
RICE UNIVERSITY 

Illuminating Biomolecular Interactions with Localized Surface Plasmon Resonance 

by 

Kathryn M. Mayer 

A THESIS SUBMITTED 
IN PARTIAL FULFILLMENT OF THE 
REQUIREMENTS FOR THE DEGREE 

Doctor of Philosophy 

APPROVED, THESIS COMMITTEE: 

Associate Professor of Chemistry 

Dr. Naomi Halas 
Stanley C. Moore Professor of 

Electrical and Computer 
Engineering 

Director, Laboratory for 
Nanophotonics 

Professor of Bioengineering 
Professor of Chemistry 
Professor of Physics and Astronomy 

Assistant Frolessor ot Physics and 
Astronomy 

Assistant Professor of 
Bioengineering 

HOUSTON, T X 
APRIL 2010 



UMI Number: 3421409 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMI 
Dissertation Publishing 

UMI 3421409 
Copyright 2010 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

A ® uest 
ProQuest LLC 

789 East Eisenhower Parkway 
P.O. Box 1346 

Ann Arbor, Ml 48106-1346 



Copyright 

Kathryn M. Mayer 

2010 



ABSTRACT 

Illuminating Biomolecular Interactions with Localized Surface Plasmon Resonance 

by 

Kathryn M. Mayer 

Noble metal nanoparticles exhibit localized surface plasmon resonance (LSPR), in 

which incident light causes a collective oscillation of a nanoparticle's free electrons. This 

phenomenon results in unique optical properties, including enhanced electric fields near 

the particle surface and an extinction peak at the resonant wavelength. The LSPR 

extinction peak's location is sensitive to the refractive index of the surrounding medium, 

especially in the volume closest to the particle surface. This makes plasmonic 

nanoparticles ideal for biosensing: their refractive index sensitivity can be used to 

transduce molecular binding signals. A method has been developed to use the optical 

extinction of films of gold nanorods to track antibody-antigen interactions in real time, 

resulting in a label-free kinetic immunoassay based on LSPR. Also, this method has been 

adapted to scattering spectra of single gold bipyramids. The single-particle approach has 

allowed the label-free detection of single biomolecules with kinetics information. These 

methods have future applications to both molecular biology and clinical assays. 
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I. Preface 

From nuclear magnetic resonance to electron microscopy, x-ray diffraction to optical 

trapping, there is a long tradition of adapting physical science research methods to 

biological investigations. Over the past twenty years with the advent of nanomaterials 

and our increasing ability to design, manipulate, and study them, an array of new 

possibilities to interface with the biological realm has opened up. After all, biology 

happens at the nanoscale: a white blood cell is just ten microns wide, and the protein 

molecules that carry out its functions are truly nanoscale objects. We now have many 

nanoscale probes which can report local information from the vicinity of a single cell and 

even a single molecule. Here, we are interested in plasmonic nanoparticles which can 

focus light down to biomolecular dimensions. 

Of course, developing plasmonic optical probes into useable research tools requires a 

full understanding of their physical properties and chemical manipulations, which is the 

subject of this thesis. Here I present the development of an immunoassay technique 

based on the physical phenomenon of localized surface plasmon resonance (LSPR) of 

gold nanoparticles. This work included the synthesis and surface modification of 

nanoparticles, the characterization of the structure and optical properties of the 

nanoparticles, the development of bioconjugation methods for the particles, the design of 

the immunoassay itself (using optical methods), and the kinetic and statistical analyses of 

both ensemble data and single-particle, single-molecule data. The results include the first 

demonstration of LSPR used to measure the kinetics of a biomolecular process. I also 



X 

report the first measurement of single molecule interactions by LSPR, and one of the only 

label-free methods available for the study of single molecule interactions. 
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II. Introduction 

Localized Surface Plasmon Resonance 

A plasmon is a collective oscillation of the free electrons in a noble metal. It can be 

described as a quantum of plasma oscillation (thus the -on suffix); however, this 

terminology is somewhat misleading as the phenomenon itself is purely classical. One 

can think of these plasmon oscillations as mechanical oscillations of the electron gas of a 

metal, the presence of an external electric field causing displacements of the electron gas 

with respect to the fixed ionic cores. For bulk plasmons, these oscillations occur at the 

plasma frequency and have energy: 

where n is the electron density, e is the electron charge, and m is the electron mass. 

(Here, bulk refers to materials with an extent large compared to the wavelength of light in 

all three dimensions.) 

At the surface of a metal, plasmons take the form of surface plasmon polaritons 

(SPPs), also simply called surface plasmons (Fig. la). Surface plasmons can be excited 

optically or electronically, and can have standing and/or propagating SPP modes. Light 

can be coupled into surface plasmons through a grating or a defect in the metal surface. 

Because it is the oscillating electric field of the incoming plane wave that excites surface 

plasmons, light with a high angle of incidence (that is, with wave vector k nearly parallel 

to the surface) couples most efficiently. 

(1) 
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a b 

I 
Figure 1. Illustrations of (a) a surface plasmon and (b) a localized surface plasmon. 

When a surface plasmon is confined to a particle of a size comparable to the 

wavelength of light, i.e., a nanoparticle, all of the particle's free electrons participate in 

the collective oscillation and it is termed a localized surface plasmon (LSP, Fig. lb). The 

LSP has two important effects. First, electric fields near the particle's surface are greatly 

enhanced, this enhancement being greatest at the surface and falling off with distance. 

Second, the particle's optical extinction now has a maximum at the plasmon resonant 

frequency, which occurs at visible wavelengths for noble metal nanoparticles. This 

extinction peak depends on the refractive index of the surrounding medium, and is the 

basis for the sensing applications to be described. To understand in depth how this 

localized surface plasmon resonance (LSPR) arises, we must turn to scattering theory. 

In the early 20th century, Gustav Mie developed an analytical solution to Maxwell's 

equations that describes the scattering and absorption of light by spherical particles1. 

(Mie's theory is more general than Rayleigh's, but it does reduce to Rayleigh scattering 

for very small particles.) Finding the scattered fields produced by a plane wave incident 

on a homogeneous conducting sphere results in the following scattering, extinction, and 

absorption cross sections : 

(2) 



3 

0. 
U: L=i 

(3) 

sea (4) 

Where k is the incoming wavevector and L are integers representing the dipole, 

quadrupole, etc., modes of the scattering. In the above expressions, aL and bt are the 

following functions, composed of the Riccati-Bessel functions yi and//.: 

Here, m = n / nm where n is the complex refractive index of the metal and nm is the real 

refractive index of the surrounding medium. Also, x = kmr, where r is the radius of the 

particle. (Note that km = 2n/Xm is defined as the wavenumber in the medium rather than 

the vacuum wavelength.) Figure 2 shows the Mie scattering cross section for metal 

spheres of varying sizes, showing the preponderance of forward scattering for particles 

having jc = 3 or larger.2 

m m i]/, {mx)y/L (JC) - y/L (mx)y/, jx) 
m yrL (mx)zL (*) - WL M i l . (-*) 

(5) 

WL (mx)VL U) -my/L (mx)y/L (JC) 
¥L MZL U) -my/'L {mx)%L (x) 

(6) 
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Figure 2. Mie scattering cross sections of metal spheres, taken from Bohren and Huffman. Light 
is incident from the left. 

For small particles, it suffices to calculate only the L = 1 dipole term of the Mie 

theory expansion; this is called the dipole approximation. To gain an understanding of 

the resonance behavior and its dependence on the dielectric constant of the medium, we 

must make the dipole approximation, as well as the small-particle approximation; for x 

« 1 the Riccati-Bessel functions simplify, yielding the frequency-dependent expression: 

M = ^ = e f v (7) 
c M ® ) + 2 e J + £ 2 { G > ) 

Here, c is the speed of light, V is the particle volume, sm is the dielectric constant of the 

medium, st is the real part of the dielectric function of the metal, and s2 is the imaginary 

part of the dielectric function of the metal. Note that for small particles, the scattering is 

negligible, so we set aext = e w In Figure 3, the complex dielectric functions of silver 

and gold are plotted, as experimentally determined by Johnson and Christy . The 

absorption cross section will be maximized when the denominator in the above 

expression is minimized, a condition that will be met when s/ = -2 em. This explains the 
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dependence of the LSPR extinction peak on the surrounding dielectric environment. For 

example, for gold particles in water (em ~ 1.7), the expected wavelength where £/ = -2 sm 

is about 520 nm, according to the real dielectric function for gold in Fig. 3a. And indeed, 

the experimentally observed absorption spectrum of gold colloid has a strong peak at that 

wavelength (Fig. 3c). As this example illustrates, the sensitivity to sm originates from the 

slope of the real part of the dielectric function in the observed wavelength range. Also 

note that for a given external dielectric constant, the LSPR wavelength for silver will be 

bluer (shorter) than that for gold. The imaginary part of the dielectric function also plays 

a role, relating to the damping, i.e., resonance peak broadening, that is observed. Silver 

suffers lower losses than gold, as implied by Fig. 3b; however, gold is usually used in our 

experiments as it is easier to work with chemically and less prone to oxidation. 

Figure 3. (a) Real and (b) imaginary parts of the complex dielectric functions of silver and gold, 
(c) Absorption spectrum of gold colloid solution. 

Note that the optical extinction of gold colloid as shown in Figure 3c was 

unknowingly exploited for centuries before plasmon resonance was understood. Stained 

glass from the ancient world, such as the Lycurgus cup from second century Rome, owes 

its unusual optical properties to gold colloid embedded in the glass4. (See Figure 4.) 

When illuminated from the outside, the cup appears green due to light scattering at the 
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resonance wavelength, and when illuminated from the inside, it appears red due to the 

effect of resonant absorption on the transmitted light. Michael Faraday first 

demonstrated this property of gold colloid in the 1850s, and his results inspired Mie's 

theoretical work that is described above. 

Figure 4. (a) Schematic of the LSPR extinction, (b) The Lycurgus cup, made from stained glass 
incorporating gold colloid. 

To find the functional form of the LSPR peak wavelength's dependence on the 

dielectric function of the medium5, one can use the analytical, frequency-dependent form 

for si from the Drude model of the electronic structure of metals: 

a 

AAAAAAAA * 

b 

£, = 1 - 2 2 o) +y 
(8) 
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Where cop is the plasma frequency and y is the damping parameter of the bulk metal. For 

the UV-visible region, y « cop so the above can be simplified to: 

< £ , = 1 V (9) 

co~ 

Using this expression for sj and setting £/ = -2 em (the resonance condition), one obtains 

the following: 
Mo 

= / n , ( 1 0 ) 

Where ojmax is the LSPR peak frequency. Converting from frequency to wavelength via X 

= 27ic / co, and then from dielectric constant to index of refraction via em = n , also 

assuming 2 em» 1, the above expression becomes: 

, = ^ 2 e m + l = A p ^ 2 n m
2 + l (11) 

Where >WTiax is the LSPR peak wavelength and is the wavelength corresponding to the 

plasma frequency of the bulk metal. Thus, we see that the dependence of LSPR peak 

wavelength on the refractive index ought to be approximately linear at optical 

frequencies; this is borne out in experiments. Note that neither the LSPR peak frequency 

nor wavelength is strictly linear with refractive index; this will be discussed further below 

as it is a source of some contention in the field. In fact, both are approximately linear 

over small ranges of n. 

