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Abstract 

Regulated Release of a Novel Non-Viral Gene Delivery Vector from 

Electrospun Coaxial Fiber Mesh Scaffolds 

by 

Anita Saraf 

The development of novel strategies for tissue engineering entails the evolution of 

biopolymers into multifunctional constructs that can support the proliferation of cells and 

stimulate their differentiation into functional tissues. With that in mind, biocompatible 

polymers were fabricated into a novel gene delivery agent as well as three dimensional 

scaffolds that act as reservoirs and controlled release constructs. To fabricate a novel 

gene delivery agent a commercially available cationic polymer, poly(ethylenimine), PEI, 

was chemically conjugated to a ubiquitous glycosaminoglycan, hyaluronic acid (HA). 

The novel polymer, PEI-HA, had significantly reduced toxicity and improved 

transfection efficiency with multipotent human mesenchymal stem cells. This 

transfection efficiency could further be modulated by changing the concentration of 

sodium chloride and temperature used to assemble PEI-HA/DNA complexes. To 

facilitate the regulated delivery of these complexes in the context of tissue engineering, 

an emerging technology for scaffold fabrication, coaxial electrospinning was adapted to 

include PEI-HA and plasmid DNA within the scaffold fibers. Initially, a factorial design 
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was employed to assess the influence of processing parameters in the absence of gene 

delivery vectors and plasmids. The study elucidated the role of sheath polymer 

concentration and core polymer concentration and molecular weight and the presence of 

sodium chloride on fiber diameters and morphologies. Subsequently, PEI-HA and 

plasmid DNA were entrapped within the sheath and core compartments of these fibers 

and the influence of processing parameters was assessed in the context of fiber diameter, 

release kinetics and transfection efficiency over a period of 60 days. The release of PEI-

HA was found to be dependent upon the loading dose of the vector and plasmid. 

However, the transfection efficiency correlated to the core polymer properties, 

concentration and molecular weight. The processing parameters could modulate cell 

transfection for up to 21 days and continue to transfect cells for up to 60 days. Thus, 

scaffolds with tunable release kinetics and transfection efficiencies can be fabricated 

using coaxial electrospinning, which can further be used for tissue engineering and gene 

delivery applications. 
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Chapter I 

Objectives and Specific Aims 

1. Synthesis and Conformational Evaluation ofcationic gene delivery vector PEI-HA 

and its complexes with DNA. 

Synthesis of chemical conjugate of cationic gene delivery vector branched 

poly(ethylenimine) (PEI) and hyaluronic acid (HA). 

Evaluation of hydrodynamic radius (Rh) of vector PEI-HA with changing 

concentrations of NaCl (from 150 mM to 500 mM of NaCl) by dynamic light 

scattering (DLS). 

Evaluation of the effect of temperature (ambient and physiological) on Rh of PEI-

HA/DNA complexes. 

Evaluation of the weight of PEI-HA/DNA complexes with static light scattering 

at a range of NaCl concentrations and physiological and room temperature. 

Evaluation of cytotoxicity of PEI-HA on human mesenchymal stem cells 

(hMSCs) and comparison of cytotoxicity with PEI. 

Evaluating the transfection efficiency of PEI-HA/DNA complexes at different 

NaCl concentrations and temperatures. Correlating the transfection efficiency to 

Rh data obtained above. 
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Comparing transfection efficiency of PEI-HA/DNA with PEI/DNA with hMSCs 

at different plasmid concentrations. 

2. Synthesis and Characterization of Coaxial PCL/PEG Scaffolds with an Aqueous 

PEG and Organic PCL Sheath. 

- Establishing an apparatus and setup for coaxial electrospinning with allows 

for easy control of the flow rates of solutions of polymers PCL and PEG. 

Determining the range of processing parameters that influence the inner and 

outer fiber diameters of coaxial fibers. 

- Formulating a full factorial design that evaluates the influence of PCL 

(sheath) polymer concentration, PEG (core) polymer concentration and 

molecular weight and NaCl concentration within the core. 

- Fabricating 16 different groups of coaxial fiber scaffold mats to evaluate the 

effects of the parameters on inner, outer and total fiber diameter of coaxial 

scaffolds. 

- Evaluation of fiber dimensions (inner, outer and total fiber diameters) using 

confocal microscopy and scanning electron microscopy (SEM). 

- Evaluating the effects of the processing parameters on inner, outer and total 

fiber diameters using the full factorial design formulated above. 
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3. Regulated Release ofPEI-HA and Plasmid DNA from Coaxial Fiber Meshes. 

- Formulation of a fractional factorial design to evaluate the influence of 

processing parameters on the release of rhodamine tagged PEI-HA. The 

parameters for evaluation include PCL (sheath) polymer concentration, PEG 

(core) polymer concentration and molecular weight and the loading dose of 

PEI-HA and pDNA. 

- Fabrication of 8 different groups of coaxial scaffolds with PEI-HA within the 

fiber sheath and reporter gene green fluorescent protein (GFP) spun into the 

core of the coaxial fibers. 

- Evaluating the influence of processing parameters on fiber diameter. 

- Evaluating the release kinetics of PEI-HA from coaxial scaffolds for up to 60 

days. 

- Evaluating the bioactivity of the plasmid-vector released from coaxial scaffolds 

by transfecting fibroblast cells in 2D cultures. 

- Evaluating the transfection capability on cells directly seeded onto coaxial 

electrospun scaffolds. 
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Chapter II 

Background: Gene Delivery for Cartilage Regeneration: Strategies and 

Considerations1 

Abstract 

Tissue engineering is a multifaceted technology developed with a purpose of 

regenerating complex tissues and organs. Cartilage regeneration continues to challenge 

engineers and a new wave of efforts focus on developing strategies that provide sustained 

stimulation to cells by growth factors and other biological molecules to promote their 

differentiation into chondrocytes. Though significant research is dedicated to developing 

controlled release systems that deliver growth factors directly, a simpler approach to 

resolving this dilemma involves converting cells into protein producing factories. This is 

done through gene delivery. Gene therapy studies published for articular diseases such as 

rheumatoid and osteoarthritis provide valuable information regarding different types of 

cells, gene delivery vectors and genes that can potentially be used to regenerate cartilage. 

