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ABSTRACT 

Inference of Parsimonious Species Phylogenies from Multi-locus Data 

by 

Cuong V. Than 

The main focus of this dissertation is the inference of species phylogenies, i.e. 

evolutionary histories of species. Species phylogenies allow us to gain insights into 

the mechanisms of evolution and to hypothesize past evolutionary events. They also 

find applications in medicine, for example, the understanding of antibiotic resistance 

in bacteria. The reconstruction of species phylogenies is, therefore, of both biological 

and practical importance. 

In the traditional method for inferring species trees from genetic data, we sequence 

a single locus in species genomes, reconstruct a gene tree, and report it as the species 

tree. Biologists have long acknowledged that a gene tree can be different from a 

species tree, thus implying that this traditional method might infer the wrong species 

tree. Moreover, reticulate events such as horizontal gene transfer and hybridization 

make the evolution of species no longer tree-like. The availability of multi-locus data 

provides us with excellent opportunities to resolve those long standing problems. In 

this dissertation, we present parsimony-based algorithms for reconciling species/gene 

tree incongruence that is assumed to be due solely to lineage sorting. We also describe 

a unified framework for detecting hybridization despite lineage sorting. 

To address the first problem of species/gene tree incongruence caused by lineage 

sorting, we present three algorithms. In Chapter 3, we present an algorithm based 



on an integer-linear programming (ILP) formula to infer the species tree's topology 

and divergence times from multiple gene trees. In Chapter 4, we describe two meth-

ods that infer the species tree by minimizing deep coalescences (MDC), a criterion 

introduced by Maddison in 1997. The first method is also based on an ILP formula, 

but it eliminates the enumeration phase of candidate species trees of the algorithm 

in Chapter 3. The second algorithm further eliminates the dependence on external 

ILP solvers by employing dynamic programming. We ran those methods on both 

biological and simulated data, and experimental results demonstrate their high ac-

curacy and speed in species tree inference, which makes them suitable for analyzing 

multi-locus data. 

The second problem this dissertation deals with is reticulation (e.g., horizontal 

gene transfer, hybridization) detection despite lineage sorting. The phylogeny-based 

approach compares the evolutionary histories of different genomic regions and test 

them for incongruence that would indicate hybridization. However, since species 

tree and gene tree incongruence can also be due to lineage sorting, phylogeny-based 

hybridization methods might overestimate the amount of hybridization. We present in 

this dissertation a framework that can handle both hybridization and lineage sorting 

simultaneously. In this framework, we extend the MDC criterion to phylogenetic 

networks, and use it to propose a heuristic to detect hybridization despite lineage 

sorting. Empirical results on a simulated and a yeast data set show its promising 

performance, as well as several directions for future research. 
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Chapter 1 

Introduction 

The study of inferring phylogenies, or evolutionary histories of species, started when 

Charles Darwin published his famous book, "On the Origin of Species by Means of 

Natural Selection," where he realized and presented a hypothesis that all species have 

evolved from a common ancestor. Phylogenies, which are often represented by trees, 

allow us to gain insights into the mechanisms of evolution and to hypothesize past 

evolutionary events. Traditionally, a phylogeny was inferred by using morphological 

features. Since the 1960s when amino acid sequences were first widely available [1], 

molecular data have become the main source for phylogenetic analysis [2], 

However, since the early days of molecular phylogenetics, researchers already noted 

the difference between a phylogeny of species (a species tree) and a phylogeny of a gene 

(a gene tree) [3, 4], A gene tree can be different from a species tree (on the same group 

of species) for various reasons. First, we do not know the true gene tree, and therefore 

the estimated one that we build from molecular data might be incorrect due to both 

random and phylogeny reconstruction errors. Second, there are biological processes 

such as lineage sorting, horizontal gene transfer, and gene duplication and loss that 

cause species/gene tree incongruence [5]. They also recognized that ultimately we 

are concerned with reconstructing species trees rather than gene trees. Tateno et al. 

[6] stated that "the primary objective of molecular taxonomy or phylogenetics is to 

construct a species trees rather than a gene tree," and that we can achieve higher 

accuracy in species tree estimation only by using more gene trees. 
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Figure 1.1 : Approaches for inferring species trees. In the combined analysis approach 
(top), the sequences of the four loci are concatenated, generating one sequence data set, 
which is then analyzed by any of a host of phylogenetic tree reconstruction methods. In 
the separate analysis approach (bottom), a gene tree is reconstructed for each locus, and a 
species tree that reconciles their incongruence is inferred. 

The first genome to be sequenced was that of the bacteriophage virus 0X174; it was 

sequenced in 1977 [7], The genome of a bacterium (Haemophilus influenza) was first 

sequenced in 1995 [8], and a eukaryotic genome (Saccharomyces cerevisiae) was se-

quenced in 1997 [9]. A decade later, there were 543 sequenced genomes for eubacteria, 

47 for archaeal species and 23 for eukaryotes [10]. The availability of whole-genome 

data provides an unprecedented opportunity for studying organismal evolutionary 

relationships, while it also poses computational and methodological challenges. We 

discuss briefly here current methods in phylogeny inference based on genome data (or 

phylogenomic tree inference for short). 

Broadly speaking, methods for inferring phylogenomic trees fall into two cate-

gories: (a) methods that use information above the sequence level and (b) primary 
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sequence-based methods [11]. Methods in the first category use whole-genome features 

such as frequencies of oligonucleotides or ologipeptides [12], gene order [13, 14, 15], 

or gene content [16, 17, 18]. These methods are clearly better than the traditional 

approach of equating a species trees to a single gene tree, because in general gene trees 

can disagree with their containing species tree for various causes. Several researchers, 

in fact, gave them strong support [19, 20]. However, they do have their shortcomings. 

For example, methods based on the distribution of oligonucleotides or oligopeptides 

have no model of evolution, while gene-order methods are computationally expensive 

as the search space is huge [21], and those using gene content are affected by big/small 

gene attraction [22], producing phylogenies conflicting with previous studies [23]. 

Two approaches mainly used in primary sequence-based methods are: (a) total 

evidence (or combined analysis) and (6) separate analysis; see Figure 1.1. In the 

combined analysis approach, sequences from multiple loci are concatenated, and the 

resulting "supergene" data set is analyzed, using traditional phylogenetic methods 

such as maximum parsimony and maximum likelihood; e.g., [24, 25]. Although com-

bined analysis methods are preferred in practice [26, 27, 25], we should note that 

"no rational systematist would suggest combining genes with different histories to 

produce a single reconstruction" [28]. 

In the separate analysis approach, the sequence data from each locus is first ana-

lyzed individually, and a reconciliation of the gene trees is then sought. One way to 

reconcile the gene trees is by taking their majority consensus [19, 29]. Another way 

is the "democratic vote" method, which entails taking the tree topology occurring 

with the highest frequency among all gene trees as the species tree. Shortcomings of 

those methods have been analyzed by various researchers [30, 31]. Recently, Bayesian 

methods following the separate analysis approach were developed [32, 33]. While 
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Bayesian methods are accurate, they are very time consuming, taking hours and days 

even on moderate-size data sets, which limits their scalability. 

1.1 Contributions of the Dissertation 

The first contribution of this dissertation is algorithms for inferring species trees 

from input gene trees despite lineage sorting. Our first algorithm infers the species 

tree topology and its branch lengths by seeking a tree that minimizes the amount of 

incongruence and deep coalescence required to reconcile the input gene trees within 

the species tree. It divides the inference process into three phases. In the first phase, it 

computes a set of species tree topology candidates based on clusters (i.e., subsets of a 

taxon set) induced by the input gene trees. In the second phase, it assigns divergence 

times to the internal nodes of each of those tree candidates based on an integer-linear 

programming (ILP) formulation such that the time assignment results in the least 

amount of deep coalescence. Among those time-assigned trees, the optimal tree is 

chosen during the third phase, which is then reported as the species tree. 

The other two algorithms infer the species tree topology using the minimizing 

deep coalescence (MDC) criterion. This criterion was introduced in 1997 in a paper 

by Maddison [5], but so far there have been only approximation heuristics for it, 

e.g., [34], They are also slow as they employ a strategy that basically performs a 

hill-climbing search in the space of all phylogenetic trees (on the same set of taxa). 

We show that under the MDC criterion, it is possible to work with clusters to find an 

optimal tree. This allows us to develop our second ILP-based algorithm to infer the 

species tree that avoids the enumeration of species tree topology candidates required 

in the first method. Furthermore, it also allows us to develop an efficient dynamic 

programming algorithm, thus eliminating the dependence on ILP solvers, and more 
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importantly making it more applicable to large data sets. Those two algorithms are 

the first exact solutions for the MDC criterion, and we hope that their introduction 

would help to have a more comprehensive evaluation of this criterion in species tree 

inference despite lineage sorting. 

The other main contribution of this dissertation is about detection of reticu-

lation (e.g., horizontal gene transfer, hybridization) despite lineage sorting. The 

phylogeny-based approach compares the evolutionary histories of different genomic 

regions and test them for incongruence that would indicate hybridization. However, 

the species/gene tree incongruence can also be due to other factors, such as lineage 

sorting[5], which implies that phylogeny-based hybridization methods might overesti-

mate the amount of hybridization. We present in this dissertation a framework that 

can handle both hybridization and lineage sorting simultaneously. In this framework, 

we extend the MDC criterion introduced in [5] to phylogenetic networks. Under this 

new criterion, we propose that the optimal network consists of the optimal tree and 

sub-optimal trees within a threshold of the optimal tree's score. 

1.2 Outline of the Dissertation 

Below is a summary of the chapters of this dissertation. 

Chapter 2 provides a brief review of phylogenetic trees and phylogenetic networks 

and related concepts such as clades, clusters and compatibility of clusters. It then 

describes lineage sorting, and horizontal gene transfer and hybridization, biological 

processes that cause species/gene tree incongruence and that are of the main concern 

of this dissertation. An overview of current methods for inferring species trees despite 

lineage sorting then follows. As discussed in the previous section, a major contribu-

tion of this dissertation is a unified framework for detecting hybridization despite 
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lineage sorting. In this chapter, we also describe several phylogeny-based methods 

for detecting hybridization. We defer a discussion of recent attempts to incorporate 

lineage sorting into hybridization detection until Chapter 5. 

Chapter 3 is about our first algorithm for inferring species trees from a set of 

gene trees despite lineage sorting. We first show, with the time information on both 

species and gene trees, how we reconcile them, and introduce a weighting scheme 

to measure the amount of deep coalescence, based on the "depth" of a coalescence 

event. We then discuss the algorithm, which is divided into three phases. In the 

first phase, we compute clusters induced by the the input gene trees, and build a 

graph based on those clusters and their compatibility. Because of the equivalence 

of a set of compatible clusters and a tree, maximal cliques in this graph result in 

species tree topology candidates, which are the input for the second phase of the 

algorithm. The second phase assigns divergence times to internal nodes of each of 

those candidate trees in such a way that the resulting tree requires the minimum cost 

of deep coalescence. This phase is solved by using an ILP formulation. Finally, we 

describe an optimality criterion that combines deep coalescence and species/gene tree 

incongruence for reporting the species tree. In the third phase, our algorithm chooses 

among the timed trees output from the second phase an optimal one that it declares 

as the species tree. 

In Chapter 4, we describe the inference of species trees from gene trees under 

the MDC criterion. Under this criterion, we fit a gene tree into a species tree using 

the most recent common ancestor (MRCA) mapping, and then count the number of 

extra lineages in all branches of the species tree. A species tree is better than another 

if it requires a fewer number of extra lineages. We show that we can compute the 

number of extra lineages for each individual species tree cluster, thus eliminating the 
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need of prior knowledge of the species tree. This result is fundamental to the two 

algorithms we present in this chapter. First of all, it make the phase of generating 

species tree topology candidates unnecessary. This, along with the equivalence of a 

set of compatible clusters and a tree, allows us to develop an elegant ILP solution to 

the MDC optimization problem. We further exploit this result to develop an efficient 

dynamic programming algorithm for this problem. Details of those algorithms and 

their performance study are discussed in this chapter. 

We describe our framework for detecting hybridization despite lineage sorting in 

Chapter 5. An extension to the MDC criterion originally introduced for trees is 

made to take into account reticulate events in phylogenetic networks. We propose 

that the MDC cost for reconciling a gene tree within a network is the minimum 

MDC score for reconciling that gene tree with trees induced by the network. Using 

this extension, we propose a new heuristic to detect hybridization despite lineage 

sorting. Empirical results on the yeast data set [25] as well as on simulated data 

show promising performance of the method, as well as several directions for future 

research. 

We discuss PhyloNet [35] in Chapter 6, a package that implements all the algo-

rithms presented in this dissertation. In addition, the package presents a new format 

for representing phylogenetic networks. It also implements an array of methods for 

characterizing and comparing phylogenetic networks, as well as those for working 

with phylogenetic trees. 
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Chapter 2 

Background 

In this chapter, we introduce concepts and definitions relevant to this dissertation. 

After a review of the terminology of phylogenetic trees and phylogenetic networks, we 

discuss several biological processes that cause species tree and gene tree incongruence: 

lineage sorting, and horizontal gene transfer and hybridization. We also give a brief 

overview of methods for inferring the species tree from multiple gene trees whose 

incongruence is assumed to be due to lineage sorting. We conclude this chapter with 

phylogeny-based methods for detecting horizontal gene transfer. 

2.1 Phylogenetic Trees 

2.1.1 Trees and Phylogenetic Trees 

The evolutionary history of a group of species is often depicted in the form of a tree (in 

the formal sense in computer science), called a species tree. Each internal node in the 

tree reflects a speciation event that splits the group into smaller subgroups, and leaves 

can be thought of as representing present-day organisms. As species evolve, their 

genes evolve, and when species are split, their gene copies are also split. Therefore, 

the evolution of a gene is likewise represented by a tree, called a gene tree. Species 

and gene trees are commonly called phylogenetic trees. 

A tree T — (V, E) is a connected graph with no cycles, where V, E are its node 

set and edge set (we also use V(T) and E(T) to denote the node set and edge set of a 
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(a) (b) 

Figure 2.1 : Rooted phylogenetic tree (a) and unrooted phylogenetic tree (b) over 4 taxa 
a, b, c and d. In Figure (b), we do not say if the parent of a and b and the parent of c and 
d are from a common ancestor, as in (a). 

tree T). A node with degree (the number of incident edges) one is called a leaf, and a 

node of degree at least two is called an internal node. Let us denote by JSf(T), V(T) 

the set of leaves, and the set of internal nodes of T, respectively. Let X be a set of 

taxa (i.e., species names). Then, a phylogenetic tree is an ordered pair (T,<p), where 

0 is a one-to-one correspondence mapping from X to «Sf(T) (i.e., it maps each taxon 

to one and only one leaf of T); see Figure 2.1 for examples of phylogenetic trees. For 

the sake of brevity, in this dissertation we often call T a phylogenetic tree when the 

mapping 0 is obvious from the context. 

A phylogenetic tree can be rooted or unrooted. A tree is rooted if there is a distin-

guished node, called the root, with in-degree 0 (i.e., there are no edges incident into 

it). For a rooted tree T, we denote such a node by r(T). In a rooted phylogenetic 

tree, the root corresponds to the common ancestor of all species or genes at its leaves. 

A rooted phylogenetic tree, therefore, shows not only the relative relationships of 

species, but also the direction of the evolution, from its root down to its leaves. An 
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unrooted phylogenetic tree, on the other hand, only shows the relationship among 

species. Figure 2.1(a) shows an example of a rooted phylogenetic trees, while Fig-

ure 2.1(b) is an example of an unrooted phylogenetic tree. In this dissertation all 

trees are rooted, unless explicitly stated. 

An edge of a tree T is called a pendant edge if it is incident to a leaf, and an 

internal edge otherwise. If every internal node of a binary, rooted phylogenetic tree 

T has exactly two children, we say that T is binary. (If T is an unrooted tree, then it 

is binary if all internal nodes have degree three.) It is easy to see that for a rooted, 

binary phylogenetic tree T on an n-element taxon set X, there are exactly n pendant 

edges, n — 2 internal edges, and n — 1 internal nodes. The following result is also well 

known; its proof can be found in [36]. 

Theorem 2.1 (Number of Binary Phylogenetic Trees). Let X be a set of n taxa. 

Then, the number of binary, unrooted phylogenetic trees on X is (2n — 5)!!, and the 

number of binary, rooted phylogenetic trees on X is (2n — 3)!!. 

A rooted phylogenetic tree can be represented in computer-readable form, known 

as the Newick format [37]. This format represents a tree by making use of parentheses 

and commas. For example, the tree in Figure 2.1(a) is written in the Newick format 

as ((a, b), (c, d)). We can also write an unrooted tree in the Newick format. First, we 

arbitrarily root it, and write the resulting rooted tree in the Newick format. Then, 

we add a prefix, say, [U], to the Newick representation. For example, a Newick 

representation for the unrooted tree in Figure 2.1(b) can be [U] (a, (B, (C,D))) (here, 

we root it on the pendant edge incident to a, and add a prefix [U] to the rooted tree's 

Newick string representation). 

For a phylogenetic tree T, we can also associate it with a time function r : V(T) —> 

K + U {0} to indicate divergence times of its internal nodes. In this dissertation, we 
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use the conventions that if v is a leaf then T(V) = 0, and that if u is an ancestor of v, 

u ^ v, then r(u) > r(v). 

2.1.2 Clades, Clusters and Cluster Compatibil ity 

Let u be a node of a rooted tree T. A node v is a descendant of u if u is on the 

(unique) path from r(T) to v. We also say that u is an ancestor of v. Note that u is 

both an ancestor and descendant of itself. 

A subtree of T is a connected subgraph of T. For a node v of T, the subtree of T 

rooted at v, or a clade induced by v, denoted by T{v), is the connected subgraph of 

T on the set of descendants of v. 

A cluster is defined as a nonempty subset of an ra-taxon set X. Clearly, there are 

2n — 1 clusters for a given taxon set X. A cluster is called trivial if it is either X or 

it has exactly one element. For a node v of a (rooted) phylogenetic tree T on X, the 

label set of J?(T(v)) is called an induced cluster, denoted by CT(V). For the rooted 

tree in Figure 2.1(a), T(v) = (a, b), and CT(v) = {a, b}. If T is binary, then there are 

2n — 1 induced clusters, (n — 2) of which are nontrivial. We denote by ^(T) the set 

of all nontrivial clusters induced by T. For example, for the tree in Figure 2.1(a), the 

set Sf(T) is {{a,b},{c,d}}. 

Given two clusters A and B of a taxon set X, we say that they are compatible if 

either A C B, B C A, or A fl B — 0. Informally, we say that A and B are compatible 

if there exists a rooted phylogenetic tree such that it induces both A and B. If none 

of the three conditions hold, we say that A and B are incompatible. As an example, 

clusters {a, 6} and {c, d} are compatible since they are both induced clusters of the 

tree in Figure 2.1(a). On the other hand, {a, b} and {a, c} are incompatible since all 

the they do not satisfy all three conditions above. A set of clusters is called pairwise 
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compatible if every pair of member clusters is compatible. The following theorem 

shows the relationship between phylogenetic trees and cluster compatibility. 

Theorem 2.2 ([38, 36]). A nonempty set of pairwise compatible clusters uniquely 

defines a tree, and vice versa. 

Finally, for a (nonempty) cluster A of X , we call a node v of a rooted phylogenetic 

tree T on X the most recent common ancestor of A in T, denoted by M R C A T ^ / I ) , if: 

(1) A C CT(V); and (2) for any descendant w of v, w ^ v, A CT(W). 

2.1.3 Phylogenetic Tree Comparison 

In this subsection, we review some common measures for comparing phylogenetic 

trees. We discuss the Robinson-Foulds distance [39] and the SPR (subtree prune and 

regraft) distance. 

Robinson-Foulds distance 

For two rooted phylogenetic trees Ti and T2, we define their Robinson-Foulds distance 

as follows:* 

D M T I , T 2 ) = \ V { T 2 ) | + | V { T 2 ) \ ^ ( T J | . (2.1) 

It is easy to see that CIRF(TI, T 2 ) = 0 if and only if Ti and T 2 are identical since a tree 

is uniquely defined by the set clusters it induces. The distance is also symmetric, by 

definition of symmetric set difference. We note that \ + | -B \A | = + | £ | — 

2\A N B\, and therefore to prove that G?RF satisfies the triangle inequality, we need to 

* Robinson and Foulds in their paper [39] defines the distance for unrooted tree. The definition 

for rooted trees given here follows their definition for unrooted trees. 
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show that 

1^(71) n V(T2)| + |#(T3) n V ( T 2 ) | < \ V ( T 2 ) \ + L ^ M ) n <*f(T3)|, (2 .2 ) 

for all phylogenetic trees 7\, T2, T3 on the same taxon set X. However, every cluster 

A G ̂ (T 2 ) appears at least once in the right-hand side of Equation (2.2). If it appears 

twice on the left-hand side of this equation, then A must be in both ^(Ti) , ^(T3) , 

and hence in ^ (Ti ) n^ (T 3 ) , which means that it also appears twice in the right-hand 

side of the equation. Therefore, Equation (2.2) holds for all Ti, T2, and T3, and d^p 

is a distance measure. 

The normalized Robinson-Foulds distance is defined as 

which is always between 0 and 1, inclusively; a distance of zero means two trees are 

identical, while a distance of one means they are completely different, i.e., they have 

no induced clusters in common. 

Subtree prune and regraft (SPR) distance 

Let T be an unrooted binary phylogenetic tree on X, |X| > 3, and let e = (u, v) be an 

edge of T. By deleting edge e we obtain two connected subtrees t\ to whom u belongs 

and to whom v belongs. We can suppose that L\ has at least two leaves (since 

\X\ > 3), and hence there exists another edge e' G E{t\). We add a new vertex to 

subdivide e' and add a new edge between it and v, and suppress* all 2-degree vertices. 

The new tree is said to be obtained from T by an SPR operation. See Figure 2.2(a) 

for an illustration. 

^Suppressing a 2-degree node v means that we delete two edges (u, v) and (v,w) and then adjoin 

u with w by a new edge. 

(2.3) 
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It has been proved that for any pair of unrooted binary trees, one can always 

be reached from the other by applying a sequence of SPR operations [40, 41]. The 

SPR distance between two unrooted trees is defined as the minimum number of SPR 

operations required to transform one to the other. The problem of computing this 

distance is NP-hard [42]. 

For rooted binary trees, an SPR operation can be defined in a similar way, except 

that we also allow for creating a new root and adjoining an edge between it and v 

in order to make the rooted SPR distance a metric [43]; see Figure 2.2(b) for an 

example. 

The importance of the rooted SPR distance comes from the fact that it can be used 

to simulate a horizontal gene transfer (HGT) event (see Section 2.3 for more detail). 

However, the problem of computing the rooted SPR distance between two rooted 

binary trees is NP-hard [43]. There are a number of heuristics that compute this 

distance, for example, LatTrans [44], EEEP [45], HorizStory [46], RIATA-HGT [47, 

48]. Recently, there is an integer linear programming (ILP)-based algorithm that 

computes the exact rooted SPR distance [49]. 

2.2 Phylogenetic Networks 

The evolutionary history of a group of species is not always tree-like. When biolog-

ical processes such as hybridization and horizontal gene transfer occur, it might be 

more appropriate to represent the evolution of species by a phylogenetic network (see 

Section 2.3 for more detail). A (rooted) phylogenetic network is a rooted directed 

acyclic graph (or rooted DAG for short) N = (V., E) whose leaves are labeled with 

labels from a taxon X by a bijective function (f>. As with phylogenetic trees, we 

call N a phylogenetic network when the labeling function is clear from the context. 
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(a) 

v! r 
v 

u CD 

(b) 

case 1 case 2 

Figure 2.2 : Illustration of an SPR operation for unrooted (a) and rooted trees (b). In (a), 
edge (u, v) is cut, and subtree t2 is regrafted to vertex u'. For rooted trees in (b), an edge 
(u, v) is also cut, but there are two ways to regraft t2. 