Mie theory as formulated above is strictly applicable only to spherical particles. In 

1912, Richard Gans generalized Mie's result to spheroidal particles of any aspect ratio in 

the small particle approximation6. He found that the absorption cross-section for a 

prolate spheroid, analogous to that in Eqn. 7 above for a sphere, is: 



ahs (12) 

Here, the sum over j considers the three dimensions of the particle. Pj includes PA, PB, 

and P& termed depolarization factors, for each axis of the particle, where A > B = C for a 

prolate spheroid. The effect of these factors is to anisotropically alter the effects of £/ and 

£2. Explicitly, they are: 

PA = 
l — e 

2e 
In 0 + ^ 

yl-ey 
- 1 (13) 

B ~ ' C (14) 

Where e is the following factor, which includes the particle aspect ratio R:' 

(15) 1 -
r B^2 

vAy 

1/2 

V Rl 
/ 

The extinction spectrum resulting from Eqn. 12 has two peaks, one corresponding to the 

transverse plasmon mode from the x and y contributions to the sum, and the other 

corresponding to the longitudinal plasmon mode from the z contribution. Eqn. 12 also 

provides an intuitive understanding of the effect of aspect ratio on the LSPR peak 

wavelength. The factor weighting sm, which is 2 for spherical particles (Eqn. 7), is [(1 -

Pj) / Pj], a quantity that increases with aspect ratio and can be much greater than 2. This 

leads to a red-shift of the plasmon peak with increasing aspect ratio, as well as increased 

sensitivity to the dielectric constant of the surrounding medium. Beyond these estimates 

for spheroids, particle shape plays a significant role in determining the LSPR spectrum9' 

10, but one which cannot be found analytically as above, and must be studied numerically. 
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LSPR Sensing 

The simplest sensing application of LSPR-active particles is to detect changes in the 

bulk refractive index. As described above, the LSPR peak shift is approximately linear 

with changes in refractive index of the surrounding medium. Therefore, the refractive 

index sensitivity of a particular particle type is usually reported in nanometers of peak 

shift per refractive index unit (nm/RIU). As discussed above, the refractive index 

sensitivity for spheroidal particles is determined by the choice of metal and the particle 

size and aspect ratio. The LSPR sensitivity of particles of other shapes cannot be 

described analytically, but it has been shown experimentally and in electrodynamic 

simulations that particle shape plays a large role in determining the sensitivity. Over the 

past decade, a myriad of new nanoparticle shapes with ever increasing refractive index 

sensitivities have been developed. 

LSPR can be measured through several spectroscopic methods. Measurements can be 

carried out on single particles or ensembles, and the peak shift can be measured in the 

absorption, scattering, or total extinction spectra. For small particles that do not scatter 

strongly, ensemble extinction methods are best, whereas for larger particles that scatter 

brightly, single particle dark field scattering measurements are possible. Figure 5 shows 

example spectra of three types of LSPR-active nanoparticles, highlighting the differences 

in these two types of measurements. For the gold nanorods shown, only ensemble 

extinction measurements are possible because their scattering is very weak due to their 

small size. For gold nanostars, the extinction is largely due to scattering, but there is an 

important distinction between ensemble and single particle measurements. Individual 



nanostars' spectra vary greatly depending on their exact structure, and so in the single-

particle spectrum, separate peaks corresponding to the arms of the nanostar can be seen, 

whereas the ensemble extinction is simply a broad peak made up of many overlapping 

spectra11'12. For gold bipyramids, the ensemble extinction has two peaks, one due to the 

bipyramids and one due to sphere impurities in the sample. When single-particle 

scattering spectra are taken, a single peak due to the bipyramid is seen. 
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500 600 700 800 900 1000 
Wavelength (nm) 

400 500 600 700 800 900 1000 
wavelength (nm) 

Figure 5. Comparison of the ensemble extinction and single particle scattering spectra for three 
particle types, (a) Gold nanorods. (b) Nanorod ensemble extinction. The two peaks are 

attributed to the transverse and longitudinal plasmon modes of the particle, (c) Nanorods scatter 
too weakly to obtain single particle scattering spectra, (d) Gold nanostars. (e) Nanostar 

ensemble extinction. Individual particle spectra are smeared out into a single broad peak in the 
near IR. (f) Nanostar single particle scattering spectrum. Multiple peaks in the near IR 

correspond to resonances of the arms of the star, (g) Gold bipyramids. (h) Bipyramid ensemble 
extinction. Two peaks are visible, attributable to bipyramids and spheres, (i) Bipyramid single 

particle scattering spectrum. A single bright, narrow peak is seen. 
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Table 1 summarizes some notable results on the LSPR sensitivities of various particle 

shapes from the past decade. In addition to the refractive index sensitivity, LSPR sensors 

are often characterized by a figure of merit (FOM) obtained by dividing the sensitivity by 

I ̂  

the resonance linewidth ; these values are given in the table as well. Because many in 

the field prefer to use energy units (eV) rather than wavelength (nm), all of the results are 

given in both units14'15. There is some debate as to which units are more correct, but as 

the LSPR shift is not strictly linear with n in either nm or eV, the more important 

consideration is simply that the chosen units are used consistently across any comparison. 

One can see this from the second equality in Eqn. 11 for wavelength. For energy, one 

must convert to eV via: 

* = - (16) 
X 

Rearranging Eqn. 11 then shows that E is also not linear with n: 

£ = - t = = = (17) 
V 2 " . +1 
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Ref Particle Type ^peak 

nm eV 

AX 

nm eV 

shift/RIU 

nm eV 

FOM 

Tam 200416 Au/Si02 shell ensemble 770 1.61 350 .732 314 .657 0.9 

Sun 2002" Au/AuS shell ensemble 700 1.77 400 1.012 409 1.035 1.0 

Wang 200618 Au nanorice ensemble 1600 .775 600 .291 801 .388 1.3 

Underwood 1994ly Au sphere ensemble 530 2.34 60 .265 090 .397 1.5 

Raschke 200420 Au/AuS shell single 660 1.88 77 .220 117 .333 1.5 

Sherry 200513 Ag cube single 510 2.43 91 .433 146 .695 1.6 

Malinsky 200121 AgNSL ensemble 564 2.20 104 .405 191 .745 1.8 

Nehl 200611 Au star single 675 1.84 125 .340 238 .649 1.9 

Lee 200922 Au pyramid single 680 1.82 114 .310 221 .450 2.2 

Mock 2003" Ag sphere single 520 2.38 73 .335 160 .734 2.2 

Bukasov 200724 Au crescent ensemble 1795 0.69 209 .08 596 .19 2.4 

Mock 200323 Ag triangle single 760 1.63 80 .172 350 .751 4.4 

Sherry 200513 Ag cube-sub single 430 2.88 22 .146 118 .792 5.4 

Nehl 2006" Au star single 770 1.61 124 .260 665 1.410 5.4 

Table 1. Summary of nanoparticle shapes and their refractive index sensitivities. 

Of course, LSPR sensors can do much more than measure changes in bulk refractive 

index. As mentioned above, the field enhancement caused by the LSPR is strongest near 

the surface of the nanoparticle; therefore, only the nanoscale region around the particle is 

probed. This extremely localized sensing volume is a unique feature of plasmonic 

nanoparticles, and makes it possible to measure the local refractive index changes due to 

molecular binding at the particle surface through LSPR shifts. This is the basis of LSPR 

biosensing. 



The simplest form of LSPR molecular sensing is to monitor a molecular layer binding 

directly to the gold surface of the nanoparticle. This has been shown to great effect with 

self-assembled monolayers (SAMs). SAMs are alkane carbon chains, which can be 

modified with a functional group at either end, that form tightly packed monolayers on a 

surface. Van Duyne and co-workers have measured the LSPR shift upon monolayer 

formation on silver nanoparticles25' 26. By using SAMs with different carbon chain 

lengths, they were able to discriminate changes of only a few angstroms of additional 

coating on the particle. In addition, they were able to describe how the LSPR sensitivity 

falls off with distance from the surface using SAMs of increasing length. 

To demonstrate biomolecular sensing, most groups have investigated either biotin-

streptavidin or antibody-antigen interactions. The protein streptavidin has an extremely 

high binding affinity for the vitamin biotin, and the pair is often used in biochemical 

applications as linker molecules; in LSPR sensing reports they are useful as a proof-of-

concept for analyte detection. A more relevant system for biosensing demonstrations is 

an antibody and its specific antigen. Antibodies have an enormous capability to 

specifically bind an antigen molecule and are the basis for immunoassays, an important 

biomedical detection technology. Therefore, it is also important to demonstrate 

immunospecificity as a demonstration of clinical applicability. (See Chapter III for a 

further discussion of these previous reports of LSPR biosensing, with references.) An 

important consideration in all LSPR biosensors is the conjugation strategy for binding the 

capture molecule to the nanoparticles in a manner that will hold it near the nanoparticle, 

yet retain its biological function. 



Another scheme for plasmonic biosensing relies on the large spectral shift that occurs 

when particles aggregate. Such experiments are carried out with particles suspended in 

27 

solution and have been used for specific nucleotide sequence detection and studying the 

melting behavior of DNA28. Note that these experiments are not truly label-free (a 

concept that will be discussed further below), as the nanoparticles themselves are serving 

as labels and the detected molecules are directly bound to nanoparticle surfaces. 

In most cases, aggregation is to be avoided, as it is difficult to control. In some early 

solution-phase LSPR sensing experiments, in which the nanoparticles were coated with a 

capture antibody and the target was free, the likelihood of aggregation was reduced by 

using target antibodies with only one binding site {i.e., monoclonal antibodies which bind 

only a single epitope on the target)29. A more common strategy against aggregation is to 

use particles fixed to a glass substrate. These particle-coated substrates can be made by 

top-down fabrication (lithography), bottom-up (self) assembly30, or a technique that 

combines the two approaches (such as nanosphere lithography)31. An example of LSPR 

substrates fabricated by nanosphere lithography can be seen in Figure 6. 
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Figure 6. Silver nanotriangles for LSPR sensing, fabricated by nanosphere lithography, a 
technique in which films of dielectric nanospheres are assembled and silver is thermally 

evaporated on top. When the spheres are stripped away, Ag nanotriangles remain. (Image from 
Haes and Van Duyne32.) 

Immunoassay Basics 

Antibodies are protein molecules that form the basis of the human immune system. 

They can to recognize and bind a specific molecular targets in a massive excess of non-

specific targets through what can be thought of as a lock-and-key interaction between the 

antibody and target structures. The most common class of antibody, Immunoglobulin G 

(IgG), has a Y-shaped structure made up of two heavy chains and two light chains of 

amino acids (Fig. 7). The antibody is divided into three domains, the central Fc domain, 

and the branching Fa and Fb domains, which are the active sites of target (antigen) 

binding. 
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In an immunoassay, the antibodies can be anchored to a substrate via the Fc domain, 

leaving the Fab domains available for target binding and specific detection. In a label-free 

assay, the presence of the target itself provides the signal and no subsequent steps are 

needed. However, in most common immunoassays such as ELISA, a more complicated 

"sandwich" strategy is used, in which a different antibody is added after the target33. In 

many cases, a secondary antibody which recognizes one of the primary antibodies to the 

target is used in a final step; this secondary antibody is usually modified with a dye or 

other signaler. (See Fig. 8 for a schematic of traditional and label-free immunoassays, 

and see next section for a full explanation of ELISA.) 
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Figure 8. Schematics of (a) a traditional immunoassay (ELISA) and (b) a label-free 
immunoassay. 

The most important measures of the quality of an immunoassay are the sensitivity and 

specificity. Sensitivity is self-explanatory; it simply refers to the lowest concentration of 

the target molecule that can be measured (also called the limit of detection). Specificity 

refers to the ability of an assay to distinguish between the target molecule and a 

nonspecifically bound unknown molecule; in other words, the avoidance of false 

positives. Although ELISAs are complicated, the steps as shown in Figure 8 enhance the 

sensitivity through amplification, and the specificity through multiple antibody 

interactions. 

Label-Free Sensors 

As mentioned above, most existing immunoassays rely on labeling the target 

molecule in some way. Depending on the technique, these labels can be radioisotopes, 

fluorophores, or enzymes. The most common immunoassay today, enzyme-linked 
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immunosorbant assay (ELISA), relies on an enzyme that activates a dye molecule only 

when bound to the target. These labeling strategies allow biologists to measure signals 

from miniscule amounts of sample due to their great amplification, e.g., thousands of dye 

molecules activated for each target protein. However, attaching a label can remove a 

molecule from its native state, so for detailed studies of biomolecules in their natural state 

(or as close as possible), label-free techniques are needed. 