Tissue engineering approaches provide the opportunity to combine two or more strategies 

used for gene therapy thus far and create a cohesive system that addresses both cartilage 

degeneration and synthesis simultaneously. Adopting gene transfer techniques for tissue 

1 Sections of this chapter have been published as follows: Saraf A, Mikos AG. "Gene delivery strategies 
for cartilage tissue engineering" Adv Drug Deliv Rev. 2006 Jul 7;58(4):592-603 
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engineering is a relatively novel approach, as non-viral gene delivery vectors are 

continually optimized for therapeutic purposes, and reservations about viral vectors have 

increasingly dampened their appeal. However, every element involved in gene 

transfection (i.e., the cell, vector and gene) is a variable which decides the physiological 

and biomechanical properties of the cartilage produced, and significant work still needs 

to be done in understanding the contribution of each of these factors to cartilage 

regeneration. 

Abbreviations 

BMP-2 

BMP-7 

CDC 

cDNA 

ECM 

GFP 

IGF-1 

IL-4 

IL-1RA 

IL-10 

IL-13 

MMP 

MSC 

Bone Morphogenic Protein 2 

Bone Morphogenic Protein 7 

Center for Disease Control and Prevention 

complementary Deoxyribonucleic Acid 

Extracellular Matrix 

Green Fluorescent Protein 

Insulin-like Growth Factor 1 

Interleukin 4 

Interleukin 1 Receptor Antagonist 

Interleukin 10 

Interleukin 13 

Matrix Metalloproteinase 

Mesenchymal Stem Cell/ Marrow Stromal Cell 
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PGA Poly(glycolic acid) 

SMADs Smooth Muscle Actin (SMA) and Mitotic spindle Assembly checkpoint 

(MAD) proteins. 

TGF-P Transforming Growth Factor p 

TGF-pi Transforming Growth Factor pi 

TGF-P2 Transforming Growth Factor P2 

TGF-P3 Transforming Growth Factor P3 

TIMP Tissue Inhibitors of Matrix Metalloproteinase 

TIMP-1 Tissue Inhibitor of Matrix Metalloproteinase 1 

TIMP-3 Tissue Inhibitor of Matrix Metalloproteinase 3 

TNF-a Tumor Necrosis Factor a 

Introduction 

Of all the organs targeted for tissue engineering, one could argue that cartilage would 

be one of the easiest to regenerate. Cartilage is one of the few avascular tissues in the 

body and is composed of a single cell type - the chondrocyte, which eliminates the need 

to address two critical problems in tissue engineering - angiogenesis and creation of 

multilayered tissues derived from cells of multiple lineages. Yet, cartilage tissue 

engineering is hardly dismissed as trivial and very few successful animal models for 

cartilage regeneration have progressed to clinical trials. According to the 2002 National 

Health Interview Survey conducted by the Center for Disease Control and Prevention 

(CDC), 43 million Americans have some form of arthritis of which 16 million report 
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related limitations in activity1'2 More than 500,000 cartilage repair procedures are 

performed every year '4'5. Perhaps nothing reflects the impact of cartilage related diseases 

to our society as clearly as the $86 billion that the CDC estimates are annually lost in 

direct and indirect costs related to their treatment. "Treatment" of these disorders 

continues to rely heavily on analgesics, although the past few years have seen notable 

advances in surgical techniques. However, considering the limited regenerative capacity 

of cartilage, surgical interventions, at best, temporarily mask some of the symptoms 

without addressing the underlying pathology. This makes it a less viable option for 

younger patients. In recognition of this, clinicians are trying to incorporate cell 

transplantation and artificial matrices as treatment options, as they have been clinically 

proven to give better long term results ' . Tissue engineering research continues to 

enhance the effectiveness of these treatments by including the use of growth factors and 

cytokines with the aim of decreasing damage to the surrounding tissue and regenerating 

tissue that more accurately resembles native cartilage. 

Although various biological factors have been independently identified as necessary 

for reducing inflammation or promoting regeneration, it is becoming increasingly 

obvious that careful orchestration of the dose and type of numerous biological factors is 

essential to optimize this process. The challenge now lies in developing delivery systems 

that recognize this complexity in delivery of biological agents. The direct delivery of 

these agents either systemically or locally has numerous limitations. Biological agents 

have a half life in the order of minutes, which requires high doses of delivery and 

repeated administration. Furthermore, concentrations that are therapeutic to one organ 
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may damage another. These problems related to targeting of multiple biological agents 

and their dose regulation can be solved by creating cells that are modified to transiently 

over-express certain proteins. Ex vivo transfection, where cells are initially isolated from 

a joint, transfected with the gene of interest and injected back into the joint, cleverly 

augments autologous cell transplant, a clinical procedure that is approved and widely 

used (Figure 2.1). Though gene therapy for cartilage regeneration is still in its infancy, 

one can imagine that in the near future a treatment protocol might involve introduction of 

multiple cell populations at different time points, each expressing a different protein of 

interest working in synergy to control inflammation and encourage regeneration. This 

review article addresses studies related to gene delivery that have thus far been 

documented, with the aim of understanding the limitations and potential of gene delivery 

for cartilage regeneration. 

