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Abstract 

Tailoring Vertically-Aligned Carbon Nanotube Growth for 
Poly(dimethylsiloxane)-Infiltrated Nanocomposites 

by 

Brent Carey 

This thesis discusses the viability of the polymer infiltration nanocomposite 

preparation technique for aligned carbon nanotubes (A-CNTs) as produced by two 

methods: pre-deposited catalyst chemical vapor deposition (CVD), and vapor-phase 

CVD. Both types of growth furnaces were constructed, and the resultant A-CNT 

"forests" were impregnated with poly(dimethylsiloxane), a highly-compliant 

silicone elastomer. The survivability of the CNT alignment subsequent to the 

polymer infiltration was studied for the respective nanocomposites, and it was 

observed that the thin-walled CNTs produced by the pre-deposited catalyst CVD 

method were not robust enough to maintain alignment during the infiltration, in 

contrast to the thicker-walled vapor-phase-grown CNTs. The dynamic mechanical 

properties of the successfully-impregnated composites were then studied, and their 

strain- and frequency-dependent behavior was probed both transverse and 

longitudinal to the alignment direction of the CNTs, revealing distinct responses due 

to their anisotropy. 
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Chapter 1 

Introduction 

1.1. Introduction to Carbon Nanotubes 

Due to their impressive array of properties, carbon nanotubes (CNTs) have 

received a substantial amount of attention since the landmark paper in 1991 which 

brought them to prominence [1]. In the nearly two decades since their naissance, 

CNTs have been explored in a wide range of applications ranging from field 

emission [2], capacitors [3], hydrogen storage [4], chemical sensing [5], thermal 

management [6], and even as axles in nanoscale vehicles [7]. 

The application of CNTs for these purposes is owed to the truly impressive 

properties of these molecules. They are reported to have a thermal conductivity up 

w to 6,600 —— at room temperature [8], have been shown to be capable of exhibiting 

ballistic electrical conduction [9], and can have axial mechanical strength on the 

order of 1 TPa [10], properties which are head-and-shoulders and, in some cases, 
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even orders-of-magnitude above other materials. As such, CNTs have been lauded 

as some of the most perfect molecules that could exist. 

CNTs come in a range of sizes and morphologies, each with its own specific 

electronic, thermal, and mechanical properties; this, in itself, is a testament to the 

collective value of these molecules in future applications. These allotropes range 

from single-walled (SWNTs) to multi-walled CNTs (MWNTs), with a few special 

subsets such as double-walled (DWNTs] and few-walled CNTs (FWNTs). Adding to 

this complexity, each of these come in a range of helicities (termed a CNT's 

"chirality"), though this characteristic is typically only used when referring to 

SWNTs; the chirality of a SWNT can determine metallic or semimetallic behavior, 

and isolating each of these types of SWNTs is the subject of research focus to this 

day [11]. 

Additionally, the idealized properties reported for CNTs generally assume a 

perfect crystalline structure. Unfortunately, despite great efforts, highly-crystalline 

CNTs are not experimentally viable in large quantities even by present day growth 

procedures. Due to inherent difficulties in synthesis, even the CNTs generated by 

today's highly-optimized methods are typically produced in a small yield of highly-

crystalline CNTs or a large yield of highly-defective CNTs, with some processes 

falling in the middle of those two extremes. Research still continues to perfect these 

growth processes. 

Given all of this, the CNTs produced in large quantities still have significant 

utility. Despite their non-perfect structure, they are typically much cheaper to 
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produce and still exhibit impressive properties as compared to many other 

materials. The work presented herein is based upon such CNTs, as produced 

through chemical vapor deposition (CVD). 

1.2. Techniques in Carbon Nanotube Synthesis 

Over the course of the 1990's, several novel synthesis methods were devised, 

and most of those techniques have been refined over the past decade and are still in 

use today to produce CNTs for specific research, industrial, and commercial needs. 

As described previously, CNTs come in many varieties. Each of these synthesis 

methods produces its own "fingerprint" of CNTs, which is typically a distribution of 

certain CNT types and sizes. For specific applications, the synthesis technique is 

typically selected by the quantity, quality, and size/chirality of the desired material. 

Below, I summarize the major milestones in CNT synthesis, and delineate each 

technique's successes and shortcomings. 

1.2.1. Early Carbon Nanotube Synthesis Methods 

Arc-Discharge was the first technique used to deliberately produce CNTs, as 

reported by Iijima in 1991 [1]. The yield of CNTs by this process was quite low, 

though they are typically of very high crystallinity. A few years later, Ebbeson & 

Ajayan expanded upon the arc-discharge method to produce gram quantities of 

these CNTs [12], which include both SWNTs and MWNTs with lengths of up to 50 

um. By their method, ~ 18 V (AC or DC) is applied across two graphitic rods in a 

500 Torr helium atmosphere. When the two electrodes are brought close enough to 
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arc, 100 A of current passes between them, creating a plasma which provides a 

nucleating environment for CNTs. To this day, arc-discharge is still a preferred 

method for ultra-high-quality CNTs if there is little concern about length, though 

other methods have since surpassed it in producing much larger quantities. 

In 1993, Jose-Yacaman et al. reported the first use of CVD for the expressed 

purpose of synthesizing CNTs [13]. The CVD process generally involves the use of a 

hydrocarbon gas which decomposes in a high temperature environment, producing 

the feedstock carbon for CNT synthesis. When placed in a sufficient but not 

excessive temperature environment [generally ~700 - 900 °C), catalyst particles of 

certain transition metals will begin to consume any available carbon and initiate the 

growth of CNTs. In this last-referenced work [13], acetylene was passed over a 

substrate covered with iron particles in a 700 °C atmosphere, resulting in the 

growth of CNTs up to 50 urn in-length. Shortly after, Endo et al. were able to initiate 

the use of a vapor-phase catalyst to synthesize pyrolized CNT structures by adapting 

a procedure similar to what is used to create vapor-grown carbon nanofibers 

(VGCNFs) [14]. By passing benzene over a carbon block in a hydrogen-rich 

environment at 1000 °C, highly-graphitic CNTs and CNT-like structures were 

generated. CVD is also responsible for the high-pressure CO (HiPCO) growth 

method developed by Nikolaev et al. in 1999, which has allowed for the large-scale 

production of SWNTs [15]. Due to its relative ease, there have been many variations 

on the CVD synthesis of CNTs which have brought it to prominence as a simple, yet 

effective method to produce large quantities of CNTs. 
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In 1995, Smalley and co-workers reported the laser ablation technique [16], 

which benefits from a much larger and predominantly SWNT yield. After vaporizing 

a graphitic carbon / transition metal target with a laser in the presence of an inert 

gas, the carbon will condense on cool surfaces in the reaction chamber, where CNTs 

will begin to form. Despite its efficiency in producing large quantities of quality 

CNTs, this technique is largely overlooked due to its prohibitive cost. 

