 

1 = 1 

Furthermore, the whole derivation is still correct if A s for all i are some general 

linear operators in Crxn. The conclusion on the dual problem can be easily extended 

to the model with general linear operators, without modifying anything. 

Since the primal problem (5.4) is convex and there always exists at least one 

strictly feasible point for (5.4), the optimal duality gap between the primal problem 

(5.4) and the dual problem (5.9) is zero, i.e., the strong duality holds. 

5.2.2 Methodology on Dual Problem 

Restricted to the real domain, the dual problem (5.9) can be rewritten as 

mm-fTz, s.t. \\vi\L < 1 and ATz = S^ Djvi. (5.10) 
i 

The augmented Lagrangian method has been well studied in Section 2.1. This 

method requires minimizing the corresponding augmented Lagrangian function at 

each iteration. Therefore, the associated subproblem of solving (5.10) by the aug

mented Lagrangian method is 

vt,z *•—' 
i 

+ IW^z-Y^DfviWl s.t. |H|9<1. (5.11) 
i 

If this subproblem can be solved efficiently, it is highly likely to render a new creditable 

algorithm for the dual problem (5.10). 

file:////vi/L
file:////vi/L
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Mirroring the TVAL3 scheme, we can try to apply the alternating direction 

method to (5.11). That means two subproblems need to be settled alternately: 

min CD{vi,z), 
z 

and 

min£D(vi,z), s.t. \\vi\L < 1. 

After simplification, they respectively correspond to 

mm-(f + Au)Tz + ^\\ATz - ]Tz^ | | i , (5.12) 
i 

and 

mmy"(Dico)Tvi + ]-\\ATz- J^DfviWl s.t. \\vi\\g < 1, (5.13) 
i i 

For (5.12), the one-step steepest descent scheme proposed in Section 2.3.2 should 

work to obtain a roughly approximate minimizer. However, further investigation is 

needful in the future to solve (5.13) exactly or approximately. 

In fact, it is likely to incorporate other methods or algorithms to settle (5.11) or 

even (5.10) properly, which also demand further research in times to come. 

file:////vi/L
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