Candidate Cells for Gene Delivery 

Cartilage defines the skeletal outline of a developing embryo. As the embryo 

develops most of the cartilage is converted to bone. However, cartilaginous tissue 

continues to subsist at the ends of bones and functions as a cushion, thus preventing 

friction between them. Figure 2.2 is a schematic of the knee joint. Not all cartilage tissues 

are identical and there is just as much heterogeneity within the cartilage as there is 

between them. Cartilage is classified into three main categories - elastic cartilage found 

in the external ear, fibrocartilage that is found in the intervertebral discs and hyaline 

cartilage which is present between articular surfaces. As hyaline cartilage constitutes the 
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most abundant type of cartilage, and is commonly affected in arthritic disorders, most 

tissue engineering models focus on regeneration of articular cartilage - which is a type of 

hyaline cartilage (Figure 2.2). The mechanical and biochemical properties of the cartilage 

are defined by its extracellular matrix (ECM), all of which is secreted by cells that 

occupy 2% of the total volume. Consequently, the chondrocytes are immobilized within 

the thick ECM. 

Autologous Chondrocytes 

An obvious choice for gene delivery would be chondrocytes, the cells that secrete 

cartilaginous matrix that defines the cartilage. Gene delivery approaches for tissue 

engineering of cartilage seldom target the chondrocytes in vivo, as these cells are 

inaccessible to vectors due to the rich matrix that surrounds them. Instead, autologous 

chondrocytes harvested from joints and expanded in vitro in monolayers are preferably 

used for transfection. The primary drawback to using autologous cells is that they lose 

their chondrocyte phenotype to become fibroblastic when grown in vitro in monolayer 

as early as after the first passage of cells8'9. This limits the quantity of cells that can be 

used for transfection and implantation. In arthritic joints, this population of chondrocytes 

is further limited. Since cartilage is an aneural tissue, initial damage to the cartilage 

cannot be perceived by the patient. Focal cartilage injuries expand with time and use and 

lead to a more generalized cartilage loss that reaches the subchondral bone. Only when 

the damage is significant causing the patient to be immobilized do physicians seek 

surgical intervention. Furthermore, even during the very early stages of arthritis or other 
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joint disorders, there is a significant change in the phenotype of the chondrocytes. 

Chondrocytes undergo significant changes in their cell surface markers as well as 

accelerate their production of extracellular matrix molecules to keep up with the damage 

caused to their surrounding tissue10. Gradually the biosynthetic machinery of the cell fails 

to keep up with the anabolic demands of the tissue and the chondrocytes undergo 

apoptosis causing loss of cartilage. Considering the circumstances which lead to the 

death of the chondrocyte, it would be impractical to further overburden the cells by 

forcing them to express additional genes. 

Chondroprogenitor Cells 

Mesenchymal stem cells (MSCs) are increasingly being preferred to autologous 

chondrocytes as better alternatives for cell transplant. Large quantitative of autologous 

MSCs can be extracted by minimally invasive techniques from the iliac crest of the 

patient, and other populations of MSCs are found in blood, and in the periostium. MSCs 

are multipotent cells with the capacity to regenerate into numerous cells lines including 

chondrocytes although MSCs from different sources in the body may have different 

potentials of multipotency. Wakitani et al. pioneered the use of bone marrow derived 

MSCs for cartilage regeneration when they used cells from New Zealand white rabbits in 

full thickness cartilage defects11. The cells were saturated in collagen sponges that were 

embedded into the defect. Even in the absence of additional growth factors, the MSCs 

secreted a cartilageous matrix that was converted to bone in subchondral regions of the 

defect. Although the regenerated cartilage had inferior mechanical properties and 
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appeared to be discontinuous with the host tissue, the study established that cells other 

1 0 

than chondrocytes could be used for cartilage regeneration . Subsequent studies have 

emphasized the need to stimulate MSCs with appropriate chondrogenic factors or 

inductive material. BMP-2, BMP-7, IGF-1 and a variety of recombinant proteins have 

produced better results at regeneration than introduction of MSCs into joint spaces alone. 

A major drawback to most of these models, however, is the absence of joint pathology 

and most of the experimental models do not reflect the environment of a damaged 

cartilage . Hence, determining which chondrogenic factors are required for MSCs to 

undergo true differentiation by imitating the pathways of embryonic development 

involves more work than mere extrapolation from developmental biology literature. 

Firstly, there is significant cross talk involved between inflammatory cells present in the 

joint space, the damaged chondrocytes, and the MSCs that are artificially introduced, and 

these interactions are absent during normal embryonic development. As a result, genes 

that stimulate cell differentiation in embryos may not respond the same way in a milieu 

of inflammatory cells. For example, IGF-1 in developing chondrocytes promotes the 

synthesis of cartilage specific matrix molecules14. However, in a milieu of inflammatory 

cells IGF-1 receptors are severely down-regulated, and thus the required pathways 

stimulated through IGF-1 remain dormant15. Furthermore, there is significant 

inconsistency of response to biological factors between different animal models. For 

example, when collagen sponges embedded with recombinant BMP-2 and rabbit MSCs 

were implanted in rabbit knees, the regenerated cartilage was thin and irregular16. 

However, when similar sponges containing BMP-2 transfected perichondral cells were 
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implanted in the knees of rats, the resultant cartilage had a rich collagen I component 

similar to fibrocartilage17. The above examples are not indicative of MSCs being poor 

candidates for cartilage regeneration, but perhaps of the complexities involved in utilizing 

any multipotent cells in tissue engineering research. MSCs themselves have minimal 

disadvantages associated with them. MSCs have been shown to inhibit T-cell 

proliferation through immunosuppressive effects18. Although this delays immune 

rejection of transplanted MSCs, thus allowing for use of allogenic cells, it also raises the 

question of whether the transplanted MSCs can induce tumors in patients receiving them. 

Preliminary data suggest that such occurrences are rare although an extensive 

investigation is needed to further address this topic19. 