The majority of the CNT synthesis work over the rest of the 1990's and 

2000's was focused on understanding and refining the above methods to both 

improve the quality and/or reduce the size distribution of these methods while 

scaling up the production. These efforts have helped to expand CNT production into 

the private sector, where the quality has improved significantly and the cost-per-

gram of CNTs has steadily dropped. 

1.2.2. Chemical Vapor Deposition to Produce Aligned CNTs 

One of the particularly interesting aspects of CVD is the ability to use this 

method to synthesize self-aligned "forests" of carbon nanotubes (A-CNTs), as first 

reported in 1996 by Li et al. [17]. The CNTs produced were exclusively MWNTs and 

measured approximately 40 um in-length. Another evolution of the CVD technique 

to grow A-CNTs, perhaps fueled by the success of the arc-discharge method, was the 

introduction of a plasma source, as first reported in 1997 [18]. Their procedure 

allowed for a lower growth temperature and the use of a much less specialized 

substrate. In the mid 2000's, Hata and co-workers developed a technique they 

termed "supergrowth" which involved the introduction of water vapor during the 
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CVD growth procedure [19]. Spawned by a report that an amorphous carbon 

coating on the catalyst particles was "poisoning" them and terminating the growth 

[20], their supergrowth procedure helped to produce a reducing environment inside 

the reaction chamber which cut down on amorphous carbon and lead to the growth 

of A-SWNT forests up to 2.5 mm long. Later, Amama et al. suggested that the 

success of water in the supergrowth procedure was owed to the decoration of the 

inter-catalyst substrate space with hydroxide species, thereby stifling the Ostwald 

ripening of the catalyst particles in the high temperature growth environment [21]. 

Further refining of this water-assisted technique in the recent past has lead to the 

growth of forests up to 5 mm tall, and the discovery that the continuous flow of 

water vapor during the cool-down of the furnace after growth will serve as a weak 

oxidizer which will cause the CNTs to detach from the substrate, leaving a free

standing film of CNTs [22]. 

CVD is a method which has been considerably improved in the decade-and-a-

half since its inception as a CNT synthesis method, and is the favored method for 

producing very large quantities due not only to the scalability of the procedure, but 

also its low cost. Unfortunately, while advances have been made, it is still not nearly 

as effective in producing top-quality CNTs as the other common methods. 

In Chapter 2,1 will describe the CVD procedures for growing A-CNT arrays 

with more depth, and will specifically describe the methods used to produce the 

aligned CNTs for this work. 
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1.3. Carbon Nanotubes for Composite Applications 

1.3.1. Challenges in Preparing Randomly-Aligned Nanocomposites 

No matter the matrix material one is attempting to reinforce with CNTs or 

any nanoscale material, the greatest challenge in nanocomposite preparation is 

arguably in dispersion. While surface-area-to-mass ratio is the origin of their 

advantage over traditional materials, it is the predominant factor which leads to the 

agglomeration of nanomaterials. CNTs are no exception to this, as they have been 

observed to readily form rope-like structures both after growth and in solution; 

these CNT ropes are very difficult to break apart due to the Van der Waals attraction 

between such atomically pristine surfaces, and the use of strong acids such as 

fuming sulfuric acid (oleum] is one of the only methods by which to intercalate 

these dense bundles [23]. 

Agglomeration is a real issue in the manufacturing of nanocomposites, and 

for more than one reason. Firstly, the special properties of these nanomaterials are 

largely dependent on their size and/or structure. When they agglomerate and 

aren't homogeneously dispersed in a particular medium, much of their advantage is 

lost. Along those lines, while they are remarkably difficult to separate, the 

interactions between these nanoparticles are inherently weak since the attraction is 

predominantly orthogonal to the surface. Put simply, agglomerates are highly 

susceptible to shear forces and can easily slide past each other. Inside of a matrix, 

such sliding significantly threatens the bulk structural integrity under loading. This 

issue is amplified for CNTs due to their extremely high aspect ratio (eg. 10,000:1 for 
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a .5 mm long, 50 nm in-diameter CNT). CNTs bundled into ropes are extremely 

difficult to separate, and can slide past each other with very little effort. Such 

mobility has cast some doubt on the use of randomly-dispersed CNTs as effective 

reinforcement in nanocomposites, and is one of the reasons given as to why 

nanocomposites have not yet achieved the theoretical predictions for their potential 

[24]. 

Despite these difficulties, many have attempted to use CNTs to reinforce both 

stiff and compliant matrices. While there exist some reports on the topic of their 

use in reinforcing metals [25] and metal-oxides [26], the vast majority of work using 

CNTs as mechanical reinforcement in composite materials has been by the way of 

polymer matrices. The first report of CNTs in a polymer matrix was in 1994, where 

Ajayan et al. showed that the cutting of an epoxy/CNT composite could result in the 

alignment of the CNTs embedded in the matrix [27]. Four years later, Wagner and 

co-workers reported the first mechanical properties of a CNT/polymer composite 

by spreading a urethane/diacrylate oligomer on a dried film of MWNTs prior to UV-

curing [28]. It wasn't until the following year when Jia et al. attempted to create a 

bulk composite by dispersing as-grown CNTs in a poly(methyl methacrylate) matrix 

through mixing [29]. Despite sufficient stirring, they reported large clusters of CNTs 

due in part to the reasons described previously regarding agglomeration. 

Compounding the problems due to agglomeration, even dispersion in a 

matrix is also somewhat hindered by the viscosity of the medium. Methods such as 

ball mixing and extrusion have been reported as means by which to more-evenly 
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disperse CNTs into metal [30] and polymer [31]matrices, respectively. While many 

have reported success with such procedures, there still exist concerns about the 

survivability of the CNTs through such forceful methods [32]. 