Figure 2.3(a) shows an example of a phylogenetic network on X = {a, b, c}. The set 

of nodes V consists two disjoint subsets: VN, the set of nodes with indegree at least 

two (called network nodes), and Vr, the set of nodes with indegree at most one (the 

set of tree nodes). We denote by r(N) the root of N. The set Vr is further divided 

into two subsets: Vr, the set of internal tree nodes, and Jzf(iV), the set of leaves of 

N. Similarly, an edge incident into a network node is called a network edge; an edge 

incident to a tree node is called a tree edge; and an edge incident into a leaf is called 

a pendant edge. 

A phylogenetic network induces a set of trees, called induced trees, each of which 

is obtained as follows: 

1. For each node of indegree at least two, remove all but one of the network edges 
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r 

(a) (b) (c) 

Figure 2.3 : An illustration of a network (a), and its set of induced trees (b) and (c). 

incident into it; and 

2. Suppress all nodes with indegree and outdegree one. 

We denote by the set of all trees induced by N. Note that for each network 

node v, there are exactly indeg(w) choices, and hence, the number of induced trees is 

bounded by rLgv* indeg(v). 

As with phylogenetic trees, a phylogenetic network N induces a set of (nontrivial) 

clusters, which we define as ^(N) = Ure.^N) ^{T). Since a phylogenetic tree on X 

can have at most \X\ — 2 nontrivial clusters, the number of clusters induced by N 

is bounded by ( |X| — 2) x n^ev^ indeg(-u). For example, Figure 2.3(b) and (c) are 

two (and only two) trees induced by the network in Figure 2.3(a). The set of induced 

clusters of this network is {{a, b}, {b, c}}. 

2.3 Species Tree, Gene Tree and their Incongruence 

Although both species trees and gene trees can be represented by phylogenetic trees, 

they are conceptually different: a gene tree shows the evolutionary history of a single 

gene, while a species tree shows the evolution of species via the process of specia-

tion. During the course of evolution of species, a number of biological events can 
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cause a gene tree different from its containing species tree [5]. We describe in this 

section lineage sorting, and hybridization and horizontal gene transfer, on which this 

dissertation focuses. 

2.3.1 Lineage Sorting 

Lineage sorting occurs at a population-level. If in an ancestral population, there 

exist several variants of some gene (alleles), then due to random genetic drift the 

evolutionary history of that gene is incongruent topologically with the species tree [50, 

51, 52], Consider an example in Figure 2.4 where two gene variants, one in red lines 

and the other one in blue lines, exist in the ancestral population of species a, b and 

c. During the evolution, alleles in the next generation are a random sample of those 

of the previous generation. By chance, g^ and gc are sampled from individuals that 

have the blue allele, while ga is from the red allele. Therefore, in the gene tree, b and 

c are siblings, while in the species tree, which is shown in tubes, a and b are siblings. 

Looking backward in time, in the tradition of the coalescent theory [53], the 

topological disagreement between a species tree and gene tree is due to the fact that 

some lineages fail to coalesce at their MRCA; instead, they coalesce deeper in the 

past. In the case in Figure 2.4, when tracing back in time, we find that gt, and gc 

coalesce before they together coalesce with ga, making b and c sibling taxa in the gene 

tree. If instead, ga and g& coalesce at sometime between T\ and T2, then the gene tree 

is topologically identical to the species tree. 

Assuming the Wright-Fisher model where ancestors are chosen randomly with 

replacement from previous generations, we can compute the probability that two 

gene lineages from a and b coalesce at time r , T\ < r < r2, as follows. Let Ne denote 

the effective population size of the (haploid) ancestral population of a and b, and we 
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assume that NE is constant through time. Then, the probability that two lineages 

have the same ancestor in the immediate previous generation is 1/NE. Therefore, the 

probability two gene lineages in a and b coalesce at time r is 

n f 1 - f ) ~ w f { T ~ T i ) , N e f ° r i a r s e i v - t2-4) 
e T'=TI+1 e e 

From this probability, we see that the chance of gene lineages from a and b not 

coalescing on the branch marked by rx and r2 depends on the length of that branch, 

T2 — T1, and on the effective population size NE, represented in the Figure 2.4 as the 

branch width. If the branch is short and wide, then they are less likely to coalesce 

before the speciation event at time r2. If the branch is long and short, they are more 

likely to coalesce first before the resulting gene lineage coalesce with the gene lineage 

from c. 

Similarly, the probability that those gene lineages do not coalesce on the branch 

marked by T\ and r2 is 

f 1 - - M » e
(T2" r i ) / iVe for large NE. (2.5) 

T = t l + 1 ^ 

Based on this formula, we have the probability of obtaining the gene tree (a, (b, c)) 

given the species tree ((a,b),c) [54] 

Pr[(a,(6,c))] = i e - ^ ) / J V - ; (2.6) 

the probability of obtaining the gene tree ((a,c),b) 

Pr[((a,c),6)] = Pr[(o, (6,c))] = (2.7) 

and the probability of obtaining the gene tree ((a, b), c) 

Pr[((M),c)] = 1 - [Pr[(a, (b, c))] + Pr[((a, c), &)]] = 1 - . (2.8) 
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Figure 2.4 : An illustration of lineage sorting. There are two alleles, one in red and the 
other in blue, in the ancestral population at time T2. In this figure, the current genes 
and gc both derived from the blue gene lineage, resulting a gene tree where b is closer to c 
than to a. 

We have discussed in this subsection lineage sorting as a source of species/gene tree 

incongruence, and have demonstrated the use of the coalescent theory in computing 

the probability of a gene tree given a species tree in the simple case in Figure 2.4. The 

paper by Degnan and Salter [55] contains the formulae for the case of binary species 

tree with an arbitrary number of leaves. The books by Hein [56] and Wakeley [57] 

also contain an excellent treatment of the coalescent theory. 

2.3.2 Hybridization and Horizontal Gene Transfer 

In addition to lineage sorting, reticulate events such as hybridization and horizontal 

gene transfer (HGT) can also make a gene tree different from its containing species 

tree. In several groups of species, especially in plant and fish [58, 59], hybridization 

can occur between two species, resulting a new species that carries genetic material 

from both parents. Hybridization can be either: 



20 

• diploid: Each parent contributes a chromosome to the hybrid species, and there-

fore, the it has the same number of chromosomes as one of its parents; 

• polyploid: The hybrid species combines all the chromosomes from its parents, 

and therefore. 

However, whether hybridization is diploid or polyploid, the evolutionary relationships 

of species is no longer tree-like since different regions in the genome of a hybrid species 

can have different paths of evolution. 

HGT also results in non-tree like evolution. It is a process in which a species 

receives genetic material from another species. HGT is believed to be rampant among 

bacteria [60], and as such it plays an important role in their evolution and genetic 

diversity. Three common mechanisms through which HGT occurs are [61] 

• transformation: the uptake of free DNA (of a dead bacterium, for instance) 

from the surrounding environment; 

• conjugation: the process in which genetic material is transferred from one bac-

terium to another through direct physical contact; and 

• transduction: the process in which a bacterial virus, commonly called a phage, 

inserts genetic material (taken from one bacterium) to another bacterium. 

We illustrate HGT from the phylogenetic point of view as in Figure 2.5. In the 

species tree, which is shown in tubes in Figure 2.5(a), a and b are sister taxa whose 

least common ancestor is a sibling of c. Consider the gene in thin lines. Through 

one of the mechanisms above, g^ in species b is transferred from c, instead of evolving 

from a common ancestor with gene copy ga in a. Therefore, the evolution of that gene 
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b a b c a c 

(a) (b) 

Figure 2.5 : Illustration of horizontal gene transfer. Figure (a): the gene tree in thin 
lines disagree with the species tree shown in tubes, because gene gt, is transferred from c, 
making in the gene tree b appear closer to c than to a. Figure (b): a phylogenetic network 
representing HGT. 

is incongruent with that of the species; as the figure shows, b and c are now sister 

taxa. Figure 2.5(b) shows how we represent such an HGT graphically. 

Hybridization and HGT are examples of reticulate events, and when they occur 

the phylogenies of species cannot be represented by phylogenetic trees. Instead, they 

are represented by phylogenetic networks. As defined in Section 2.2, a phylogenetic 

network is a DAG consisting of tree nodes and network nodes. Network nodes and 

network edges of a phylogenetic network represent reticulate events. For example, 

the network in Figure 2.3 is the phylogeny for three species a, b and c, where 6 is 

a hybrid species of a and c. In this network, network node z and its two incident 

network edges represent the hybridization of a and c. As another instance, network 

edge (u, v) in Figure 2.5(b) represents the transfer of a genetic material from c to b. 



22 

(c) 

(d) (e) 

Figure 2.6 : Illustration of strict- and majority-consensus and democratic vote methods. 
Figures (a), (b), and (c) are input gene trees. The strict consensus tree is shown in (d), 
while (e) shows the majority consensus tree. The species tree of the democratic vote method 
is either (a), (b) or (c) since for this set of input gene trees, all of them appear with the 
same frequency 1/3. 

2.4 Methods for Inferring the Species Trees despite Lineage 

Sorting 

Due to those processes discussed in the previous section, one cannot equate a gene 

tree to its containing species trees. With the availability of multiple locus data, how 

can we use them to infer the species tree? In this section, we discuss some of the 

methods commonly used for species tree inference despite lineage sorting. Generally 

speaking, those methods can be divided into two groups: (a) total evidence, and (6) 

separate analysis. Let us begin with a total evidence method. 
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2.4.1 Concatenation 

In this method all DNA/protein sequences are concatenated together. Then, any 

classic phylogenetic methods such as maximum parsimony or maximum likelihood is 

used to build a single tree from the concatenated sequence. Advantages of the method 

include its simplicity, and the availability of an array of well-established methods for 

the analysis of the concatenated sequence. In fact, it is commonly used in practice 

[26, 27, 25]. However, we should not ignore its main weakness that it treats all genes 

equally. Different genes may have different courses of evolution, either having different 

mutation rates or involving biological events such as hybridization or HGT. When 

molecular sequences are concatenated, all the differences among genes are averaged 

away, leading to incorrect phylogenetic estimates [31]. 

2.4.2 Consensus Methods 

We now consider simple attempts of the separate analysis approach at reconciling 

incongruence among gene trees. Instead of concatenating all gene sequences, we 

reconstruct a gene tree for each individual gene. We now have a set of gene trees, 

which may exhibit conflicting phylogenetic signals among themselves. In the first 

variant of those methods, the strict-consensus method, only clusters that appear in 

all gene trees are used to build the species tree. To illustrate, consider three trees 

in Figures 2.6(a), (b), and (c). Only cluster {a, b] appears in all those three trees, 

and hence we obtain the species tree in Figure 2.6(d). That strict-consensus tree, 

as we might notice, is highly unresolved; its root has four children. This is the 

main disadvantage of the strict-consensus tree, which makes it not frequently used in 

practice. 

We can lessen the requirement that only clusters occurring in all gene trees appear 
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in the species tree. If two clusters that both appear in more than 50% of all gene trees, 

then we know that there must be at least one tree inducing both of them. Therefore, 

the set of clusters, each of which appears in more than 50% of all gene trees, allows 

us to uniquely build a tree. Consider the three gene trees in Figure 2.6 again. Besides 

cluster {a, b} that all gene trees have, cluster {c, d} appears in 2 of them. Hence, we 

have the majority consensus tree as in Figure 2.6(e). We note that we still have a 

non-binary tree, although the severity of irresolution is alleviated, compared to the 

strict-consensus method. 

2.4.3 Democratic Vote 

Another method for inferring the species tree from multiple gene trees is by "demo-

cratic voting." As its name suggests, this method takes the gene tree that occurs 

with the highest frequency as the species tree. At first, it seems to be reasonable to 

declare such a gene tree as the species tree. However, it was shown that such a gene 

tree might disagree with the true species tree [30]. We also note that there can be 

more than one such gene tree. Figure 2.6 is an example. All three gene trees are 

different, and so each one of them is equally probable to be chosen as the species tree 

by this method. 

2.4.4 Maximum Likelihood 

In this approach, we infer the species tree (its topology and branch lengths) from a 

set of input gene trees by seeking a tree that maximizes its likelihood, which is defined 

as 

J JP r (gene trees | species tree), (2.9) 
loci 
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where we assume that gene trees at different loci evolve independently. The proba-

bility of a gene tree given a species tree can be computed using the coalescent theory. 

We show the computation for trees with three leaves in Subsection 2.3.1. Trees with 

four and five taxa were treated in [62], and binary trees with an arbitrary number of 

leaves were treated in [55]. 

We note that in inferring the species tree by maximizing its likelihood, we assume 

the gene trees are correct. However, we can eliminate this assumption by simultane-

ously inferring both the species tree and gene trees. Let Pr(sequence | gene tree) be 

the probability of observing a sequence given a gene tree. Then, we infer the species 

tree by maximizing the quantity [5] 

^ ^ Pr(sequence | gene tree) x Pr(gene trees | species tree), (2.10) 
loci gene trees 

where we also assume that different loci evolve independently. 

2.4.5 GLASS 

GLASS, short for Global LAteSt Split, was introduced by Mossel and Roch [63]. It 

is a clustering approach. Suppose we are given a set of gene trees, along with times 

assigned to their internal nodes. To simplify the description, we assume that one 

individual is sampled per gene per species, although GLASS can handle multiple-

allele gene trees. For two taxon clusters A and B, GLASS defines a distance between 

them as 

d(A, B) = min{rGT(a, b): a e A,b e B}, (2.11) GT 

where r c r ( a , b) is the time of of the MRCA of taxa a and b in gene tree GT. Initially, 

each taxon is considered as a single-element cluster, and GLASS finds among all pairs 

of taxa the one whose most common ancestor's time is smallest. It then groups those 
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Figure 2.7 : Illustration of the GLASS method. Two input gene trees are in (a) and (b). 
The inferred tree is shown in (c). 

two taxa into a new cluster, and recompute the distance between this new cluster and 

all the other clusters according to Equation (2.11). This process is repeated until only 

one cluster remains (i.e., until all taxa are in one cluster). The species tree topology 

is reconstructed by clusters produced during this process, while the divergence times 

at internal nodes are the distance d(-,-). 

Let us illustrate GLASS with two gene trees in Figures 2.7(a) and (b). In the first 

step, we merge taxa a and b together, because their MRCA's time is 1, the smallest 

value. Next, we merge {a, b} with c, whose distance is 2. Finally, we obtain the 

cluster {a,b,c,d} with time 4 assigned to it. We have clusters {a, 6}, {a,b,c} and 

{a, b, c, d}, along with the distances d(-, •), which allow us to build the species tree 

(((a,b),c),d) as shown in Figure 2.7(c). 

2.4.6 B E S T 

Liu and and Pearl [33] introduced BEST, Bayesian Estimation of Species Trees, for 

inferring species trees from multi-locus data. The goal of the method is to find the 

species tree that maximizes the posterior probability Pr(species tree | D), where D is 
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the multi-locus data available to us. They show in their paper that 

Pr(species tree \D)= / ( G | £>)/(species tree | G)dG, (2.12) 
J G 

where G is the input gene tree vector. The BEST algorithm is developed based on 

this formula. The algorithm consists of three steps. In the first step, it computes an 

estimate of / ( G | D), denoted as K(G | D). In order to do this, BEST first obtains an 

estimate of / ( G ) , the prior distribution of gene trees by considering only "maximum 

species trees" with internal nodes being as deep as possible but still being compatible 

with all gene trees in G. A sequence of K{Gi \ D) for 1 < i < N is generated by 

Markov Chain Monte Carlo (MCMC) in MrBayes [64], Prior probabilities K(G%) for 

1 < i < N are also recorded. 

In the second step, BEST uses K{G \ D) to estimate /(species tree | G). For each 

Gj, 1 < i < N, BEST computes k samples from /(species tree | G,;) using another 

MCMC procedure. In effect, we produce a sample of size k-N from /(species tree | G). 

The final step is to combine those estimates computed in the first two steps to 

produce an estimate of Pr(species tree | D). However, we need to correct the fact that 

we use estimates of / ( G | D) and /(species tree | G), instead of their true values. This 

is done by multiplying each K(Gi \ D) a weight / ( G t ) / i f (G,;). Note that we do not 

know / (Gj) ' s , but each of it can be estimated using k samples of /(species tree | G.(), 

as shown in their paper. 

2.5 Existing Phylogeny-based HGT Detection Methods 

We discuss in this section some HGT detection methods. All of them are phylogeny-

based, that is, they detect HGT based on the topological discordance between a pair 

of species and gene trees. The methods discussed here are T-REX [65], LatTrans [44], 
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HorizStory [46], EEEP [45], and RIATA-HGT [47, 48], 

2.5.1 The T - R E X Package 

The T-REX package implements an HGT detection method developed by Boc and 

Makarenkov [66]. The method is based on the distance between taxa associated with 

trees to detect HGT. Suppose we have a species tree ST and gene tree GT. If ST 

and GT are identical, then there is no HGT. Otherwise, the algorithm will find HGT 

events that are likely to take place by minimizing a least-squares function Q. 

Suppose we add an HGT branch (a, b) to the species tree ST. Then there are only 

three possible scenarios where the minimum distance between two taxa i and j can 

be changed (Figure 2.8). Define the function: 

d i s t ( i , j ) = d(i,j) -min{d(i,a) + d(j, b); d(j, a) + d(i,b)}, 

where d(i,j) is the minimum distance between i and j in the species tree. Denote 

5(i,j) the distance between the same taxa i and j in the gene tree GT. Then, the 

function Q which we seek to minimize is defined as: 

Q(ab,l)= (d(i,j)-dist(i, j) + l-5(i,j))2+ J2 (d(i,j)-5(i,j))2, 
dist(i,j)>Z d is t ( i , j )< / 

where I is the length of the HGT branch (a, b). The function Q measures the topo-

logical difference between the species tree and gene tree after the addition of branch 

(a,6); in the best case d(i,j) = 5{i,j) and I being exactly the difference dist(i, j), 

then the the addition of (a, b) makes the species tree identical to the gene tree. 

Once we find a branch (a, b) with optimal Q(ab, I) value, the minimum length d 

between taxa is recomputed, and the procedure described above is repeated. There 

are (2n —3)(2n —4) possible (directed) HGT branches (suppose the each of the species 
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Figure 2.8 : Three possible scenarios where the addition of an HGT branch (a, b) can 
change the minimum distance between two taxa i and j [66]. 

tree and gene tree has n leaves), and hence the procedure stops after (2n — 3)(2n — 4) 

steps. 

This method is different from all other HGT detection methods mentioned in this 

dissertation in the sense that, in addition to topological incongruence between the 

species tree and gene tree, their branch lengths are used to detect HGT. 

2.5.2 LatTrans 

Hallet and Lagergren [44] propose a model for HGT. In this model, a horizontal 

transfer scheme for a species tree ST is an acyclic directed graph built from ST and 

a set S of new directed edges added to ST (so edges in S represent HGT events). A 

horizontal transfer scenario is then defined as a triple (ST,E,g), where (ST, H) is a 

horizontal transfer scheme and g is a procedure allowing us to obtain the gene tree 

GT from the scheme. The interesting point of the model by Hallet and Lagergren is 

that it allows more than one copy of a gene to exist at any point of the evolution. 

When this is the case, the algorithm views gene copies as possible HGT events. 

The algorithm detects HGT by first determining at which vertices the species tree 
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Figure 2.9 : One horizontal gene transfer scenario found by LatTrans for gene rbcL [44]. 

and gene tree can disagree. The algorithm distinguishes two such groups of nodes, 

called I-fat vertices and H-fat vertices. Then, the algorithm fixes those discordant 

vertices by adding I-moves and H-moves accordingly. The addition of those events 

might introduce new disagreements, so the algorithm needs to repeat this process 

until the two trees become identical. 

2.5.3 HorizStory 

HorizStory [46] uses a relatively simple strategy for detecting HGT. The algorithm 

recursively repeats two phases of consolidation and rearrangement until two trees 

become identical. In the first phase of consolidation, identical clades in two trees are 

collapsed, thus essentially reducing the size of the two trees. For example, if two trees 

both have a clade ((A, B),C), then that clade is replaced by a single new leaf. 



After the trees are simplified, the algorithm's second phase tries to detect HGT 

by cutting from the species tree one leaf and regrafting it at every possible edge. If 

it ever detects one such move that creates new identical clades, then the algorithm 

records that move, and goes back to the consolidation phase. These two steps are 

repeated until the two trees can be reduced to a single leaf. As there can be more 

than one set of HGT events that can reconcile two trees, HorizStory does try to find 

the "best" one by using a branch-and-bound strategy. 

As stated in [46], HorizStory is limited to comparing trees that are relatively 

similar. This is due to the fact that there are too many ways to cut and regraft a 

leaf in the second phase of rearrangement (0(n2) , where n is the number of leaves 

in species and gene trees). Another shortcoming of HorizStory is that it does not 

consider HGT events between two internal branches. Such an event moves a group 

of leaves, and hence it might be equivalent to several events detected by HorizStory. 

Therefore, the "best" scenario found by HorizStory is not necessarily optimal. 

2.5.4 EEEP 

EEEP [45] stands for Efficient Evaluation of Edit Path, and the concept of edit paths 

is central to the detection of horizontal transfers in EEEP. Consider the species tree 

and gene tree in Figure 2.10. One HGT move is required to reconcile the gene tree. 

Because of the HGT branch, clusters induced by the species tree and gene tree are 

not the same. For the two trees in Figure 2.10, cluster {Ti,T2,T3} induced by edge 

E0 appears in the species tree, but is not an induced cluster of the gene tree. Cluster 

{74, T5, Te, T7} induced by edge E1 also only appears in the species tree. { T I , T 2 } 

and {T3}, on the other hand, are induced clusters of both the species and gene tree. 

We see that edges Eo and E\ form a connected path. In order to reconcile those 
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Figure 2.10 : Edith paths. The species tree is on the left, and the gene tree is on the 
right. The gene tree differs from the species tree by only one HGT move. Edges Eo and E\, 
which induce clusters discordant with the gene tree, form a path. Similarly, edges £(1+3) 
and £(3+4) form a connected subgraph of the gene tree [45]. 

discordant clusters, HGT edges must move T3 from the cluster {Ti, T2, T3} to an edge 

in the clade under E\. 

The above observation is utilized by EEEP to detect HGT. First, it computes 

induced clusters of the species and gene trees, and finds which clusters are in dis-

cordance. Those discordant clusters define a connected subgraph (or a path in this 

specific example). HGT events that connect two branches of the clades under two 

leaves of this subgraph are considered as candidate transfers. To find the most par-

simonious scenario, EEEP considers them in a breadth-first manner: HGT events 

occurring between closest leaves of the subgraph are considered first. With each 

HGT event applied to the species tree, its induced clusters are recomputed, and this 

procedure is repeated until the gene tree is obtained. 
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(a) (b) 

(c) 

Figure 2.11 : Illustrating RIATA-HGT. Figures (a) and (b) are the species tree and gene 
tree, respectively. Figure (c) depicts a scenario to reconcile the species and gene trees [47], 

2.5.5 RIATA-HGT 

This subsection is a brief description of RIATA-HGT. For further details, see [47]. 

Maximum Agreement Subtrees 

Let us first begin with maximum agreement subtrees (MASTs) that RIATA-HGT 

uses to detect HGT. Let T be a phylogenetic tree on a set of taxa X, and let A be a 

nonempty subset of X. We denote by T(A) the minimal subtree of T whose leaf set 

is A. Further, we denote by Tj^ the restriction of T on A that is obtained from T(A) 

by suppressing all nodes of degree 2, except for its root. For example, the restriction 

of the species tree in Figure 2.11 (a) on the set {1,2,3,4} is the subtree ((1, 2), (3,4)). 



Let T" be another phylogenetic tree over the same set of taxa X. If T\A = T(A, then this 

subtree is called an agreement subtree of T and T". A maximum agreement subtree, 

denoted by MAST(T, T"), is an agreement subtree with the maximum number of 

taxa. Consider the two example trees in Figure 2.11 again. Two of their agreement 

subtrees are ((3,4), B) and (A,B ) . If each of the subtrees represented by A and B 

has at least three leaves, then one can easily verify that the MAST is (A, B). 

We note that if there is no HGT, then maximum agreement subtree T and T' is 

definitely T because T and T' are identical topologically. When there is HGT, T and 

T" can disagree with each other. From the graph-theoretic point of view, each HGT 

event can be simulated by an SPR move. Therefore, by extracting out their MAST, 

we can know which part of T must be pruned and regrafted in order to obtain T", 

and hence we can find HGT events. 