Cells within the Synovial Cavity 

In addition to multipotent stem cells, synovial cells that line the joint cavity are also 

considered to be promising alternatives for gene therapy. The synovium lines the internal 

surfaces of a joint cavity and in contrast to the cartilage has a large cell population that 

covers a significant surface area. Hence, following either direct gene delivery or injection 

of transplanted cells into the synovial cavity, cell engraftment or transfection is 

exclusively observed in the synovial lining following simple probability parameters20. 

This opens the possibility of simplifying gene delivery to an intra-articular injection of 

gene delivery vectors or cells21. Studies by Gouze et al. showed that modified synovial 

cells continue to express significant amounts of gene product in vivo for up to 42 days 

after transfection by lentiviruses22. As compared to other models, gene transfer to 
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synovial cells is significantly more advanced in clinical trials. A phase I clinical trial 

involving ex vivo modification of synovial fibroblasts derived from rheumatoid joints was 

based on extensive studies on rabbit knees that involved similar modification of synovial 

cells. In these studies synovial cells were transfected ex vivo with IL-1 receptor 

antagonist cDNA with retroviral vectors. When these cells were transplanted into arthritic 

rabbit knees it was observed that IL-1 RA was strongly chondroprotective and reduced 

the number of leuckocytes entering the joint space23. Furthermore, independent studies by 

Makarov et al. showed that IL-1 RA delivered intra-articularly via gene therapy was four 

orders of magnitude more effective as an anti-arthritic than recombinant protein delivery 

systemically24. However, there is some contradiction in reports related to synovial gene 

transfer. While Evans et al. reported that no IL-1 RA was reported in the peripheral blood 

of the rabbits, Gouze et al. reported significant amount of protein in the all major organs. 

This discrepancy can be explained by the technique used for modifying synovial cells. 

While Evans et al. transfected the cells ex vivo and then introduced them into the 

synovium, Gouze et al. directly injected lentiviruses carrying IL-1 RA into the joint. Ex 

vivo gene transfer has been shown to be similarly successful using other plasmids 

including IGF-1, and TGF-p. However, current consensus from various studies is that ex 

vivo or direct gene delivery to synovial cells can be toxic resulting in joint fibrosis, 

osteophyte formation, extensive uncontrolled cartilage growth (in the presence of BMP-

2), joint swelling and in some cases cartilage degeneration144'25'26'21. 
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Candidate Genes 

Depending on the choice of cell used for gene delivery, there are a myriad of genes 

that can potentially be used for gene delivery. As mentioned above, the complexity lies in 

determining which gene or gene combinations are necessary and sufficient to induce 

chondrogenesis. Furthermore, the influence of these genes on different cell types in 

inflammatory environments remains to be determined. 

Transforming Growth Factor p 

Genes commonly used for cartilage formation include those from transforming 

growth factor (TGF-P) superfamily including TGF-P 1, which is responsible for initial 

cell-cell interaction between condensing progenitor cells27. In inflamed joints, TGF-pi 

has anti-inflammatory properties and stimulates new matrix synthesis by 

chondrocytes ' ' . TGF-P2 mediates hypertrophic differentiation of chondrocytes by 

regulating Indian hedgehog (Ihh) and Parathyroid Growth Hormone (PTHrP) 

expression , however, it has not been used as extensively as TGF-P 1 for gene delivery. 

During development TGF-P 1-3 are involved in inhibiting formation of blood vessels in 

cartilage30. When Lee et al. transfected a monolayer of intervertebral disc cells with TGF-

pi cDNA and grew them in 3 dimensional pellet cultures, they found a 375-475% 

increase in proteoglycan synthesis as compared to pellets containing cells not transfected 

with TGF-pi31. Irrespective of the number of cells used to grow these pellets, Lee et al. 

could not grow pellets larger than 5-7 mm in diameter. It is yet unclear whether the size 

of the pellet could be increased using different genes or a combination of genes including 
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TGF-pi. It is crucial to regulate the dose of TGF-pi secreted into the joints space. Mi et 

al. have shown that low doses of intra-articular injection of adenoviruses containing 

TGF-(3 cDNA have no therapeutic or harmful effect on arthritic joints32. However, high 

levels of TGF-p, when transfected into the joints, increase production of nitric oxide 

(indicating inflammation), muscle edema and reduced movement of the joint. These 

effects were absent in control joints that received the similar concentration of virus vector 

with luciferase cDNA. 

Bone Morphogenic Proteins 

Within the TGF superfamily are also included Bone Morphogenic Proteins (BMPs), 

BMP-2 and BMP-7 being most commonly used in gene delivery studies for cartilage. 

One of the first studies involved growing modified periosteoal mesenchymal stem cells 

by transfection with BMP-7 cDNA . When the modified cells were embedded in 

Poly(glycolic acid) (PGA) scaffolds and placed in full thickness defects within the rabbit 

knee, Grande, et al. found that transduced cells placed in PGA scaffolds did significantly 

better than non-transduced cells placed in scaffolds. They had a larger amount of hyaline 

cartilage, and quicker restoration of the subchondral bone (as early as six weeks)33. 

However, BMPs must be used with caution for cartilage regeneration as they are potent 

stimulators of ossification. 
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Insulin-like Growth Factor -1 

IGF-1, a growth factor recognized to induce cartilage proteoglycan synthesis and 

collagen matrix production has also been studied in animal models with positive results. 