A related technique to LSPR sensing, which actually predates it, is surface plasmon 

resonance (SPR) sensing. SPR utilizes the sensitivity of surface plasmon polaritons in a 

gold film to changes in refractive index, measured as the change in reflection angle of 

light passed through a prism and reflected off of the back of the film, as material binds to 

the other side of the film34. In practice, the difference in intensity between two fixed 

angles is often measured. (See Fig. 9.) SPR is a powerful surface analytical technique 

since it can detect submonolayer quantities of analyte at the gold film surface. In 

addition, in an immunoassay, these sensors can measure antigen concentrations as low as 

1 nM, although they are still not as sensitive as ELISAs, which can detect concentrations 

as low as 0.5 ng/mL, or approximately 1 pM for a typical protein target. In addition to 

being label-free, the other great advantage of SPR sensors is that, through continuous 

optical measurements during the target exposure, they provide kinetics data. This allows 

the determination of binding constants from measurements at a single concentration, and 

is useful in studying the details of biomolecular interactions. One drawback is that SPR 

sensors lack a localized sensing volume, in many cases necessitating a thick polymer 

layer to cover the gold film surface that must be suffused with the capture antibody in 

order to generate enough binding signal to detect. 
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Figure 9. Schematic of a surface plasmon resonance (SPR) sensor. 

Another type of label-free biosensor relies on force transduction. For example, one 

can measure the bending of a cantilever due to added mass and altered surface tension 

upon target binding. This technique has recently been used to investigate mechanisms of 

antibiotic resistance in bacteria by measuring the affinity of vancomycin (an antibiotic) 

for an array of target mucopeptides (molecules found on bacterial cell walls) in a 

i c 
multiplexed experiment. Vancomycin concentrations as low as 10 nM were used . (See 

Figure 10.) 
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Figure 10. Label-free biosensing based on force sensors. 
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Label-free biosensing has also been achieved electronically in semiconductor 

nanowire systems that rely on measuring the change in current through the nanowire 

upon target binding. This technique has recently been used for ultrasensitive detection of 

the human blood protein cardiac troponin-T (cTnT), an important biomarker of 

myocardial infarction (heart attack). In that study, cTnT was measured at concentrations 

as low as 1 fg/mL (3 aM)36. (See Figure 11.) 

Figure 11. Label-free biosensing based on semiconductor nanowires. 

However, optical methods like SPR, and now LSPR, are the most commonly used label-

free methods. 

Kinetics of Antibody-Antigen Interactions 

To describe the interactions between antibodies fixed on a surface with a target 

protein in solution (as in LSPR sensors), a simple first-order binding kinetics model can 

be used. (This model is general for any surface binding reaction with a one-to-one 

binding ratio.) Here I will derive expressions for the rate constants of association and 

dissociation as well as the equilibrium constant for this interaction. 
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For an antibody-antigen pair C (for "capture") and T (for "target"), where CT is the 

complex formed by the two, we may write: 

C + 7'< )CT (18) 

As in an immunoassay, let us assume that C is fixed on a surface with surface density [C] 

and T is free in solution with volume concentration [7], Complexes formed on the 

surface have density [CT\. Assuming one-to-one binding and a non-diffusion-limited 

first-order kinetic process, the change in the concentration of complexes over time is 

given by the differential equation: 

^ P = K A c ] [ T ] - k J C T ] (19) 

Where kon and k0jj are the association and dissociation rates of T. At equilibrium, the 

concentration of complexes is constant, and we define Keq as the ratio of kon and k0jf. 

V — ^<>n — /orw 

In a standard immunoassay, the substrate coated with C is exposed to T, where T is 

greatly in excess. At this time, an association curve is observed (see schematic in Fig. 

12). Then, the substrate is rinsed, reducing [7] in the solution to zero and resulting in the 

dissociation curve as T unbinds from C. Let us first examine the dissociation process. 
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Figure 12. Schematic of antibody-antigen association and dissociation kinetics. 

During dissociation, since [7] = 0, Eqn. 19 becomes the much simpler differential 

equation: 

^ ' - " J C T ] (21) 

The solution of which is a simple exponential decay function with decay constant k0g. 

[CT] = Ae~k"e' + B (22) 

Where A and B are arbitrary constants. For the association process, the full Eqn. 19 must 

be used, but k0jf is now a known constant, and one can replace [C] with its initial value 

minus the amount of complexes formed (because C is fixed on the substrate): 

^ = K M [ c l - [ C T } ) - k o f f [ C T ] (23) 

Because the number of molecules of T forming complexes is negligible compared to the 

number in solution, one can also set [7] to its constant initial value. Doing this, and 

rearranging, yields: 

^ - K X c \ [ T \ - { k o f f + k o n [ T \ l c T ] (24) 

This differential equation is soluble, and the solution is: 
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t c y i _ kon [c]„ [r]„ r _ og +Km [r]), 
[Kff+K,\T L) 

(25) 

Because [C]0 is unknown, the prefactor cannot be determined explicitly. However, one 

can fit experimental data with an arbitrary prefactor A and decay constant ks. 

Where ks = k0jf + kon[T]o. Since kajf and [7]o are known, once k, is determined from a fit, 

one can then solve for kon. Note that the prefactor in Eqn. 25 can be arranged into the 

form: 

This is analogous to the Langmuir isotherm for the adsorption of gas molecules to a 

surface: 

Where 6 is the absorption fraction, analogous to the fraction of capture antibodies 

occupied by a target; K is the association constant, analogous to Keq = k0nlk0tf, and P is the 

gas pressure, analogous to the target concentration. 

(26) 

(27) 
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III. A Label-Free Immunoassay Based Upon LSPR of Gold Nanorods 

Background 

Due to its label free nature and ability to provide kinetics data, SPR has become 

widely used in the study of biomolecular interactions, as well as in antibody screening for 

37 38 

diagnostic and therapeutic applications ' . However, despite its analytical capabilities, 

SPR is not widely used in clinical immunoassays or other non-research applications 

owing to the complexity of the optical instrumentation and the need for precise 

temperature control. It has been suggested that LSPR sensing with nanoparticle substrates 

will preserve the virtues of SPR but greatly broaden the scientific and technological 

applications, since LSPR sensing is based on a simple optical extinction measurement, is 

not temperature sensitive, and requires only common laboratory equipment32. 

Furthermore, nanoparticles have a highly localized LSPR sensing volume which 

eliminates the need to trap the interacting molecules of interest in a polymer matrix to 

enhance the signal, as is often done in SPR measurements. As mentioned in the 

introduction, LSPR sensors based on nanoparticles affixed to a substrate, such as gold 

colloid films30, or arrays of silver nanotriangles formed by nanosphere lithography31, 

have met with much initial success. Further reports39"58 include demonstrations of 

multiplexing49'59, the detection of medically relevant analytes in clinical samples60'61, and 

fiber-based sensors39' 42. Despite these successes, LSPR sensing is still not nearly as 

prevalent as SPR. For a summarized comparison of SPR and LSPR, see Figure 13 and 

Table 2. 
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Figure 13. SPR vs. LSPR sensing, (a) Commercially available Biacore SPR instrument, (b) 
Simplest possible benchtop LSPR system. 

LSPR SPR 

Bulk dielectric sensitivity (nm/RIU) 10* 10b 

Sensing distance (nm) 10 1000 

Temperature sensitive? No Yes 

Simple instrumentation? Yes No 

Table 2. Overall comparison of LSPR and SPR sensors. 

Thus far, biomolecular LSPR sensing studies have focused on biotin-streptavidin and 

antibody-antigen interactions, with a few exceptions43'45'5I'62. All reports find a red shift 

as the target binds to the nanoparticles, but most do not observe the correct equilibrium 

binding constant (Keq) when the interaction is studied in detail. A few reports have 

measured the correct Keq value for antibody-antigen interactions41'49, but these were from 

endpoint assays carried out at a series of concentrations as a titration or dose-response 
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experiment, rather than from kinetics. Therefore, the goal of this project was the real-time 

analysis of antibody-antigen interactions by LSPR sensing. The system chosen was self-

assembled gold nanorod substrates (Figure 14)63. LSPR sensors have also been 

fabricated by top-down methods, but using chemically synthesized particles and self-

assembled films allows us to fabricate a large number of substrates inexpensively, and 

provides a more than adequate LSPR signal for sensing. Through careful control of the 

substrate surface chemistry, we demonstrated the first successful measurement of the 

kinetics of molecular binding by LSPR sensing. 

Figure 14. Schematic of the nanorod-based immunoassay. The nanorods are fixed to a 
glass surface via an APTES monolayer, and then coated with a self-assembled 

monolayer to which the capture antibody is coupled by carbodiimide cross-linking. The 
substrate is exposed to antigen (in this case secondary antibodies) and the binding is 

monitored via real-time absorption spectra. 

Methods 

Gold Nanorod Synthesis. Gold nanorods were prepared by surfactant-directed 

chemical synthesis63'64. All solutions were prepared fresh for each synthesis, except for 

the hydrogen tetrachloroaurate(III) (Sigma, no. 520918), which was prepared as a 28 mM 



stock solution from a dry ampoule and stored in the dark. An aliquot of the stock solution 

was diluted to 10 mM immediately before use. Gold seed particles were prepared by 

adding 250 fxL of 10 mM hydrogen tetrachloroaurate(III) to 7.5 mL of 100 mM 

cetyltrimethylammonium bromide (CTAB) (Sigma, #H9151) in a plastic tube with brief, 

gentle mixing by inversion. Next, 600 |xL of 10 mM sodium borohydride (Acros, #18930) 

was prepared from DI water chilled to 2-8 °C in a refrigerator and added to the seed 

solution immediately after preparation, followed by mixing by inversion for 1-2 min. The 

pale brown seed solution was stable and usable for several hours. The nanorod growth 

solution was prepared by adding the following reagents to a plastic tube in the following 

order and then gently mixing each by inversion: 425 mL of 100 mM CTAB, 18 mL of 

lOmM hydrogen tetrachloroaurate(III), and 2.7 mL of 10 mM silver nitrate (Acros, 

#19768). Next, 2.9 mL of 100 mM ascorbic acid (Fisher, #A61) was added and mixed by 

inversion, which changed the solution from brownish-yellow to colorless. To initiate 

nanorod growth, 1.8 mL of seed solution was added to the growth solution, mixed gently 

by inversion, and left still for three hours. During this time, the color changed gradually 

to dark purple, with most of the color change occurring in the first hour. 

Gold Nanorod PEGylation. To stabilize the nanorods in a CTAB-free solution, they 

were coated with polyethylene glycol (PEG), a biocompatible polymer, according to the 

following procedure. One mL of CTAB-stabilized gold nanorods was centrifuged at 

7000g to pellet the nanorods. The CTAB solution was decanted, and the pellet was 

resuspended in 2 mM potassium carbonate. This procedure leaves sufficient CTAB in the 

solution that the nanorods are stable for several hours. Twenty |iL of 1 mM thiol 



terminated methoxypoly(ethylene glycol) (mPEG-SH, 5000 MW, Nektar Theraputics) 
/r-i 

was added to the solution and left overnight to displace the CTAB . The nanorods were 

then taken through at least two more centrifuge/decant cycles, resuspending each time in 

deionized water, to further reduce the CTAB concentration. 