We also note that computing the SPR distance between two trees is NP-hard [43], 

while computing the maximum agreement subtree is polynomial. One such an al-

gorithm is developed by Steel and Warnow [67] that finds the MAST by working 

bottom-up from the leaves and by employing dynamic programming. For leaves a in 

T and a' in T', their MAST is a if a = a'. Consider two nodes p in T and p' in T". In 

the case both T and T' are binary, p and p' have two children, and so there are four 

possibilities to combine their children's MASTs to obtain their MAST. In the case 

internal nodes of T and T" have arbitrary degrees, the problem of finding a MAST for 

p and p' is converted to finding a maximum weighted matching in a bipartite graph. 

See [67] for a complete description of the algorithm. 
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Algorithm 1 ComputeHGT(ST, GT) 

1: compute MAST (ST, GT); 

2: if ST = MAST (ST, GT) then 

3: return; 

4: else 

5: call Decompose to "refine" subtrees in ST and GT that are not in 

MAST (ST, GT); 

6: end if 

7: for all pair of subtree st and gt returned by Decompose do 

8: call ComputeHGT(st,gt) to reconcile st and gt; 

9: call AddSingleHGT to add an HGT event for gt; 

10: end for 

Description of RIATA-HGT 

The algorithm has three components. In the main procedure, ComputeHGT, it com-

putes the MAST of the two input trees ST and GT by using the algorithm described 

in [67], decomposes the remaining discordant subtrees by calling the second compo-

nent Decompose, detects HGT events that move the subtrees (AddSingleHGT), and 

then recursively calls ComputeHGT to reconcile the subtrees. Algorithm 1 is a high-level 

description of RIATA-HGT. 

We illustrate the algorithm on the two example trees in Figure 2.11. Their MAST 

is the tree (A, B) (assuming A and B have at least three leaves), and those discordant 

subtrees are st\ = (1,2), st2 = (3,4) (in the species tree), and gt\ = (1), gt2 = 

((2,3), 4) (in the gene tree). We note that we have gt2 = ((2,3), 4) in the gene tree, 

while leaf 2 is in the subtree in st\ and leaf 3 is in st2. This means that an HGT 
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involving gt2 cannot place both leaves 2 and 3 in the correct place in the gene tree. 

The purpose of Decompose is to resolve this problem. In this example, gt2 is broken 

down further into two smaller subtrees (2) and (3,4). An HGT edge involving one of 

those decomposed subtrees, for example (3,4), can now be handled by AddSingleHGT 

by noting that its head is the least common of (3,4) and that its tail is a node in the 

species tree that corresponds to the least common ancestor of the subtree's siblings in 

the gene tree (in this example, the root of the subtree A). An example of a complete 

set of HGT transfers is given in Figure 2.11 (c). 

The original algorithm RIATA-HGT [47] computes only a single set of HGT events, 

while in fact there can be more than one [54]. We recently extended it to compute 

multiple solutions, and introduced a refinement procedure for dealing with trees with 

non-binary trees [48]. For full details of these new improvements, see [48, 68]. 
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Chapter 3 

Species Tree Inference from Gene Trees Using 
Their Topologies and Coalescence Times 

This chapter is about our first method for inferring for inferring species trees from 

multi-locus data [69]. We note that gene trees can be different from each other in 

terms of both topologies and branch lengths, e.g., trees in Figure 3.1. The method 

presented in this chapter allows us to infer both the species tree topology and branch 

lengths from a set of gene trees whose incongruence is due to lineage sorting. 

In Section 3.1, we describe how we reconcile a gene tree within a species tree 

where their incongruence is due to lineage sorting. We then introduce a cost function 

to measure the severity of deep coalescence events. We note that our model for 

reconciling a pair of trees here is similar to that in the paper by Maddison [5], except 

for the fact that ours uses branch length information of both trees. 

Based on this model, we developed an algorithm for finding an optimal tree. The 

algorithm operates in three phases, the first of which computes a set of species tree 

topologies, the second of which estimates divergence times of those candidate trees 

using an ILP formulation, and the third of which selects the optimal tree under a 

criterion that combines deep coalescence and species/gene tree incongruence. Those 

three phases are discussed in detail in Section 3.2. 

The remaining section of this chapter contains an empirical study of our method on 

nine strains of the Staphylococcus aureus bacteria. We analyzed 1898 genes in the data 

set, and used the reconstructed gene trees to create 24 candidate species tree topology 
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Figure 3.1 : Illustration of discordance between species and gene trees. Tree T' is a species 
tree, and T\ and are two gene trees, which are different from T". In gene tree Ti, gene 
lineages a and b coalesce at time TI prior the divergence time r,. Gene tree T2 is different 
from tree T' topologically. 

candidates. The divergence time was then inferred, which took approximately 1 hour 

for each of those tree candidates. (The inference algorithm was run on a 3.2 GHz 

Intel Pentium 4 machine with 1 GB of RAM.) Despite the high degree of sequence 

identity at the nucleotide level in the data set, our method is still able to return a 

binary tree in a reasonable amount of time. This affirms its suitability for analyzing 

very closely related organisms. 

3.1 Reconciling Gene Trees within Species Trees 

As illustrated in Figure 3.1, a gene tree can be different from a species tree in terms 

of both shapes and branch lengths. In coalescent theory, this incongruence is caused 

by the failure of gene lineages to coalesce at their MRCA. For example, in Figure 3.1 

although the gene tree 7\ is identical topologically to the species tree T", they are 

not the same if branch lengths are taken into account; in Ti, gene lineages a and b 

do not coalesce at TS, but instead at a deeper time T\. As the coalescence time of a 

group of gene lineages cannot be later than their MRCA time, any time assignment 
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to a candidate species tree must satisfy this requirement. We state this requirement 

formally as follows. Let T be a gene tree and let T' be a species tree. Further, we 

denote TT and TT> two time functions for T and T' as defined in Chapter 2. Then, for 

any internal node v of T, we require that 

TrW) < Mv), (3.1) 

where v' = M R C A T ' { C t { V ) ) is the MRCA in the species tree T' of taxa in the cluster 

CT(V) induced by v. 

In Figure 3.1, in order for V to reconcile both Ti and T2, we must have TU < T\ and 

r r < r2. Although in the figure, r r is greater than t i , it can happen that TU < r r < n 

without violating the condition in Equation (3.1). In this case, however, lineages a 

and b in the tree do not coalesce on the branch (r,u), but instead they coalesce 

deeper on the branch incident into the node r. In our model for reconciling a pair of 

species and gene trees, we penalize such scenarios. More precisely, suppose that we 

are reconciling a gene tree T within a species tree T'. Then if lineages of a cluster of 

T coalesce on the species tree branch incident into its MRCA, we call this a correct 

coalescence event and assign it weight zero. If they instead coalesce k species tree 

branches deeper than their MRCA, we call this a deep coalescence event and assign it 

weight k. With this weighting scheme, we seek to assign times to internal nodes of a 

candidate species tree topology in such a way that the total weight of all coalescence 

events is minimum. 

We note that if we assume lineage sorting is the only cause of species/gene tree 

incongruence, then the condition in Equation (3.1) cannot be violated. However, 

there can still be genetic exchange between species after their divergence time, e.g., 

via horizontal gene transfer. Moreover, the estimated branch length in reconstructed 

gene trees is not always 100% accurate. Therefore, to make our model more flexible, 
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we relax the requirement that Equation (3.1) must always be satisfied, provided that a 

small number of violations of this condition (we call them shallow coalescence events) 

can lead to a significant decrease in the number of deep coalescence events. 

3.2 An ILP-based Method for Inferring Species Trees 

In this section, we present our method for inferring the species tree based on the 

model described in the previous section. Our method works in three phases: 

1. Construction of species tree topology candidates from input gene trees; 

2. Assignment of times to nodes of each of those candidate trees, based on the 

coalescence times of the gene trees; 

3. Reconciliation of the gene trees within branches of each of those candidate trees 

so as to find an optimal tree among them under a criterion that combines deep 

coalescence, shallow coalescence and species tree/gene tree incongruence. This 

optimal tree is reported as the species tree for the input gene trees. 

In the following subsections, we describe those phases in more detail. 

3.2.1 Inferring Species Tree Topology Candidates 

Despite lineage sorting, a gene tree still carry phylogenetic signals [34]. Moreover, 

from our empirical study, we see that the species tree topology is almost always 

an agglomeration of compatible clusters induced by gene trees; see Section 4.7 of 

Chapter 4. Therefore, in our method, we use only clusters induced by input gene 

trees to generate species tree candidates, instead of considering all (2n — 3)!! binary 

rooted trees (assuming that the taxon set has n elements). Based on this observation 
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Algorithm 2 EstimateSpeciesTreeTopologies(^) 
1: compute ^ = (J 

2: construct the compatibility graph H for %J: 

• each vertex of H represents an element of ; 

• two vertices are adjacent if two clusters they represent are compatible; 

3: compute all maximal cliques in H, and use them to build species tree topology 

candidates; 

and the relationship between clusters and trees, we formulate a heuristic for finding 

candidate tree topologies from the set CS of gene trees as in Algorithm 2. 

Steps 1 and 2 of the heuristic are quite straightforward. For Step 1, we simply 

visit each internal branch of each tree in and compute the cluster induced by it. 

To build the compatibility graph H in Step 2, we add an edge between two vertices 

representing clusters C\ and C2 if and only if either C\ C C2, C2 C C\ or C\ nC-2 = 0. 

The number of clusters induced by a rooted phylogenetic tree is exactly n — 2, where 

n is the cardinality of its leaf set. Therefore, \io\ — 0((n — 2)|£f|), and those two 

steps can be carried out in polynomial time. Step 3 is more involved, as it seeks to 

enumerate all maximal cliques in the graph H, but there are already several efficient 

algorithms for doing this, e.g., [70, 71, 72, 73]. 

Figure 3.2 illustrates the algorithm on three input gene trees. Under each gene 

tree are clusters induced by that tree. In total, there are seven distinct clusters: 

{b, c}, {a, b, c}, {d, e}, {d, e, / } , {e, / } , {a, b}, and {d, / } . The compatibility graph H 

is then constructed from those clusters. For this graph, there are six maximal cliques, 

all of which have four vertices. Those maximal cliques allow us to build six rooted, 
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Gene trees 

a b c d e f a b c d e f a b e d f 

Clusters be abc de def be abc ef def ab abc df def 

Compatibility graph 

Maximal cliques 
MC\: {be, abc, de, d e f } 

MC4: {ab, abc, d f , d e f } 

MC2: {be, abc, d f , d e f } 

MC$: {ab, abc, d f , de/} 

MCy. {ab,abc,de,def} 

MC6: {ab, abc, e f , d e f } 

Figure 3.2 : Illustration of the first phase in our method. At the top are three gene trees, 
which are the input to the algorithm. The set of all clusters occurring in these gene trees 
are then computed, and their compatibility graph is built. Finally, the set of all maximal 
cliques are computed, and each defines a species tree topology candidate. 

binary species tree topology candidates, which will be used in the second stage of our 

inference method. 

3.2.2 Estimating Species Tree Divergence Times 

Our next task entails estimating the divergence times at internal nodes of each of the 

species tree topology candidates that we computed. As we discussed in Section 3.1, 

different assignments of times to internal nodes of a species tree lead to different cost 
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of deep coalescence events. If we relax the condition in Equation (3.1), then some 

shallow coalescence events can occur. Our objective is to find a time assignment 

that minimizes a weighted combination of deep and shallow coalescence cost. This 

is done through the use of an ILP formulation that involves three elements: (1) 

temporal constraints on internal nodes of the species tree candidate; (2) constraints 

relating deep/shallow coalescence to temporal information of the internal nodes; and 

(3) an objective function. We now elaborate those elements, but before doing so we 

describe a special labeling of branches of a species tree candidate that facilitates their 

formulation using the language of linear and integer programming. 

Labeling branches of the species tree candidate 

In our model for reconciling a gene tree within a species tree in Section 3.1, when 

a coalescence event occurs k branches deeper than its MRCA, we penalize it with a 

weight k. To easily convert this relation to a linear constraint, we propose to label 

branches of a species tree as follows. Let us be given a species tree T and a cluster 

CT(V) of a gene tree tree T, and let v' = MRCAT/(CV(w)). We define a chain EV 

of edges on the path from v' to the root of T", plus the edge incident to this root 

node, and assign positive integers 0 , 1 , . . . , \EV\ — 1 to those edges in the same order. 

Denote by £v(e) the integer value assigned to an edge e G EV. (Note here that we 

use the subscript v instead of v' because EV and iv are defined for each node v of T, 

and in general the MRCA mapping is not one-to-one (several different nodes v can 

be mapped to the same node v' in T').) 

This labeling is essential for our ILP formulation, since it will be used to compute 

the weight of coalescence events. For example, since the MRCA of cluster {a, b} of 7\ 

is node u in the species tree T", we label (for this cluster) branch (r, u) of T' number 
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0 and the branch incident into r number 1. If TU < T\ < r r as in Figure 3.1, then 

lineages a and b coalesce on branch (r, u) and this coalescence event has weight zero. 

On the other hand, if its occurs the branch incident into r because r r < TI, then its 

weight is 1, which is also the label of this branch. 

Temporal constraints 

The topology of the species tree T' defines a partial order on the times of its internal 

nodes. This can be represented using linear constraints as 

for every branch (u',v') of the species tree. For species tree T' in Figure 3.1, for 

example, we require that TT'(T) > TT>(U). 

Further, lineages in a cluster CT{V) induced by a node v of the gene tree T may 

coalesce on any branch of the species tree T' above their MRCA, including the branch 

incident to r(T'). Temporally, this imposes a linear constraint 

where v' = M R C A T > (GV(f)), the most recent common ancestor of CT{V) in T ' . For 

the cluster { a , B } of Ti in Figure 3.1, for example, we have TT>(U) < TI, as u is the 

MRCA in T of cluster {a, b}. 

We note that since the coalescence times may be underestimated or horizontal 

gene transfer may have occurred after divergence of species, we relax this constraint 

by allowing the coalescence time of certain clades to be smaller than the time of their 

MRCA in the species tree. Let us designate a binary variable gv for each node v in 

T to indicate whether the coalescence event for all lineages under v is shallow (i.e., 

TTF(V!) > T T ' ( v ' ) (3.2) 

tT>(V') < T T ( v ) , (3.3) 



it occurs after its corresponding divergence time) or not (i.e., it occurs prior to its 

corresponding divergence time): 

if TT'(V') < T T ( V ) , then gv = 0 

if TT'(V') > T T ( V ) , then gv = 1, 

where v' = MRCAT/ (GV(V)). Defining M to be any positive real number that is larger 

than the time of the root of any gene tree T, we can convert those constraints into 

linear ones: 

Because of the choice of M, the Equation (3.4) forces gv to be assigned 0 if TTI(V') < 

TT(V), while Equation (3.5) forces gv = 1 if TT/(V') > T T ( V ) . We note that we might 

need to subtract a small value (e.g., 10~8) from the right-hand side of the strict 

inequality (3.4) so that it can be entered as input to an ILP solver. 

Associat ing t imes wi th branches through their labels 

The next set of constraints associate divergence times with the weight of coalescence 

events. Consider a node v of tree T. Let v' = MRCAT'(CX(U))> and let Ev> be 

the chain of edges on the path from v' to r(T') , plus the edge incident into r(T') . 

Suppose further that the edges e € Ev are labeled the labeling function tc{e). When 

reconciling T within T', if lineages in CT{V) coalesce on a branch e = (te, he) E Ev, 

then we must have 

T T ( V ) - {1 - gv)M < TT,(V') 

(1 ~ gv)rT{v) + gvM > TT>(V') 

9v e {0,1}. 

(3.4) 

(3.6) 

(3.5) 

if rT'(he) < Tt(V) < TT'(te), then fv = £v(e) (3.7) 
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where the integer variable fv is introduced for each node v and used to compute the 

weight of coalescence events. In order to convert this "if-then" constraint into linear 

constraints, we associate with each edge e = ( t e ,h e) £ Ev a binary variable ae, and 

rewrite this constraint as: 

Tt{V) - (1 - Ae)M < rT,(te) Ve e Ev, (3.8) 

TT(v) + (l-ae)M <TT,(he) Ve G Ev, (3.9) 

gv + «e = 1, (3-10) 
e€Ev 

fv- ^ 4 ( e ) - a e = 0, (3.11) 
eeEv 

a e e { 0 , l } Vee£7„. (3.12) 

Constraints Equations (3.8) and (3.9) force the condition T R ' ( H E ) < T T ( V ) < TR'(TE) if 

lineages in the cluster C T ( V ) coalesce on the branch e = ( T E , H E ) ; they are vacuously 

true if those lineages do not. The third constraint in Equation (3.10) ensures that a 

coalescence event can occur on exactly on branch. It is either a shallow event with 

gv = 1, or a deep event on exactly one branch e with ae = 1. In the former case, the 

value of fv should be zero, and in the latter case, the value of fv is exactly lv(e). as 

guaranteed by Equation (3.11). 

The complete ILP formulation 

Now that we have described the constraints and how to write them as linear con-

straints, we are in a position to introduce the complete ILP formulation for solving 

the problem of estimating divergence times in a species tree T', given a set & of gene 

trees with coalescence times at internal nodes. In our formulation, we seek to mini-

mize a weighted combination of the costs of deep coalescence and shallow coalescence 
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events. The formulation is given in Algorithm 3.3. 

3.2.3 Spec ies /Gene Tree Reconciliation and Optimality 

After we have assigned times to internal nodes of species tree candidates T", we can 

now seek among them an optimal tree that we declare as the species tree for the set 

of input gene trees . The optimality criterion, r ) ( T i s defined as the sum of 

three terms: 

1. the weighted number of gene tree clusters that are missing from T", wu Y1t&<? £ 

2. the weighted number of deep coalescence events, Wdc YLt&s ^2veV(r) fv, 

3. and the weighted number of shallow coalescence events, wsc ^2Tecf X^eK(r) 9v-

The weights wu, Wdc, and wsc can be set in a way to reflect the significance given to 

each of the three terms in the criterion. For example, if only topological dilference 

among the gene trees and species tree matters, w,ic and wsc can be set to 0. Using 

this optimality criterion, we now give the description of the algorithm for inferring 

the species tree from a set of gene trees ^ as in Algorithm 3.4. 

3.3 Empirical Study 

3.3.1 Materials and Analysis 

In our experimental study, we used the Staphylococcus aureus bacteria, which infect 

humans in the community and hospitals and cause a variety of diseases. We obtained 

all the sequence data from the site f tp : / / f tp .ncb i .n ih .gov /genomes / . Table 3.1 

summarizes the nine strains we used. 
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E S T I M A T E D I V E R G E N C E T I M E S (T", 

minimize: 

WdcYl X / + W s c 9 v + - TT'(he)), 

T&vev"(T) EET' 

subject to: 

rT'(he) < T T , ( t e ) e G £7(7") 

T T ( V ) - (1 - g v ) M < T T , ( V ' ) \fv G V(T),T G <S,v' = MRCA R , (C T (v ) ) 

(1 - GV)RT(V) + g v M > T T , ( V ' ) VW G V(T), T = M R C A T ' ( C T ( v ) ) 

T t ( V ) - (1 - a e ) M < TT,(TE) VveV(T),Te&,VeeEv, 

TT(V) + (1 - ae)M > TT,(he) Vv G V(T),Te&,Ve G Ev 

9v + ^ AE = 1 
eeEv 

VvE V{T),Te&, 

f v - ^ 2 • = 0 

eeEv 

Vve v{T),Te&, 

gv,ae G {0,1} . Vu G V(T),T G Sf,Ve G Ev. 

Figure 3 . 3 : Algorithm ESTIMATEDIVERGENCETIMES. The complete I L P formulation for 
estimating the divergence times of a species tree topology T' given a set Sf of gene trees 
with times at internal nodes. Solving this ILP yields the divergence time TV, for every node 
v in the species tree T'. 
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C O M P U T E S P E C I E S T R E E ( ^ ) 

1. & E S T I M A T E S P E C I E S T R E E T O P O L O G Y ( ^ ) ; 

2. best oo; 

3. for each T 

( a ) E S T I M A T E D I V E R G E N C E T I M E S ( T ' , S f ) ; 

(b) best <- min{best, r)(T',&)}; 

4. end for 

5. return the tree with the smallest 77 value as the species tree; 

Figure 3 . 4 : Algorithm COMPUTESPECIESTREE(^ ) . The algorithm for computing the 
species tree topology and divergence times from an input set of gene trees with coalescence 
times at internal nodes Sf. 

Table 3.1 : Information of nine strains of the Staphylococcus aureus bacteria. 

Refseq subsp. aureus ~ Genome size (nt) Annotated gene# Reference 

NC-002745 N315 2,814,816 2669 [74] 

NC_002758 Mu50 2,878,529 2775 [75] 

NC-002951 COL 2,809,422 2724 [76] 

NC-002952 MRSA252 2,902,619 2845 [77] 

NC-002953 MSSA476 2,799,802 2723 [77] 

NC-003923 NW2 2,820,462 2712 [78] 

NC-007622 RF122 2,742,531 2665 [79] 

NC_007793 USA300 2,872,769 2648 [80] 

NC-007795 NCTC 8325 2,821,361 2969 -
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To identify orthologous genes, we used the information of both DNA sequence 

identity and synteny (gene order) as follows. All-against-all BLASTN search with 

default parameters [81] was performed for the genes in NC-002745 v.s. all others. 

Then, we produced a list of BLASTN hits of the 2669 genes in NCD02745 for each of 

the other strains. The lists include genes that have at least 90% sequence identity to 

the reference gene in NC-002745 and the length of the BLASTN hit region covers more 

than 50% of the entire gene. We excluded BLASTN hits when there are more than 

one hit for each reference gene. As there were not many such cases, this restriction 

did not result in much loss of data. 

In order to identify orthologous genes conservatively, we considered that orthol-

ogous genes should be in a large block of a region in which the gene order is well 

conserved for all investigated strains. A block is defined such that genes from all 

strains are continuously located on their genomes with less than three gene skips, 

which could be created by small indels and annotation errors. To detect such blocks, 

we performed a synteny survey from the first gene in NC_002745 (NC_002745_1) to 

downstream genes. Then, we identified 222 such blocks, which covered in total 1898 

genes. 

For each gene, we built a maximum parsimony (MP) tree from its DNA sequences 

by using PAUP* 4.0 [82], and rooted the tree using the midpoint method. When 

the MP heuristic identified more than one tree for a given gene, we used the strict 

consensus of these trees. We inferred coalescence times at internal nodes in the gene 

trees using the formula 

for coalescence time of node y in a gene tree, where B(y) = {(a, b): MRCA(a, b) = y}, 

(3.13) 
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ds is the number of synonymous substitutions per synonymous sites, and rs is the rate 

of synonymous substitutions. In other words, ry is the average of all coalescence times 

of every pair of genes whose MRCA is node y. Given that the rate of synonymous 

substitutions is similar across genes [83], this allowed us to compare the coalescence 

times across gene trees and use them to infer divergence times in the species tree. We 

used rs = 10"8, following the findings of [84]. 

It has been suggested that ds may not be constant across the genome due to dif-

ferent codon bias among genes [85]. We found that ds and the codon adaptation index 

(CAI) are in a negative correlation, therefore, we used a linear regression method to 

correct ds for bias caused by non-random usage of codons. The correction is made such 

that a corrected ds corresponds to that with the mean CAI. However, the corrected 

ds measure did not change the relative times we obtained for the species trees. 

To get the species tree candidates, we used Algorithm 2. Additionally, we consid-

ered five other candidate tree topologies: 

1- Tconc: the tree topology obtained by the maximum parsimony heuristic, as 

implemented in PAUP*, on the concatenation of all 1898 gene data sets; 

2. Thf: the topology of the gene tree that is compatible with the largest number 

of other gene trees (this tree, shown in Figure 3.9, is compatible with 1645 of 

the gene trees); 

3- Tavgds•' a tree topology built using the neighbor joining method [86] from the 

average ds distances among nine strains; 

4. 7aVghd• a tree topology built using the neighbor joining method from the average 

Hamming distances among nine strains; and 



5- TmajCons: the topology of the majority consensus tree of all 1898 gene trees. 