Since recombinant IGF-1 has a very short half life, researchers are keen upon developing 

a gene delivery system that can modify cells to synthesize their own IGF-1 for extended 

periods of time. Nixon et al. compared the effects of modifying pristine equine 

chondrocytes, bone marrow derived chondroprogenitor cells, and synovial cells with 

IGF-1 cDNA15. They found that these cells were capable of maintaining therapeutic 

levels of IGF-1 expression for up to 28 days in in vitro monolayer cultures. Transfected 

chondrocytes were able to maintain their morphology and secrete significantly greater 

amounts of proteoglycans and collagen II. However, independent experiments by Mandry 

et al. found that when IGF-1 is transfected into articular chondrocytes, there is no 

significant increase in collagen II expression by these cells, although histologically the 

constructs score higher than untreated controls . This discrepancy can be attributed to one 

or more of the differences in setup between the two experiments. While Nixon et al. were 

performing their studies in vitro, using adenoviruses with transfection efficiencies of 40-

50%, Mandry et al. were using FuGene 6, a non-viral vector in vivo, where transfection 

efficiency was at 35%. Transfection of rat articular chondrocytes ex vivo with IGF-1 

cDNA containing adenoviral vectors and their subsequent implantation in partial 

thickness articular cartilage defects resulted in preservation of the chondrocytic 

morphology and formation of a structure that resembled hyaline cartilage 8 weeks into 

the study. Similar results were obtained when rabbit articular chondrocytes were 
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modified after transfection . Further characterization of these constructs for mechanical 

properties is needed to enhance our understanding of the variables that dictate the 

outcome of long term expression of IGF-1 on various cell lines. Table 1 lists the various 

delivery systems and their efficiencies at secrete IGF-1. 

Transcription factors 

Transcription factors are regulatory proteins that bind to specific regions on the 

genome and control their expression. Such modulated gene expression can potentially be 

used to generate the differential ECM composition in each zone. A noteworthy advantage 

offered by transcription factors over expression proteins such as TGFP or IGF is that a 

significantly small amount of protein expression is required activate numerous 

downstream pathways that can stimulate the differentiation of multipotent cells along a 

particular cell line. However, to date, transcription factors have not been used for tissue 

engineering applications and hence provide a new forefront for creating novel tissue 

engineering strategies. One of the transcription factors which has repeatedly been marked 

as essential and non-redundant for promoting cells into the chondrocytic lineage is Sox-

935. Sox-9 is one of the first transcription factors that gets activated during 

skeletogenesis to generate a chondrocytic mold which is later replaced by endochondral 

ossification. Furthermore, endochondral ossification cannot occur without down 

regulation of Sox-9 expression, and hence Sox-9 is essential for both promoting and 

preserving the chondrocytic phenotype. Sox-9 is a typical transcription factor containing 

a transcription activation domain that binds to enhancers of collagen IIa36,37 and 
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collagen IXa38. In addition, when cells engineered to suppress Sox-9 expression are 

introduced in chondrogenic fields, they are distinctly devoid of collagen II, collagen X, 

collagen XI and aggrecan. The further lack of chondrogenic condensates in these fields 

confirms the integral role Sox-9 in chondrogenesis . In an elegant series of experiments 

conducted by Ikeda et al40. it was reported that without Sox-5 and Sox-6, induction of 

chondrogenesis by Sox-9 alone was delayed and not as robust as in the presence of all 

three transcription factors (together called the Sox-trio). Furthermore, chondrocyte 

specific markers remained high for at least three weeks post transfection and the 

chondrocytes did not convert into a prehypertrophic or hypertrophic phenotype. Collagen 

II reached peak expression levels when hMSCs were transfected with the Sox-trio and 

cultured in the presence of chondrogenic medium (comprising of TFG-P3, BMP-2 and 

dexamethasone) and was reasonably high when transfected with the Sox-trio alone. 

However, when hMSCs were transfected with Sox-9 alone, the expression of aggrecan 

dominated over the expression of collagen II. Several of these findings were later 

confirmed in vivo by Lefebvre et al.41 At the molecular level, Sox-5 and Sox-6 act to 

modulate the structure of DNA so to as facilitate recruitment of other transcription factors 

including Sox-9. When Sox-9 acts in conjunction with Sox-5 and Sox-6, the synthesis of 

cartilage specific ECM is upregulated multifold. Therefore, it may be concluded that the 

Sox trio can be used to induce and preserve a robust chondrocytic phenotype from 

hMSCs. 
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Other Anabolic Gene Candidates 

Although TGF-pi, IGF-1 and BMPs are commonly targeted in experiments 

involving gene delivery for cartilage regeneration, up regulation of some other biological 

molecules such as transcription factors, intracellular signaling molecules and growth 

factors is also considered to be promising. Studies have shown that fibroblast growth 

factor (FGF-3) receptor signaling is sufficient to induce chondrogenic differentiation42. 

Signal transduction molecules SMADs are also important intracellular regulators of 

chondrocytic differentiation. As these molecules function intracellularly, they cannot be 

delivered to cells in a soluble form. Gene therapy is perhaps the only effective technique 

to utilize these molecules for cartilage regeneration . The success of this strategy is 

limited by the transfection efficiency of the gene delivery vector and the survivability of 

the cells undergoing transfection. 

Anti-inflammatory Agents 

Although cartilage regeneration mainly involves enhancing the anabolic activity of 

cells to either synthesize extracellular matrix molecules or imitate the differentiation 

observed in embryonic development, tissue engineering of damaged cartilage cannot be a 

complete success without addressing the inflammatory agents that overwhelm the joint 

space. Most of the work with anti-inflammatory agents has been performed in animal 

models where arthritis is induced using collagen or other stimulatory molecules. Studies 

have involved the use of IL-1 receptor antagonist, soluble TNF-alpha receptors, anti

inflammatory cytokines such as IL-10, IL-4 and IL-13, all of which have been successful 
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at decreasing inflammatory response in animal models ' " ' . Other effective 

strategies involve using tissue inhibitors of matrix metalloproteinases (TIMPs). 

Following induction of arthritis, synovial cells secrete matrix metalloproteinase (MMPs) 

that cause severe destruction of the cartilage ECM. In addition, MMPs are also 

responsible for the cellular invasion of the joint by inflammatory cell. Tissue engineering 

strategies have been applied to curtail the destruction caused by MMPs by modifying 

arthritic synovial cells to over express TIMPs. Gelfoam sponges were seeded 

independently with synovial cells transfected with TIMP-1 and TIMP-3. The studies 

showed a 25% and 13% decrease respectively in the number of invading cells. 