Due to their gas permeability, another option for increased homogeneity 

specifically in polymer matrices is through the use of surfactants; by lowering the 

viscosity of the matrix through the "lubrication" of the polymer chains, the CNTs are 

able to more-easily intercalate and spread homogeneously throughout the matrix. 

Gong et al. were the first to report solvent addition to this end for CNT composites 

[33], where they reported that the composite prepared with a solvent had a much 

more significant shift in the glass transition (Tg) and a 30% increase in the elastic 

modulus as compared to the traditionally-prepared control. They did note, 

however, that agglomeration of the CNTs was still an issue. Over the following 

decade, the use of solvents has become a favored technique for the manufacturing of 

randomly-dispersed nanocomposites due to the ease of solvent removal after 

dispersion has taken place. 

1.3.2. Self-Assembly of CNTs to Achieve Composite Homogeneity 

As it can be very difficult to break apart aggregates and then evenly disperse 

nanoscale constituents in a matrix, a more favorable technique would be to organize 

the CNTs prior to introducing the polymer. This was, in fact, the technique used in 

the early days of CNT composite study, where randomly-aligned films of CNTs were 

created through the dispersion in a solvent and subsequent filtering or evaporation 

[28]. While this does provide a backbone for a two-dimensional composite film, the 



true challenge is in organizing CNTs three-dimensionally. Such a feat is no trivial 

task, as it is not physically feasible to organize such a large number of individual 

CNTs. As such, the only viable way to achieve such spatial organization is through 

self-assembly. 

As mentioned in Section 1.2.2, CVD can be used to grow vertically-aligned 

arrays of CNTs whose spacing and orientation are predefined by the growth 

conditions. In contrast to the typical method of introducing CNTs to a polymer, the 

success of this method lies in introducing the polymer to these already-oriented 

CNT arrays. This technique of polymer infiltration was first explained in-depth in 

2005 through the infiltration of methyl methacrylate prior to polymerization [34]. 

Assuming there is sufficient surface interaction (wetting] between the CNTs and the 

desired matrix (a surface wetting study between CNTs and many common matrix 

polymers is given in a report by Barber et al. [35]), this method of composite 

preparation is as trivial as infiltrating the aligned forest with the matrix polymer 

prior to crosslinking (for curable polymers), with or without the use of a solvent. A 

similar polymer infiltration method was the technique used for this thesis work, and 

specific details are given in Section 3.1. 

1.4. Research Motivations 

While there has been much research on the development of CNT-reinforced 

composites, there are still very significant issues with agglomeration and dispersion. 

This is particularly true for very-large-aspect-ratio CNTs, which become virtually 



impossible to homogeneously disperse in any sort of composite matrix. A-CNTs 

provide an ideal solution to these problems, as the spacing of the CNTs is near ideal 

to allow for effective infiltration while allowing for significant improvement over the 

neat polymer. As such, it is necessary to ascertain the ideal CNTs for such an 

application and to explore the properties of such continuously-reinforced 

composites. The present thesis will attempt to solve the following problems: 

1. For two types of A-CNT growth (pre-deposited catalyst CVD and vapor-phase 

CVD), how can the parameters be optimized to ensure consistent growth with 

the expressed purpose of using those A-CNTs for infiltrated composite 

applications? 

2. How do both types of A-CNTs react to the infiltration of a polymer matrix? Can 

they maintain their alignment/anisotropicity? 

3. How do the A-CNT composites react to dynamic mechanical stimulus? What 

can this type of testing tell us about the subtle structural and morphological 

properties the CNTs are imparting on the matrix polymer? 



Chapter 2 

Synthesizing Aligned Carbon Nanotube 
Arrays for Composite Applications 

There are two primary techniques for the CVD production of A-CNTs, and 

each comes with its own strengths and weaknesses depending on the desired 

application of the end product. The main distinction between the two lies in how 

the catalyst is introduced to the system, and the manner in which it interacts with 

the carbon source. 

For this thesis work, two separate growth furnaces were constructed and the 

resultant growth products from both were compared for viability as reinforcement 

in vertically-aligned CNT nanocomposites. In this chapter I will discuss the 

differences between these two techniques and highlight my observations of their 

drawbacks and successes for the production of A-CNTs for composite applications. 

12 



2.1. Pre-Deposited Catalyst CVD 

2.1.1. Introduction to Pre-Deposited CVD Growth 

The earliest method of A-CNT production involved the use of a substrate pre-

deposited with the catalyst particles used for CNT synthesis [17]. The deposition of 

the catalyst can be accomplished by a few techniques, including sputter coating and 

electron-beam evaporation. 

The technique of pre-depositing the catalyst prior to growth has a few gains 

over trying to deliver the catalyst in the vapor phase; when the catalyst is deposited 

on the surface prior to synthesis, the resultant CNTs generally have a much 

narrower distribution of sizes. The thickness of this catalyst layer (generally 

between .5 and 5 nm thick) will largely will define the diameter of the resultant 

CNTs, giving some control over the types of CNTs synthesized [22]. Also, as the 

amount of catalyst is tightly controlled, there are fewer growth parameters to 

optimize, typically providing more consistent, repeatable growth. Another success 

of this technique lies in the complex growth surfaces which can be engineered. 

Custom masks can be used to selectively determine where the catalyst will be 

deposited, and CNT growth normal to these surfaces can be used to grown 2D 

patterns such as towers [36]. 

Despite these strengths, the main shortcoming of this method lies in the 

preparation that needs to be done to the substrate in order to grow CNTs. The 

success of the growth is dependent on the application of the catalyst particles, which 



makes it very difficult to grow CNTs on anything other than simple, relatively planar 

substrates such as silicon wafers. 