In total, we have 29 candidate species tree topologies. 

We then estimated the divergence times of each of the species tree topology can-

didates, using the CPLEX tool to solve ILP programs described in Algorithm 3.3. 

We have implemented a software tool for generating the ILP program from a set 

of gene trees with coalescence times, following the formulation in Algorithm 3.3, in 

the PhyloNet software package, which is available publicly at h t t p : / / b i o i n f o . c s . 

r i c e . edu/phylonet/. In the 9-genome data set that we considered in this study, each 

MILP program had approximately 4,000 variables and 30,000 constraints. Nonethe-

less, CPLEX solved each program in about one hour. 

3.3.2 Results and Discussion 

Our first task was to measure the "heterogeneity" in the data, which consisted of the 

9 x 1898 gene sequences and 1898 gene trees. In this task, we considered two measures 

of heterogeneity: topological differences among the gene trees, and distributions of 

coalescence times of each cluster of genes across all gene trees. Figure 3.5 shows the 

topological differences between every pair of the 1898 gene trees, as computed by the 

Robinson-Foulds (RF) measure [39]. The RF measure quantifies, for a given pair of 

trees, the average number of clades that appears in one, but not both, of the trees. 

Hence, if two trees are identical, the RF distance between them is 0; if they do not 

share any clades, then the RF distance is 1; and, trees with varying degrees of shared 

clades have RF distance values between 0 and 1. 

As shown in Figure 3.5, while blue (low RF values) is the dominating color, there 

are many pairs of trees that have RF distance of at least 0.3. In fact, among the 1898 

gene trees, there were over 400 different topologies. Given our conservative selection of 

http://bioinfo.cs


the orthology groups, which almost eliminates the possibility of gene tree discordance 

due to events such as horizontal gene transfer and gene duplication/loss, this result 

indicates massive gene tree discordance due to stochastic effects of incomplete lineage 

sorting. 

Furthermore, it is important to point out that the majority of the gene trees were 

not binary, since the percent identity among the orthologous sequences was very high. 

This lack of resolution of the gene tree topologies may give a false indication of high 

concordance (low RF values) among the gene trees, even though this may not be the 

case in reality. Alternatively, one may quantify the "compatibility", rather than "sim-

ilarity" (as measured by the RF distance), among gene trees. However, this suffers 

from the fact that compatibility measures are not true metrics, and in particular do 

not satisfy the triangle inequality property, which may distort the picture emerging 

from such an analysis. 

As illustrated in Figure 3.1, it may be the case the gene trees have the same 

topology, yet they disagree in their coalescence times (times at their internal nodes). 

Therefore, what we studied next was the distribution of coalescence times of each 

cluster of taxa across all gene trees in which the cluster occurs (recall that a cluster 

occurs in a tree if the tree contains a clade whose leaves are the only members of 

that cluster); the results are shown in Figure 3.6. The figure shows that, even with 

the exclusion of possible outliers, each cluster of taxa has a wide distribution of 

coalescence times across all gene trees in which it occurs. Further, what makes the 

computational analysis of such a data set particularly challenging is that large extent 

of overlap of distributions of the different clusters. Dealing with this overalp is where 

most of the computational time of solving our MILP formulation is spent. 

After we characterized the heterogeneity in the data, we turned to the main issue: 
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Gene trees 

Figure 3.5 : The Robinson-Foulds (RF) distances between every pair of the 1898 gene 
trees. RF distance of 0 indicates the two trees are identical, and RF distance of 1 indicates 
that the two trees do not share any clades in common. 

0.16 -

0.14-

0.12 

c 
o 0 .1 -

IS 0.08-

Clusters in all gene trees 

Figure 3.6 : The distributions of coalescence times of all 36 clusters of taxa in the 1898 
gene trees, as calculated by Equation (3.13), but without division by rs ~ 1CT8, 
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estimating the species tree topology and divergence times from the set of 1898 gene 

trees. As described in the previous subsection, we considered 29 species tree topology 

candidates. For each of these 29 topology candidates, we solved the ILP formulation 

as outlined in Algorithm 3.3, once with wdc = wsc = 1, and another with wsc = 5Wdc-

In both cases, the same tree topology candidate of all 24 maximal cliques emerged as 

the optimal one, yet with differing times. Therefore, we report the results of only the 

optimal solution under Wdc = wsc = 1. 

For a clearer presentation, we show each of the three terms in the optimality cri-

terion described in Subsection 3.2.3 individually, with Figure 3.7 showing the number 

of missing (or, discordant) clades, and the stacked bars in Figure 3.8 showing the sum 

of the depths of deep coalescence events (the blue bars) and the number of shallow 

coalescence events (the red bars). 

Figure 3.7 shows that the first tree out of the 24 maximal clique trees has the least 

disagreements with the set of 1898 gene trees, with trees 8 and 9 differing from it 

by about 70 clades. The other 21 maximal clique trees are much less optimal in this 

context, with the best of them disagreeing with the gene trees in at least 400 more 

clades. We denote by Toptm the first tree, which is the best in this context among 

all 24 maximal clique trees. Out of the additional five trees, Thf is clearly the best 

in this context, and the only one that is better than Toptm- Both trees Toptm and Thf 

are shown in Figure 3.9. The tree Toptm is a refinement of the tree Thf; that is, Toptm 

contains all the clades in Thf, plus additional ones. In this case, Thf has the clade 

(USA300, NCTC8325, COL) unresolved, while Toptm has it resolved as (NCTC8325, 

(USA300, COL)). 

When considering the optimality of both trees, Toptm and Thf, as measured by the 

cost of deep coalescence and shallow coalescence events, as shown in Figure 3.8, they 
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Figure 3.7 : The number of gene tree clades that do not appear in the species tree. Trees 
1 to 24 are built from maximal cliques. The first 24 trees are built from the compatibility 
graph for if, while trees 25, 26, 27, 28, and 29 are Tconc, Thf , Tavgd s , Tavghd, and T m a j C o n s , 

respectively. 
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are nearly identical. The significance of this result comes from the fact that, while 

the unresolved clade (USA300, NCTC8325, COL) has three possible refinements: 

• (NCTC8325, (USA300, COL)), 

• ((NCTC8325, USA300), COL), 

• ((NCTC8325, COL), USA300), 

the ILP formulation led to a fully binary species tree that has exactly the same 

combined cost of deep and shallow coalescence events. 

We note that the majority consensus tree T m a j c o n s is the optimal among all 29 trees 

in terms of the costs of deep and shallow coalescences. However, this tree has two 

problems. First, in terms of missing clades, it is one of the least optimal, as shown 

in Figure 3.7. Second, it is highly unresolved, containing only two internal branches, 

as shown in Figure 3.9. 

For the concatenation tree Tconc, it is the best in terms of the cost of shallow coa-

lescence events, yet the worst in terms of the cost of deep coalescence events. Further, 

it is the only tree that had the wrong outgroup. This indicates that concatenation of 

gene sequences and reconstructing a strain tree from the resulting "supergene" may 

result in very inaccurate trees, particularly when there is a massive extent of discor-

dance among gene trees, a fact that has already been established through extensive 

experimental studies [31]. While it seems from Figure 3.9 that Tconc indicates very 

large divergence time between N315 and Mu50, this is but a reflection of time esti-

mation given that these two strains did not form a single clade in the concatenation 

tree. To solve this problem, we will consider in future development of our tool all 

possible refinements of any non-binary strain tree topology candidate. 
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Species tree candidates 

Figure 3.8 : The cost of deep coalescences, X/reJ? S-ueV(T) fv> an<^ the cost of shallow 
coalescences, *l2veV(.T) 9V> f°r 29 species tree candidates. The first 24 trees are 
built from the compatibility graph for if, while trees 25, 26, 27, 28, and 29 are Tconc, Thf, 
Tavgds i TaVghdi and Tmajcons, respectively. 

The other two trees, Tavgds and Tavghd are very similar in terms of topology, as 

shown in Figure 3.9, and both fall "in the middle" in terms of optimality (Figures 3.7 

and 3.8. Therefore, our proposed evolutionary history of all nine strains of Staphylo-

coccus aureus is the tree Toptm, shown in Figure 3.9. 
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Figure 3.9 : Species trees with times assigned by Algorithm 3.3. The lengths of the 
"shortened" branches were divided by 10s, so that the resolution of the trees can be shown 
clearly. 
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Chapter 4 

Species Tree Inference from Gene Trees Using 
Their Topologies Alone 

In the previous chapter, we present a method for inferring the species tree, both the 

topology and divergence times of its internal nodes, from a set of gene trees. For 

assigning divergence times to the internal nodes of a species tree topology candidate, 

we introduced an optimality criterion that is a combination of the cost of deep and 

of shallow coalescence events; the cost of a deep coalescence event was defined simply 

as the number of edges that this event occurs deeper than its MRCA (also called its 

depth), while the cost of any shallow coalescence event was 1. 

Maddison proposed another parsimony criterion, called minimizing deep coales-

cences (MDC), for inferring the species tree from multiple gene trees [5], when we 

also assume that the incongruence is exclusively due to lineage sorting. An empirical 

study in [34] shows that the criterion allows for reasonable recovery of species trees 

from phylogenetic signals in gene trees, despite the fact it makes no use of gene tree 

branch lengths. However, there have been so far heuristics for finding the tree min-

imizing deep coalescences, e.g. the one implemented in Mesquite [87]. This hinders 

a more comprehensive evaluation of the MDC criterion as well as its applicability to 

practice. 

We recently devised two exact (i.e., guaranteed to find the optimal tree) and more 

efficient methods than the heuristic in Mesquite [88]. One method is also integer 

linear programming (ILP)-based, but unlike the method presented in the previous 
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chapter it does not require a separate phase that enumerates species tree topology 

candidates. Instead, it finds the tree minimizing deep coalescences directly from 

clusters, based on an observation that the MDC cost can be computed for individual 

clusters without the prior knowledge of the species tree. This observation also led to a 

more efficient dynamic programming algorithm. We describe the ILP-based method 

and the dynamic programming algorithm in Sections 4.4 and 4.5, respectively. 

In Section 4.7, we show the performance of our algorithms. We analyzed a data 

set of 106 loci from eight yeast species [25], a data set of 268 loci from eight Apicom-

plexan species [29], and several simulated data sets. We show that the MDC criterion 

provides very accurate estimates of the species tree topologies, and that our methods 

are very fast, thus allowing for the accurate analysis of genome-scale data sets. We 

also show that searching for the species tree from clusters induced by input gene trees 

might be sufficient in practice, a finding that helps to ameliorate the computational 

requirements of computing the optimal tree. Further, we study the statistical consis-

tency and convergence rate of the MDC criterion as well as its optimality in inferring 

the species tree. 

4.1 Extra Lineages and Inferring the Species Tree by Mini-

mizing Deep Coalescences 

Maddison introduced the number of extra lineages to measure the severity of deep 

coalescences [5]. In this section, we review this concept, and then formalize it as 

it is necessary for the computation of this number and for the methods presented 

in Sections 4.4, 4.5. We also define the problem of inferring the species tree by 

minimizing deep coalescences (MDC). 
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Figure 4.1 : Illustration of the concept of extra lineages. We are given a gene tree 
(a, (fr, (c, d))). Then, tree Ti = (((d,b),c),a) requires one extra lineage to reconcile the 
gene tree within its branches, while tree T2 = (((a,d),b),c) requires three extra lineages. 

4.1.1 Extra Lineages 

Let us assume that we are given a gene tree (a, (b, (c, djj) . and we want to reconcile 

it within species tree Ti in Figure 4.1(a). In order to create clade (c, d) in the gene 

tree, lineages b and d must fail to coalesce on branch (?;i ,wi). Those lineages can 

coalesce on any of branches (ui,Vi) and (ri,Ui). However, as we ignore the branch 

lengths, we can force a coalescence event to occur as soon as possible. In this case, 

we require b and d coalesce on branch (MI,VI), where v\ is their most recent common 

ancestor (MRCA) in Similarly, lineages b, c, and d coalesce on this branch before 

they coalesce with a on branch (ri, u\). After completing the reconciliation between 

the gene tree and Ti, we visit every internal branch of Ti and count the number of 

extra lineages as follows. In branch (vi,Wi), there are two lineages exiting it, and 

so we count the number of extra lineages as one. In a similar fashion, the numbers 

of extra lineages in («i,i>i) and (r1; Uj) are 0. In total, the number of extra lineages 

required to reconcile the gene tree within Ti is 1 + 0 + 0 = 1 . 



If instead we have the species tree T2 as in Figure 4.1(b), then in order to reconcile 

the gene tree lineages a, d fail to coalesce along branch (v2 ,w2), and they also fail to 

coalesce with each other and with lineage B on the branch (u2,v2). All coalescence 

events occur on branch (r2 ,u2). We now count the number of extra lineages for T2: 

there is one in (v2,w2), two in (u2,v2), and 0 in (r2 ,u2), and hence three in total. 

Maddison in his paper proposed that a tree with a smaller number of extra lineages 

is better than a tree with a larger number. For those two species trees Ti and T2, we 

prefer T\ to T2, since T\ needs one extra lineage while T2 needs three. 

We now formalize the concept of extra lineages as it is necessary to devise a 

formula for counting the number of extra lineages. Suppose we are given a gene tree 

T and a species tree T'. Suppose further that both T and T' are binary and have 

the same set of leaves. The gene tree T is reconciled within the species tree T' by 

mapping each node of v in T according to three rules below: 

1. Each taxon (labeled leaf) in T is mapped to the corresponding taxon in T'. 

2. Let v' = MRCAT*(C'T(V)), and let u' be the parent node of V'. Then, v is 

mapped to any point pv, excluding node u', in branch (u', v') in T'. 

3. If w is a proper descendant of v, and w, v are mapped to pw, pv in T', then pw 

must also be a proper descendant of pv. 

Figure 4.2 shows an example of such a mapping. In the figure, we can see that for 

branch (u', v') there are two lineages, one being the lineage of the common ancestor 

of species a, b, c, and one being lineage d. In the case where T and T' are identical 

topologically, then we can easily see that there is only one lineage in ( u v ' ) , that is 

one lineage for the common ancestor of a, b, c and d. Therefore, for the branch (u', v') 

in Figure 4.2, the number of extra lineages is 2 — 1 = 1. 



a b e d e f a b c d e f 

Figure 4.2 : Fitting a gene tree T into a species tree T". In the figure, only mappings of 
internal nodes of T are shown, as each leaf in T is mapped to a leaf with the same label in 
T'. 

Definit ion 4.1 (Number of Extra Lineages). Assuming that a gene tree T is mapped 

into a species tree T' according to the three rules above, the number of extra lineages 

in a branch of T' is defined to be the number of lineages exiting that branch minus 

one. The number of extra lineages required to reconcile T within T' is equal to the 

sum of the numbers of extra lineages in all branches ofT'. 

Each pv in T' that is the image of the mapping of an internal node v in T is a 

coalescence event. In Figure 4.2, there are two coalescence events in branch (?/, wr), 

but there are no coalescent events in branch (u',v'). We can establish a relationship 

between the number of extra lineages and the number of coalescence events as follows. 

Consider a branch (u',v') of T ' . There are exactly \CT>{V')\ species in the subtree 

T'(v'). If there were no coalescence among those species, then there would be \CR>(v')\ 

lineages exiting ( u v ' ) . However, each coalescence event merges two lineages into one, 

and we note that under the mapping's conditions whenever there is a coalescence 

among lineages from species in CT>(V'), it must occur either in a branch of T ' ( V ' ) or 

in ( u v ' ) . Therefore, the actual number of lineages exiting ( u v ' ) is equal to \CT>(v')\ 

minus the total number of coalescence events among species in T'(v'). We have the 
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following lemma: 

Lemma 4.1. Let n(v') be the number of coalescence events occurring among species 

in CT'{V'). Then, the number of extra lineages in branch (u',v') is 

\CT'(V')\ — n ( v ' ) — 1 . ( 4 . 1 ) 

We note that this lemma may not be true without the conditions of the mapping 

defined above. If we do not have Rules 2 and 3, then lineages a, b, and c in Figure 

4.2, for example, need not coalesce in branch (v',w'). They can coalesce at a branch 

above u', and in this case there are four lineages (and therefore, three extra ones 

instead of one) in (u', v'). 

4.1.2 Inferring the Species Tree under the M D C Criterion 

Given a set of gene trees and a species tree topology candidate, we can compute the 

number of extra lineages this candidate tree requires to reconcile all the gene trees, 

which is considered as the parsimony for it. Inferring the species tree under the MDC 

criterion is to choose the most parsimonious tree as the species tree [5]. 

Problem 4.1 (Species Tree Inference under the MDC Criterion). 

Input: A set of gene trees . 

Output: A tree T' such that the total number of extra lineages required to 

reconcile all gene trees of G within T' is minimized. The optimal tree T' is 

reported as the species tree. 

In Section 4.3, we prove a theorem that is fundamental to the methods for solving 

this problem that are described in Sections 4.4, 4.5. 
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4.2 Current Methods for Inferring the Species Tree under 

the M D C Criterion 

We describe in this section two methods for solving Problem 4.1. One method is a 

brute-force algorithm, while the other is a heuristic implemented in Mesquite [87]. 

4.2.1 Brute-force Algorithm 

The obvious way to find the tree minimizing deep coalescences is to compute the 

number of extra lineages for all possible species tree topology candidates, and choose 

the one requiring the smallest number of extra lineages as the species tree. 

What is the complexity of this method? Computing the number of extra lineages 

for a pair of species tree and gene tree needs to find the MRCA in the species of all 

clusters in the gene tree. The problem of finding the MRCA in a tree can be solved 

in constant time, plus a preprocessing on the tree that takes linear time [89, 90]. 

Therefore, given a set of gene trees the complexity for computing the number of 

extra lineages for a candidate tree can be performed in 0(n + \&\n) — 0(\&\n), where 

n is the number of leaves of the candidate tree (and also of a gene tree as we assume 

that both species tree and gene tree have the same leaf set). However, we note that 

there are (2n — 3)!! binary rooted trees whose leaves are labeled by an n-taxon set. 

Using Stirling's approximation, we have 

{ 2 „ _ 3 ) ! ! = - l ? r 2 , ! 
v ' O n — 1 2n~1(n — 1)! 

x / 2 7 r ( 2 n - 2 ) ( ( 2 n - 2 ) / e ) 2 " ~ 2 

2""V27r(n - l)((n - l)/e)n~l 

Therefore, the complexity of the brute-force method is 0(((2n —2)/e)" 1\W\n), which 
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implies that the method is infeasible for trees with n > 10 leaves. 

4.2.2 Mesquite's Heuristic 

Mesquite also implemented a heuristic for finding the optimal tree under the MDC 

criterion [34, 87]. The heuristic works as follows. It starts with a random tree, and 

computes the MDC cost for it. The heursitc then applies an SPR operation to it to 

obtain a new tree, and recomputes the MDC cost for the newly obtained tree. The 

heuristic records the best MDC score computed so far, and it stops when applying 

an SPR to a tree does not improve that score. As stated in [34], this method does 

not guarantee to compute the optimal tree. It is also quite slow since the there are 

about 0(n'2) possible SPR moves that can be applied to a tree. Further, it requires 

the computation of the MDC cost for every derived tree. 

4.3 Counting the Number of Extra Lineages 

In computing the number of extra lineages for reconciling a gene tree T within the 

branches of a species tree T' based on Definition 4.1, we map each node of T to a 

node in T' using the MRCA mapping. In this way, we need to know T'. However, we 

show that the number of extra lineages in a branch of T' depends only on the cluster 

it induces (and on T)—it does not depend on where this branch is placed in T' nor on 

the shape of V (provided that this branch is present in T'). This result implies that 

we can compute the number of extra lineages for each individual cluster without a 

prior knowledge of the species tree as in the standard way of computing this number 

based on Definition 4.1. 

The theorem we state in this section makes use of the notion of a maximal clade 

with respect to a given cluster. Let us be given a tree T and a cluster A. We call a 



clade t of T maximal with respect to A if: (1) J£?(t) C A; and (2) t is not a proper 

subtree of another tree t' such that Jz?(i') C A. 

Theorem 4.1 (Number of Extra Lineages for a Cluster). Let T and T' be a gene 

tree andT' be species tree, respectively, and let (u',v') be a branch ofT'. Further, let 

k be the number of clades of T that are maximal with respect to CT>(V'). Then, the 

number of extra lineages in branch (u',v'), which we denote as OI(CT>(V'),T), is: 

a(CT>{v'),T) = k - l . (4.3) 

Proof. Let us denote those k maximal clades of T as t\,..., tk- Consider a clade ti, 

1 < i < k. First of all, because tt is clade of T all species in ti must coalesce into 

a single lineage (and they must coalesce either in a branch of T ' ( V ' ) or (u',v') under 

the mapping's conditions in Section 4.1). Second, because ti is a maximal clade of 

T with respect to CT'(V'), that lineage will not coalesce with any other lineages in 

T'(v') or in branch (u',v') (for otherwise, we will obtain a bigger clade in T whose 

leaf set is still a subset of CT>{V'), a contradiction). By Lemma 4.1, the number of 

coalescence events occurring among species of U is |jzf (t;)| — 1. We also note that 

{ J I = I ^ ( T I ) = CT'(V'). SO, by applying this lemma again, we obtain 

k 

A(CT,(v'),T) = \CT>{V') \ - ^ 2 ( M T I ) \ - 1) - 1 

i=1 

= k - 1. 

• 

As an example, consider trees T and T" in Figure 4.2. From the figure, we see that 

there are no extra lineages in branch (v', w'). The cluster under w' is {A, B, C}. The 

clade (A, (B , C)) is a maximal clade of T with only species from {A, B, C}. Therefore, 
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C O M P U T E O P T I M A L T R E E ( ^ ) 

1. Compute the number of extra lineages for every (nonempty) cluster. We 

note that we can exclude single-element clusters as well as the all-taxon 

cluster, because the number of extra lineages for them is always zero, and 

they are also compatible with all other clusters. 

2. Find the maximal set of compatible clusters whose total number of extra 

lineages is smallest. 

3. Use the optimal set of compatible clusters to build a tree, which we report 

as the species tree. 

Figure 4 . 3 : Algorithm COMPUTEOPTIMALTREE. An approach to find the optimal tree 
for a set of gene trees Sf. Note that all (nonempty) clusters are used to find the optimal 
tree. 

the number of extra lineages is 1 — 1 = 0. On the other hand, consider branch (v!, v'). 

There are two maximal clades in T with species from {A, B, C, D}: (A, (B, C)) and 

D. So, the number of extra lineages in (u', v') is 2 — 1 = 1. 

4.4 Inferring Species Trees: An ILP Approach 

Using Theorem 4.1, we can solve Problem 4.1 by finding a maximal set of compatible 

clusters whose total number of extra lineages is smallest. The reason for seeking a 

maximal set of compatible clusters is that such a set defines a rooted binary tree. 

(We clearly do not want to choose a star tree as a species tree although it requires 

zero extra lineages to reconcile a gene tree.) Therefore, we propose an approach to 

solving (exactly) Problem 4.1 as in Figure 4.3. 
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Gene trees 

a b c d e f a b c d e f 

Clusters be abc de def be abc ef def 

bed / e 

ab abc df def 

ab{ 1) abc(3) 

Compatibility graph 
efe(l) 

e / ( l ) 

bc( 2) 

def(3) 

df( 1) 

Figure 4.4 : Compatibility graph constructed from three gene trees Ti, T2, and T3. A max-
imum vertex-weighted clique consisting of clusters {6c}, {abc}, {de}, {def} is highlighted. 

In Section 4.7, we show that the percentage of species tree clusters that are not 

present in any of input gene trees is negligible, and decreases as more gene trees are 

available. A species tree can, therefore, be recovered from clusters induced by gene 

trees, and hence, we can focus on those gene tree clusters, instead of working with the 

set of all possible clusters. In the following subsections, we describe how to find the 

optimal tree composed of only gene tree clusters by using an ILP formulation. We 

see that this approximation produces very accurate estimates of species trees, even 

though in some cases it might not return the actual optimal tree when all clusters are 

used (Section 4.8). 