Significant reduction in cell proliferation was also observed in addition to reduced levels 

of active MMPs. A possible extrapolation of this approach could involve the creation of 

a dual system, one containing synovial cells that overexpress anti-inflammatory agents 

and the other system containing chondrocytes or stem cells over expressing one or more 

anabolic factors - thus addressing both cartilage destruction and regeneration observed in 

articular diseases. 

Candidate Gene Delivery Vectors 

Viral Vectors ' 

There are two main classes of gene delivery vectors - those involving viruses and 

those involving non-viral agents, such as polymers and liposomes. Viral vectors seem to 

be overwhelmingly preferred to non-viral vectors in most documented studies involving 

gene delivery for cartilage regeneration. The question of using viral versus non-viral 
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vectors for any kind of gene delivery has caused intense debate since the inception of the 

idea of gene therapy. Viral vectors have been preferred in all avenues of gene delivery 

simply because they are better at successfully transfecting cells. While viral vectors can 

attain transfection efficiencies of around 80-90%, non-viral vectors can at most transfect 

40-50% of the cell population. This continues to be a major obstacle in the use of non-

viral vectors for gene delivery. However, non viral vectors are receiving increasing 

attention on the basis of their ease of synthesis, low immunogenicity and unrestricted 

plasmid size. The apprehension that envelopes the use of viral vectors for gene therapy 

has been justified based on many factors. Firstly, viral vectors induce an inflammatory 

response, which can cause a myriad of side effects ranging from mild edema to muti-

system organ failure. The immune system's enhanced response to the now recognized 

virus makes it difficult to administer gene therapy repeatedly. At a more cellular level, 

transfection of a virus causes significant changes in cell surface markers of transfected 

cells, decreasing the possibility of reusing the same population of cells for a second round 

of gene delivery. Furthermore, cells that synthesize proteins encoded in the transgene 

express some viral markers and the duration of protein synthesis is limited by the ability 

of inflammatory cells to identify these cells and eliminate them. Modifications of virus 

genomes where minimal amounts of viral genes are retained have helped address many of 

these issues. Some of these modifications have extended expression of transgenes carried 

by the viruses for as long as 84 days46. 

However, direct injection of viral vectors is considered to be harmful as independent 

studies have shown dose dependent inflammatory response in joints of various animals47. 
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Another disadvantage to intra-articular injection of viruses is that the viruses spread to 

other organs, however this dispersion of the virus has not been confirmed in larger 

animals such as rabbits and rhesus monkeys48. Ex vivo gene delivery is a novel method 

that circumvents most problems related to viral gene delivery while providing all of its 

benefits. The technique involves in vitro gene delivery to extracted cells after expanding 

the cells in culture. The transfected cells are then reintroduced into the body where they 

function as factories producing high quantities of the protein of interest. This technique, 

also coined cell mediated gene transfer, is ideal for introducing a variety cell populations 

transfected with different types of genes, at different time points without bringing the 

virus in direct contact with the body. There is some contention that viral genomes may be 

left behind in such ex vivo transfected cells, but that is currently being investigated. 

Studies prove that there is significant increase in the duration of protein expression with 

ex vivo gene delivery as compared to direct injection of viral vectors . Nixon, et al. 

observed expression of marker Green Fluorescent Protein (GFP) beyond 60 days in 

chondrocytes transfected ex vivo with adenovirus. Rabbit synovial cells transfected ex 

vivo with a retrovirus maintained IL-1RA expression for up to 6 weeks23. Furthermore, 

recent work has shown that in the absence of immune recognition of transgene product 

cells lining the synovial cavity can transcribe the transfected cDNA at relevant levels for 

up to 6 months22. Other advantages of ex vivo gene delivery include the possibility to 

transfect cells other than those that line the synovial membrane. Articular chondrocytes 

as well as chondroprogenitor cells that are modified to secrete higher amounts of proteins 
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can be directly injected within joints, where they are shown to preferentially adhere to 

damaged cartilage48. 

Non-viral Vectors 

FuGene 62 and modified cationic liposomes49 are two non-viral gene delivery 

methods that have so far been utilized for gene delivery for cartilage regeneration. 

FuGene 6 is a non-liposomal lipid formulation which has been shown to successfully 

transfect a variety of cell-lines. After transfection with FuGene 6, Mandry et al. 

encapsulated the transfected articular chondrocyte into alginate spheres. The mean 

transfection efficiency was around 35% and 60% of the transfected chondrocytes 

expressed the transgene IGF-1 for as long as 6 weeks. IGF-1 expression peaked at day 5, 

and was sustained above therapeutic levels for 32 days. Transfection using the poly-L-

lysine lipids designed by Goomer et al. involved a multi-step process where transfection 

was optimized by introducing cells in a detergent (lysolethicin) to permeabilize the cell 

membrane. Furthermore, transferrin was covalently attached to the polycationic backbone 

to promote electrostatic interaction with DNA. Transfection efficiency by this method 

was reported at 71% in vitro. The transgene expression was maintained up to 13 days 

after transfection and no immune response was observed in vivo in animal models. 

Future studies will undoubtedly incorporate novel non-viral gene delivery vectors, 

including polymeric vectors that are currently being developed. 

Scaffolds used for Gene Delivery 
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Scaffolds provide a way to localize cells to an area in the defect while supporting the 

joint mechanically during the formation of novel tissue. Furthermore, since chondrocytes 

need a three dimensional configuration to preserve their morphology, scaffolds are ideal 

for cartilage regeneration as they provide spatial communication between cells while 

providing a infrastructure of fibers that provide mechanical support to the cells and 

healing tissue. Numerous natural and artificial materials have been used for cartilage 

regeneration including fibrin and collagen matrices, hydroxylapatite, synthetic hyaluronic 

acid sponges, and numerous polymers. However, scaffolds also introduce new 

limitations to the experimental design. When cells are seeded onto scaffolds, a good 

portion of them fail to attach to the scaffold fibers. The cells that eventually populate the 

scaffolds are produced from repeated cell duplications of the existing cells. Considering 

that in most practical scenarios transfection efficiency is significantly less than 100%, the 

actual number of transformed cells that continue to grow on scaffolds is very small. 