Gold Nanorod Substrate Fabrication. Glass microscopic slides (75 mm x 25 mm) 

were cleaned in piranha solution (3:1 H2S04 : 30% H202), thoroughly rinsed with 

deionized water, and dried. (WARNING: Piranha solution is very corrosive and must be 

handled with extreme caution; it reacts violently with organic materials.) They were 

then immersed in an ethanolic solution of 5 mM aminopropyltriethoxysilane (APTES) 

(Sigma, #440140) overnight, rinsed with water, and dried. The APTES coated slides 

were then immersed in a PEGylated nanorod solution overnight. Once rinsed and dried, a 

uniform layer of gold nanorods remained on the surface with an absorbance of 

approximately 0.1 at the LSPR peak wavelength. To remove the mPEG-SH and other 

contaminants, the substrates were processed in an oxygen plasma cleaner at low power 

for 30 s in 200 mT oxygen (model PDC-32G, Harrick Scientific) and immersed in an 

ethanolic solution of 50 p,M mercaptohexadecanoic acid (Sigma, #448303) and 50 |xM 

mercaptoundecanol (Sigma, #447528) for 2.5 hours to form a mixed self-assembled 

monolayer (SAM). 

The plasma cleaning step has no significant effect on the nanorod structure as 

observed by atomic force microscopy and scanning electron microscopy. Plasma 

cleaning does cause a small LSPR blue shift consistent with the removal of a thin 

polymer coating. In a variation of this procedure, nanorod films can also be fabricated on 
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the inside walls of a glass or quartz cuvette, to allow LSPR experiments to be carried out 

in an all-in-one spectrometer with a standard cuvette holder ("SPR in a cuvette"). 

Substrate Characterization. Substrates were characterized by scanning electron 

microscopy (SEM). To obtain detailed images of particle structure, substrates were 

fabricated as above, except on 1 cm x 1 cm silicon wafers rather than on glass, and the 

samples were imaged in high-vacuum mode in a JEOL 6500 SEM. To image the non-

conductive glass substrates used in optical measurements, wet-mode environmental SEM 

(ESEM, FEI Quanta 400) was employed. In ESEM, the resolution is not as great as in 

traditional high-vacuum SEM, but it is possible to measure non-conductive samples in a 

water vapor environment. The water vapor prevents the sample from charging by 

carrying excess charge off into the gas phase, and water molecules also contribute to the 

secondary electron cascade measured by the detector. A schematic of the ESEM is 

shown in Figure 15. 

Positively charged 

AZoM 

Figure 15. Schematic of environmental scanning electron microscope (ESEM). 
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Samples were also characterized by X-ray photoelectron spectroscopy (XPS, Phi 

Quantera) in order to analyze the elemental composition of the nanorod films' surfaces, 

e.g., to determine whether carbon impurities are removed by plasma cleaning. 

Substrate Bioconiugation and LSPR Sensing Measurements. A closed flow cell was 

assembled consisting of two glass slides (one coated with nanorods and one bare) 

separated by a 1.5 mm thick polydimethylsiloxane (PDMS) seal with a 1 cm x 2 cm slot 

that served as the flow volume. The clean glass slide had two drilled holes to connect the 

input and output flows. This flow cell was mounted vertically on an optical bench in 

between a quartz-tungsten-halogen light source with collimating lens, and a portable 

spectrometer (Ocean Optics, USB 4000). The 400 jxL/minute flow rate was controlled by 

a syringe pump (NE1000, New Era Pump Systems). At the start of an experiment, the 

substrate was exposed to 0.1 M 2-(Af-morpholino)ethanesulfonic acid (MES) buffer 

(Sigma, #M-0164) at pH 6.1 until the LSPR peak wavelength stabilized. The carboxyl 

groups on the mixed SAM were then activated by exposure to a 1:1 mixture of 0.1 M N-

hydroxysuccinimide (NHS) (Sigma #130672) and 0.05 M l-ethyl-[3-

dimethylaminopropyl] carbodiimide (EDC) (Sigma #1769) in the MES buffer, followed 

by rinsing in the MES buffer. Then, the substrate was exposed to rabbit IgG (Pierce, 

#31235)) at about 1 jiM in the MES buffer at pH 6.1, followed by a rinse with 0.05 M 

phosphate buffered saline (PBS) with 0.25 M NaCl at pH 7.6. Finally, either goat anti-

rabbit IgG (Pierce, #31210) or goat anti-mouse IgG (Pierce, #31160) was flowed at the 

desired concentration in PBS buffer followed by a PBS buffer rinse at pH 7.6. The final 

step could be repeated more than once for successive tests of different secondary 



antibodies. Absorbance spectra were collected with integration times of 5-20 ms, 

averaged for 30 s and recorded. Each spectrum was then analyzed in MATLAB with a 

Gaussian fit to monitor the peak wavelength, height, and width versus time. 

Results and Discussion 

The gold nanorods for this report were produced by seed-mediated, surfactant 

directed synthesis64' 65, which has been widely applied to generate homogeneous gold 

nanorods with LSPR resonances in the visible and near-infrared. Slight variations in the 

reactant ratios yield a variety of other anisotropic shapes64. There are two main 

procedures for this process, a low-yield method that uses citrate-stabilized gold colloid as 

a starting point and results in penta-twinned crystal nanorods, and a high-yield method 

that begins with CTAB-stabilized colloid and results in single-crystal nanorods66. For 

our purposes, we chose the latter, high-yield method. In this process, gold colloid seeds 

are first synthesized by reducing gold chloride with sodium borohydride in the presence 

of a surfactant, CTAB. Then the seeds are added into a growth solution containing 

ascorbic acid, silver nitrate, and more gold chloride and CTAB. It is thought that the 

small gold colloid particles are coated with a CTAB bilayer, and when a defect forms in 

that bilayer, gold ions begin to reduce onto the surface at that point and the particle grows 

fn into an elongated structure ' . (See Figure 16.) 
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Figure 16. Surfactant-directed synthesis of gold nanorods. 

The typical size of nanorods synthesized by this method under our conditions is 15 x 

50 nm. A TEM image showing the structure of gold nanorods can be seen in Figure 17. 

50 nm 

Figure 17. TEM image showing the structure of gold nanorods. 

Chemical manipulation of nanorods is somewhat more complicated than that of 

classic citrate-stabilized gold colloid69. In surfactant directed synthesis, the CTAB acts as 
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both the source of anisotropic growth and the stabilizer70. The CTAB bilayer around the 

nanoparticles is clearly bound in a weak manner since a reduction of the CTAB 

concentration to below 1 mM, a concentration greatly in excess of that required to coat 

the nanoparticles, causes aggregation71. However, the particles can be stabilized by 

displacing the CTAB with a thiol terminated polyethylene glycol (PEG)63. (See Figure 

18.) 

0.1 M CTAB 

HO 
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Figure 18. PEGylation of gold nanorods. 

Once PEGylated, the nanorods can be transferred to solutions devoid of PEG or other 

stabilizers. PEGylation allowed bioconjugation of the nanorods in solution and 

processing of nanorods into well-ordered films. Figure 19 displays such a film, 

demonstrating the uniformity of deposition. The nanorods are randomly oriented, but the 

density is quite uniform and the particles are well separated, due to the PEG surrounding 

the particles upon deposition. 
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Figure 19. SEM image of a self-assembled nanorod film. 

These films can cover the area of an entire microscope slide, and are visible to the eye as 

a purplish color. (See Figure 20a.) Their absorption spectrum is similar to that for the 

nanorods in solution (for example, Figure 5b), but the total signal is lower, as it is the 

absorbance of only one layer of particles (Figure 20b). 
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Figure 20. (a) Glass microscope slides before and after nanorod film deposition, (b) Absorbance 
spectrum of the nanorod film. 

After particle deposition, the substrates were plasma cleaned to remove all PEG and 

other organic material, leaving only the thin APTES layer between the gold particle and 

glass slide. X-ray photoelectron spectroscopy (XPS) was carried out to confirm that 

carbon was removed from the surface. (See Figure 21.) 
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Figure 21. XPS measurements before (top) and after (bottom) plasma cleaning show that carbon 
is removed from the nanorod film. (Carbon peak is marked with an arrow.) 

Our initial attempts to use the PEGylation and bioconjugation protocols cited above 

for LSPR sensing produced shifts in response to binding, but did not yield the correct 

equilibrium binding constant for antigen/antibody interactions. Therefore, we adopted a 

surface chemistry based on self-assembled monolayers (SAMs, see Figure 23)72'73. First, 

the nanorod substrates were treated with oxygen plasma to remove the PEG and expose a 

clean gold surface. (The plasma presumably does not etch the APTES linkages holding 

the nanorods to the glass substrate.) Once cleaned, mixed SAMs of 

mercaptohexadecanoic acid and mercaptoundecanol were formed on the nanoparticles. 

Since SAMs on nanoparticles larger than 4 nm in diameter have been reported to exhibit 

behavior similar to those on planar surfaces74, the nanorods can be thought of as planar 

surfaces in terms of their surface chemistry. 

The sensitivity of the SAM-coated nanorod substrates to changes in the refractive 

index was checked by measuring the LSPR spectral extinction in four different dielectric 
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media: air, water, ethanol, and formamide (Figure 22). This yielded a refractive index 

sensitivity of 170 nm per refractive index unit (RIU). While this sensitivity is not 

exceedingly high as compared to those in other reports75 (see Table 1 for a comparison) 

the resonances are fairly narrow with a full width at half-maximum of 125 nm in water. 

The resulting figure of merit (sensitivity/line width)13 for these sensors is 1.3, which is 

similar to other reports on nanoparticle ensembles75. 

Figure 22. Characterization of the LSPR sensitivity to refractive index of the nanorod films: (a) 
Spectra of a nanorod film in four dielectric media, (b) The slope of the line yields a sensitivity of 

170 nm/RIU. 

The SAM is strongly bound to the nanorods via a gold-thiol bond, exposing the 

alcohol and carboxyl functional groups to the solution. (See Figure 23.) The mixed SAM 

used was chosen to reduce steric hindrances among protein molecules binding to the 

SAM layer. 
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Figure 23. The mixed SAM made up of mercaptoundecanol and mercaptohexadecanoic acid. 

Proteins are linked to the carboxyl-terminated SAM molecules via a well known 

carbodiimide chemistry procedure. In the original version of this reaction, l-ethyl-[3-

dimethylaminopropyl] carbodiimide (EDC) reacts with the carboxyl-terminated molecule 

at low pH, acting as a placeholder. When the protein is added, it replaces the EDC, 

forming an amide bond to the SAM. (See Figure 24a.) The intermediate formed in this 

version of the procedure is very short-lived (only a few seconds), so in practice a slightly 

more complicated process is used. In this case, a second placeholder molecule, N-

hydroxysuccinimide (NHS) is used, which produces a longer-lived intermediate, useable 

for several minutes. (See Figure 24b.) Because they end as byproducts (in slightly-

altered form), rather than being incorporated into the final complex, EDC and NHS are 

known as zero-length cross-linkers. 
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Figure 24. Carbodiimide cross-linking chemistry, (a) The simple EDC reaction. R1 represents 
the SAM molecule; R2, the protein, (b) Full NHS-EDC reaction. 

The nanorod substrates were tested as LSPR sensors in the flow cell by first 

activating the carboxylic acid groups on the SAM via the carbodiimide chemistry 



described above69. Rabbit IgG was coupled to the SAM to serve as a capture antibody, so 

that the binding of specific and nonspecific antibodies could be studied. The LSPR peak 

wavelength throughout such a reaction is displayed in Figure 25a. The entire experiment 

was carried out in a flow chamber, depicted in Figure 25b. First, the peak wavelength 
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was allowed to stabilize against solvent annealing under a flowing buffer (not shown) . 