71 

4.4.1 Constructing the Weighted Compatibility Graph 

Given that a collection of pairwise compatible clusters uniquely defines a tree, we 

construct the compatibility graph G of all clusters and focus on the cliques in this 

graph. Let ((o be the collection of all clusters of a set of gene trees. The vertex 

set of G represents clusters in . Two vertices are adjacent if the two corresponding 

clusters are compatible. Since we seek the clique that is simultaneously maximal in 

terms of size and minimizes the amount of deep coalescence events, we assign weights 

to the vertices of G in a special way. Let v be a vertex in the graph G and let C be the 

cluster it represents. For each gene tree T e ^ , we count the number of extra lineages 

contributed by A as in Equation (4.3). In total, cluster C contributes JZxe^ a(C,T) 

extra lineages. Let m be the maximum value of a(C, T) over all A e . We 

assign vertex v the weight 

w(v) = m + l - ^ a ( C , T ) . (4.4) 

T&S 

The reason we define w(v) in this manner, instead of a(C,T), will be clear 

next, where we describe an efficient ILP formulation for identifying the clique in the 

compatibility graph that corresponds to a tree that minimizes the MDC cost of all 

coalescence events. 

Let us illustrate the construction of G from three gene trees 7i, T2, and T3 in 

Figure 4.4. Those three gene trees induce seven clusters, {ab}, {6c}, {abc}, {de}, 

{df}, {ef}, and {def}. Next, we compute the number of extra lineages for each of 

them, and compute the weight according to Equation 4.4; those numbers are given in 

Table 4.1. The corresponding compatibility graph G constructed from those clusters 

is shown in Figure 4.4. 
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Table 4.1 : The number of extra lineages for each of seven clusters induced by gene trees 
T\, and T3 in Figure 4.4. The last column is the weight assigned to vertices in the 
compatibility graph graph according to Equation 4.4, where m = 2. 

cluster <*(;T2) w(-) 

{ab} 1 1 0 1 

{be} 0 0 1 2 

{abc} 0 0 0 3 

{de} 0 1 1 1 

{ d f } 1 1 0 1 

{ e f } 1 0 1 1 

{def} 0 0 0 3 

4.4.2 Finding the Optimal Tree in the Compatibil ity Graph 

A clique in the compatibility graph G defines a tree, and we seek a clique in G such 

that, on one hand, it has as many vertices as possible (to obtain maximal resolution 

of the species tree), and on the other hand, the number of extra lineages contributed 

by its vertices, as defined above, is as small as possible. The way we assign weights to 

vertices of the compatibility graph G allows us to achieve both goals simultaneously. 

In the compatibility graph G, we will find a maximum vertex-weighted clique. 

This clique is clearly a maximal one, because each vertex v is assigned a positive 

weight by function w(v) in Equation (4.4), which will guarantee having the maximal 

number possible of compatible clusters in the species tree. Moreover, because we 

maximize the clique weight, by the definition of function w(v), we in fact minimize 

the total number of extra lineages (among all cliques of the same size). Finding a 

maximum vertex-weighted clique in a graph can be converted to a linear programming 
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formulation [91]: 

maximize ^ ^ w(v)xv, 
veV{G) 

subject to xu + xv < 1, V(«, u) ^ E(G), (4.5) 

G { 0 , 1 } , V v € V(G). 

This formulation allows us to solve our problem by using CPLEX. From empirical 

observations, we find that the compatibility graph G is often very sparse. Therefore, 

the above formulation results in a very large number of constraints xu + xv < 1. 

The following method can reduce the number of constraints to exactly |V(G)|. For a 

vertex u G V(G), let N(u) be the set of vertices that are adjacent to u. The constraint 

\V(G)\N(u)\xxu+ Xv<\V(G)\N(u)\ 

v£N(u) 

means that if u is included in the clique (i.e, xu = 1), then no vertices in G that are 

not adjacent to u are included in the clique (all xv's not in N(u) are 0), and that if 

any of those vertices is included in the clique, then u cannot be in the clique (i.e., xu 

must be 0). Therefore, the above linear programming formulation is equivalent to 

maximize ^ ^ w(v)xv, 
veV(G) 

subject to |V(G) \ N(u)\ xxu+ ^ xv < |F(G) \ N(u)\, Vu e V(G), (4.6) 
v$N(u) 

xv e {0,1}, Vu g V(G). 

4.5 Inferring Species Trees: A D P Algorithm 

We can find the optimal species tree without the need to find a maximum vertex-

weighted clique in the compatibility graph G by employing dynamic programming. 
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Dynamic programming (DP) is a divide-and-conquer algorithmic technique that breaks 

a problem into sub-problems, solves the sub-problems, and then uses those solutions 

in an efficient way to form the solution to the main problem. For a problem to be 

amenable to a DP solution, it must exhibit an optimal substructure [92]. 

Let t' be a rooted binary phylogenetic tree on a fixed taxon subset C = <S?(t') of 

X. Given a collection Sf of gene trees, let us denote l ( t ' t h e sum of J^re^ a(B, T) 

for all clusters B in t', including C. Further, let l*(C, CS) be the minimum value of 

l(t',&) over all possible binary trees t' on C. If t[ and t'2 are the two subtrees whose 

roots are the children of t', then clearly we have 

The quantity a(C, T) is fixed for each C, and therefore, if t' is an optimal 

tree on C such that 1(1', is minimum, then l(t[,W) and l(t'2,Sf) must also be 

minimum. This optimal substructure allows us to compute l*(C, recursively as in 

Algorithm 4.5. 

Remarks. Although the algorithm described above only returns the number of 

extra lineages, we can easily modify it so that we can actually reconstruct the optimal 

species tree. For each i, 3 < i < |X|, in Step 3, we also record two pointers to optimal 

subclusters Ci and By backtracking those pointers starting with cluster X, we 

can obtain the optimal set of compatible clusters. 

Any tree T £ induces exactly \X\ — 2 nontrivial clusters. Therefore, \crf\ = 

0{\(S\ • ( |X| - 2)). For every C C X, there are at most subsets of C to look at, 

and hence Step 3 is executed at most \(rf\2 times. The running time of the algorithm 

is then 0 ( | ^ | 2 • (\X\ - 2)2). 

(4.7) 



75 

D P - S P E C I E S T R E E I N F E R E N C E ( ^ ) 

1. Let ^ be a collection of nontrivial clusters induced by trees in ^ plus cluster X 

and all single-element clusters. We partition into subsets ^ , .. where 

1 < i < X , is the collection of all clusters of size i in . 

2. for each C i , set l*(C,&) = 0, 

3. for each C e set l*(C,9f) = 

4 . for each C e 3 < z < set 

= m i n { R ( C i , ^ ) + R(C2 ,Sf): Ci n C 2 = 0 and C = = C I U C2} 

5. return 1*{X,&). 

Figure 4 . 5 : Algorithm D P - S P E C I E S T R E E I N F E R E N C E . 
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The collection ^ described in the algorithm only contains clusters induced by gene 

trees in . However, we can replace it by the collection of all nonempty subsets of X 

(there are — 1 such subsets). In this case, the running time of the algorithm is 

bounded by = Although it is exponential, it is significantly better 

than a brute-force approach that examines all (2|X| — 3)!! binary rooted phylogenetic 

trees on X. 

4.6 Extra Lineages for Non-binary and Multiple-Allele Gene 

Trees 

Thus far, we have discussed the MDC criterion and presented algorithms for finding 

the optimal tree under this criterion only for the case when gene trees are binary, 

and have exactly a single individual (or, allele) per locus per species. We now discuss 

how the MDC criterion, and algorithms, can be extended for the case of multiple 

individuals and/or non-binary trees. 

4.6.1 Multiple Individuals per Species 

Suppose that we sample more than one individual per species when reconstructing a 

gene tree. We can extend the MDC criterion as follows. All taxa in the gene trees 

are considered distinct, even if they are from the same species. When fitting the gene 

tree into the species tree, we simply draw as many lineages originated backwards from 

a species as the number of individuals sampled for that species, and the remaining 

process is carried out in a similar manner as in [5]. For instance, consider the species 

tree and gene tree in Figure 4.6. There are three species a, b and c, and for species 

a, we sample two individuals, represented as oi and a2 in the gene tree. Because we 

sample two individuals for a, there are two lineages within the branch incident with 
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Figure 4.6 : MDC for gene trees with multiple alleles/individuals. On the left, the species 
tree is shown in tubes, while the thin lines show how the gene tree, on the right, is fitted 
within the branches of the species tree. On the right, a gene tree with four leaves, two of 
which correspond to two individuals of species A. 

the leaf a. As we trace the evolution backwards in time, we find that cii coalesces 

first with c, then with a2, and finally with b. All of those coalescence events occur on 

the branch incident into the root of the species tree. For this example, there is one 

extra lineage on the branch incident with the leaf a, and two extra lineages on the 

branch (u, v), accounting for a total of three extra lineages. 

4.6.2 Non-binary Trees 

The extension of the MDC criterion for non-binary trees is quite straightforward. A 

non-binary node (a node with out-degree higher than 2) in the gene tree indicates 

that the lineages in the subtree rooted at that node all coalesce together. Fitting a 

gene tree into a species tree can be carried out in exactly the same way as in [5]. 

Figure 4.7 provides an illustration. Here, lineages from a, b, and d fail to coalesce 

along the branch (u, v), resulting in 3 — 1 = 2 extra lineages on that branch. We note 

here that a non-binary node in the species tree does not affect the way we count the 
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Figure 4.7 : MDC for non-binary trees. On the left, the species tree is shown in tubes, 
while the thin lines show how the non-binary gene tree, on the right, is fitted within the 
branches of the species tree. 

number of extra lineages on the branch incident into it. In this example, we have a 

node with out-degree three in the species tree corresponding to the cluster {a, b, d}. 

In the gene tree, we have exactly three subtrees (a), (b) and (d) such that their leaf 

sets are subsets of {a, b, d}. 

4.7 Experimental Verification 

To study the performance of our algorithms and the MDC criterion, we analyzed 

biological as well as synthetic data sets. For the biological data, we used two data sets: 

the Apicomplexan data set of [29] and the yeast data set of [25]. The Apicomplexan 

data set contains eight species: Babesia bovis (Bb), Cryptospordium pavum (Cp), 

Eimeria tenella (Et), Plasmodium falciparum (Pf), Plasmodium vivax (Pv), Theileria 

annulata (Ta), Toxoplasma gondii (Tg), and Tetrahymena thermophila (Tt). Kuo 

et al. identified 268 single-copy genes suitable for phylogenetic inference [29], For 

each gene, they reconstructed its tree using three methods (maximum parsimony, 

maximum likelihood, and neighbor joining). Among the 268 gene trees, there were 

48 different gene-tree topologies, the most frequent of which appears with about 
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18% frequency. They inferred the species tree using two different methods: the 

concatenation method and the majority consensus method, both of which produced 

the same tree, shown in Figure 4.8, which the author presented as their hypothesis 

for the species tree of these eight Apicomplexan species. 

87/83/92 

38/42/40 
99/99/100 

44/34/41 

96/93/95 

Tt 

Op 

Et 

Tg 

Pf 

Pv 

Bb 

Ta 

Figure 4.8 : The species tree for the Apicomplexan data as inferred using the majority 
consensus method and reported in [29]. The species Tt (Tetrahymena thermophila) is 
the outgroup. The numbers on the tree branches are bootstrap support values based on 
maximum likelihood, maximum parsimony and neighbor joining methods, respectively. 

The yeast data set contains seven Saccharomyces species S. cerevisiae (Seer), S. 

paradoxus (Spar), S. mikatae (Smik), S. kudriavzevii (Skud), S. bayanus (Sbay), 

S. castellii (Seas), S. kluyveri (Sklu), and the outgroup fungus Candida albicans 

(Calb). Rokas et. al. [25] identified 106 genes, which are distributed throughout 

the S. cerevisiae genome on all 16 chromosomes and comprise about 2% of predicted 

genes. For each gene, they reconstructed its tree using the maximum likelihood and 

maximum parsimony methods. Among the 106 trees, more than 20 different gene-

tree topologies were observed. They inferred the species tree using the concatenation 
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method on the the sequences of the 106 genes. The resulting tree had 100% bootstrap 

support for each of its branches, and the tree topology is shown in Figure 4.9. 

Calb 

Sklu 

Seas 

Sbay 

Skud 

Smik 

Spar 

Seer 

Figure 4.9 : The species tree for the yeast data set as inferred using the concatenation 
method and reported in [25]. All branches in the tree have 100% support values. 

We generated synthetic data set by using Mesquite [87], and the same procedure 

and parameters in [34], Species trees were simulated by using the "Uniform Specia-

tion" (Yule) module in Mesquite. Two sets species trees were generated: one for those 

with a total branch length of 100,000 (lNe) generations, and one for 1,000,000 (!0Ne) 

generations. Each data set has 500 species trees. Within the branches of each species 

tree, the script generated 1, 3, 9, or 27 gene trees using the module "Coalescence 

Contained within Current Tree" with the effective population size Ne equal 100,000. 

For each gene tree, 1, 3, 9, or 27 alleles (individuals) were sampled per species. Since 

the species tree is known for simulated data, we studied the performance of our meth-

ods and the MDC criterion by comparing the inferred species tree against the true 

species tree. For this comparison, we used the normalized Robinson-Foulds (RF) 

measure [39], which quantifies the average proportion of branches present in one, but 

not both, of the trees. A value 0 of the RF distance indicates the two trees are iden-
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Figure 4.10 : (a) The optimal (species) tree inferred by our method for the Apicomplexan 
data set; this tree requires 440 deep coalescences to reconcile all 268 gene trees. The two 
sub-optimal species trees with 469 and 542 deep coalescences are shown in (b) and (c), 
respectively. The value on each branch is the numbers of extra lineages within that branch, 
when reconciling all 268 gene trees. 

tical, and a value of 1 indicates the two trees and completely different (they disagree 

on every branch). 

4.7.1 Analysis of the Apicomplexan Data Set 

Applying our method to the Apicomplexan data set, by using the 268 gene trees 

reported by Kuo et. al. [29], there was a single optimal tree, which is shown in 

Figure 4.10(a). The inferred tree requires in total 440 extra lineages to reconcile all 

268 gene trees. This tree differs from their tree (Figure 4.8) with respect to only the 

single clade (Cp, (Et,Tg)). As Figure 4.8 shows, their tree places Cp as a sibling of 

the clade ((Et, Tg), ( ( P f , Pv), (Bb, Ta))). However, it is important to note that as the 

authors reported, this placement of Cp has very low bootstrap support values of 38, 

42, and 40 based on maximum likelihood, maximum parsimony and neighbor joining 

methods, respectively. Therefore, this grouping is not well-supported, even though 

both the concatenation and majority consensus methods compute it. Our method 

differed by placing Cp as a sibling of the clade (Et,Tg). In fact, this grouping was 

advocated by [93]. 
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To investigate this data set further, and particularly the placement of Cp, we 

employed our methods in an exploratory mode: we computed all maximal cliques in 

the compatibility graph of this data set, and for each maximal clique it computed the 

optimal fitting of all gene trees by minimizing the deep coalescences. The compatibil-

ity graph has 37 vertices (which means there are 37 different clusters induced by all 

gene trees) and 297 edges. In this graph, there are 247 maximal cliques, all of which 

have 6 vertices. This allows us to construct 247 fully binary species tree candidates. 

Figures 4.11 plots the number of extra lineages for all 247 species tree candidates, 

sorted from the lowest (which is the optimal one with 440 extra lineages) to the least 

optimal, which is a maximal clique requiring about 2200 extra lineages to reconcile 

all gene trees. 

We observed that next to the optimal maximal clique with 440 extra lineages, 

the next two sub-optimal maximal cliques within 100 lineage counts from the opti-

mal one had 469 and 542 extra lineages, respectively. In other words, in addition 

to the optimal maximal clique, whose corresponding species tree is shown in Fig-

ure 4.10(a), there were two additional trees very close in terms of the optimality cri-

terion (minimizing deep coalescences). These two trees are shown in Figure 4.10(b) 

and 4.10(c). It is worth noting that the tree in Figure 4.10(b) is exactly the tree 

reported in [29], and that the tree in Figure 4.10(c) is the third way to group Cp, 

(Et, Tb) and ((Bb, Ta), ( P f , Pv)). In other words, while our method identified a sin-

gle optimal tree, this tree along with the two close sub-optimal trees differ from each 

other by the placement of Cp. This fact is already reflected in the community by 

having two different hypotheses about this placement reported by [93] and [29]. 
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Figure 4.11 : Plot of the number of extra lineages for each of the binary (fully resolved) 
247 species tree candidates identified as maximal cliques in the compatibility graph of the 
gene trees. The first three lowest values are 440, 469 and 542. The trees corresponding to 
these numbers are shown in Figure 4.10, respectively. 

4.7.2 Analysis of the Yeast Data Set 

The yeast data set contains 106 genes from eight species, with massive discordance 

among the gene trees, as reported by [25]. The authors concatenated all gene se-

quences and ran maximum likelihood and maximum parsimony methods to recon-

struct the species tree, and produced a species tree all of whose branches had 100% 

bootstrap support; this tree is shown in Figure 4.9. 

For our analysis, we reconstructed the gene trees using a maximum parsimony 

heuristic, and ran our method on them to infer the species tree. There was a single 

optimal tree found by our method, which is shown in Figure 4.12(a). Clearly, the 

tree is identical to the one reported by [25]. This tree requires 127 extra lineages to 

reconcile all 106 gene trees. Edwards et al. also reported the same species tree using 
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Figure 4.12 : ( a) The species tree inferred by our method for the yeast data set. The values 
on its branches are the numbers of extra lineages within them, (b) Plot of the number of 
extra lineages for all 48 species tree candidates 

the tool Bayesian Estimation of Species Trees (BEST) [32, 33]. However, while our 

method took a fraction of a second to infer this species tree, the BEST tool took 

several days. 

As we did with the Apicomplexan data set, we also generated all species tree 

candidates from the compatibility graph built from gene trees. The compatibility 

graph for this yeast data has 17 vertices and 94 edges. We then built 48 binary trees 

from the 48 maximal cliques in the compatibility graph, and scored the minimum 

number of deep coalescences required to reconcile all gene trees with each of the trees; 

these values are shown in Figure 4.12(b). The majority of those species tree candidates 

require more than 200 extra lineages. The first seven best trees have 127, 134, 163, 

170, 186, 191 and 193, respectively. The best tree (the one with 127 extra lineages) 

is the one shown in Figure 4.12(a), while the other six are shown in Figure 4.13. A 

very important point to make here is that these seven trees, while produced by our 
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Figure 4.13 : The six best sub-optimal trees for the yeast data set. These trees, from left 
to right and top down, have in total 134, 163, 170, 186, 191 and 193 extra lineages. The 
values on the branches are the numbers of extra lineages within them. 

non-parametric method, include all six maximum posterior probability trees found 

by BEST in [32]. 

4.7.3 Analysis of the Synthetic Data 

The simulated data allowed us to investigate other aspects of the performance of our 

method, since the true species tree is known and we could compare the inferences made 

by our method against the true trees. In the first analysis, we use all 28 — 1 = 255 

clusters (since there are eight species) to compute the optimal trees. Figure 4.14 

shows the normalized RF distance between the inferred species tree and the true one. 

Clearly, for a given number of loci and alleles, the performance of MDC is better 

for the case of deep divergence (total branch length of 10 Ne than the case of recent 

divergence (total branch length of lNe). However, the difference in performance 

shrinks as the number of individuals sampled increases. For example, when only a 

single individual is sampled per species and a single locus is used, MDC has an error 

rate of about 19% in the case of deep divergence, whereas it has an error rate of 
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(a) (b) 

Figure 4.14 : Accuracy of the inferred species tree as measured by the Robinson-Foulds 
distance when all clusters (there are 28 — 1 = 255 of them) are used. (a)Recent divergence 
(total branch length is liVe); (b) Deep divergence (total branch length is 10iVe). We note 
that the y-axes in (a) and (b) are on different scales to make the difference between the 
curves more visible. 

about 70% in the case of recent divergence. However, this gap closes as the number 

of individuals and number of loci increase. 

In general, we observe the MDC's performance improves as the number of loci 

and individuals increases, regardless of the level of divergence. However, in the case 

of recent divergence, we observe that increasing the number of individuals yields a 

higher gain in performance than an increase in the number of loci (see also [34]). 

Further, under this divergence, the gain from increasing the number of loci becomes 

much smaller as the number of individuals sampled is larger. For example, for the 

case of 27 individuals, there is hardly any gain from increasing the number of loci 

from nine to 27. 

It is important to note that when a single gene tree is used as the input to MDC, 

the method returns a species tree that is identical to the gene tree, since that is the 
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tree with the minimum (zero, in this case) number of extra lineages. We observe that 

the performance, in the case of a single locus and single individual, is much better 

in the deep divergence case—this is simply because the gene tree in this case has 

a smaller degree of incongruence with the species tree. However, even in the case 

of recent divergence, using only one locus but with increasing the number of alleles 

from one to 27, results in a drastic improvement in performance. Last but not least, 

Figure 4.14 indicates statistical consistency of MDC under the simulation conditions. 

The amount of incongruence in a data set may be reflected in the optimal number 

of extra lineages required to reconciled all the gene trees within the branches of a 

species tree, over all possible species tree. Figure 4.15 shows the average number of 

extra lineages required to reconcile all gene trees in the input within the branches 

of the optimal (under MDC) tree. We can see that the average number of extra 

lineages is much smaller in the case of deep divergence—we would expect much less 

incongruence in this case than in the case of recent divergence. Further, we observe 

that for small numbers of individuals, the increase in the number of extra lineages is 

much slower than for the case of large numbers of individuals. This indicates that a 

large extent of the incongruence is caused by the multiplicity of individuals, rather 

than from the size of the set (S of gene trees. This has a practical implication on 

the running time of inference methods: when analyzing genome-scale data sets, the 

number of loci, particularly for small numbers of individuals, may not be the crucial 

factor affecting the performance (in terms of time and memory requirements) of the 

inference method. 

In the second analysis, we used only clusters induced by gene trees to infer the 

species tree. Given that under the coalescent model, the gene tree is a random variable 

conditional on the species tree, gene trees are expected to contain the signal for the 
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(a) (b) 

Figure 4.15 : Average numbers of extra lineages required to reconcile the inferred species 
tree and gene trees when all clusters (there are 28 — 1 = 255 of them) are used for the 
inference, (a) Recent divergence (total branch length is liVe); (b) Deep divergence (total 
branch length is 10-/Ve). We note that the y-axes in (a) and (b) are on different scales to 
make the difference between the curves more visible. 

phylogenetic relationship of the species. Figure 4.16 plots the average rate of species 

tree clusters that would be missing from clusters induced by gene trees. Clearly, 

the number of missing species tree clusters decreases as the numbers of loci and of 

individuals increase, and no clusters are missing when nine loci are used and at least 

three individuals are sampled. When a single individual is sampled, using all 27 loci 

guarantees that almost all clusters of the species tree would be included in gene tree 

clusters. 

Figure 4.17 shows the RF distance between the true species tree and the tree 

inferred from only clusters induced by gene trees. When comparing the results in this 

figure with those in Figure 4.14, we observe that there is almost no loss in accuracy of 

our algorithms and the MDC criterion. Further, the average number of extra lineages 
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(a) (b) 

Figure 4.16 : Average rates of species tree clusters that do not appear in any gene trees, 
(a) for data with recent divergence (total branch length is lNe)\ (b) for data with deep 
divergence (total branch length is 10Ne). We note that the y-axes in (a) and (b) are on 
different scales to make the difference between the curves more visible. 

for the inferred tree in this case is almost the same as the optimal value, as evident 

from comparing Figures 4.15 and 4.18. 

We note that the settings for generating our generating synthetic data are reason-

able for many organisms [34], and that the two analyses above show the high accuracy 

of our algorithms in inferring the species tree, whether only gene tree clusters or all 

(nonempty) clusters are used. We also note further that their accuracy in inferring 

the species tree for the Apicomplexan and yeast data sets was note affected if only 

clusters induced by gene trees are used. We can therefore say that it is sufficient 

to infer the species tree by considering only gene tree clusters, which is often much 

smaller than 2" — 1, the total number of nonempty clusters (Figure 4.19). Thus, 

this observation has a significant impact on the actual running time of our methods. 