2.1.2. Construction of a Water-Assisted A-CNT Growth Furnace 

The first step in pre-deposited catalyst CNT synthesis is having a sufficiently 

hot reaction zone in order to initiate CNT nucleation. This is typically done through 

the use of a tube furnace, where these temperatures can be achieved while assuring 

even, laminar flow of the reaction gases over the substrate to limit growth 

inconsistencies due to turbulence. Due to the sensitivity of the growth process, 

having a consistent temperature profile across the desired growth zone is of 

paramount concern. For this reason, long tube furnaces are generally used for 

applications where the growth is to occur over a large area, as the longer the 

furnace, the more even the temperature in the center region, leading to more 

consistent overall growth. For this work, a Thermolyne 79400 tube furnace with a 

26" heating zone which can accommodate a 2" in-diameter quartz reaction tube was 

used. 

The beauty of the pre-deposited catalyst growth method lies in its relative 

simplicity. Since the catalyst is already deposited on the substrate prior to 

synthesis, all one needs to be concerned with is the environment of the reaction 

zone and the flow of each gas used. However, since the kinetics of CNT synthesis are 

so complicated and difficult to predict, tight, repeatable control over every aspect of 

the reaction is essential. As the substrate for growth, silicon wafers pre-deposited 

with the catalyst were used as described in Figure 2.1. 1.5 nm of iron was 



previously reported as producing the smallest distribution of CNTs via this method 

with a predominantly DWNT yield [37], so it was chosen as the preferred catalyst 

thickness for the growth of these CNTs with a 10 nm barrier layer of aluminum 

between it and the silicon wafer to prevent catalyst migration into the substrate. 

These metals were all deposited on the silicon wafer via e-beam evaporation. 

To efficiently control the flow of each gas through the tube furnace, mass 

flow controllers (MFCs) were used; MFCs allow for tight, repeatable control over the 

flow of gases as compared to analog "turn-dial" flow controllers. Three MKS M100 

MFCs controlled by a MKS Type 247 Four-Channel Readout were banked together 

(Figure 2.2) and used for this growth furnace to control the flow rates; these gases 

include the hydrocarbon reaction gas (ethylene), the gas flowed through the bubbler 

to pick up water vapor (15 vol% hydrogen, balance argon), and the gas which 

carries the reaction gases through the furnace (15 vol% hydrogen, balance argon). 

With the furnace setup fully assembled as seen in Figure 2.3, the next step 

was to develop a consistent growth procedure. Based off of previous work [37] and 

with considerations taken during preliminary growth attempts, the following 

growth procedure was adopted: 

1. Begin flowing the "carrier gas" (Qc) and heat furnace up to the "introduction 

temperature" (T;). 

2. When stable, place substrate into the center of the growth zone and begin 

heating to the desired set point for the "synthesis temperature" (Ts). 



3. At the exact time the set point is reached, begin flow of "bubbler gas" (Qb) 

through water bubbler. 

4. After bubbling for the desired "bubbling time" (tb), initiate the flow of the 

"hydrocarbon gas" (Qh). 

5. After the desired "synthesis time" (ts) has elapsed, bypass the bubbler through 

the three-way valve and turn off all but the Qb during cool down. 

Step 1 of the growth procedure was necessary in order to be sure that the 

substrates were all entered into the furnace at the same temperature and that they 

would be exposed to the growth atmosphere during heat-up for the same amount of 

time from run-to-run. If a free-standing mat of CNTs is desired, the Qb can be left 

flowing through the bubbler after the carbon source is turned off and before cool 

down, where the added vapor can act as a weak oxidant and cause the CNTs to 

release from the substrate [22]. 

Aligned CNTs 

Iron (1.5 nm) 

Aluminum (10 nm) 

• r J— Silicon Wafer 

Figure 2.1 - Schematic of pre-deposited CVD growth substrate (not to scale). 
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Figure 2.2 - Bank of mass flow controllers and water bubbler. 

Ti(°C) Ts(°C) tb(min) ts(mm) Qb (seem) Qc(slm) Qh (seem) 

300 775 30 85 1.3 115 

Table 2.1 - Parameters for optimal water-assisted CVD growth. 
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Figure 2.3 - Schematic (a) and photograph (b) of the pre-deposited catalyst 
CVD system. 



Using the above procedure, the next step was to optimize the growth 

parameters. Despite the fact that this particular furnace was the one used to grow 

the DWNTs in reference [37], it had since been moved and had been reassembled 

with the new MFCs. Again, due to the sensitivity of the growth process, any small 

change in the growth environment may produce a large change in the success of the 

synthesis. As observed in the early growth runs, it was determined that the 

bubbling flow rate had the most significant effect on the success of the synthesis as 

compared to the temperature and flow rates of the other gases, and should be the 

main focus of the optimization work. Basing off of the previously successful growth 

parameters and the observations from the tests stated above, the parameters in 

Table 2.1 (with the obvious exception of Qb) were selected to optimize this 

parameter; a series of growth runs with various flow rates through the water 

bubbler were conducted, and the resulting heights of the growths (as measured by 

SEM) were compared. In Figure 2.4, we can see that from 0 - 125 seem of flow 

through the bubbler, ~85 seem appears to be the flow rate by which to pick up the 

optimum amount of water vapor to promote the tallest growth given the other 

parameters. With these parameters, growths up to 2.5 mm in-length were achieved 

with consistent repeatability. 

2.1.3. A-CNTs Grown Via Pre-Deposited Catalyst CVD 

By using the previously-mentioned parameters, I was able to synthesize 

even, regular mats of aligned CNTs with fairly high repeatability. Examples can be 



seen in the images in Figure 2.5, where we can also see that the CNTs all have 

approximately the same diameter. 
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Figure 2.4 - Growth height as a function of water vapor content. 
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Figure 2.5 - Water-Assisted Pre-Deposited Catalyst CNTs. 



2.2. Vapor-Phase CVD 

2.2.1. Introduction to Vapor-Phase CVD Growth 

As compared to the pre-deposited catalyst method, the vapor-phase CVD 

process allows for the growth of CNTs on much more complex surfaces. In this 

technique, the catalyst precursor is dissolved in an organic solvent and introduced 

with the carbon feedstock through liquid delivery. As the solution evaporates and 

the dissociated precursors pass through the system, the catalyst particles will land 

on surfaces in the reaction chamber, where the carbon will interact with them to 

initiate the growth of a CNT. This opens up the possibility for CNT growth on 

surfaces which are more complex or otherwise are not suitable for the pre-

deposition of a catalyst. It has been shown that CNTs can be readily grown on many 

surfaces, ranging from oxidized silicon to quartz and even on the surfaces of carbon 

fibers via this method [38]. Similarly to pre-deposited catalyst CVD, it is also 

possible to pattern the growth of CNTs through vapor-phase CVD. By patterning an 

oxide layer on a silicon substrate, it has been shown that CNTs will only grow on the 

oxide, allowing for the selective growth of 2D and even 3D patterns such as pillars 

and "daisies" [39]. 