Exposure of the activated carboxy-terminal nanorod SAM substrate to rabbit IgG 

produced the expected red shift of the LSPR peak wavelength due to IgG binding. The 

subsequent blue shift occurred during rinsing and was likely due to the removal of 

physisorbed rabbit IgG. Exposure to 30 nM goat anti-rabbit IgG caused a further red shift 

as the specific secondary antibody bound the capture antibody on the sensor. Then, the 

substrate was rinsed and unbinding of the secondary antibody was monitored via a blue 

shift. The final goat anti-rabbit IgG step was repeated three times to demonstrate 

substrate stability and reproducibility of the molecular interaction. The on and off rates 

for antibody binding were fit with a standard 1:1 first-order kinetics binding model76 

which yielded kQjf = 6.5 x 10"5 s"1 and kon = 1.3 x 105 M ' V , resulting in an equilibrium 

constant of Keq = 2.0 x 109 M"1. This is a typical equilibrium constant for an antibody-

antigen interaction76, and is the first measurement of the equilibrium constant from 

kinetic rates by LSPR sensing. This measurement was repeated several times, yielding 

equilibrium constants between 2 x 108 M"1 and 2 x 109 M"1. The additional data and fits 

can be found in Appendix 1. The rates presented here match well to those observed for 

antibody-antigen binding in SPR. 
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Figure 25. (a) Immunoassay with kinetic data fits. The peak absorbance wavelength was 
measured versus time as the various solutions flowed over the substrate in a continuous 

experiment. Initially, the substrate was under a pH 6.1 buffer solution. At step a the substrate was 
exposed to a mixture of NHS and EDC, activating the SAM for protein binding. At step b, the 

substrate was rinsed with pH 6.1 buffer. At step c, rabbit immunoglobulin (IgG) was introduced. 
At step d, the substrate was rinsed with pH 7.6 buffer. At step e, it was exposed to 30 nM goat 

antirabbit IgG. At step f, it was again rinsed in pH 7.6 buffer. At steps g through i, these final steps 
were repeated twice more, (b) Schematic of the flow cell and white-light extinction setup. 
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Figure 26 illustrates a similar assay that tests the nanorod LSPR sensor's 

immunospecificity. The nanorod conjugation with rabbit IgG was carried out exactly as 

described above, but the substrate was then exposed to 10 nM goat anti-mouse IgG as an 

analyte. As expected, there was very little binding of the nonspecific secondary antibody. 

When the specific secondary antibody was added in a subsequent step, significant 

binding was observed. This explicit demonstration confirms that the LSPR sensor retains 

the specificity of the capture antibody. 
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Figure 26. Demonstration of sensor specificity. Steps a through d are as in Figure 25. In step e, 
the substrate was exposed to 10 nM goat anti-mouse IgG, a nonspecific secondary antibody to the 

rabbit IgG. The binding is extremely weak. Step f is a buffer rinse. In step g, the substrate was 
exposed to 10 nM goat anti-rabbit IgG, and strong, specific binding was seen. Step h is a buffer 

rinse. 

In addition, the detection sensitivity was measured. In Figure 27, the nanorod 

conjugation with rabbit IgG is again the same as in Figure 25, but in this case, the 

concentration of goat anti-rabbit IgG was raised in subsequent steps. When the antibody 

was added at a concentration of 100 pM, there was no measurable response. When the 
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concentration was increased to 1 nM, the peak began to shift, with a slope of 0.076 +/-

0.005 nm/hour. When the concentration was again increased to 10 nM, the slope, which 

should be proportional to concentration (to first order), also increased tenfold, to 0.76 +/-

0.007 nm/hour. From this, we found that the limit of detection of this sensor over a 

reasonable time scale is about 1 nM. 

Time [hours] 

Figure 27. Test of sensor sensitivity. Steps a through d are as in Figure 25. In step e, the specific 
antibody (goat anti-rabbit IgG) was added at a concentration of 100 pM. The concentration was 

increased to 1 nM (at f) and 10 nM (at g). The inset shows linear fits to the binding curve. 

Figure 28 illustrates the relationship between the LSPR shift due to the capture 

antibody binding and the LSPR shift due to analyte antibody binding over several 

experiments using different substrates. The linear relationship demonstrates that the 

results are reproducible and consistent from experiment to experiment. Given that the 

nanoparticle substrate properties were similar, the variation in signal is most likely due to 

variation in the yield of capture antibody conjugation. 
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Figure 28. Comparison of LSPR shifts upon initial protein binding and specific antibody binding. 

Most recent work on LSPR sensors has focused on maximizing the dielectric 

18 24 75 77 78 

sensitivity by optimizing the nanoparticle shape ' ' ' ' . While this is certainly 

advantageous, it is not a complete solution to extending LSPR applications in science and 

technology. Other significant issues are the stability and availability of the sensor 

substrates, their chemical interface with the analyte, and the need for quantitative 

dynamic measurements. Here we have addressed these issues by fabricating LSPR 

substrates based on chemically synthesized gold nanorods with no lithographic steps and 

by exploiting standard techniques in self-assembly and bioconjugate chemistry. The 

resulting substrates are highly stable, as seen in the approximately 15-hour experiment in 

Figure 27. Also, the substrates can be plasma cleaned and reused, with some having 

undergone roughly 20 such cycles in our laboratory. Although the nanorod substrates are 

not as sensitive as some other LSPR geometries, their performance is comparable to 

dynamic SPR measurements in immunoassays. Such immunoassays may prove to be a 

significant application of LSPR sensing given the need for broadly available high-
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throughput screening in fields such as proteomics, systems biology, and in vitro 

diagnostics. 

In summary, gold nanorod LSPR sensor substrates were fabricated by self-assembly 

for the study of biomolecular interactions. Through careful control of their surface 

chemistry, the nanorods were conjugated with capture antibodies which enabled 

immunospecific detection of secondary antibodies. Correct binding kinetics was 

measured, thus demonstrating that the nanorod LSPR sensor can monitor real-time 

dynamic interactions in a similar manner to SPR. In combination with recent reports on 

multiplexed nanorod LSPR sensors and high throughput LSPR assays, these substrates 

may help to expand LSPR sensing technology more broadly. 
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IV. Improving the Sensitivity of the LSPR Immunoassay 

Background 

In order for LSPR sensing to be useful in clinical diagnostics and research 

applications, it must be able to compete with ELISA, which means the sensitivity must be 

improved. Strategies include optimizing the surface chemistry and modifying the particle 

shape. 

Because the LSPR sensing volume is localized close to the particle surface, any 

surface conjugation strategies that bring the target molecule closer to the gold surface 

ought to improve the sensitivity of target detection. This strategy can be applied to the 

SAM layer on the particles, or to the capture layer itself. In order to create a thinner 

capture layer, aptamers may be used instead of antibodies. Aptamers are short sequences 

of single-stranded DNA that, due to their conformation, have a high binding affinity for a 

specific protein. They are discovered through DNA library screening processes79. One 

of the best-known aptamers is the thrombin-binding aptamer, pictured in Figure 29. 

(Thrombin is a seroprotein found in human blood plasma that is important in clot 

formation.) 
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Figure 29. The thrombin-binding aptamer (blue) attaches to its binding site on thrombin (purple). 

Aptamers have attracted a great deal of interest due to their potential as "artificial 

antibodies," combining high specificity for their protein targets and the chemical 

robustness of single-stranded DNA. Label-free protein detection with kinetics by 

aptamers has already been shown in SPR studies80'81. Because of their relatively small 

size (2-3 nm), aptamers are especially promising as a capture molecule for LSPR sensors, 

since the target molecules will bind closer to the gold surface, in the highly sensitive 

sensing volume of the particles. 

LSPR sensitivity can also be improved through choice of particle shape. As 

compared to nanorods, gold bipyramids have a narrower LSPR peak and a higher 

sensitivity to the surrounding refractive index. 
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Methods 

Gold Bipyramid Synthesis. All solutions were prepared fresh for each synthesis 

using deionized (DI) water, except for the hydrogen tetrachloroaurate(III) (Sigma, 

No.520918), which was prepared as a 28 mM stock solution from a dry ampule and 

stored in the dark. First, sodium citrate-stabilized gold seed particles were prepared for 

the synthesis of gold bipyramids. Typically, a 20 mL solution of 0.125 mM hydrogen 

tetrachloroaurate(III) and 0.25 mM sodium citrate (Fisher, No. S279) were prepared and 

mixed briefly. Next, 0.3 mL of a fresh aqueous 10 mM NaBH4 (Acros, No. 18930) 

solution prepared at room temperature was added, followed by mixing for 2 min. The 

resulting gold seed solution was kept at room temperature for at least 2 h for complete 

reaction. Then, the dark pink seed solution was stable and usable for gold bipyramid 

growth. Next, 0.5 mL of 10 mM hydrogen tetrachloroaurate(III) and 10 mL of 100 mM 

cetyltrimethylammonium bromide (CTAB) (Sigma, No. H9151) were mixed with 0.1 mL 

of 10 mM silver nitrate (Acros, No. 19768) for the preparation of the growth solution. 

Then, 0.2 mL of 1.0 M hydrochloric acid (Hampton Research, No. HR2-581) and 0.08 

mL of 100 mM L-ascorbic acid (Fisher, No. A61) were added to the solution in order. 

Finally, the seed solution was added to the growth solution. The volume of seed solution 

was varied between 15 and 50 /uL to synthesize different sizes of gold bipyramids. These 

solutions were kept at 28 °C for several hours. During this time, the color changed 

gradually from almost clear to dark pink, with most of the color change occurring in the 

first hour. The PEGylation and substrate fabrication procedures for bipyramids, as well 
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as subsequent characterization and immunoassay procedures are the same as those 

described in the previous chapter for gold nanorods. 

Results and Discussion 

Aptamer-Based Assay. A nanorod film immunoassay was developed for an aptamer-

protein system. Gold nanorod films were prepared as in Chapter III and functionalized 

with thrombin-binding aptamers prepared with thiol-modified single-stranded DNA. 

(Note: this work was carried out with our collaborators from the Spivak group at 

Louisiana State University.) Real-time, label free thrombin detection experiments were 

carried out for a variety of analyte concentrations, in the same manner as for the 

antibody-antigen system. In Figure 30, the kinetics of thrombin association and 

dissociation are shown for a sample containing human thrombin at a concentration of 10 

nM in PBS buffer. The rates measured were kon = 9140 M 's"1 and k0jj = 6.6 x 10~4 s"1. 

The equilibrium binding constant determined by taking the ratio of these rates was Keq = 

1.33 x 107 M"1. This binding constant is two orders of magnitude weaker than that 

measured for antibody-antigen interactions, which is consistent with known data on 

aptamers. In Figure 30b is a comparison of this result with that from the antibody-

antigen system from the previous chapter in terms of LSPR shift per hour per molecular 

weight of the target. The antibody gives an intitial sensor response rate of 5.4 x 10"6 

nm/MW-hr, and the aptamer gives 5.2 x 10"5 nm/MW-hr, an improvement by almost a 

factor of ten. (The molecular weight of thrombin is 72 kDa and that of IgG is about 150 

kDa.) Because of the aptamer's small size (only ~20 bases of single-strand DNA), the 
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target is able to approach much closer to the nanoparticle surface, in the localized sensing 

volume, and produce a much larger signal. 

time (s) 

time (s) 

Figure 30. (a) Kinetics of aptamer-thrombin binding for 10 nM thrombin. Fits are to a first-order 
binding kinetics model, (b) Comparison of LSPR signal from antibody-antigen and aptamer-

protein systems. 

A dose-response experiment was also carried out, in which the thrombin 

concentration that the aptamer-functionalized nanorod substrate was exposed to was 
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ramped up from 1 nM to 1 |iM. (See Figure 31.) The response is greatest between 1 and 

50 nM and then begins to level off, consistent with the measured equilibrium constant. 
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Figure 31. Dose-response experiment for the thrombin-binding aptamer on a gold nanorod 
substrate. 

LSPR Immunoassay with Gold Bipyramid Substrates. In a further effort to improve 

the detection sensitivity of the LSPR immunoassay, substrates were fabricated with gold 

bipyramids66, which have a narrower LSPR peak and higher refractive index sensitivity. 

Gold biypramids of varying size and aspect ratio were synthesized to determine the 

optimum size for LSPR sensing. A TEM image of a typical gold bipyramid having a tip 

radius of curvature of less than 5 nm is shown in Figure 32a. The corresponding electron 

diffraction pattern, shown in Figure 32b, is consistent with a pentatwinned structure as 

described in the original report. 
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Figure 32. (a) TEM image of a PEGylated gold bipyramid. (b) Electron diffraction pattern of a 
gold bipyramid, consistent with a pentatwinned crystal structure. Images courtesy of Sean Lee. 