More importantly, it can help to boost other methods such as BEST [33] as they can 

narrow the search space to candidate trees built from clusters induced by gene trees. 
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(a) (b) 

Figure 4.17 : Accuracy of the inferred species tree as measured by the Robinson-Foulds 
distance when only clusters induced by gene trees are used, (a) for data with recent diver-
gence (total branch length is lNe); (b) for data with deep divergence (total branch length is 
10Ae). We note that the y-axes in (a) and (b) are on different scales to make the difference 
between the curves more visible. 

(a) (b) 

Figure 4.18 : Average numbers of extra lineages required to reconcile the inferred species 
tree and gene trees when only clusters induced by genes trees are used for the inference, 
(a) for data with recent divergence (total branch length is 1 Ne); (b) for data with deep 
divergence (total branch length is 10Ne). We note that the y-axes in (a) and (b) are on 
different scales to make the difference between the curves more visible. 
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(a) (b) 

Figure 4.19 : Average numbers of clusters induced by gene trees, excluding single-element 
and all-element clusters. Note that the total number of nonempty clusters is 28 — 1 = 255, 
as there are eight species, (a) Recent divergence (total branch length is 1 Ne)\ (b) Deep 
divergence (total branch length is 10iVe). We note that the y-axes in (a) and (b) are on 
different scales to make the difference between the curves more visible. 

4.8 Discussions 

In this chapter, we show that the MDC cost (i.e., the number extra lineages) for a 

branch in a species tree depends only on the cluster it induces (and gene trees), and 

how to compute it. Based on this, we present an ILP and DP algorithms for inferring 

species trees from multiple gene trees under the MDC criterion. The experimental 

results we present in this chapter demonstrate that our algorithms compute very 

accurate species trees. They also show that we can use just clusters induced by gene 

trees for inferring the species tree, an important observation that has a significant 

impact on the actual running of our algorithms. However, we must also note that the 

MDC criterion may still not identify the true species tree; for example, in Figures 4.14 

and 4.17, the RF distance does not drop to zero, even in the case of 27 loci and 27 



individuals. This indicates the number of extra lineages required by the true species 

tree is larger than the optimal one—a phenomenon encountered by all parsimony-

based criteria. 

Finally, although the empirical results show that there is almost no difference 

between the optimal tree and the tree inferred by using only gene tree clusters (Fig-

ures 4.14, 4.17), we can come up with a counterexample where those two trees are in 

fact different. Consider the gene trees in Figure 4.20(a). Figure 4.20(b) is the com-

patibility graph constructed from clusters induced by those trees, where each vertex 

represents a cluster and is assigned the number of extra lineages for that cluster. 

In this graph, the maximal clique with the smallest total weight is highlighted: it 

consists of three vertices representing clusters {a, b}, {a,b,c} and {a,b,c,d}, and it 

has weight seven. Therefore, the optimal tree inferred from this graph requires seven 

extra lineages to reconcile the gene trees. However, Figure 4.20(c) shows a tree that 

requires only six extra lineages to reconcile them. 
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Figure 4.20 : A counterexample where the optimal tree cannot be built from gene tree 
clusters, (a) is the input gene trees, (b) is compatibility graph built from clusters induced 
by gene trees in (a), where the maximal clique with the smallest weight is highlighted, (c) 
is another tree that requires a fewer number of extra lineages to reconcile three trees in (a). 
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Chapter 5 

Detection of Hybridization despite Lineage Sorting 

The main focus of this dissertation is to infer the evolutionary relationships of species 

from gene trees despite their incongruence. In Chapters 3 and 4, we present methods 

for reconstructing the species tree when we assume that the incongruence is due 

only to lineage sorting. Another biological process that causes species/gene tree 

incongruence is hybridization—the "crossing" of genetic material from one species 

to another. Hybridization is believed to play an important role in the speciation 

and evolutionary innovations of several groups of plant and animal species [94, 59]. 

Whether hybridization is polypoloid or diploid, the evolutionary histories of different 

marker alleles in a hybrid species take different paths through the two parents. This 

evolutionary fact is the basis for a large class of phylogeny-based methods for detecting 

hybridization (or, reticulate evolution in general) in a group of taxa. These methods 

compare the evolutionary histories of different genomic regions, and take incongruence 

in their individual evolutionary histories to indicate hybridization, for example, those 

described in Chapter 2; see also [95] for a recent survey. 

A major factor that confounds the performance, in terms of the accuracy of 

the inferred species evolutionary history, of hybridization detection methods is that 

species/gene tree incongruence may be caused by other factors, such as lineage sorting 

(also referred to as deep coalescence) [5]. Indeed, several recent studies have reported 

on massive amounts of incongruence in various data sets due to lineage sorting; e.g., 

see [69, 25, 29, 96, 97]. Therefore, incongruence among evolutionary histories of ge-
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nomic regions may be partly due to lineage sorting, partly due to hybridization, and 

distinguishing between the two factors is hard [58]. 

Existing methods for phylogenetic network reconstruction choose to ignore lineage 

sorting as a cause of incongruence, while those for inferring species trees despite 

lineage sorting ignore hybridization. When either assumption holds, it has been shown 

that they compute accurate estimates of species phylogenies [45, 48, 34, 88]. However, 

under most circumstances, such assumptions cannot be made a priori, and hence 

applying hybridization detection methods results in an overestimation of the amount 

of hybridization, while species tree inference methods (despite lineage sorting) fail to 

detect hybridization events that might have occurred. Therefore, a more appropriate 

model is a phylogenetic network that allows for deep coalescence events, since such a 

framework allows for simultaneously capturing vertical and horizontal inheritance of 

genetic material [98]. 

In this chapter, we present a heuristic for detecting hybridization despite incom-

plete lineage sorting [99]. Our heuristic is parsimony-based, and extends the MDC 

criterion for inferring the species tree that we discuss in Chapter 4. It infers phyloge-

netic networks to explicitly model hybridization, while simultaneously accommodat-

ing lineage sorting. Since trees are a special case of networks, our method infers a 

tree when there is no support for hybridization in the data. 

We have studied the performance of our method on simulated data, and found 

that the discrete quantity of extra lineages captures to a certain degree the amount of 

hybridization, and that the divergence time of the two species involved in hybridiza-

tion, as well as the time between hybridization and a consecutive divergence, affect 

the detectability of hybridization, particularly the latter. In addition, we reanalyzed 

the 106-locus yeast data set in [25]. In this new analysis, we show that a phylogenetic 



96 

network with a singe hybridization fits the data much better than the tree reported 

in Section 4.7 does [99]. We therefore propose a hypothesis of the occurrence of a 

hybridization event involving S. kudriavzevii, S. bayanus and the clade of S. mikatae, 

S. cerevisiae, and S. paradoxus. 

As evidence of hybridization in plants and animals continues to accumulate, and 

its role in speciation and evolutionary innovations continue to be elucidated, our 

framework will help to analyze systematically the evolution of groups of species in 

which hybridization may have occurred. 

5.1 Current Methods for Simultaneous Modeling of Lineage 

Sorting and Reticulation 

In this section, we describe four current methods that attempt to detect hybridization 

or horizontal gene transfer despite lineage sorting. 

5.1.1 The Method of Than et al 

Than et al. introduced a stochastic framework for detecting horizontal gene transfer, 

given a species tree and a gene tree, despite lineage sorting [54]. This framework is 

based on the coalescent model, and assumes knowledge of the population parameters 

(branch lengths, population size, etc.). Consider a the model in Figure 5.1 for three 

bacteria a, b and c, where an HGT event occurs at time r^. If there is no lineage sorting 

(Figure 5.1(a)), then this event results in the gene tree (a,(b,c)) that is different 

from the species tree ((a,b),c). However, lineage sorting can cancel the effect of an 

HGT event, as illustrated in Figure 5.1(b). We note that in the figure, rh < t\, the 

speciation time of a and b, but it can happen that 77, > ti, in which case we interpret 

it as having an HGT event occurring before the speciation time of T\ of a and b. 
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(a) (6) 

Figure 5.1 : A three bacterial species model with an HGT event. In (a), there is no lineage 
sorting, and hence resulting a gene tree that is different from the species tree. In (b), there 
is a deep coalescence event between the lineage in b and the lineage transferred to c, making 
the gene tree congruent (topologically) with species tree. 

By the same analysis as in Subsection 2.3.1, we obtain the following probabilities 

of obtaining three different gene trees, given the species tree ((a, b) : ri , c) : r2. 

Pr[((a,6),c)] = 

Pr[((a,c),6)] = 

lp-(ri-rh)/Ne 
3 if TH < Ti, 

1 - if Th > Ti 

l e - ( T l - T f e ) / J V e i i T h < r U 

le-(rh-n)/Ne j£ Th > T i 

(5.1) 

(5.2) 

Pr[(a,(6,c))] 
l - | e - ( T l - T h ^ if Th < Ti, 

Ip-^h-T^/Ne if Th > T i . 

(5.3) 
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Figure 5.2 : smallThe hybrid speciation model. The network is shown on the left, 
and the two induced trees are shown in the right. In this network, a a gene in b is 
either from a with probability 7, or from c with probability I — 7. 

5.1.2 The Method of Meng et al. 

Meng and Kubatko introduced another coalescent-based framework for detecting hy-

bridization despite lineage sorting, also assuming knowledge of the population pa-

rameters [100]. Consider the model in Figure 5.2 on three species, where b is a hybrid 

species of a and c. In this model, a gene in b is either from a with probability 7, 

or from c with probability 1 — 7. For a given gene, we choose either tree T\ (with 

probability 7) or tree T2 (with probability (1 — 7)), and then apply the coalescent 

process on the chosen tree. We can compute the likelihood of a species tree T' given 

a collection of gene trees by 

Pr( 7 , T | <S) = J ] (7 Pr(T | T X ) + (1 - 7) Pr(T | T2)), (5.4) 



where Pr(T | Ti) and Pr(T | T2) are computed as in Subsection 2.3.1. The species tree 

is the tree, along with 7 's value, that maximizes this quantity. The value of 7 is also 

used to determine whether there is a hybridization or not in the data. 

We note that Than et aVs and Meng et al.'s methods require knowledge of the 

reticulation scenario, and the frameworks can be used to assess its support in terms 

of the observed gene trees. In other words, they do not attempt to detect the location 

of the reticulation events. 

5.1.3 The Method of Joly et al. 

More recently, Joly et al. introduced a statistical framework for the same task, which 

distinguishes hybridization from lineage sorting based on the genetic distance between 

sequences [101]. Assuming a null hypothesis where we assume that the incongruence 

between species and gene trees is due solely to lineage sorting, we can obtain a 

distribution of this distance using the coalescent theory. Then, we compute the 

distance between every pair of sequences in the data, and compare it with the distance 

derived from the null hypothesis: if the observed distance is smaller than (1 —a) of the 

null hypothesis distance for some threshold a (for example, 0.5%), the null hypothesis 

is rejected and we conclude there is hybridization. 

This framework, as well, requires knowledge of the population parameters, since it 

conducts coalescent-based simulations for testing the null hypothesis of only lineage 

sorting and no hybridization. 

5.2 Lineage Sorting in Phylogenetic Networks 

In this section, we describe how to extend the MDC criterion, originally defined for 

phylogenetic trees, to phylogenetic networks, which yields a framework for detecting 
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(a ) (6) 
Figure 5.3 : Two gene trees that differ in the placement of b. 

hybridizations as well as other reticulate events despite lineage sorting in the data. 

Let N be a phylogenetic network, and T a gene tree. Denote ^(N) the set of trees 

induced by N as defined in Chapter 2. We define the number of extra lineages required 

to reconcile T within the branches of N to be 

where a(T', T) is the number of extra lineages for reconciling T within the branches 

of T'. This definition is generalized in a straightforward manner to a set CS of gene 

trees: 

Consider two trees in Figure 5.3. They are different only in the placement of 

b. In Figure 5.4(a), we show an optimal tree for reconciling them under the MDC 

criterion that requires a singe extra lineage. On the other hand, if we allow for a 

reticulate event between species a and c, resulting in species b, (Figure 5.4(b)) then 

this network induces both gene trees, and hence the number of extra lineages for it 

a(N,T) = m i n { a { T ' , T ) : T ' G &(N)}, (5.5) 

(5.6) 
T&S 
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is zero, according to Equation (5.6). 

An analogous definition to the problem of inferring the phylogenetic tree under 

the MDC criterion in the context of networks would be the following: 

Definition 5.1 (Network Inference Using the MDC Criterion). 

Input: A set of gene trees <S. 

Output: A network N such that the total number of extra lineages required to 

reconcile all gene trees ofW within N is minimized. 

This definition suffers from a major drawback: Without controlling the number of 

reticulations in the network, identifying an optimal network N becomes a trivial task, 

since we can always find a network that reconciles the entire set of gene trees with no 

extra lineages, e.g., [95]. This overfitting phenomenon is an issue that plagues phylo-

genetic network reconstruction in general: The more reticulations in the network, the 

better it fits the data. Therefore, without a close inspection of the improvement to fit-

ting the data, one may end up with a network that grossly overestimates the amount 

of hybridization [95]. Even worse, one can always finds a network that reconciles each 

gene tree without resulting in any deep coalescence events. This is analogous to the 

problem of inferring phylogenetic networks to model sequence evolution, where one 

can always find a network under which each site in the sequences evolves with no 

homoplasy [102], 

More precisely, assume a(N,&) = k for a set of CS of gene trees reconciled within 

the branches of a phylogenetic network N. If N' is a phylogenetic network obtained 

by adding extra hybridization events to N, then we always have 3T(N) C 

Consequently, and based on Equation (5.6), this implies that a(N',W) < a(N, ) = 

k. In other words, adding more hybridization events to a network can never hurt 
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(a) (b) 

Figure 5.4 : An optimal tree and an optimal network for the two gene trees in Figure 
5.3. (a) An optimal species tree under the MDC criterion, which requires a single deep 
coalescence event to reconcile the two gene trees of Figure 5.3. (b) A phylogenetic network 
that requires no deep coalescence events to reconcile both gene trees of Figure 5.3. 

fitting the gene trees in to the network under the MDC criterion as given by 

Equation (5.6); it either improves it or keeps it the same. As a result, if optimizing 

the MDC criterion is the objective, it is always "safe" to keep adding hybridization 

events. Clearly, this is problematic, and it would be problematic for a probabilistic 

approach as well, unless a criterion that penalizes the model's complexity (in this 

case, this complexity includes the number of reticulations in the network) is used. 

The "quick fix" of minimizing a(N, (S) + h^, where hjv is the number of hybridiza-

tions in N does not work well in general, since as the number of loci increases, an 

improvement in the number of deep coalescence events may be obtained by adding 

an arbitrary hybridization event. We propose a solution based on an empirical ob-

servation that we have made by analyzing simulated data. The observation is that 
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when hybridization occurs, there is no clear optimal species tree estimate; rather, 

some sub-optimal trees are very close to the optimal one. Based on this observation, 

we propose the following method for detecting hybridization despite lineage sorting: 

1. Find the optimal tree T* under MDC criterion; 

2. Compute the set 

S = {T: (a(T,&) - a(T*,&))/a(T*,&) < p%} (5.7) 

of trees whose MDC cost is within p% of the optimal score a(T*,&); and, 

3. Infer a phylogenetic network N that reconciles the trees in S. 

When there is no hybridization in the data, we would expect the set S to contain a 

single tree. When there is a single hybridization in the data, we would expect the 

set S to contain two trees. An important question concerns p: what value should be 

used? We show that an answer to this question depends on the proportion of loci 

involved in hybridization, out of all loci in the data set. 

5.3 Experimental Study 

5.3.1 Data 

To study the performance of our method, we conducted simulation studies, and re-

analyzed the yeast data set of Rokas et al. [25]. For the simulated data, we used 

the scenario depicted in Figure 5.5. In this scenario, there is a a hybridization event 

involving a, d, and the clade (b, c). The value 7 denotes the proportion of loci in (b, c) 

that are inherited from a, and 1 — 7 denotes the proportion of loci inherited from d. 

The scenario we investigate is more complex than that investigated in [54, 100, 101] 
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Figure 5.5 : Simulation scenario. A hundred gene trees were simulated under the coalescent 
model within the branches of the network N by evolving (1 — of them within the 
branches of Ti, (1 — ^e~t2)(l — 7) within the branches of T2, \e~t2 within the branches of 
T3 and \e~t2 within the branches of T4. Times are given in coalescent units (number of 
generations divided by population size). 

in that we allow for divergence after hybridization; this allows us to study the effect 

of the divergence time between the two "parents" (£1 in Figure 5.5) as well as the 

time between the hybridization and subsequent divergence (t2 in Figure 5.5) on the 

ability to detect hybridization. 

The simulation flow proceeds as follows for generating £ gene trees (or, loci, in 

general). The probability of two alleles, one from b and another from c, not coalescing 

within time t2 is e~'2. Further, if such two alleles have equal probability of one coming 



105 

from a and the other coming from d, this implies that we can simulate \£e~t2 gene 

trees within the branches of each of the two trees T3 and T4 in Figure 5.5. The 

remaining £(1 — \e~t2) gene trees can be simulated with proportions 7 and 1 — 7 

within the branches of the trees 7\ and T2, respectively. In our simulations, we used 

i = 100, and varied the times t\ and t2 to take on the values 0.5, 1, 2, and 4, ranging 

from the very short (and hence extensive deep coalescence) to the very long (and 

hence almost no deep coalescence), respectively. Further, we used values 0, 0.1, 0.2, 

0.3, 0.4, and 0.5 for 7, to simulate cases with amount of hybridization ranging from 

none to equal contribution of both parents, respectively. For each combination of 

values of £, t\, t2, and 7, we generated 100 data sets, and averaged the results. 

The yeast data set of [25] contains seven Saccharomyces species S. cerevisiae 

(Seer), S. paradoxus (Spar), S. mikatae (Smik), S. kudriavzevii (Skud), S. bay anus 

(Sbay), S. castellii (Seas), S. kluyveri (Sklu), and the outgroup fungus Candida albi-

cans (Calb). Rokas et al. in [25] identified 106 genes, which are distributed through-

out the S. cerevisiae genome on all 16 chromosomes and comprise about 2% of the 

predicted genes. For each gene, they reconstructed its tree using the maximum likeli-

hood and maximum parsimony methods. Among the 106 trees, more than 20 different 

gene-tree topologies were observed. Rokas et al. inferred the species tree using the 

concatenation method on the the sequences of the 106 genes. The resulting tree had 

100% bootstrap support for each of its branches; this tree topology is shown in Fig-

ure 5.6(a). Further, various studies of the same data set, using different criteria and 

methods, have inferred this same tree as the species tree best supported by the 106 

gene trees; e.g., [32, 88]. 
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Figure 5.6 : (a) The single optimal tree under the MDC criterion for the data set. The 
number of extra lineages resulting from reconciling all 106 gene trees within the branches 
of this tree is 127. (b) The best sub-optimal tree under the MDC criterion. The number 
of extra lineages resulting from reconciling all 106 gene trees within the branches of this 
tree is 134, which is just 7 extra lineages away from the optimal value of 127 achieved by 
the tree in (a). The number on a branch indicates the number of extra lineages along that 
branch once all 106 gene trees are reconciled within the branches of the tree. 

5.3.2 Results on Simulated Data 

For the simulated data, we mainly investigated the effect of the times t\ and t2 on two 

questions. The first question is: How does the optimal tree under MDC compare to 

sub-optimal ones? For this question, our hypothesis was that for very low proportion 

of hybridization (indicated by low values of 7), a clear species tree estimate would 

emerge, while an increasing proportion of hybridization would result in the emergence 

of more than a single species tree candidate, such that a network reconciling those 

candidates would be a more appropriate evolutionary history of the species. Given 

that the number of rooted trees on 4 taxa is only 15, we investigated all of them. 

Results of this investigation are shown in Figure 5.7. 

As the figure shows for the case of t\ = t2 = 4, when there is no hybridization 

(7 = 0), tree T2 reconciles all 100 gene trees with almost zero extra lineages, while 

the next sub-optimal trees (in this case, those are Ti, T5, Tu, and T15) require 100 
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Figure 5.7 : Average numbers extra lineages for each of the constituent trees. The x-axis 
lists the 15 possible (rooted) tree topologies on the four taxa, and the y-axis denotes the 
number of extra lineages resulting from reconciling all 100 gene trees within each of the 15 
trees. Left: the "easy" case of very long times; right: the "hard" case of very short times. 

extra lineage, each, to reconcile all 100 gene trees. In other words, tree T2 is a clear 

candidate for the species tree estimate. It is worth mentioning that the trees labeled 

T\ and T2 in this figure are identical (in terms of topology) to Ti and T2, respectively, 

in Figure 5.5. Further, notice that in this case, as 7 increases, the gap in optimality 

between the two trees 7\ and T2 starts decreasing, until it closes completely for the 

value of 7 = 0.5 (as indicated the two "level" + signs for T\ and T2). Therefore, in this 

case, if we set p in Equation (5.7) stringently to a value close to 0, we would detect 

hybridization perfectly in the case of 7 = 0.5 and detect no hybridization in the other 

cases. However, as we relax the value of p, we the method would start detecting even 

lower proportions of hybridization. This is very similar to the performance of the 

probabilistic approach of [ 1 0 0 ] , where detecting the value of 7 is the main objective 

of the method. 

This trend becomes very blurry in the hard case of t\ = t2 = 0.5. In this case, 
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tree T2 is still the clear species phylogeny candidate when no hybridization took 

place. However, while the optimality gap between Tx and T2 is closing as 7 increases, 

other trees, particularly T5, blur the picture and make the detection of hybridization 

harder. In particular, in the case of 7 = 0.5, trees Ti and T5 are a better pair of trees 

to reconcile into a network than the pair Ti and T2. 

It is important to note that we observed, under the conditions of our simulation 

study, that the value of t2 affects the detectability of hybridization more than the 

value of t\. For example, the trends, and hence indication of hybridizations, are 

better in the case of (ti = 0.5, £2 — 4) than in the case of (ti = 4, t2 = 0.5). This 

implies that the time between hybridization and a consequent divergence affects the 

detectability of hybridization significantly. Again, given the simplified simulation 

scenarios in other studies, this effect was not reported. 

The second question is somehow related: how does the optimal network compare 

to the optimal tree? For this question, our hypothesis was that the number of extra 

lineages computed over the optimal network would constitute a greater improvement 

over that computed over the optimal tree. In particular, our hypothesis was that for 

the case of no hybridization (7 = 0), the optimal network and optimal tree would 

be equally good models, while for the case of extensive hybridization (7 = 0.5), 

the optimal network would result in a much improved reconciliation in terms of the 

number of extra lineages. Results of this investigation are shown in Figure 5.8. 

The figure clearly shows that in the case of t\ = t2 = 4, for each value of 7, there 

is an optimal network with a single reticulation, that reconciles all 100 gene trees 

and yielding almost zero deep coalescences. While this may imply that a network is 

a better representation, even in the case of 7 = 0, the number of extra lineages in 

the optimal tree helps address this issue. In the case of 7 = 0, the optimal tree and 
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Figure 5.8 : Optimal trees vs. optimal networks. The x-axis shows the values of 7, and 
the y-axis shows the number of extra lineages. The optimal value for network is computed 
by exhaustively considering all networks on 4 taxa. 

optimal network are almost equally optimal, and the tree is selected as the estimate of 

the species phylogeny, as it is the simpler explanation. As the value of 7 increases, the 

gap in optimality between the best tree and network increases, giving more support 

for the hypothesis that a network is a more appropriate model and that hybridization 

took place. It is worth mentioning that in this case, the difference in the number of 

extra lineages between the optimal tree and optimal network, when normalized by 

the number of gene trees in the data set (100 in this case), gives an almost perfect 

indication of the value of 7—again, analogously to the probabilistic approach of [100]. 

As in the previous case, the performance suffers when both times t\ and t2 decrease 

significantly, since the amount of deep coalescences increases significantly. What the 

figure shows clearly is that when the extent of deep coalescences becomes massive, 

a network becomes a much better representation of the data, even in the absence 

of any hybridization. In this case, we would expect a more sophisticated approach, 



such as a stochastic method that also attempts to estimate times, population sizes, 

etc., would do much better than a parsimony-based method such as the one we 

present here. It may be possible to improve the performance of the parsimony-based 

method by coupling it with coalescent-based simulations under the null hypothesis of 

no hybridization. However, once again, the performance of such an approach would 

heavily depend on the accurate estimate of population parameters that inaccuracies 

in these estimates may lead to wrong predictions. 