Furthermore, most viruses (and non-viral vectors) only transiently transfect cells and the 

expression of the transgene is lost after the cell replicates. Due to some of these reasons, 

previous experiments involving gene delivery to scaffolds have had limited success. 

When Baragi et al. used ex vivo transfected chondrocytes to populate collagen scaffolds 

and subsequently transplanted these scaffolds into articular cartilage defect, they noticed 

that over 90% of the cells were lost during the first 24 hours after seeding50. Polyglycolic 

acid sponges have provided more promising results. Separate populations of periosteal 

stem cells that were transduced ex vivo with BMP-7 and sonic hedgehog respectively and 

seeded onto PGA scaffolds showed remarkable healing of full thickness cartilage defect 
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as early as 6 weeks . Similarly, Mason et al. transfected rabbit derived mesenchymal 

stem cells with BMP-7 and obtained complete osteochondral healing in defects implanted 

with cell seeded PGA scaffolds at 8 and 12 weeks51. Hence, most strategies involving the 

use of scaffolds undergo ex vivo transfection of cells before being placed onto scaffolds. 

A few studies conducted thus far involve the incorporation of plasmids (with or without 

gene delivery vectors) into the scaffold meshes, but these models have mainly been used 

for bone and vascular tissue engineering. Hence, a significant amount of work needs to be 

done in optimizing scaffold technology to promote or preserve the chondrocytic 

phenotype. 

Multi-layered Scaffolds 

One of the challenges involving the use of scaffolds in cartilage regeneration 

involves the variability in cell type and extra cellular matrix present between the different 

layers of cartilage. To regenerate the multilayered cartilage structure, stackable scaffolds 

containing layers with distinctive properties need to be fabricated such that they can 

stimulate desired phenotypic characteristics in cells enchased within them. For example, 

Ng et al. , formulated a bilayered scaffold from agarose, whereby each layer was 

fabricated with from a different concentration. The differences in concentration 

stimulated different mechanical properties in the tissues produced initially; however, 

these properties could not be sustained for prolonged durations. 

Creation of such multilayered constructs does provide the versatility required in 

creating tissues with layered compositions. However, limitations in differentiating and 
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preserving such cultures is attributed to the fact that neither gene delivery agents nor 

growth factors can be effectively delivered such that they can be confined to the specific 

regions of interest within the scaffold. Hence, it is essential to develop new processing 

techniques that allow the fabrication scaffolds that can house specific biological factors 

within confined layers. 

Concluding Remarks 

Table 2 summarizes the various cells, scaffolds and gene delivery vectors that have 

thus far been used for cartilage tissue engineering. It is evident that new strategies need 

to be developed to allow the integration of gene delivery with three dimensional 

scaffolds. Such strategies can translate not only to seemingly simple tissues such as 

cartilage, but also to more complex tissues present in the body. Development of novel 

biomaterials and novel processing methods for translating existing biomaterials into 

better non-viral gene delivery vectors or versatile scaffolds will be imperative in creating 

new strategies in tissue engineering. 
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Gene of 
interest 

IGF-1 

IGF-1 

IGF-1 

Method of 
transfection, 

cells & vectors 
employed 

Ex vivo 
synovial cells 
Adenovirus 

Ex vivo chondrocytes 
FuGENE 6 

Ex vivo 
chondrocytes, MSCs 

synovial cells 
Adenovirus 

Concentration of 
protein secreted 

Maximum: 246±43 
ng/ml 

123±22ng/107cells 

Chondrocytes: max: 
70 ng/ml 
MSCs: 

max: 115 ng/ml 
Synovial cells: 
max: 246 ng/ml 

Duration protein 
was detected 

All 8 days 
evaluated 

All 36 days 
evaluated 

All 28 days 
evaluated 

Reference 

53 

2 

15 

Table 2.1: Comparison of secreted IGF-1 after gene delivery. 
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Cells 
In vitro transfection 
Chondrocytes 

Rabbit 
Horse 

Rat 
Lapine 

Cow 
Human 

Chondroprogenitor 
cells 

Rabbit MSCs 

Rabbit Periosteal cells 

Synovial cells 
Horse 

Other Cells 
NIH/3T3 

Rat fibroblasts 

Rat muscle cells 

In vivo transfection 
Rat 

Rabbit 

Cow 

Vectors 

Reterovirus 
Adenovirus 

Adenovirus 
Baculovirus 
FuGENE6 

Adenovirus 
Adenovirus 

Retroviruses 

Retroviruses 

Cationic 
lipids 

Adenovirus 

Reterovirus 
Adenovirus 

Reterovirus 

Lentivirus 

Adenovirus 
Adenovirus 
Adenovirus 

Genes 

LacZ 
IGF-1 
GFP 

IGF-1 
GFP 

IGF-1 
LacZ 
GFP 
B-

galalctosidase 

BMP-7 

BMP-7 
Shh 

TGF-pi 
PTHrP 

B-galactosidase 

IGF-1 

IL-1RA 
IGF-1 

BMP-2 
LacZ 

B-galactosidase 
IL-1RA 
TGF-pi 
IL-10 

TGF-pl 

Scaffolds 

Collagen 
-

-

Alginate beads 

Alginate beads 
Alginate beads 

Polyglycolic 
Acid 

Polyglycolic 
Acid 

-

-
-
-

Collagen 

-

-
-

• -

Reference 

54 
15 

14 
55 
2 

56 
57 

5 

33 

58 

15 

59 

54 

22 

32 
43 
25 

Table 2.2: Cells, gene delivery vectors and genes thus far used for cartilage regeneration. 
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Chapter III 