To synthesize different sizes of gold bipyramids, four different volumes of the seed 

solution (15, 20, 35, and 50 (xL) were employed. The extinction spectra of the resulting 

CTAB-stabilized gold bipyramid solutions are shown in Figure 33. With decreasing seed 

volume, the bipyramid spectra red shift because of their larger size, and the peak height 

drops because of the smaller number of particles. 
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Figure 33. Spectra of four bipyramid samples of varying particle size. 

The gold bipyramids were processed into films as previously described for gold 

nanorods. An ESEM image and an extinction spectrum of a typical bipyramid film are 

shown in Figure 34. The spectrum is sufficiently strong to monitor peak wavelength 

shifts because of molecular binding onto the nanoparticle surface. The synthesis 

procedure yields both bipyramids and nanospheres, as can be seen in the ESEM image in 

Figure 34a. 
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Figure 34. (a) Wet-mode ESEM image of a film of gold bipyramids on glass, (b) Absorbance 
spectrum of a bipyramid substrate. 

The yield of gold bipyramids on the glass surface, defined as the percentage of total 

particles that are bipyramids rather than spheres, was quantified by atomic force 

microscopy (AFM, Nanoscope IV), and electron micrographs were obtained using an FEI 

Quanta 400 environmental scanning electron microscope (ESEM) in wet-mode. Table 3 

summarizes the sizes, aspect ratios, yields on the surface, and longitudinal LSPR peak 

wavelengths and widths of substrates made from each bipyramid sample. 
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NR BP I BP II BP III BP IV 

Seed Volume (|J,L) — 50 35 20 15 

BP Yield — 22% 22% 21% 23% 

Length/ Diameter (nm) 50/15 108/44 137/51 162/57 185/58 

Aspect Ratio 3.3 2.5 2.7 2.8 3.2 

Peak wavelength (nm) 760 730 800 850 900 

Sensitivity (nm/RIU) 170 288 327 346 381 

FWHM (nm) 125 74 89 100 100 

FOM 1.3 3.9 3.7 3.5 3.8 

Table 3. Summary of bipyramid properties. Table courtesy of Sean Lee. 

The refractive index sensitivities of the bipyramid substrates with different aspect 

ratios were investigated by measuring the LSPR peak wavelength shift in various 

solvents. The LSPR spectra of the gold bipyramid substrates were measured in water (n = 

1.333), acetonitrile (n = 1.3441), ethanol (n = 1.361), dimethylformamide (DMF, n = 

1.431), and toluene (n = 1.497). As seen in Figure 35, the LSPR peak red shifts with 

increasing index. (The detailed spectra can be found in Appendix II.) The refractive 

index sensitivities of the samples were determined from the slope of the lines in Figure 

35. The sensitivity was found to increase with particle aspect ratio. In addition, the 

figures of merit (FOM) were calculated as sensitivity divided by the LSPR full width at 

half-maximum (fwhm). The bipyramid substrates have higher FOM values of 3.5-3.9 

compared to gold nanorod substrates. As seen in Table 3, the largest bipyramid has the 
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highest sensitivity, but the smallest has the highest figure of merit because of its narrow 

line width. 
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Figure 35. Refractive index sensitivity of gold bipyramids of various sizes on glass substrates. 
The samples I through IV are labeled as in Figure 33. Data courtesy of Sean Lee. 

In addition to their higher bulk refractive index sensitivity, bipyramids also possess 

the advantages of monodispersity in terms of size and shape (resulting in the narrow 

82 

extinction linewidth) and sharp tips with potential for strong field enhancement . It can 

be shown by finite element method simulations that strong local electric fields can 
83 

contribute to the refractive index sensitivity of nanostructures . Our results are in good 

agreement with a recent report on the refractive index sensitivity of similar gold 

bipyramid substrates84. 

To demonstrate the immunosensing capabilities of these substrates, a capture 

antibody (rabbit IgG) was bound to a carboxy-terminal SAM on the bipyramid surfaces 

by amide bond formation with a carbodiimide. The functionalized substrates were then 

exposed to a solution containing the target antibody (goat anti-rabbit IgG), using the 
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methods described previously. By monitoring the optical extinction peak at the 

bipyramids' LSPR resonance throughout the target exposure and subsequent rinse, a real 

time immunoassay was performed. A section of the resulting sensorgram is shown in 

Figure 36. At the lowest concentration of target antibody (100 pM), there was no 

significant response from the sensor. At 1 nM, the extinction peak began to shift at a rate 

of 4.0 x 10"5 nm/s, and at 10 nM, the rate increased to 5.5 x 10"4 nm/s. Although the 

minimum detectable concentration stayed the same, these bipyramid peak shift rates are 

larger than those from the same experiment carried out on a nanorod substrate (2.1 x 10~5 

and 2.1 x 10"4 nm/s, respectively) by a factor of 2, which matches well with the increase 

in refractive index sensitivity. Endpoint spectra from the sensor response can be found in 

Appendix II. 
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Figure 36. Immunoassay sensorgram. The dose response can be seen as the bipyramid substrate 
was exposed to target antibodies at 100 pM (i), 1 nM (ii), and 10 nM (iii). Kinetic rates of binding 
and unbinding were obtained from the 10 nM exposure (iii) and rinse (iv). Segments (i) and (ii) 

are linear fits, while the (iii) and (iv) are fits to the first-order binding kinetics model. This 
sensorgram yielded a binding rate of kon = 3.03 x 103M-1 S"1 and an unbinding rate of koK = 3.56 x 
10"6 s~'. The ratio of these gives an equilibrium constant of Keq ) 8.51 x 108 M"1, which compares 

favorably with standard literature values for antibody-antigen bonds. 
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The LSPR sensor response in an immunoassay will depend on several factors in 

addition to the refractive index sensitivity of the nanoparticle. For example, conjugation 

chemistry for binding the capture antibody to the nanoparticle will affect the density of 

capture antibody and therefore target molecules on the nanoparticle surface. Furthermore, 

the conjugation strategy will affect the distance between the target molecule and the 

nanoparticle surface and therefore the size of the LSPR shift (as discussed below). To 

characterize the LSPR sensitivity in a real immunoassay, one can relate the measured 

LSPR peak shift to the parameters of a simple first-order molecular binding model used 

to describe the kinetics of the system. As discussed in the Introduction, according to the 

model, the concentration of capture-target antibody complexes formed on the surface 

evolves in time upon target exposure as: 

(29) 
\Koff + Kon [1 \sol ) 

Here, C denotes the capture antibody, T the target antibody; kon and k0ff are the 

association and dissociation constants, and surf and sol denote surface and volume 

concentrations, respectively. Equation 29 can be expanded for short exposure times to 

yield the initial linear shift: 

= (30) 

If one assumes that the observed LSPR peak wavelength shift is proportional to the 

concentration of capture-target complexes near the nanoparticle surface, then Eqn. 30 can 

be written: 

A/l = KLSPR (Kn [CLrf [Tlol ) (3D 
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The constant ATLSPR describes a nanoparticle substrate's performance in an immunoassay 

and has units of nm- jum if the shift is given in nm and the capture antibody density on 

the nanoparticles is given in molecules/^m2. For the bipyramid results in Figure 36, A'LSPR 

= 0.01 nm- ^m if one assumes approximately 20 active antibodies per bipyramid. This 

assumption is based upon an estimated particle surface area of 10,000 nm and a surface 

area per active antibody of 100 nm2, with a binding efficiency of 0.2, similar to results 

QC 

found on gold surfaces . This constant reflects the effect of the nanoparticle refractive 

index sensitivity and antibody conjugation strategy on the immunoassay sensitivity. The 

value reported here cannot yet be compared to other LSPR sensor reports since real-time 

measurements are required. 

To explicitly compare the sensing capability of the bipyramids to those of other 

plasmonic nanoparticles, a substrate was fabricated with a hybrid film containing three 

particle types: bipyramids, nanorods, and nanospheres. Figure 37a shows an ESEM 

image of the hybrid film on glass. The optical extinction spectrum of this substrate 

(Figure 37b) includes three well-separated peaks representing the three particle types, the 

spheres having an extinction peak near 580 nm, the nanorods near 700 nm, and the 

bipyramids near 950 nm. By tracking this spectrum in real time during an immunoassay 

experiment similar to that described above, it is possible to generate sensorgrams for each 

of the three peaks, seen in Figure 37c. Comparing these, it is clear that the bipyramids are 

the most sensitive, that is, give the largest extinction peak shift in response to the target 

binding. The relatively poor signal-to-noise ratio in these sensorgrams, and the apparent 

lack of signal for the nanorods and spheres, is due to the low density of each type of 
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particle on the hybrid substrate. The results for the hybrid substrate are summarized in 

Table 4. 
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Figure 37. (a) ESEM image of the hybrid substrate containing gold nanospheres, nanorods, and 
bipyramids. (b) Optical extinction spectrum of the hybrid substrate, (c) Sensorgrams for each of 
the three particle types in the hybrid substrate immunoassay, (d) Zoom in on the target binding 

step for each particle type. 
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Particle Total Response (nm) Shift rate for 10 nM analyte (nm/hour) 

Spheres (H) 0.4630 0.40 

Nanorods (H) 0.6693 0.50 

Bipyramids (H) 1.7433 4.7 

Nanorods (previous data) n/a 0.76 

Table 4. Summary of results from the hybrid substrate including nanospheres, nanorods, and 
bipyramids. Data from regular nanorod substrates included for comparison. 

Effect of SAM Length. A third strategy to improve the LSPR sensitivity to target 

binding was to decrease the target's distance from the gold particle surface by using a 

shorter SAM. Two bipyramid substrates from the same fabrication run were coated with 

carboxy-terminal SAMs of two different lengths: mercaptoundecanoic acid and 

mercaptohexadecanoic acid. The difference in thickness between these eleven and 

sixteen-carbon chains is approximately 7 A. The same immunoassay experiment was then 

carried out on both substrates. The LSPR shift from the substrate with the shorter SAM 

was larger by 1 nm as seen in Figure 38. In addition, the initial sensor response rate from 

the mercaptohexadecanoic acid was 4.7 nm/h, and that from the mercaptoundecanoic acid 

was 6.1 nm/h, an improvement of 30%. 
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Figure 38. Comparison of the target antibody binding signal from bipyramids coated with 
mercaptoundecanoic acid (red) and mercaptohexadecanoic acid (blue). 

In summary, three strategies were employed in attempts to improve the sensitivity of 

nanoparticle film LSPR immunoassays. First, aptamers were used as capture molecules, 

bringing target proteins closer to the gold surface. Second, gold bipyramid substrates 

were fabricated, which have higher refractive index sensitivity and a narrower LSPR line 

width than gold nanorod substrates. This translates to an improved LSPR immunoassay 

sensitivity. Finally, improvement of sensitivity by decreasing the length of the SAM 

linking capture antibodies to the gold surface was demonstrated. Future detailed 

comparisons of different nanoparticles in LSPR immunoassays will require consideration 

of the chemical strategy for linking targeting agents such as antibodies to their surface. 
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V. A Single Molecule Immunoassay by LSPR 

Background 

As shown in the previous chapters, LSPR can be the basis for sensing molecular 
o r 

interactions near the nanoparticle surface . That is, one can directly measure molecular 

binding to a nanoparticle surface through minute changes in the particle's dielectric 

environment87"89. However, previous studies by us and others have not yet determined 

whether the LSPR mechanism can reach the ultimate sensing limit: the detection of 

individual molecules90"92. From a qualitative point of view, it is plausible that the 

scattering spectra from single plasmon resonant nanoparticles could transduce single-

molecule events. Elongated gold and silver nanoparticles can have high refractive index 

sensitivities that are localized to nanometer-scale sensing volumes surrounding sharp 

tips11' 12. If a single macromolecule such as a protein with a refractive index different 

from water enters or leaves this sensing volume, one would expect a discernable shift in 

the peak wavelength of the plasmon resonance. Here we demonstrate single molecule 

LSPR detection by monitoring antibody-antigen unbinding events through the scattering 

spectra of individual gold bipyramids66. The unbinding rate is consistent with antibody-

antigen binding kinetics determined from previous ensemble experiments93' 94. LSPR 

sensing could therefore be a powerful addition to the current toolbox of single molecule 

detection methods since it probes interactions on long timescales and under relatively 

natural conditions. 
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Methods 

Atomic Force Microscopy (AFM) Characterization of Bipyramids. Bipyramids were 

deposited onto a glass cover slip by the previously described method of PEGylation and 

exposure to an APTES functionalized glass cover slip, followed by plasma cleaning94. 