Results on the Yeast Data Set 

For our analysis of the yeast data set, we reconstructed the gene trees using a maxi-

mum parsimony heuristic, and used our method [88] to infer the optimal species tree 

under the MDC criterion. There was a single optimal tree, which is identical to that 

proposed by Rokas et al. [25], and is shown in Figure 5.6(a). This tree results in 127 

extra lineages when optimally reconciling all 106 gene trees in the data set. 

Next, we exhaustively searched all 126 networks obtained by adding a single hy-

bridization event to this optimal tree. There are three equally optimal networks, each 

resulting in 69 extra lineages when reconciling all 106 gene trees. The improvement 

in the number of extra lineages that is achieve by each of these three networks is 

d* = 127 — 69 = 58. All other networks led to almost no improvement over the opti-

mal species tree (i.e., all other networks required a number of extra lineages that was 

close to 127). If we take consider all 126 networks in calculating the z-score of the 

improvement of d* in extra lineages, we have /i = 4.35 and a = 10.94, which results 

in a z-score of 4.9. If we exclude the three optimal networks and do the calculation 

with the 123 sub-optimal networks, we have n = 3.04 and a = 7.08, which results in 

a z-score of 7.76. Either way, the z-score is very high, supporting the hypothesis pre-
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sented by each of the three networks. These three networks are shown in Figure 5.9. 

The network in Figure 5.9(a) illustrates a scenario in which hybridization occurred 

between S. bayanus and the clade of S. mikatae, S. cerevisiae, and S. paradoxus to 

give rise to hybrid species S. kudriavzevii. The network in Figure 5.9(b) illustrates 

a scenario in which hybridization occurred between S. kudriavzevii and S. bayanus. 

The network in Figure 5.9(c) seemingly illustrates a scenario in which hybridization 

occurred between an ancestor of all five species and the clade of S. mikatae, S. cere-

visiae, and S. paradoxus. Such a scenario may at first sound implausible given that 

it violates the natural constraint that hybridization involves two species that co-exist 

in time. However, this is not necessarily the CclS6, 81S this type of violation can be 

explained through incomplete taxon sampling or extinction [95]. This scenario can be 

explained, for example, by the scenario in which the hybridization occurred between 

the clade of S. mikatae, S. cerevisiae, and S. paradoxus and a sibling of the clade of 

all five species that was not sampled, or became extinct. 

A striking point about all three networks that they all induced exactly the same 

pair of trees. Ignoring the hybridization event in all of them, we obtain the optimal 

tree shown in Figure 5.6(a). However, if we take in each of the three networks the 

hybridization event, we obtain the tree shown in Figure 5.6(b). Interestingly, this tree 

is second only to the optimal tree in terms of the number of extra lineages it requires 

when optimally reconciling all 106 gene trees. Further, it is very close, in terms of 

the optimality value, to the optimal one: only seven extra lineages separate the two. 

Notice that the difference between the two trees in Figures 5.6(a) and 5.6(b) is the 

grouping of the three groups: (1) S. kudriavzevii, (2) S. bayanus, and (3) the clade of S. 

mikatae, S. cerevisiae, and S. paradoxus. While the optimal tree groups (2) with (3), 
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each of the three hybridization scenarios shown in Figure 5.9 indicates that hybridiza-

tion could be a better supported hypothesis than that given by the optimal tree. Of 

the 106 gene trees, 65 have the clade ((S. paradoxus, S. cerevisiae), S. mikatae), and 

38 have the clade (S. bayanus, S. kudriavzevii). Further, each of the 106 loci in all 

five species have coalesced at the most recent common ancestor (MRCA) of these five 

species, as indicated by the value zero on the branch above the MRCA in all three 

scenarios in Figure 5.9. 

It is worth mentioning that while the difference in numbers of extra lineages 

between the optimal tree and best sub-optimal tree is very small (134 — 127 = 7), 

this difference is much larger between the optimal network and best sub-optimal 

network is much larger (92 — 69 = 23). This has at least two implications. First, 

while previous studies proposed the tree in Figure 5.6(a) as the species tree for this 

group, our analysis shows that it is not really a clear candidate, given that the sub-

optimal tree shown in Figure 5.6(b) reconciles all 106 gene trees almost equally well. 

Second, from a practical perspective, to analyze the data for hybridization scenarios, 

it may be worth focusing first on the set of all of trees within a certain threshold from 

optimality, as given by Eqution (5.7). 

Finally, it is not surprising to propose hybridization scenarios as evolutionary hy-

potheses for the data set when Rokas et al. and others have proposed a tree as the 

evolutionary history. Several studies have reported on the presence of hybridization 

in yeast; e.g., [103, 104]. In particular, Dunn and Sherlock have recently reported on 

a hybridization between S. cerevisiae and S. bayanus-related yeasts to form Saccha-

romyces pastorianus [105]. 
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Figure 5.9 : Three hybridization scenarios for the yeast data set. Each of the networks 
requires 69 extra lineages to reconcile all 106 gene trees, and depicts a slightly different 
hybridization scenario. The number on a branch indicates the number of extra lineages 
along that branch once all 106 gene trees are reconciled within the branches of the network. 

24 
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Chapter 6 

PhyloNet 

In the previous chapters, we present methods for inferring species phylogenies from 

gene trees despite lineage sorting. Those methods are implemented in software 

package PhyloNet [35], which is freely available at: h t t p : / / b i o i n f o . c s . r i c e . e d u / 

phylonet/ . In addition to those methods, PhyloNet implements methods for com-

paring and charactering reticulate networks, which include: 

1. RIATA-HGT [47, 54]: reconciling a pair of species tree and gene tree; 

2. evolutionary network representation: reading/writing evolutionary networks in 

a newly devised compact form; 

3. evolutionary network characterization: analyzing evolutionary networks in terms 

of three basic building blocks—trees, clusters, and tripartitions; 

4. evolutionary network comparison: comparing two evolutionary networks in 

terms of topological dissimilarities, as well as fitness to sequence evolution under 

a maximum parsimony criterion; and 

5. evolutionary network construction: reconstructing an evolutionary network from 

a species tree and a set of gene trees. 

Furthermore, since various evolutionary network utilities use functionalities from the 

phylogenetic tree domain, PhyloNet provides a set of standalone phylogenetic tree 

analysis tools. 

http://bioinfo.cs.rice.edu/
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Figure 6.1 : Two evolutionary networks Ni and N2, each with eight leaves (labeled a,... ,h) 
and two network nodes W and Z. Shown are the orientation of the network edges; all other 
edges are directed away from the root (toward the leaves) Notice that the difference between 
the two networks is that node W in N\ has lineage g as one of its parents, whereas node 
W in N2 has lineage h as one of its parents. 

6.1 Phylogenetic Network Representation 

The Newick format for representing and storing phylogenetic trees was adopted in 

1986 [37], and it has been the standard for almost all phylogeny software packages 

ever since. This format captures an elegant correspondence between leaf-labeled trees 

and matched parentheses, where the the leaves are represented by their names and 

the internal nodes by a matched pair of parentheses that contains a list of the Newick 

representation of all its children. Shown in Figure 6.2 are three trees along with their 

representations in the Newick format. 

Existing phylogenetic network software tools store these networks as adjacency 

lists of their underlying graphs, which are usually very large and necessitate transla-

tion of representations among the different tools. Morin and Moret [106] proposed a 

modified version of the Newick format for representing reticulate networks. In their 

format, hybrid nodes are represented by nodes labeled with #H, and those nodes are 

considered as two separate nodes in the normal Newick format for trees; see the 

Figure 6.3 for an example. 
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Figure 6.2 : Three trees, N', W, and Z, along with their Newick representation. These 
trees form the tree decomposition & of the phylogenetic network N\ in Figure 6.1. The 
eNewick representation of N is the triplet (N'] W; Z). 

Original Newick:((4, 5)2, (6,7)3)1; Modified Newick: ((5, (6)3#H)2, (3#H, 7)4)1; 

Figure 6.3 : A modified Newick format for representing phylogenetic networks. This 
example is from [106]. 
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We have independently proposed a new method of tree decomposition of phylo-

genetic networks, which provides the basis for a new format, extended Newick (or 

eNewick for short), and used it as a compact representation of phylogenetic networks. 

The idea in our method is to break the network into a set of trees, and then repre-

sent the network as a collection of Newick representations of those trees. Since the 

eNewick format is nothing but a collection of trees in the Newick format, it follows 

that eNewick can represent unrooted networks. However, in the PhyloNet utilities, 

rooting is assumed, since different ways of rooting the same evolutionary networks 

may imply different evolutionary relationships. 

Let N = (V, E) be a phylogenetic network, where V is the union of two disjoint 

sets VAT, the set of network nodes, and Vr, the set of tree nodes. We create a forest 

of \VN\ + 1 trees as follows. For every Ui EVN: 

• Compute the set {^ i , . . . , Vk} of nodes in V such that {ei = (vi, Ui) , . . . , ek = 

(wfc, v-i)} is the set of all network edges incident into node Ui\ 

• Create k new leaves, all labeled with Xi (xi fl J f ( N ) = 0); 

• Delete all k edges e i , . . . , efc incoming into uf, 

• For each node Vj, 1 < j < k, add an edge from v3 to a unique leaf labeled with 

Xi. 

• Assign Xi clS the name of the tree rooted at node ; 

(Note here that each network node in VN results in a tree. In the case VN = 0, 

we have one tree that is the original network.) The result is a forest of trees 

& = {h,...,t]VNl+1} such that: (1) \^{U)\ > 1 for every 1 < i < + 1; (2) 

(J |^v|+1 eg .) \vN = a n d (3 ) J ^ . ) n = 0 f o r e v e r y l<i,j<\VN\ + l 
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and i / j. We call & the tree decomposition of N. Then, the eNewick representation 

of N is the (|V}v| + l)-tuple (n(ti);...; n(i|yiV|+i)), where n(ti) is the Newick represen-

tation of tree ti. Figure 6.2 shows the tree decomposition and eNewick representation 

of the network Ni in Figure 6.1. 

In the case of modeling networks with horizontal gene transfer events, it is often 

very helpful to the biologist to know what the species tree is and what the additional 

set of HGT events are. Such information is "lost" in an eNewick representation, unless 

the representation is extended further to keep a record of the "species tree parent" 

of each network node. Therefore, in this case (which is the output of RIATA-HGT) 

we opt for the format of a species tree T, in Newick format, followed by a list of the 

HGT edges, each written as u —> v, where u and v are two nodes in T. 

6.2 Evolutionary Network Characterization 

As we described in Chapter 2, a phylogenetic network induces, or contains, a set of 

trees. The set of induced trees can be used to characterize phylogenetic networks. A 

tree T is induced by a network N if T is obtained from N as follows: 

1. for each node of in-degree larger than one, remove all but one of the network 

edges incident into it; and 

2. for every node of in-degree and out-degree 1, and whose parent is u and child 

is v, remove the two edges incident with it, and add an edge from u to u. We 

denote by the set of all trees induced by N. 

Figure 6.4 shows the sets and 3F(N2) for the two networks Ni and N2 in 

Figure 6.1. It is important to note that this set of trees is completely different from 

the set of trees obtained by the tree decomposition we introduced to facilitate the 
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eNewick format. A phylogenetic network N induces at most Y\V<EVN indeg(u), where 

the product is one if VN is empty. 

Given an evolutionary network N, the set is unique. Further, this set 

informs about the possible gene histories that the network reconciles. 

In addition to characterizing phylogenetic networks by the set of trees they induce, 

we consider a cluster-based characterization. This view of phylogenetic networks is 

very important for understanding the relationships among the "evolutionary perspec-

tive" of phylogenetic networks and the "clustering perspective", which is adopted in 

various methods [107, 108]. Let T = (V, E) be a phylogenetic tree on set X of taxa 

and rooted at node r. Each node v 6 V induces a cluster CT(V). The (nontrivial) 

clusters of tree T are the set \f(T) = {CT(V): v is an internal node and v ^ r}. A 

straightforward way to extend this concept to phylogenetic networks is to define the 

set of clusters of phylogenetic network N as 'TF(N) = | J T ^ S ( N ) ^ ( T ) . The clusters of 

the two networks Ni and N? in Figure 6.1 are listed in Table 6.1. 

In this form of cluster-based characterization, clusters are unweighted; equiva-

lent!^ all clusters are weighted equally. One option of weighting the clusters is by 

considering the fraction of trees in which it appears. In other words, the weight of a 

cluster A can be computed as 

«(*> - l { r e ^ )
(

:
J V ) l

£ y ( r ) } l - <«) 

This weighting scheme informs not only about the clusters of taxa that the network 

represents, but also how many gene trees in the input share each cluster. It is im-

portant to note here that this weighting of a cluster should not be confused with, or 

used in lieu of, support values of clusters, since a cluster may appear in only one gene 

tree and have a high support (e.g., by having a high bootstrap value on the edge that 

defines it) whereas a poorly supported cluster may appear in several trees. 
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Figure 6.4 : The sets = { T ^ , T f , J f , l f } and &{N2) = {Tj, T| , , T2
4} of all eight 

trees induced by the two networks N\ and N2, respectively, in Figure 6.1. 
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Table 6.1 : A table of the (nontrivial) clusters of the two networks N\ and in Figure 6.1, 
denoted by ^(Ni) and (A^), respectively, in the text. Highlighted are rows corresponding 
to clusters that differ between the two networks. 

Network ATX Network N2 

{b,c} {b,c} 

{c,d} {c,d} 

{b, c, d} {b, c, d} 

{d,e} {d,e} 

{ e j } { e j } 

{d,e,f} {d,e,f} 

{b, c, d, e, / } {b, c, d, e, / } 

{a, b, c} {a, b, c} 

{a, b, c, d} {a, b, c, d} 

{a, b, c, d, e, / } {a, b, c, d, e, / } 

HMH HpHB 
Hcj.h] 

{g,h} {g,h} 

{d,e,f,g,h} {d,e,f,g,h} 
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Nakhleh and colleagues have recently introduced a new characterization of phy-

logenetic networks based on the tripartitions of their edges [109], Let e = (u,v) be 

an edge in a phylogenetic network on set X of taxa and rooted at node r. We de-

fine three disjoint sets Ae — {x G X : r x}, Be = {x G X : r x}, and 

Ce = {x G X : r x}. Then, the tripartition induced by edge e, denoted 9e, 

is the triplet (Ae\Be\Ce). Roughly speaking, the tripartition induced by an edge is 

the three sets of taxa reachable from the root only through that edge (Ae), reachable 

through that edge but not exclusively (Be), and not reachable through that edge (Ce). 

The set of (nontrivial) tripartitions induced by a phylogenetic network N, denoted 

by 0(N), is {9e6e is an internal edge in E}. As an example, tripartitions of the two 

networks iVi and N2 in in Figure 6.1 are listed in Table 6.2. 

Tripartition-based characterization of an evolutionary network helps to identify 

clades across which no genetic transfer occurred. If Ae = X and Be = 0 for an edge 

e = (u, v), this implies that the clade rooted at node v has set X of leaves, and there 

does not exist any exchange or transfer of genetic material between any organism in 

X and another organism that is not in X. Equivalently, an evolutionary network can 

be partitioned into a collection {N\, N2,..., N^} of evolutionary networks that result 

from N by deleting every edge e for which Be = 0. Such a partition informs about the 

"locality" of reticulation events: each event in N is local to one of the k components 

in {Ni, N2,..., Nk}. Further, this partition implies that each of the trees in 

has k clades that have the sets {Jf(Ni), 3f(N2), • • • ,Jif(Nk)} of leaves. 

6.3 Evolutionary Network Comparison 

Researchers are often interested in quantifying the similarities and differences be-

tween two phylogenies reconstructed either from two different sources of data or from 
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Table 6.2 : A table of the (nontrivial) tripartitions of the two networks N\ and N2 in 
Figure 6.1, denoted by 9(Ni) and 9(N2), respectively, in the text. Highlighted are rows 
corresponding to tripartitions that differ between the two networks. 

Edge Label Network Ny Network N2 

1 ({a,b, c},{d,e,f},{g,h}) ({a,b, c}, {d, e, / } , {g, h}} 

2 ({g,h},{d,e,f},{a,b, c}) ({g,h},{d,e,f},{a,b, c}> 

3 ({b, c},{d,e,f},{a,g,h}) ({6, c},{d,e,f},{a,g,h}) 

B H H t t {{h},{dlt.f},{a.Krtg}) 

5 ({b,c},{d},{a,e,f,g,h}) ({b, c},{d},{a,e, / ,#, / i}) 

6 ({c},{<K(a> b,e,f,g,h}) 

7 ( { e , / } , M , { M , c, g,h}) {{e,/},{<[, {a A c, 

8 <{e}, {d},{a,b, c, f,g,h}) ({e},M,{a,&, c, 

9 ({<*}> {}>{<*> c,ej,g,h}) 

10 ({<*}> {}>{a> c,e,f,g,h}) ({<*}> 0>{a»6, c,e,f,g,h}) 

11 ({e,/},{d},{a,6, c,g,h}) ({e,/},{<*}, {a, 6, 

12 ( { e , / } , « h { a , b , c,^,/i}> 
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two different reconstruction methods. Such a quantification provides insights into 

agreements and disagreements among analyses, confidence values for different parts 

of the phylogenies, and metrics for comparing the performance of phylogenetic recon-

struction methods. In the context of phylogenetic trees, this quantification is most 

commonly done based on one of two criteria: 

• Topological differences. The topologies, or shapes, of two phylogenetic trees 

are compared, and their differences are quantified. Several measures have been 

introduced to quantify topological differences and similarities between a pair of 

trees, such as the Robinson-Foulds measure and the SPR distance; see [110, 36] 

for a description of several such measures. 

• Fitness to sequence evolution. When two phylogenies are reconstructed from 

the same sequence data set, it is common to compare them in terms of how well 

they model the evolution of the sequences. The most commonly used criteria 

for measuring such fitness are maximum parsimony, maximum likelihood, and 

the Bayesian posterior probability; see [110] for a detailed discussion of all three 

criteria. 

In this section, we report on the capabilities in PhyloNet for comparing two evo-

lutionary networks in terms of their topological differences and similarities, as well 

as in terms of their fitness to sequence evolution based on the maximum parsimony 

criterion. 

For quantifying the dissimilarity between two evolutionary network topologies N\ 

and N2, we want a measure m(-, •) that satisfies three conditions: 

Identity: m(N\, Ar
2) = 0 if and only if Ni and N2 are equivalent; 

Symmetry: m(NuN2) = m(N2, A^); and 
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Triangle inequality: m(Ni,N3) + m(N3, N2) > m(Ni,N2) for any evolutionary 

network N:i. 

This issue of evolutionary network equivalence was discussed in [109]. The three char-

acterizations of evolutionary networks that we described above induce three measures 

which we now define. Let Ni and N2 be two evolutionary networks on the same set 

X of leaves; we define the three measures as follows. 

6.3.1 Tree-based Comparison 

Let 3?(Ni) and ^ ( N 2 ) be the two sets of all trees induced by the two networks, and 

let d(-, •) be a distance metric on trees (see [36] for examples of such metrics). The 

idea is to compare the two networks based on how similar their corresponding sets of 

trees are. We formalize this as follows. Construct a weighted complete bipartite graph 

G ( U I , U 2 , E ) , where \UL\ = \ & ( N I ) \ , and there are two bijections FT : U% ^ ( N ^ 

for i = 1,2. The weight of an edge e = (u, v) £ E for u £ U\ and v € U2, w(e) = 

d(fi(u),f2(v)). Then, the tree-based measure mtree(Ni, N2) is defined as the weight 

of a minimum-weight edge cover of G. In its current implementation, PhyloNet uses 

the Robinson-Foulds distance measure [39] for d. For example, for the two networks in 

Figure 6.1, PhyloNet will return their tree-based distance as (0 + 2)/2 = 1.0 because 

the network N' induces only two trees that are also induced by the network N. The 

tree-based measure was first introduced by Nakhleh et al. [111]. 

An illustration of tree-based comparison of the two networks N\ and N2 in Fig-

ure 6.1 is given in Figure 6.5. Shown on the left of the figure is the bipartite graph 

G built from the sets ^{NI) and ^(N2) of trees induced by the two networks; these 

two sets are shown in Figure 6.4. The weight of each edge connecting two nodes in 

G is the RF distance between the two trees corresponding to these two nodes. These 
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weights can be normalized by the number of internal edges in the trees. Since each 

of the eight trees has six internal edges, the weight of each edge in G can be divided 

by six to normalize it. 

Shown on the right of Figure 6.5 is the minimum-weight edge cover of G, which is 

the set of edges that satisfies two conditions: (1) each node in G must be the endpoint 

of at least one edge in the set, and (2) the sum of the weights of the edges in the set is 

minimum among all sets of edges satisfying condition (1). In this case, the four edges 

shown are a cover, since each node in G is "covered" by at least one edge (here, each 

node is covered by exactly one edge). Further, it is of minimum weight, which equals 2, 

since a simple inspection yields that every other cover has a weight larger than 2. Since 

the cover has four edges in it, we have mtree(N1,N2) = (0 + 0 + 1/6 + l / 6 ) / 4 = 1/12. 

If we use the raw RF values, then mtree(NuN2) = (0 + 0 + 1 + l ) / 4 = 1/2. 

6.3.2 Cluster-based Comparison 

We define the measure based on these two sets to be 

duster(N N , _ , \vm\vm\\ 

The rationale behind this measure is that it is the sum of the ratios of clusters present 

in one but not both networks. The cluster-based measure was first introduced by 

Nakhleh et al. [112]. The sets and %J{N2) of the two networks Nx and N2 

in Figure 6.1 are listed in Table 6.1, with = |^(iV2)| = 14. Since \<€{N2) \ 

<if (7Vi)| = \ &{N2)\ = 2 (the two highlighted clusters in Table 6.1), we have 

md"ster(iVi,iV2) = 1/7. 

A similar weighting scheme to that described in the previous section can be used 

to incorporate the fraction of trees in which a cluster appears into the measure cal-

culation. 
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(a) (b) 

Figure 6.5 : Illustration of the tree-based network comparison measure, (a) The weighted 
bipartite graph G that is constructed from the two networks N\ and N2 in Figure 6.1. On 
the left are four nodes that correspond to the four trees in and on the right are 
four nodes that correspond to the four trees in The weight of an edge between T{ 
and Trj is the values of the Robinson-Foulds (RF) distance between the two trees, which is 
computed as the number of clusters present in one but not both of the trees, divided by 2. 
(b) The edges that comprise the minimum-weight edge cover of the bipartite graph G. The 
weight of this cover is 2, which is the sum of the weights of the edges in the cover; therefore, 
m ^ ( N l , N 2 ) = 2. 
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6.3.3 Tripartition-based Comparison 

We define the measure based on these two sets to be 

partition ( N ^ W - W I , I W O ~ W ) 1 , . 

This measure views the two networks in terms of the sets of edges they define (where 

an edge is in a 1-1 correspondence with a tripartition) and computes the sum of the 

ratios of edges present in one but not both networks. The tripartition-based measure 

was devised by Moret et al. [109]. The sets 6(N\) and 6(N2) of the two networks 

Ni and N2 in Figure 6.1 are listed in Table 6.2, with |0(iVi)| = |0(W2)| = 12. Since 

\9(Ni) - 6(N2)| = |0(iV2) - = 1 ( t h e highlighted tripartition in Table 6.2), we 

have mtriportittan(JVi,^V2) = 1/12. 

6.3.4 Which Measure to Use? 

Several distance measures, such as the Robinson-Foulds measure and the Subtree 

Prune and Regraft (SPR) distance, have been introduced over the years to quantify 

the difference between the topologies of a pair of phylogenetic trees; e.g., see [110, 36] 

for description of many of these measures. Even though these measures may compute 

different distance values on the same pair of trees, there has been no consensus as 

to which measure should be used in general [113]. It may be the case that the 

Robinson-Foulds measure is more commonly used than the others, but this may be 

a mere reflection of its very low time requirements as compared to the other, more 

compute-intensive, measures. 