While it may be considered a downfall for most applications, the CNTs grown 

via vapor-phase CVD tend to be of a lower quality, due in part to the fact that the 

amount of catalyst is not nearly as well-controlled. This tends to result in CNTs 

which have varied diameters and are not nearly as crystalline [at least for the outer 

coaxial layers) and may also have an amorphous or pyrolized carbon coating. The 



water-assisted pre-deposited catalyst CNTs synthesized via our method are 

predominantly DWNTs and FWNTs, whereas the vapor-phase CVD growth largely 

results in MWNTs which have much larger diameters (up to 100+ nm). For 

composite applications, the percent crystallinity is not as great of a concern when 

working with MWNTs, as a defective surface may allow for a greater interaction 

with the matrix through surface roughness or perhaps covalent interaction (via any 

dangling bonds on the CNT surface). Moreover, the multiple layer structure of 

MWNTs already improves their mechanical strength as compared to lesser-walled 

CNTs. 

2.2.2. Construction of a Vapor-Phase A-CNT Growth Furnace 

As with a pre-deposited catalyst CVD system, a stable, high-temperature 

growth region is necessary for vapor-phase CVD. For the purposes of this work, a 

Lindberg/Blue M 55347 three-zone tube furnace was used to ensure the longest 

growth zone. The benefit of a three-zone furnace lies in the ability to extend the 

length of the central zone to prevent temperature drops on the ends of the center 

zone. By increasing the temperature on the end zones by 5-10 °C as compared to 

the central zone, the width of the isothermal central zone is extended, ensuring the 

longest-possible region for consistent CNT growth. For the growth runs executed 

for this work, the end zones were heated 8 °C higher than the center zone and the 

furnace is 35" in-length, allowing for a very large zone for CNT synthesis. This 

furnace can accommodate a 3" processing tube, and custom 8' quartz tubes were 
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ordered in order to ensure that the flanges capping the ends did not heat up during 

synthesis. 

Figure 2.6 - Continuous pump, xylene/ferrocene mixture, and mass flow 
controllers for vapor-phase CVD. 

As the carbon/catalyst precursors are not gaseous for this method, they need 

to be introduced to the system in the liquid state, which necessitates a more 

complicated delivery system. Previous methods of liquid delivery include injection 

[40], spray [41], and aerosol [42], though these methods all necessitate either a 

secondary heater or other hardware to prepare the mixture for introduction to the 

reaction zone. For this work, the catalyst/carbon source mixture used was 

ferrocene dissolved in xylene, and with xylene's boiling point being 139 °C, the 

mixture must be heated up to this temperature before it can mix with the buffer 

gases to pass through the reaction zone. 



To simplify the experimental setup and eliminate the need for a secondary 

heating source, a novel method by which to utilize the residual heat of the end of the 

furnace in order to evaporate the mixture was designed. By pumping the mixture 

using a Masterflex 7523 continuous pump to near the edge of the furnace, the waste 

heat from the furnace is sufficient to evaporate the xylene/ferrocene mixture so that 

it can be carried in the gaseous phase through the reaction zone. In order to ensure 

even and consistent dispersion of the growth precursors, two gases, also controlled 

by MKS M100 MFCs controlled by a MKS Type 247 Four-Channel Readout were 

used: the "evaporator gas" (15 vol% hydrogen, balance argon) is to help the 

evaporated xylene/ferrocene mixture to be evenly dispersed, and the "carrier gas" 

(15 vol% hydrogen, balance argon) was used to carry the precursors/evaporator 

gas mixture through the furnace. An image showing the pump and the MFC bank 

can be seen in Figure 2.6. 

As can be seen in Figure 2.7, the carrier and evaporator gases are directed 

through coaxial channels which surround the precursor mixture, all of which are 

made of stainless steel tubing and measure 1", I/4", /^g" in-diameter, respectively. 

The carrier gas line ends at the flange of the quartz tube, where it will result in an 

even flow which downstream will pick up the reaction gases and carry them 

towards the reaction zone. The evaporator gas line is supported by the rigidity of 

the -y/ ' tube, where it will carry the gas to the "evaporator", a custom-fabricated 

part which creates an environment where the evaporated catalyst/carbon source 

can disperse with the evaporator gas before being sprayed radially into the quartz 



tube where it will be picked up by the carrier gas and carried through the reaction 

zone. The entire vapor-phase CVD growth setup is pictured in Figure 2.8, 

With the furnace assembled, again comes the task of developing a successful 

growth method. The parameters used for the successful synthesis of A-CNTs via the 

xylene/ferrocene process [43] were used as a starting point for this setup, and the 

procedure used for the synthesis of these CNTs is as follows: 

1. Begin flowing the carrier gas (Qc) and heat furnace up to the introduction 

temperature (TV). 

2. When stable, place substrate into the center of the growth zone and begin 

heating to the desired set point temperature for the synthesis (Ts). 

3. At the exact time the set point is reached, begin flow of evaporator gas (Qe) and 

initiate the flow of the catalyst/carbon source liquid mixture (Q/) which has a 

specific ratio of catalyst-to-carbon-source (C:CS). 

4. After the desired synthesis time (ts) has elapsed, turn off all flow but the Qe 

during cool down. 
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Figure 2.7 - Photographs of the coaxial gas/liquid delivery (a), evaporator cap 
(b) and its seat (c), and schematic of gas flow around evaporator (d). 
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Figure 2.8 - Schematic (a) and image (b) of the vapor-phase CVD system. 



2.2.3. A-CNTs Grown via Vapor-Phase CVD 

In contrast to what was observed with the pre-deposited catalyst CVD 

technique, longer growths of A-CNTs are possible through vapor-phase CVD, and it 

has been shown that CNTs can be grown in excess of 1 cm in-length though this 

process [43]. Due to the added complexity of the vapor-phase delivery method, the 

reaction parameters can become more difficult to optimize, making it harder to 

produce higher-quality CNTs. The added degree of freedom with having to actively 

control the catalyst content not only makes growth optimization more time-

consuming, but also will inherently result in CNTs with more metal content. 