AFM was carried out in tapping mode using a Veeco Nanoscope IV with a scan size of 4 

microns and scan rate of 1 Hz. 

Single particle optical measurements. Optical images and spectra were collected 

using a Zeiss Axiovert 200 microscope in an epi-illumination, dark-field scattering 

configuration, with an objective magnification of 50 X and numerical aperture of 0.5. In 

this geometry, incident light passes through an annular ring in the objective and is 

incident upon the sample at a high angle. Any light that is scattered back into the center 

of the objective by the sample is then routed to the detectors. A schematic of this setup 

appears in Figure 39. 
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Figure 39. Schematic of the dark-field, epi-illumination microscopy setup used in single particle 
spectroscopy experiments. 

Images were collected using a thermoelectrically cooled CCD camera (Roper 

PhotonMax). Single particle spectra were obtained by using a micromanipulation stage 

to align the particle with a slit located in a confocal imaging plane. The scattered light 

from the selected particle was analyzed using an Acton SpectraPro spectrograph and the 

aforementioned camera. Spectra were collected with integration times of 30-60 s. 

In some cases, particles were located using alignment marks created by evaporating 

chrome and gold through an indexed TEM grid (Ted Pella, #79021C). Particles could be 

identified by their position relative to the alignment marks in both optical and scanning 

electron microscopy, making correlated measurements of the particle's spectrum and 

structure possible95. This technique is illustrated in Figure 40. 
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Figure 40. Single particle spectroscopy technique, (a) Alignment marks can be used to correlate 
images from (b) optical microscopy and (c) scanning electron microscopy, (d) shows the single 

particle spectrum of the bipyramid shown in (b) and (c). 

Spectral analysis. Spectra were collected by the CCD camera in the form of 

spectrograph images of 512 x 512 pixels, in which the horizontal axis represents the 

particle's position in the slit, and the vertical axis represents wavelength. An example of 

the raw spectral data can be seen in Figure 41. 

wavelength (nm) 
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Figure 41. False-color image of raw spectral data from the single particle spectrometer, particle 
location circled in red. 

The wavelength position on the CCD was calibrated using set of visible and near-

infrared narrow bandpass filters (Chroma). To account for the variation of detector and 

spectrograph efficiency with wavelength, a white calibration was recorded from a 

reflection standard (Edmund Industrial Optics). The "whitecal" spectrum in raw counts 

can be seen in Figure 42. As one might expect for a microscope system optimized for the 

visible range, the peak detection sensitivity is between 500 and 700 nm. 

Figure 42. White-light calibration curve for the single-particle spectroscopy system. 
Experimental spectra are divided by this curve to account for the variation of detector sensitivity 

with wavelength. 
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A MATLAB program was developed to analyze the spectral images by summing the 

intensity at each wavelength within a few pixels of the particle, and subtracting the 

background intensity, then dividing by this whitecal. Each resulting spectrum was fit 

with a Gaussian, and the resulting peak wavelengths were plotted versus time. 

Single particle immunoassay. To prepare a sparse film of particles, 40 |iL of 

bipyramid solution was drop-cast onto a piranha-cleaned glass cover slip. (WARNING: 

piranha solution is very reactive and corrosive; use extreme caution!) The cover slip was 

then rinsed with copious amounts of DI water to remove CTAB. A flow cell was then 

assembled consisting of a 1 mm thick PDMS layer sandwiched between two layers of 

glass. The bottom glass layer (closest to the microscope objective) was the 

aforementioned cover slip with gold bipyramids deposited on the top side. The PDMS 

layer had a cut-out of approximately 2 x 10 mm in the center, creating a flow volume of 

about 20 JAL. The top glass layer was a standard microscope slide, with two drilled holes 

sealed to syringe needles that served as the flow inlet and outlet. The entire assembly 

was placed on the microscope stage, and the particles were imaged through the 

bottommost cover slip. The flow system was regulated by a syringe pump on the outlet 

side of the flow cell, withdrawing liquid at a constant rate of 100 ^L/min. Solutions 

entered from a set of reservoirs connected by a six-way valve to the flow cell. All 

components were connected with silicone tubing. The flow system was flushed through 

with buffer before each experiment to purge any air bubbles. In the immunoassay 

experiments, MES buffer (2-(N-morpholino)ethanesulfonic acid, 0.1 M) at pH 6.1 was 

first flowed over the substrate for at least 30 minutes. Next, the capture antibody, rabbit 



70 

IgG, was flowed over the substrate for at least 30 minutes at 300 [xg/mL in MES buffer. 

Then, the substrate was rinsed with MES buffer for another 30 minutes to remove any 

excess capture antibody. Next, the target antibody, goat anti-rabbit IgG, was flowed over 

the substrate for at least 1 hour at 10 nM in PBS (phosphate buffered saline, 0.05 M with 

0.15M NaCl) at pH 7.6. Finally, the substrate was rinsed for at least 8 hours in PBS. 

Results and Discussion 

Single gold bipyramids in the form of ten-sided polyhedra were chosen as the sensors 

for these experiments66. As synthesized here, they are approximately 140 nm long and 50 

nm wide, and are monodisperse in terms of size and shape (Figure 43a). The bipyramids 

have sharp tips and are highly sensitive to the surrounding refractive index, with a figure 

of merit (FOM) greater than 484'94. Gold nanospheres are also present in the sample, but 

the bipyramids and nanospheres have distinct plasmon resonances as seen in their 

ensemble spectral extinction (Figure 43b). When the particles were deposited on a 

substrate and imaged by dark field microscopy, only the nanospheres were clearly visible 

to the eye since the bipyramid scattering is peaked at 875 nm. To illustrate how the 

particle types were differentiated, Figure 43d and e presents two dark-field optical images 

of a nanosphere (left) and a bipyramid (right), one taken by a color camera (d), where the 

nanosphere appears bright green and the bipyramid is extremely faint, and one taken by a 

near-infrared CCD (e), where the bipyramid appears much brighter. Scattering spectra of 

individual nanoparticles were recorded with an imaging spectrograph attached to the 

microscope. Figure 43c displays a single bipyramid's scattering spectrum collected with 



a 30 second integration time. Note that the spectral peak is intense and relatively narrow, 

since the peak is in the near-infrared region where gold is minimally absorptive14. The 

peak near 520 nm in the ensemble extinction spectrum, attributable to the sphere 

impurities present in the sample, is no longer seen in the single particle scattering 

spectrum. It is also possible that the transverse plasmon resonance of the bipyramids 

contributes to the 520 nm peak in the ensemble spectrum, similar to the case for gold 

nanorods. If this mode were primarily absorptive rather than scattering, the single 

particle spectrum of Figure 43c would also result. FEM simulations (COMSOL) indicate 

that the transverse plasmon ought to contribute to the total extinction. 
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Figure 43. Gold bipyramids. (a) SEM image showing the bipyramids' structure, (b) Ensemble 
extinction measurement, showing the LSPR of nanospheres (580 nm) and bipyramids (875 nm). 

(c) Typical scattering spectrum of a single bipyramid. (d) Dark field scattering images of a 
nanosphere (left) and a bipyramid (right) captured with a colour camera and (e) captured with a 

CCD that is sensitive into the near-infrared. 

In addition to the aforementioned favorable optical properties, the structure of the 

bipyramid and its orientation on the substrate enhance its sensing capabilities. Due to 

their faceted structure, bipyramids sit on the substrate with one tip elevated and exposed 

to the solution. This can be seen in the uneven contrast of the isolated bipyramids in 
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Figure 43a, and is shown more definitively by atomic force microscopy. Figure 44a 

displays the topography of the bipyramid sample with a 90 nm linear gray scale. The 

AFM images show uneven contrast in the topographic image of isolated bipyramids. 

Figure 44b displays the same image with a color scale designed to highlight variations in 

topography. Here one can see that one end of the isolated bipyramids slopes down while 

the other is flat. Finally, an AFM cross section is presented in Figure 44c and d that also 

supports the case that bipyramids sit on the substrate with one tip exposed to the solution. 

Because of this exposed sharp tip, the local refractive index of a molecular-scale volume 

in the solution can be monitored by tracking the LSPR peak of a single bipyramid. It is 

this extreme localization of the sensing volume, which is absent in nanoparticles of other 

shapes13' 20' 24' 91' 92' 96~98, that makes bipyramids a strong candidate particle for single 

molecule detection. 
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Figure 44. Bipyramid position on the substrate, (a) Atomic force microscopy of isolated gold 
bipyramids on a glass substrate with al linear gray scale, (b) The same image as in part a, but with 
a z-scale designed to highlight changes in height, (c) A zoom of one of the bipyramids in part a, 
with a line indicating a cross section, (d) The cross section drawn in part c which demonstrates 

the position of the bipyramids as indicated. 

In the single-particle immunoassay experiments described here, bipyramid spectra 

were recorded over a period of 12 hours as the nanoparticle was exposed first to a capture 

antibody, then to a specific target molecule (a secondary antibody), and then rinsed with 

buffer (Figure 45). 



Figure 45. Schematic of the single-particle immunoassay. 

The LSPR peak wavelength shift versus time from a typical single-particle 

immunoassay experiment is shown in Figure 46a. At point 1, the capture antibody (rabbit 

IgG) was added and the spectrum red-shifted as antibodies coated the gold nanoparticle 

surface. At point 2 the target molecule (goat anti-rabbit IgG) was added and again the 

spectrum red-shifted, this time by a smaller amount since the target molecules are further 

from the bipyramid surface than the capture antibody. At point 3 the sample was rinsed 

once again. During this final rinse, single molecule events were detected as discrete blue-

shifts in the LSPR peak wavelength due to the unbinding of single target molecules. We 

chose to study these single molecule unbinding events (as opposed to searching for 

discrete red shifts as molecules bind to the nanoparticle) because the dissociation is slow 

enough that one can measure the rate to confirm it matches an established value93'94. In 

this case, the expected rate of dissociation of the target from the capture antibody is 6.5 x 

10"5 s"1, both from literature values and from our gold nanorod immunoassay described in 

the previous chapter, which used the same antibodies. Unlike the association rate, it 

should not be affected by the initial target concentration or any diffusion effects . Thus, 

kinetics information can confirm that the observed events are indeed the antibody-antigen 

dissociation of interest. 
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Figure 46. Single-particle immunoassay data, (a) LSPR signal obtained from single-particle 
spectra of a bipyramid in a flow cell, where it was exposed to (1) the capture antibody (Rabbit 
IgG), (2) the molecular target (Goat anti-Rabbit IgG), and (3) the PBS buffer rinse, (b) Cross-

correlation function of the data with a step function, (c) and (d) Discrete blue shifts (i.e., single-
molecule unbinding events) collected from two different experiments, (e) and (f), Histograms of 

all discrete blue and red shifts. 
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Both the measurements displayed in Figure 46 and the numerical simulations 

described below indicate that the LSPR peak shift due to single target molecule 

unbinding is only a few tenths of a nanometer, which is very close to the noise level (in 

this case the fluctuations in the measured LSPR peak wavelength). To analyze the data, 

we calculated the cross correlation function (CCF) between the measurements and a test 

function consisting of a discrete blue-shift at every point in the time series. For the 

sequence of six data points starting with the /th time step, the CCF was calculated as: 

" 7 + 1 +2 +3 

<7, +<7 2 

The numerator takes the form of the dot product of the data with a step function having 

the values (1, 1, 1, -1, -1, -1). This quantity is maximized when the data include a 

discrete blue shift between points (/ + 2) and (/ + 3), and minimized (i.e., CCF has a large 

negative value) when the data include a red shift. CCF is calculated for i = 1 through (N -

5), where N is the total length of the data series. In the denominator, o\ and 02 are the 

standard deviations in the data points i through (i + 2), and (i + 3) through (i + 5), 

respectively. Dividing by this factor enhances our ability to detect single molecule events 

because it will favor those events consisting of a clear step with low noise on either side. 