Regarding the three measures for comparing networks, a scenario analogous to 

that in phylogenetic trees arises here: each measure gives a different quantification of 

the dissimilarity between two networks based on one of the three ways to characterize 
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a given network. As shown in the examples above, some or all of these measures may 

compute the same value for a given pair of networks, but that may not always be the 

case. Tree-based comparison of networks can be viewed as a method to quantify how 

similar, or dissimilar, two networks are in terms of their quality as a summary of a 

collection of trees. In some cases, even though two networks "look different," they 

may be identical in terms of the trees they induce—this is the issue of indistinguisha-

bility of networks from a collection of trees that Nakhleh and colleagues discussed 

in [109]. In such a case, using the tree-based comparison, or equivalently the cluster-

based comparison, is most appropriate. However, if the similarity/dissimilarity of 

two networks means something close to an isomorphism, then the tripartition-based 

measure is more appropriate. However, it is important to note that none of the three 

measures described here is a metric on the general space of all evolutionary networks 

labeled by a given set of taxa. 

A practical distinction among the three measures can be derived based on the 

methods used to infer the evolutionary history of the set of species under study. 

Methods such as SplitsTree [107] and NeighborNet [108] represent the evolutionary 

history as a set of splits, or clusters, hence making it more natural to use cluster-

based comparison to study their performance. Methods such as RIATA-HGT [47] 

and LatTrans [44] compute evolutionary networks that are rooted, directed, acyclic 

graphs, where internal nodes have an evolutionary implication in terms of ancestry. 

For these two methods, all three measures are appropriate. When the evolutionary 

history of a set of species is represented as a collection of its constituent gene trees, 

the tree-based measure is most appropriate. 

Finally, a clear distinction can be made among the methods in terms of com-

putational requirements. In their current implementations, the tripartition-based 
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measure is very fast in practice, taking time that is polynomial in the size of the two 

networks. On the other hand, the tree- and cluster- based measures are much slower, 

taking time that is exponential in the number of network nodes in the two networks 

(since these measures compute explicitly all trees inside each of the two networks). 

In light of recent complexity results that we obtained [114], it is very likely that no 

polynomial-time algorithms exist for computing the tree- and cluster-based measures 

in general. 

6.3.5 Parsimony of Evolutionary Networks 

Nakhleh and colleagues have recently formalized a maximum parsimony (MP) cri-

terion for evolutionary networks [115] and demonstrated its utility in reconstructing 

evolutionary networks on both biological and synthetic data sets [102]. In this section, 

we describe a PhyloNet utility that allows for comparing two evolutionary networks 

in terms of their fitness to the evolution of a sequence data set, based on the MP cri-

terion. We first begin with a brief review of the MP criterion, based on the exposition 

in [115]. 

The relationship between an evolutionary network and its constituent trees, as 

described in the background section, is the basis for the MP extension to evolutionary 

networks. 

Definition 6.1. The Hamming distance between two equal-length sequences x and y, 

denoted by H(x,y), is the number of positions j such that Xj ^ yj. 

Given a fully-labeled tree T, i.e., a tree in which each node v is labeled by a 

sequence sv over some alphabet E, we define the Hamming distance of an edge e = 

(u,v) G E(T), denoted by H(e), to be H(su,sv). We now define the parsimony score 

of a tree T. 
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Definition 6.2. The parsimony score of a fully-labeled, tree T, is YheeE{T) 

Given a set S of sequences, a maximum parsimony tree for S is a tree leaf-labeled 

by S and assigned labels for the internal nodes, of minimum parsimony score. 

The parsimony definitions can be extended in a straightforward manner to in-

corporate different site substitution matrices, where different substitutions do not 

necessarily contribute equally to the parsimony score, by simply modifying the for-

mula H(x, y) to reflect the weights. Let E be the set of states that a site can take 

(e.g., £ = {A,C,T,G} for DNA sequences), and W the site substitution matrix such 

that W(a\,G2) is the weight of replacing by a2 , for every cti, O2 G E. In particu-

lar, the identity site substitution matrix satisfies W(OI,<T2) = 0 when ai = cr2, and 

^ ( c i ? 02) = 1 otherwise. The weighted Hamming distance between two sequence is 

H(x, y) = J21<l<k W(xi, yi), where k is the length of the sequences x and y. The rest 

of the definitions are identical to the simple Hamming distance case. 

As described above, the evolutionary history of a single (non-recombining) gene is 

modeled by one of the trees contained inside the evolutionary network of the species 

containing that gene. Therefore the evolutionary history of a site p is also modeled 

by a tree contained inside the evolutionary network. A natural way to extend the 

tree-based parsimony score to fit a dataset that evolved on a network is to define the 

parsimony score for each site as the minimum parsimony score of that site over all 

trees contained inside the network. 

Definition 6.3 ([115]). The parsimony score of a network N leaf-labeled by a set S 

of taxa, is 

NCost(N, S) = ^ m i n { T G TCost(T,p)} (6.4) 
pes 

where TCost(T,p) is the parsimony score of site p on tree T. 
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Notice that as usually large segments of DNA, rather than single sites, evolve 

together, Definition 6.3 can be extended easily to reflect this fact, by partitioning the 

sequences S into non-overlapping blocks b of sites, rather than sites p, and replacing 

p by b in Definition 6.3. This extension may be very significant if, for example, the 

evolutionary history of a gene includes some recombination events, and hence that 

evolutionary history is not a single tree. In this case, the recombination breakpoint 

can be detected by experimenting with different block sizes. 

The MP utility in PhyloNet allows the user to specify two evolutionary networks 

(either or both of which can be a tree) and N2 and a sequence data set S, and 

computes the parsimony scores NCost(Ni, S) and NCost(N2, S). The user can then 

compare the two scores and evaluate the fitness of the networks to the data set S 

based on the difference in the scores. Further, the utility allows the user, for example, 

to evaluate the significance of each network edge in a network N by comparing the 

parsimony scores of two different versions of N that contain different subsets of the 

network edges in N. 

6.4 Inferring Species Trees From Gene Trees 

In this section, we describe tools that implement algorithms in Chapters 3 and 4 

for inferring species trees from gene trees. In Chapter 3, we present an ILP-based 

algorithm for inferring the species tree's topology and its branch lengths. As the 

algorithm involves a number of substeps, PhyloNet divide the implementation of this 

algorithm into several tools: 

• genst: For generating species tree topologies that correspond to maximal com-

patible cliques in the compatibility graph constructed from clusters induced by 

input gene trees. 



133 

• gencplex: For generating CPLEX programs. The tool reads a species tree 

candidate and a set of gene trees, and it creates an ILP program as described 

in Algorithm 3.3. 

• compute_st: For computing the species tree—both its topology and branch 

lengths—from gene trees. This tool implements Algorithm 3.4, and is written 

as a Perl script. Essentially, the script calls genest to generate species tree 

topology candidates, for each of them it calls CPLEX to solve an ILP program 

produced by tool gencplex, and finally choose the best tree according to the 

optimality criterion rj described in Subsectionsubsec:ch3-algorithm. 

There are two tools in PhyloNet for inferring the species tree using the MDC crite-

rion: coal_infer_st, which is an implementation of the ILP algorithm (Section 4.4), 

and dpcoal_infer_st, which is an implementation of the DP algorithm (Section 4.5). 

To use the first tool, the user invokes PhyloNet as follows: 

java - j a r phylonet . jar coal_infer_st cplexpath gt 

In this case, cplexpath is the path to CPLEX (the ILP solver) on the user's computer, 

and gt is the name of the file that contains all input gene trees (each gene tree written 

in the Newick format on a separate line). For the second tool, the user invokes 

PhyloNet as follows: 

java - j a r phylonet . jar dpcoal_infer_st gt 

In this case, only file gt, which contains all gene trees, needs to be specified. 

As an example, suppose we have a file named input that contains the gene trees: 

TI = ( ( ( ( a , b) , c ) , d) , e ) ; 

T2 = ( (a , b ) , (d, (c , e ) ) ) ; 

T3 = ( (a , c ) , (d, (b, e ) ) ) ; 
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Then, to infer the species tree under MDC, from these gene trees, by using the DP 

algorithm, the user can type the command: 

java - j a r phylonet . jar dpcoal_infer_st input 

which returns ((((a, b), c), d), e) as the species tree. 

Those tools also implement our extension to MDC to handle non-binary and 

multiple-allele gene trees (Section 4.6). For non-binary trees, the input to those tools 

are unchanged. However, n the case where multiple individuals per species may be 

sampled, the user needs to supply a mapping between gene tree taxa and species tree 

taxa in a separate file. If a total of k individuals are sampled from all species, then 

this mapping file contains k lines, each line containing two entries: 

ind sp 

where ind is the label of an individual and sp is the label of the species to which ind 

belongs. For example, suppose we have a file gt that contains two gene trees: 

TI = ( ( a l , a2) , ( ( b l , c l ) , (b2, c 2 ) ) ) ; 

T2 = ( ( ( a l , b l ) , ( c l , b 2 ) ) , (a2, c2 ) ) ; 

where a l , a2 are two sampled individuals of species a; 61, 62 are two sampled individ-

uals of species 6; and cl, c2 are two sampled individuals of species c. Then, in order 

to reconstruct the species tree for the three species a, b, an c, using the DP algorithm 

for solving MDC, the user invokes the command: 

java - j a r phylonet . jar dpcoal_infer_st gt -m map 

where file map contains the following lines 
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al a 

a2 a 

bl b 

b2 b 

c l c 

c2 c 

For this example, the inferred species tree estimate is (a, (c, b)). 

6.5 Reconstructing Evolutionary Networks from Species Trees 

and Gene Trees 

Assuming incongruence among gene and species trees is the result of HGT events only, 

the HGT Reconstruction Problem is to find the smallest number of HGT events to 

reconcile the incongruence. This problem has been shown to be NP-complete [43]. In 

[47], Nakhleh et al. introduced an accurate, polynomial-time heuristic, RIATA-HGT, 

for solving the HGT Reconstruction Problem for a pair of species and gene trees. In 

a nutshell, the method computes the maximum agreement subtree [67] of the species 

tree and each of the gene trees, and adds HGT edges to connect all subtrees that 

do not appear in the maximum agreement subtree. Theoretically, RIATA-HGT may 

not compute the minimum-cardinality set of HGT events; nonetheless, experimen-

tal results show very good empirical performance on synthetic as well as biological 

data [47], 

RIATA-HGT was designed originally to compute a single solution to the problem, 

and was mainly aimed at binary trees. Later, Than et al. [48] extended the method 
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to compute multiple solutions and to handle non-binary trees. These two features 

are very significant: the former allows biologists to explore multiple potential HGT 

scenarios, whereas the latter allows for analyzing trees in which some edges were 

contracted due to inaccuracies (see [116], for example). We have conducted an ex-

perimental study to compare the performance of RIATA-HGT with LatTrans [54], 

Although RIATA-HGT and Lat Trans [44] have almost the same performance in terms 

of the number of HGT solutions and the solution size, the former runs much faster 

than the latter. 

For a compact representation of multiple solutions, we introduce four terms: 

• An event: this is a single HGT edge, written in the form of u —> v, where u and 

v are two nodes in the species tree. 

• A subsolution: this is an atomic set of events, which forms a part of an overall 

solution. In other words, either all or none of the events of a subsolution are 

taken in a solution. 

• A component: a set of components and/or subsolutions. Two components at 

the same level of decomposition are independent, in that an element of each 

component is needed to form a solution. 

• A solution: the union of a single element from each component at the highest 

level. 

To illustrate these concepts, consider species tree (((a, b), c), (d, (e, / ) ) ) and the gene 

tree (((a,c),b), ((d, / ) , e)). Observe, that each HGT event required to reconcile the 

two trees has both endpoints in the subtree ((a, b), c) or both endpoints in the subtree 

(id, (e, / ) ) , and no HGT event has endpoints in both subtrees. In this case, RIATA-

HGT divides the pair of trees into two pairs: 
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0 0 

Figure 6.6 : (a) Screen captures of the graphical output of RIATA-HGT on the pair of 
trees (((a, b), c), (d, (e, /))) and (((a,c),b),((d,f),e)). (b) The eNewick representations of 
the two selected networks. 

• Pair 1: ((a,b),c) and ((a,c),b), 

. Pair 2: (d, (e, / ) ) and ((d, / ) , e), 

and solves the HGT Reconstruction Problem on each of the two pairs independently. 

The set of solutions of each pair is a component. Notice that for each pair there are 

three possible ways to reconcile them; each such way is a called a subsolution. Each 

subsolution is a set of events, which in this case is only one event. Figure 6.6(a) shows 

the screen captures of two graphical outputs that correspond to two solutions on this 

pair of trees. Notice that if a component can be further divided into independent 

components, RIATA-HGT would do so, which will result in components at different 

levels, with the largest components being at the highest level. 

The compact representation of RIATA-HGT's output in terms of subsolutions 

and components is especially helpful when the number of solutions is large. RIATA-

HGT also has an option to display all complete solutions. RIATA-HGT enumerates 
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all complete solutions that are compactly represented as described in the preceding 

paragraphs. Each solution, which is a set of HGT events, along with the species tree 

defines an evolutionary network, which RIATA-HGT displays in the eNewick format. 

For example, for the trees (((a, b), c), (d, (e, / ) ) ) and (((a, c), b), ((d, / ) , e)), RIATA-

HGT outputs 9 different networks in the eNewick format, if RIATA-HGT's option for 

displaying complete solutions is on. Figure 6.6(b) shows the corresponding eNewick 

representations. 

From the multiple comparisons between a species and a set of trees, RIATA-HGT 

offers a (strict) consensus network. For each pair of species tree and gene tree, RIATA-

HGT computes a set of HGT events for reconciling them. To obtain the consensus 

network, RIATA-HGT retains only HGT events that appear in every set of solutions 

for every pair of species tree and gene tree. Those events are then added to the species 

to build the consensus network. 

We note here that while offering a simple summary of solutions, this way of com-

puting consensus networks may not be appropriate in general; work is under way to 

address this issue more properly. 

6.6 Phylogenetic Tree Utilities 

As evident from the description of the methods above, there are fundamental corre-

lations between phylogenetic trees and networks. Hence, many of the phylogenetic 

network utilities use functionalities from the phylogenetic trees domain, which we 

have implemented and provide as standalone tools in PhyloNet: 

• A tool for computing the maximum agreement subtree (MAST) of a pair of trees 

using the algorithm of Steel and Warnow [67]. We also extended the algorithm 

so that it computes all MASTs of a pair of tree, and this feature is implemented 
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as well. 

• A tool for computing the Robinson-Foulds distance measure between two phy-

logenetic trees [39]. 

• A tool for computing the least common ancestor (lea) of a set of nodes in a 

phylogenetic tree [89]. 

6.7 Implementation 

A major goal for the PhyloNet package was to make its functionality platform-

independent and accessible both to end users for data analysis and to researchers 

designing new computational methods and techniques. In order to encompass as 

many platforms as possible, PhyloNet was implemented in Java. As a result, any 

system with the Java 2 Platform (Version 5.0 or higher) installed can run PhyloNet. 

PhyloNet can be used in two ways, depending on how the functionality needs to 

be accessed. A command-line interface exposes all of PhyloNet's tools on a Unix 

or DOS command-line. Each command accepts input from and writes output to 

text files. This allows PhyloNet's functionality to be used for manual data analysis or 

integrated into scripts for performing larger-scale processing. Additionally, a rich and 

thoroughly documented object model allows the incorporation of any of PhyloNet's 

functionality into existing Java programs. Also bundled are various programmatic 

utilities that represent trees, networks, and that read and write these various data 

structures to and from files. 
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6.8 The Command Line Interface 

PhyloNet has a consistent and easy-to-use command line interface. A detailed discus-

sion of this interface and all available options is available in the documentation that 

accompanies a download of the tool. Here we provide a brief overview of the design 

of the command-line tool and the tools that can be accessed. 

Table 6.3 lists all the commands that are currently available from the command-

line. Each of these commands accepts a set of parameters as command-line arguments. 

All trees, networks, sequences, and other major data structures are read in either from 

standard in or from text files. Similarly all results can be written either to standard 

out or to a desired text file. All trees are read and written in Newick format. Networks 

are read and written in eNewick format. These design features allow the easy use of 

PhyloNet for manual data analysis or as a tool used within a larger scripted automated 

analysis. 

To run a tool in PhyloNet, invoke the executable . j a r file downloaded from the 

PhyloNet project homepage with appropriate tool and its arguments, for example, 

j ava - j a r p h y l o n e t . j a r charnet - i n e t . i n -m t r e e 

where phylonet . j a r is the executable jar downloaded from the project homepage (the 

file is assumed to be in the current directory where the user invokes this command), 

charnet is the name of the tool that decomposes the network contained in file n e t . in 

into a set of trees. The reference manual included with the executable jar provides 

very detailed instructions regarding how to run each tool in the PhyloNet package. 
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Table 6.3 : A table of the tools currently implemented in PhyloNet. With the exception 
of the three phylogenetic trees tools lea, mast, and r f , all the other tools are for analyzing 
reticulate evolutionary relationships. 

Tool name Purpose 

charnet Computing clusters, trees and tripartitions in a network 

cmpnets Computing the distance between two networks 

l ea Finding the least common ancestor of a set of nodes 

mast Computing the maximum agreement subtree 

netpars Scoring the parsimony of sequences on a network 

recomp Detecting interspecific recombination breakpoints in a se-

quence alignment 

riatahgt Reconstructing HGT events from a pair of species/gene trees 

rf Computing the Robinson-Foulds tree measure 

compute_st Computing the species tree's shape and branch lengths from 

gene trees 

coal_infer_st Inferring the species tree topology from gene trees, using an 

ILP formulation 

dpcoal_infer_st Inferring the species tree topology from gene trees, using a 

dynamic programming algorithm. 
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6.8.1 Programmatic Interface 

Many phylogenetic methods comprise critical, but intermediate, steps in much larger 

methods. As a result, there is also a need for the functionality in PhyloNet to be 

available for incorporation into larger programs. As a result, all of PhyloNet's func-

tionality is exposed through an extensive set of Java classes. Each tool is contained 

within its own Java class and exposes a carefully constructed set of public methods 

that will be preserved and maintained even as PhyloNet grows. This modular de-

sign allows for the easy addition functionality in the future without effecting existing 

programs that use PhyloNet as a programmatic library. 

In addition to exposing a consistent API, PhyloNet also provides implementations 

of the most common phylogenetic data structures: trees and networks. Utility classes 

are also included that read and write these data structures to and from files. These 

classes can accelerate not only incorporation of PhyloNet's functionality, but also the 

development of new phylogenetic functionality within other applications. 

As PhyloNet grows, programmatic interfaces will be added to provide access to 

new functionality and tools. Detailed documentation of these libraries is available in 

JavaDoc form on the PhyloNet website. 

6.9 Conclusions 

Analyzing and understanding reticulate evolutionary relationships have been hin-

dered by the lack of software tools for conducting these tasks. The software package, 

PhyloNet, offers an array of utilities to allow for efficient and accurate analysis of 

such evolutionary relationships. These utilities allow for reconstructing phylogenetic 

networks from pairs of species/gene trees, detecting interspecific recombination in a 
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sequence alignment, scoring the parsimony of a phylogenetic network with sequences 

at its leaves, characterizing phylogenetic networks in terms of their basic units, and 

comparing the topologies of phylogenetic networks to quantify their similarities. 

The software package will help significantly in analyzing large data sets, as well as 

in studying the performance of phylogenetic network reconstruction methods. Fur-

ther, the software package offers the novel eNewick format for compact representation 

of phylogenetic networks, a feature that allows for efficient interoperability of phylo-

genetic network software tools. 
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Chapter 7 

Conclusions 

7.1 Discussion 

In this dissertation, we present three methods for inferring species trees from multiple 

gene trees despite lineage sorting. Their elegance lies in the fact that they explicitly 

model the process of species/gene tree incongruence during the inference process, but 

at the same time they do not introduce too much complexities as maximum likelihood 

and Bayesian methods do. Instead, they all use a simple parsimony score to measure 

the severity of deep coalescence in inferring the species tree. In the first algorithm, 

the score is the depth of coalescence events. In the second and third algorithms, the 

criterion used is the MDC, or minimizing deep coalescences, first introduced in [5]. 

Although they are simple, the experimental study on both biological and simulated 

data that we carried out shows that they have accuracy competitive with probabilistic 

methods, while they run significantly faster. 

Our investigation of the MDC criterion also results in a simple, but interesting, 

formula for computing the number of extra lineages for individual clusters. With 

this formula, we are able to replace the problem of finding an optimal tree under the 

MDC criterion by the the problem of finding an optimal set of compatible clusters. 

The improvement is huge here, since we know that the total number of rooted binary 

trees on n taxa is (2n — 3)!!, which is using Stirling's approximation, 

while the number of all possible clusters is 0(2"). Certainly, finding an optimal 
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set of compatible clusters among those 0(2n) might be as bad as 0(v /27m(n/e)n). 

However, this is not the case, since we show in Chapter 4 that by using the dynamic 

programming algorithm, the complexity is (3(3"). Besides, we made an empirical 

observation that it is sufficient to work with clusters induced by gene trees, as those 

clusters almost always contain species tree clusters (see Chapter 4). This observation 

makes the dynamic programming algorithm polynomial of the number of input gene 

trees and of the number of taxa. 

We also show how to extend the MDC criterion to phylogenetic networks; see 

Chapter 5. This extension to the MDC provides us with a means to detect hy-

bridization despite lineage sorting. By combining lineage sorting into hybridization 

detection, the new technique overcomes limitations in traditional phylogeny-based 

hybridization detection methods as they often overestimate the amount of hybridiza-

tion. Using this method, we proposed an interesting evolutionary history on the yeast 

data set. 

7.2 Future Research 

There are several open questions and interesting research projects related to the 

content of this dissertation. One of them is the complexity of inferring species trees 

using the MDC criterion. This question is still unresolved at the time of writing, but 

we doubt that it is in class P (i.e., the class of polynomial algorithms). The reason 

is that we might need to look at all possible clusters in order to find the optimal 

tree, and that number is already exponential. Furthermore, a closely related problem 

(in terms of mathematical modeling) of inferring species trees from gene trees by 

minimizing gene duplications and extinctions has been shown to be NP-complete. 

An immediate project that would be of interest is to improve the inference of 
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species trees using the MDC criterion with time included. The current MDC criterion 

for phylogenetic trees allows for elegant approaches to solve the MDC optimization 

problem; see Chapter 4. Including time to the MDC criterion is not a problem, 

since we always count the number of extra lineages by visiting the species tree's 

branches. And as described in Chapter 3, we did have an algorithm for inferring 

species trees when time information is used. The question is: Can we eliminate the 

phase of generating species tree topology candidates as we did in Chapter 4 with 

the original MDC criterion? If this question is solved, then it would be of huge 

significance as branch lengths contain a wealth of information that is valuable to the 

inference process. And being a parsimony method, it can be expected to run faster 

than maximum likelihood and Bayesian methods. 

We note that the efficiency we achieve in the dynamic programming algorithm 

for the MDC criterion stems from the fact that we reconstruct the optimal tree from 

combining gradually compatible optimal clusters. This is a powerful approach, since 

the space of clusters is much smaller than the space of rooted trees. In [55], Degnan 

and Salter provides a general formula for computing the probability of a gene tree 

given a species tree under the coalescent model. In this formula, the probabilities for 

each valid coalescent history is computed (a valid coalescent history is an ordering of 

coalescence events on the species tree's branches such that both the MRCA mapping 

and the gene tree topology are respected), and then they are summed together. The 

complexity here is that the number of valid coalescent histories is often huge [114]. 

Our preliminary investigation of the formula shows that it might be possible to use 

the cluster approach for its computation. 

Concerning the MDC for phylogenetic networks, we note that in Chapter 5 we 

compute the number of extra lineages required to reconcile a gene tree within a 
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network by taking the minimum of those numbers for reconciling that gene tree within 

trees induced by the network. This implies that we might need to look at all trees 

induced by the network, which can be exponential of the number of reticulate events. 

We currently do not have an efficient algorithm to carry out this computation, but 

it is worth investigating since it would make our proposed method for hybridization 

method application for large data sets. 
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