However, if the embedded metal content of the CNTs is not of concern, the act of 

constantly adding more catalyst to the system during synthesis via this process can 

help stave off catalyst death and allow for longer A-CNTs. Another downfall of this 

technique is that the CNTs tend to not be uniform in diameter. As depicted in Figure 

2.9, the "top" of the CNTs are considerably thicker than the "middle", and especially 

the "bottom". 

Ti(°C) TsC°C) ts(min) C:CS (̂ f) Qe (seem) Qc (slm) Q̂  © 

300 775 300 .2 500 1 .2 

Table 2.2 - Parameters for vapor-phase CVD growth. 
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Figure 2.9 - Schematic of vapor-phase CNT thickness as a function of growth 
height [44]. 
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Figure 2.10 - Photograph of A-CNTs grown via vapor-phase CVD. 
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Figure 2.11 - TEM images of the "top" (a,b), "middle" (c,d), and "bottom" (e,f) 
of xylene/ferrocene A-CNTs. 
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Figure 2.12 - SEM images of the "top" (a,b), "middle" (c,d), and "bottom" (e,f) of 
xylene/ferrocene A-CNTs. 



Based on previously-reported parameters for similar synthesis, the 

parameters in Table 2.2 were selected for the growth of the A-CNTs for this study. A 

representative sample of the A-CNTs grown is displayed in Figure 2.10, where it can 

be seen that the CNTs are considerably taller than those grown via pre-deposited 

catalyst CVD. TEM images of these CNTs (Figure 2.11) reinforce this and also clearly 

show that the CNTs, while not perfectly crystalline, are graphitic in the outer layers. 

The coating at the "bottom" of the CNTs is much thinner, indicating less 

pyrolized/amorphous carbon since this region of the CNT was synthesized only 

shortly before the growth terminated, and the large spots are iron nanoparticles 

which are embedded in the walls of the CNTs. In the SEM images of these three 

regions in Figure 2.12, we also observe that the alignment of the "top" of the CNTs is 

much more anisotropic as compared to the "bottom", where two mechanisms may 

be contributing to a loss of general alignment; these methods include: 1) the weight 

of the thicker CNTs may be inhibiting the alignment, causing more "waviness" in the 

CNTs, and 2) the constant injection of fresh catalyst is causing "new" CNTs to grow, 

which are not growing normal to the substrate, causing additional isotropicity of the 

CNTs in this region. 

2.3. Comparison of A-CNTs for Infiltrated Composite Applications 

The first comparison that can be made between the CNTs grown by these 

two different methods is the lengths that can be grown. The pre-deposited CVD 

technique used here has not been reported as being able to grow CNTs much longer 

than the 2.5 mm forests grown for this study. When growing A-CNTs for composite 



applications, clearly longer-length CNTs are ideal as it makes it possible to produce 

much thicker continuously-reinforced composites. 

Additionally, the surface roughness should play a role in the efficiency of load 

transfer from the matrix to the CNTs, thereby improving the overall bulk properties. 

Efficient load transfer is an issue which has plagued nanocomposites since their 

inception, and it has been suggested that interfacial strength can be improved 

through non-covalent interactions such as polymer wrapping and covalent bonding 

through the functionalization of the CNT surface [45]. Furthermore, the MWNTs 

produced through the vapor-phase CVD process are more ideal as reinforcement in 

polymer composites due to their higher stiffness as compared to the thin-walled 

CNTs produced through the pre-deposited catalyst CVD method. 

In the next chapter, I will specifically discuss the drawbacks and successes of 

each type of A-CNT forest for the purposes of developing successfully-infiltrated 

composites, and will explore their fundamental dynamic mechanical behavior. 



Chapter 3 

Vertically-Aligned Carbon Nanotube/ 
Poly(dimethylsiloxane) Composites 

With the A-CNT forests grown, the next task is to utilize them as the 

reinforcing phase of a composite and to use dynamic mechanical analysis (DMA) to 

discern their mechanical properties. As these composites are not mixed, the ability 

of the desired matrix to infiltrate the A-CNT forest is critical for success; this 

infiltration is highly-dependent on the wetting (contact angle] between the CNTs 

and the matrix polymer. The wetting behavior between the CNTs and the desired 

matrix is important for the success of a composite, as it ultimately dispersed and 

matrix phases. The wetting between CNTs and many polymers has been explored 

[35], and a few of these polymers have been recently explored as an infiltrating 

matrix for A-CNT composites [34],[46]. 

35 
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Figure 3.1 - Molecular structure of PDMS [47]. 

3.1. Introduction to Poly(dimethylsiloxane) 

PDMS is an optically-clear silicone elastomer with a molecular structure as 

shown in Figure 3.1. The silicon-rich backbone results in very flexible polymer 

chains which can easily slip past each other. The loose entanglement of these chains 

provides PDMS with very prominent viscoelastic features, properties which can be 

tuned by the molecular weight of the polymer chains. It is a chemically stable and 

biocompatible polymer [48] with a poisson ratio of ,5, and is commonly used in 

many diverse applications ranging from silicone caulks and lubricants to cosmetics 



and even hair care products [47]. Its unusual flow properties also allow it to 

conform to very small features if allowed to flow for an extended period, and as 

such, commercial PDMS compounds have seen much success in the field of 

microfuidics [49]. For the current work, the PDMS used was Sylgard 184, as 

provided by Dow Corning, which comes in a two-part mixture which includes the 

PDMS monomer and a curing agent which induces the PDMS chains to covalently 

link together and form a highly-compliant solid. 

Poly(dimethylsiloxane) [PDMS) was selected as the matrix for these 

composites due to its extremely high wetting of CNTs [35], in addition to the fact 

that it is commercially available and easy to work with. As with other elastomers, 

PDMS is very elastic and extremely compliant at room temperature. To achieve 

large-amplitude strains, the testing needs to be conducted while the polymer is in 

the "rubbery" state, so choosing a matrix with a very low glass transition (Tg) such 

as PDMS (-129 °C) is ideal. 