(This factor also accounts for the final cross-correlation having a magnitude greater than 

one in some cases, since this is not a standard normalization.) Once CCF has been 

calculated for the entire data series, the ten time points with the largest CCF values are 

designated as likely single molecule events. 

The process is then repeated with one small difference: the cross-correlation is 

calculated for groupings of seven data points rather than six, in order to pick up those 

events which did not occur near the beginning of one of the 30 second CCD exposures. 
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As illustrated in Figure 47a, unbinding near the boundary between two exposures will 

produce the discrete shift described by the test function above. However, as illustrated in 

Figure 47b, unbinding near the middle of a frame will produce an intermediate peak 

wavelength since the frame will contain a sum of data from the blue and red peaks. For 

this case, the cross-correlation is calculated as: 

"7+1 ' i+2 +4 1 i+5 1 (+6 ' CCF 
<7, +<J2 

(33) 

where o\ and <72 are the standard deviations in the data points i through (i + 2), and (i + 4) 

through (/ + 6), respectively. The test function now has the values (1, 1, 1,0, -1,-1,-1). 

Again, the ten time points with the largest values of F are chosen. 

unbind 

T IF 
CCD frame: i i+1 i+2 i+3 i+4 i+5 

A A 

unbind 

CCD frame: i 

Figure 47. Schematic of unbinding event timing and detection. First row: When the molecule 
unbinds near the boundary of two frames, a discrete blue shift is measured between frames (i + 2) 

and (i + 3). Second row: When the molecule unbinds in the middle of an integration time, the 
spectral peak is artificially broadened in that frame, so a discrete shift can only be measured 

between frames (i + 2) and (i + 4). 
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Next, the ten likely single-molecule events from both cross-correlation functions are 

compared to check for redundancy. After deleting any duplicate events, the two lists are 

combined into one final group of times at which single-molecule dissociations occurred. 

The distribution of these times is then fit with an exponential probability density function 

to find T, the lifetime of the antibody-antigen bond: 

f ( t ) = -e~K (34) 

T 

The unbinding rate is simply the inverse of the lifetime. Finally, the time data are sorted 

into a histogram (number of events vs. time) which can be seen in Figure 46e. The 

events with the lowest values of CCF (i.e., the largest red shifts) are collected in the same 

way, resulting in a histogram that reflects the random timing of these events. 

The results of this analysis are plotted in Figures 46b-f. All of the blue-shifts from 

two experiments are plotted in Figure 46c and d. Note that the shift magnitude is greater 

for the experiment shown in (d), and that the data also has a higher noise level; this is due 

to slight variations in signal level and sensitivity among the individual bipyramids. The 

average blue-shift for all events was 0.34 nm. The probability distribution of single blue-

shifts versus rinse time was fit with an exponential distribution and the unbinding rate 

was found to be 7.9 +/- 1.3 x 10 5 s"1, in good agreement with ensemble measurements on 

the same antibody and molecular target93'94. Finally, the time histograms of all blue-shift 

and red-shift events are plotted in Figure 46e and f. The histogram of red-shifts is 

featureless, indicating that these correspond to random fluctuations in the signal rather 

than a specific molecular process. The preponderance of discrete red-shifts is likely due 

to the gradual drift of the signal towards longer wavelengths upon the final rinse step (see 

Figure 46a). 
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To investigate the magnitude of LSPR shift that should be expected, finite element 

method (FEM) simulations were carried out with parameters that precisely matched the 

experimental conditions. (Note: this work was primarily carried out by Feng Hao of 

Peter Nordlander's research group.) A gold bipyramid (140 x 50 nm, 5 nm tip radius) 

was simulated to be sitting on a glass substrate (n = 1.5) in water (n = 1.33). Capture 

antibodies absorbed to the bipyramid were represented by a 5 nm dielectric film on the 

bipyramid. The film was assigned a refractive index of 1.57 to match previous 

determinations of the index of refraction of proteins". The molecular target (secondary 

antibody) was simulated as a 7.1 nm diameter sphere, which was found by dividing its 

molecular weight by the average density of hydrated proteins100. The target was also 

given a dielectric constant of 1.57. Extinction spectra and maps of the local field 

intensity were calculated for the bipyramid both with and without the molecular target 

present at the tip. The field distribution around the bipyramid, displayed in Figure 48a-c, 

indicates the localization of the field enhancement around the tips. The calculated 

spectral extinction is comparable to the measured single bipyramid scattering spectra 

since the extinction for nanoparticles the size of these bipyramids is predominantly due to 

scattering. For the parameters given above, the spectral shift was found to be 0.45 nm, 

somewhat larger than our experimentally observed average shift of 0.34 nm. The protein 

dielectric constant was then varied and the simulations repeated. As seen in Figure 48d, 

the experimental shift is reproduced at n = 1.54, which suggests that this is the effective 

index of the individual antibody molecules. 
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Figure 48. FEM simulations, (a) The electric field distribution around a gold bipyramid (scale 
bar is 20 nm). The local electric fields at the bipyramid tip (b) in the presence and (c) in the 
absence of a dielectric molecule, (d) The calculated spectral shift for molecules of differing 

refractive index. 

The LSPR detection method described here has several unique properties that could 

address unmet needs in single molecule research. Foremost is the 105 second time scale 

over which LSPR sensing can observe molecular interactions. The most widespread 

single-molecule techniques are fluorescence-based methods such as fluorescence 

resonance energy transfer (FRET), in which researchers study conformation changes of 

macromolecules by introducing a distance-dependent pair of fluorophores101. This 
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technique has been combined with sensitive imaging methods like confocal fluorescence 

microscopy102 and total internal reflectance fluorescence microscopy (TIRFM)103 to 

investigate many biomolecular mechanisms. The main limitations of single-molecule 

fluorescence measurements are that (1) the molecules are removed from their natural 

state because of the fluorescent label and (2) due to photobleaching, the time scale for 

such experiments is limited to the order of 10 s. Another prominent class of single-

molecule techniques depends on force sensing, either by optical tweezers or atomic force 

microscopy (AFM)104. These techniques allow us to study complex molecular motions, 

conformation changes, and energy landscapes. Of course, these techniques greatly 

perturb the molecules from their natural state, and in the case of optical tweezers, subject 

them to radiation damage from the laser. Stability challenges in force sensing 

experiments also limit the time duration of the experiments to the order of 102 seconds. 

Electrophysiological patch-clamp experiments on ion channels have also been carried out 

on single molecules105. These measurements are limited to a similar time scale due to the 

fragility of the membrane-pipette seal. Thus, the need for label-free, non-perturbative 

single molecule methods which can access longer time scales is clear. 

Single molecule sensing by LSPR shifts also benefits from the non-invasive nature of 

the measurements. Since the target molecule's refractive index is detected, there is no 

need for chemical modification of the target or subsequent binding of other factors to it to 

generate a signal. Furthermore, the measurements are not taken under any applied load 

or tension, which are known to affect bond strengths in a load-rate dependent manner106. 

In single molecule LSPR experiments, the target molecule is only perturbed by the 

optical near-field of the nearby gold bipyramid82. 



The only other label-free, single molecule method previously reported was based on 

the effect of heat generated by optically irradiated biomolecules on a microtoroid 

resonator with a whispering gallery mode (WGM)107. (See Figure 49.) The WGM 

biosensor achieved a higher signal to noise ratio due to single molecule 

binding/unbinding, but this is not surprising since the WGM resonator exhibits a much 

higher quality factor than nanoparticle LSPR. However, the LSPR sensor has the 

advantage that it does not require microfabrication and can be monitored by simple far 

field optics. In fact, the bipyramid substrates described here were fabricated entirely by 

chemical synthesis and self assembly. This ultimate limit of detection achieved by WGM 

and now LSPR sensors could have significant impact in several biomedical areas 

including proteomics, point-of-care diagnostics, and drug discovery86'l08. 

Figure 49. (a) The toroidal microresonator used for label-free single-molecule detection by 
Armani et al. (b) The optical whispering gallery mode (WGM) of the resonator. 

In summary, due to their sharp tips, and bright, sharp spectral scattering resonances, 

gold bipyramids are well-suited for LSPR biosensing. The high sensitivity of the 

bipyramids allowed single-molecule antibody-antigen dissociation events to be observed 

with no labels and in real time. Analysis of the times at which these events occurred 

yielded an antibody-antigen unbinding rate of 7.9 +/- 1.3 x 10"5 s"1, consistent with the 
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kinetic rate measured for an ensemble sample93. This is the first measurement of the 

kinetics of a biomolecular bond by a label-free, single molecule method and shows that 

LSPR sensing with simple optics and chemically synthesized nanoparticles holds great 

promise as a biological sensing technology at the single molecule level. 
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VI. Conclusion 

Localized surface plasmon resonance provides a simple and robust system for 

refractive index sensing. The basis for this sensing is the extinction peak that arises from 

the resonant collective oscillation of the free electrons when excited by light. The 

electric field enhancement near the particle surface makes it possible to sensitively detect 

biomolecules in the small sensing volume surrounding the particle. This was 

demonstrated for ensembles of nanoparticles with self-assembled gold nanorod films. A 

label-free immunoassay was designed based on this system, and specific antibody 

detection was demonstrated. The assay had nanomolar sensitivity, similar to SPR, and 

revealed the correct kinetic rates of association and dissociation and the correct 

equilibrium binding constant for antibody-antigen interactions. This was the first 

demonstration of kinetics measurements by LSPR sensing. Several routes to 

enhancement of the LSPR immunoassay sensitivity were investigated: the substrates 

were improved by replacing the gold nanorods with bipyramids, and by modifying the 

particle surface chemistry. Aptamers were also investigated as a capture molecule, as 

opposed to antibodies. A single molecule version of the immunoassay based on the 

scattering spectra of single gold bipyramids was also developed. By tracking discrete 

spectral shifts over long time periods, this technique was used to detect single molecules 

unbinding from the particle surface. Data analysis methods were developed to identify 

these events, and their measured magnitude agrees well with results from electrodynamic 

FEM simulations. These unbinding events were found to follow the time distribution 
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expected from the kinetics model. This was the first measurement of single molecules by 

LSPR and is one of only a few label-free methods for studying single molecules. 
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VII. Appendix 1: Additional Antibody-Antigen Kinetics Experiments 
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Figure 50. Four additional measurements of the kinetics of rabbit IgG / goat anti-rabbit IgG 
binding and unbinding as carried out by our LSPR system. 



VIII. Appendix II: Detailed Bipyramid Film Spectra 
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Figure 51. Endpoint spectra from the LSPR immunoassay. Spectra of the bipyramid film before 
and after the target antibody exposure (see Figure 5) are plotted on the main axis. The inset shows 

a magnified view of the fits to the peak. 
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Figure 52. Spectra of bipyramid film IV (see Figure 4) in various solvents. In order of smallest to 
largest refractive index, the solvents are: air (i, red), water (ii, blue), acetonitrile (iii, pink), ethanol 

(iv, green), formamide (v, orange), and toluene (vi, purple). 