3.2. Composite Preparation 

The infiltration technique used was very similar to the method used in the 

paper which introduced these continuously-aligned CNT-reinforced composites 

[46]. A detailed procedure is as follows: 

1. Mix the PDMS monomer and the curing agent at a 10:1 ratio and stir for 5 

minutes to ensure homogeneity. 



2. Place the pre-cured polymer under house vacuum in order to remove any 

interstitial air. Remove when bubbling has ceased (~ 10 minutes). 

3. Introduce a free-standing mat of A-CNTs by placing it on top of the pre-cure, 

and "scoop" some of the polymer onto the top of the forest to promote 

infiltration. 

4. After fully submerged, place the infiltrating composite under a vacuum of 1 

Torr for at least 3 hours until bubbling has ceased. 

5. When no longer bubbling, subject the sample to 1 hour of 100 °C heat 

treatment as recommended by the manufacturer to ensure complete curing. 

This preparation technique was used for both types of A-CNTs grown via the 

previously-mentioned CVD techniques. The next sections will address the results 

from these attempts in creating A-CNT composites. 

3.2.1. Results from Pre-Deposited Catalyst A-CNT Infiltration 

As mentioned previously, the pre-deposited catalyst A-CNTs are 

predominantly thin-walled CNTs, with the majority being DWNTs. After numerous 

attempts at infiltration, it was repeatedly observed that these relatively flimsy CNT 

forests were not able to maintain their alignment during infiltration, and would 

"crumple" as the polymer infiltrated. As the curing agent is dispersed in the 

monomer prior to infiltration, there is a finite time where the polymer will have the 

fluidity to infiltrate the forest before it becomes too viscous and eventually solidifies 

due to the crosslinking. Coupled with the high viscosity of the Sylgard 184 

monomer, successful infiltration of these relatively delicate forests seems 



improbable without disturbing their alignment. In Figure 3.2, it is easy to see that 

these pre-deposited catalyst CNTs buckled quite significantly during the infiltration 

as observed by the wavy structure of the fractured surface. 

Figure 3.2 - SEM image of poor alignment in pre-deposited catalyst composite. 

3.2.2. Results from Vapor-Phase A-CNT Infiltration 

The vapor-phase-grown A-CNTs were much more successful during the 

infiltration of PDMS. Due to their much larger diameter and slightly higher 

entanglement, it was easier to infiltrate these A-CNTs without disturbing the 

existing organization of the CNTs. In Figure 3.3 it can be seen that not only is there 

good interface between the CNTs and the polymer, but that in these composites, the 

CNTs have retained their alignment. The successful infiltration of these CNTs 



qualifies these composites for further analysis, which for this thesis work includes 

the analysis of their responses to various levels of dynamic mechanical stress. 

Figure 3.3 - SEM image of the good polymer/CNT physical interaction and CNT 
alignment for vapor-phase A-CNT/PDMS composites. 

3.3. Dynamic Mechanical Properties of A-CNT/PDMS Composites 

DMA is an incredibly powerful technique for the analysis of materials, and 

particularly for polymers. By subjecting a material to an oscillating mechanical 

strain, information regarding the viscoelastic properties such as the storage (E'] and 

loss (E"] moduli and damping (tan 6) can be determined. Tight control over the 

amplitude and frequency of oscillation and the ambient temperature makes it 



possible to reveal very specific thermomechanical information about a material, 

ranging from basic stress-strain behavior to subtle thermal transitions which occur 

in the polymer and may be very difficult if at all possible to observe through 

microscopy or spectroscopy. 

Due to the height limitations of the available A-CNTs which can be grown, 

compression remains the only viable method for this type of testing. The high 

compliancy of PDMS allows for the compression of these composites to high strains 

dynamically, making DMA relatively straightforward, as explained in Figure 3.4. 

Another benefit of using PDMS is the ease of sample preparation. PDMS can be very 

easily cut by using a razor blade and a steady hand, and for all of the following data, 

samples measuring 2.5 mm long x 1 mm wide x 1 mm tall were used. Due to the 

anisotropicity of the CNTs in these samples, they can be tested in two particular 

orientations: 1) longitudinal to the alignment of the CNTs [axial), or 2) transverse to 

the alignment of the CNTs (radial]; a schematic of the particular orientations as 

compared to the neat polymer and a SEM image of a sample can be seen in Figure 

3.5. 

Over the next few sections, I will discuss the fundamental dynamic 

mechanical properties as observed through DMA, and the information revealed by 

these tests as compared to the properties of the neat polymer. 
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Figure 3.4 - Schematic of axial dynamic compression on the A-CNT composites. 

3.3.1. Strain Sweep 

Typically the first test done when conducting DMA, the strain sweep will 

reveal the strain-dependent response of a material. This is done by choosing a 

constant frequency and temperature and then applying a stable oscillating strain to 

the sample. The viscoelastic response of the material at that strain is recorded, and 

the instrument will continue on to the next strain. A strain sweep is essential as it 

will reveal the linear region of deformation for a sample, which is the region where 

further dynamic testing should be conducted in order to assuredly obtain 

meaningful data. The data presented in this section is conducted at room 

temperature and at a frequency of .5 Hz. 
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Figure 3.5 - Schematic of the axial (a), radial (b), and neat polymer (c) 
samples, and a SEM image (d) of the samples used for DMA testing. 



In Figure 3.6 the strain sweep data for the bottom composite is presented for 

a .5 Hz, room temperature test. When tested radially, aside from the obvious 

observation that the storage and loss of the composites is approximately 4- to 5-fold 

greater than the neat polymer, interestingly the composites do not displace nearly 

as much as the neat PDMS before reaching the final stage of elastomer deformation. 

The mechanism of elastomers' high elasticity lies in the ability for the polymer 

chains to elongate under stress. At the point where its polymer backbones are fully 

stretched, an elastomer will resist further deformation and its properties will spike 

rapidly. There are two likely explanations for the decreased strain limit for the 

composites: 1) at this strain the polymer may largely have been pushed out from in-

between the CNTs, which would promote much more CNT-CNT physical interaction, 

and/or 2) the entanglement of the chains around the CNTs may reduce their 

mobility and result in the full elongation of those chains at lower strains. The first 

mechanism is fairly self-explanatory, but the second can be rationalized through the 

mechanism by which the polymer infiltrates the forest of CNTs. The polymer chains 

work their way between the A-CNTs from all directions and at differing rates. As 

such, the entanglement of the polymer chains around the CNTs is most likely very 

high. As the composites are stressed and the chains begin to elongate to 

accommodate that strain, entanglement around the CNTs will inhibit displacement 

to strains which are normally achievable for the neat polymer. 
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Figure 3.6 - Storage and loss moduli (a) of a strain sweep DMA test. 
Schematics showing the radial (c) and axial (d) displacement of the CNTs 

under strain. 



Axial testing reveals a trend which differs greatly from that of the neat 

polymer and the radial testing. There is an obvious peaking of the storage and loss 

above a 1% strain amplitude, which is explained by the buckling of the CNTs within 

the composite. This peaked strain amplitude is the critical threshold where the 

composite transitions from a "bulging" compression to an "S-shaped" global 

buckling of the CNTs. 

Furthermore, it is curious that in contrast to the radial testing, the 

composites have a maximum displacement similar to that of the neat polymer. A 

likely explanation for this is that by buckling, the CNTs are preventing the sample 

from bulging during compression. The bulging of the sample causes the polymer 

chains to become fully-extended at lower strains, hence the lower maximum 

displacement. During axial compression, there is much less chain stretching normal 

to the direction of deformation, allowing the composite to compress to nearly the 

same displacement as the neat polymer. 

3.3.2. Frequency Sweep 

For a particular strain amplitude and temperature, a frequency sweep will 

resolve any frequency-dependent behavior for a given sample. With consideration 

given to any dependencies due to the dimensions of the sample, particular 

interactions which may occur in a sample will be elucidated through this type of 

testing. The frequency-dependent testing presented in this thesis is a result of 

testing the bottom CNTs and was conducted at room temperature and at a strain 

amplitude of 1%, as determined from the observation from the strain sweep testing 



that there is no linear region of elastic deformation for these samples above this 

value. 

As displayed in Figure 3.7, the composites respond almost identically to the 

neat polymer with the exception of two particular frequency ranges: 1) 57-70 Hz for 

the radial test, and 2) 75-95 Hz for the axial test; frequency range #1 indicates a 

significant spike in damping for the radial test, while frequency range #2 shows a 

relatively similar enhancement for the axial test. An explanation for this behavior is 

that at these frequencies, the samples were in resonance in the direction of the CNT 

alignment. When in resonance along the length of the CNTs, greater interfacial 

friction is likely to occur, which could reasonably explain the notable enhancement 

in damping for those particular frequencies. 
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Figure 3.7 - Tangent delta for a frequency sweep DMA test. 



3.3.3. Temperature Ramp 

Varying the temperature for a constant frequency, constant strain test is 

perhaps the most powerful technique in DMA. Temperature-Dependent behavior 

can be used to observe subtle nuances in a polymer's structure, such as its cross-link 

density, degree of crystallinity, and thermal stability. 

In Figure 3.8 we observe that for a 2 Hz, .3% strain amplitude test, there is no 

obvious difference in the glass transition between the composite and the neat 

polymer. The similarly-shaped and non-shifted tangent delta peak drives the 

conclusion that the structure of the polymer in the composite is similar to that of the 

neat polymer. The peak appears to be slightly lower than the neat polymer, which 

may indicate less amorphous content, but the shift is within error and, so far, 

inconclusive. 

The point of thermal degradation tells a different story, as the composite 

shows much greater thermal stability. This polymer is rated to 200 °C, so it is not 

unexpected that the neat PDMS will show signs of degradation when heated past 

this temperature. However, it is clear that the composite is much less susceptible to 

such temperatures, indicating its superior thermal robustness. This resistance to 

failure may support the observation that CNTs may serve as radical scavengers [50], 

as the neutralization of any free radicals created above 200 °C would serve to 

preserve the mechanical integrity up until the temperature at which the polymer 

backbones begin to degrade. Otherwise, the introduction of free radicals will serve 

to initiate the escalating degradation of the polymer. 
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Figure 3.8 - Temperature ramp showing the glass transition (a) and thermal 
degradation (b) of the composite vs. the neat polymer. 



Chapter 4 

Conclusion and Future Work 

There are many types and sizes of CNTs, and CVD has proven itself as a viable 

method for the large-scale production of CNTs for composite applications. Also 

produced via CVD, aligned CNTs help to solve many of the difficulties in the 

manufacturing of CNT-reinforced composites, which include agglomeration, non-

homogeneous dispersion, and the alignment of the CNTs to maximize their 

contribution to the bulk properties of the composite. As these A-CNTs assemble into 

a self-aligned forest during synthesis, the CNT spacing is very regular, yet is sparse 

enough to allow for the infiltration of a polymer matrix. 

While the quality of CNTs grown via pre-deposited catalyst CVD is generally 

much higher as compared to those grown via vapor-phase CVD, the DWNTs 

produced by this method simply cannot hold up to the force of the polymer 

infiltrating the free space between them. As a result, these thin-walled CNTs will 

buckle and lose their alignment during this process. Alternatively, the vapor-phase-

50 



grown CNTs, with a greater rigidity and slightly higher entanglement, are robust 

enough to survive the force of a percolating polymer, making them a much more 

realistic option for mechanically-reinforced A-CNT composites. 

Due to the compliancy of the PDMS matrix, these nanocomposites can be 

dynamically stressed to large strains, and such testing has revealed that these 

aligned CNTs in a composite matrix do impart not only significant improvement 

over the neat polymer, but their anisotropy can result in loading-specific responses. 

The thickness of the CNTs also plays a large role in their bulk properties, and axial 

loading has revealed that the storage is very high until a critical strain threshold, 

where the CNTs will enter a global buckling mode. Radial loading, however, largely 

mimics the trend of the neat polymer, though the yield strain is significantly lower 

due to polymer chain entanglement around the CNTs. 

In addition to the further characterization of these composites, future work 

will include extended cyclic testing to determine the fatigue behavior of these 

polymer nanocomposites to gauge their viability in real world applications as 

mechanical reinforcement. Also, by understanding the high-cycle behavior of these 

materials, we can further shed light on the complicated interactions between these 

nanomaterials and polymer matrices. 
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