Synthesis and Conformational Evaluation of a Novel Gene Delivery 

Vector for Human Mesenchymal Stem Cells 

Abstract 

We have synthesized a novel gene delivery vector by covalently combining 

branched polyethylenimine (PEI) and hyaluronic acid (HA) with the aim of improving 

transfection of PEI into human mesenchymal stem cells (hMSCs), while maintaining cell 

viability. Because of the opposite charges on PEI and HA, the PEI-HA vector forms a 

zwitterionic polymer capable of inter- and intra-molecular interactions. We have 

characterized the hydrodynamic radius of PEI-HA and PEI-HA/pDNA complexes at 

ambient and physiological temperatures, as well as at a range of salt concentrations using 

light scattering, and investigated the effect of the size of transfecting complexes on gene 

delivery. We found that by increasing the salt concentration from 150 to 1000 mM of 

NaCl, the mean hydrodynamic radius (Rh) of PEI-HA increases from 2.0 ± 1.1 nm to 

366.0 ± 149.0 nm. However, increasing the salt concentration decreases the mean Rh of 

PEI-HA/pDNA complexes from 595.0 ± 44.6. nm to 106.0 ± 19.2 nm at 25°C and from 

This chapter has been published as follows: Saraf A, Hacker MC, Sitharaman B, Grande-Allen KJ, Barry 
MA and Mikos AG "Synthesis and Conformational Evaluation of a Novel Gene Delivery Vector for 
Human Mesenchymal Stem Cells," Biomacromolecules, 2008 Mar; 9(3):818-27 
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767.0 ± 137.2 nm to 74.0 ± 23.0 nm at 37°C. hMSCs transfected with smaller complexes 

showed a significant increase in transfection from 3.8 ± 1.5% to 19.1 ± 4.4%. Similarly, 

PEI-HA performed significantly better than PEI in terms of cell viability (86.0 ± 6.7% 

with PEI-HA versus 7.0 ± 2.8% with PEI, 24 hours post exposure at the highest 

concentration of 500 mg/ml) and maximum transfection efficiencies (12.0 ± 4.2 % with 

PEI/pDNA complexes and 33.6 ± 13.9 % with PEI-HA/pDNA complexes). Thus, 

modifying PEI by covalent conjugation with HA improves its performance as a gene 

delivery vector in hMSCs. This presents a promising approach to altering hMSCs for 

tissue engineering and other applications. 

Abbreviations 

Acryl/bis: Acrylic Acid/ Bis-acrylamide 

AMAC: 2-Aminoacridone 

a-MEM: Alpha Modified Eagle's Medium 

BMP: Bone Morphogenetic Protein 

N:P ratios: Primary and Secondary Cations (from PEI) to Anions (from pDNA) Ratio 

(in moles) 

CD44: Clusters of Differentiation 44 

CMV: Cytomegalovirus 

DLS: Dynamic Light Scattering 

DMSO: Dimethyl Sulfoxide 

pDNA: Plasmid Deoxyribonucleic Acid 
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ECM: Extracellular Matrix 

eGFP: Enhanced Green Fluorescent Protein 

EthBr: Ethidium Bromide 

FACE: Fluorescence Assisted Carbohydrate Electrophoresis 

FACS: Fluorescence Activated Cell Sorter 

FID: Free Induction Decay 

GFP: Green Fluorescent Protein 

HA: Hyaluronic acid 

hMSCs: Human Mesenchymal Stem Cells 

Mw: Weight Average Molecular Weight 

MSCs: Mesenchymal Stem Cells 

MWCO: Molecular Weight Cut Off 

NNLS: Non-Negative Least Squares 

PEI: Poly(ethylenimine) 

PEL Branched Poly(ethylenimine) 

PBS: Phosphate Buffered Saline 

pCMV-BMP-2: Plasmid-Cytomegalovirus-Bone Morphogenetic Protein - 2 

pCMV-eGFP: Plasmid-Cytomegalovirus-Enhanced Green Fluorescent Protein 

rMSCs: Rat Marrow Stromal Cells 

SLS: 

TBE: 

Static Light Scattering 

Tris-Borate-EDTA 

TEMED: N,N,N,,N'-(tetramethyl)-(ethylenediamine) 
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UV: Ultraviolet 

Introduction 

Polymeric gene delivery vectors have been developed over the past 30 years toward 

an increased specificity to many different cell types. Polyethylenimine (PEI) continues to 

be the preferred cationic polymeric gene delivery vector with its mechanism extensively 

studied and tested amongst various cell types60. Furthermore, PEI has also been 

covalently and electrostatically bound to many different biological molecules to improve 

targeting61'62'63 of primary cells and cell lines. Since mesenchymal stem cells (MSCs) are 

becoming an increasingly important cell source for tissue engineering64'65, it is essential 

to evaluate the potential of polymers as transfection vectors in these cells in order to 

advance the field of tissue engineering. Since most polymers are tested in cell lines, data 

on transfection of MSCs (including hMSCs) with non-viral agents are scarce. Poly-L-

lysine-palmitic acid derivatives66 demonstrated transfection of 15% of rMSCs, whereas 

similar studies with PEI/pDNA complexes achieved efficiencies of 5%66 to 13%67. 

Adenoviruses continue to be the gene delivery agent of choice for MSCs. Commercial 

lipid based agents such as FuGENE 6 and Dotap (both from Roche Pharmaceuticals) 

have transfection efficiencies of less than 6% in hMSCs, whereas non-vector mediated 

transfection methods such as electroporation have gene delivery efficiencies in the range 

of 27% to 41%69. Furthermore, cell mortality is significant with electroporation, limiting 

the successful translation of these techniques to tissue engineering purposes. 
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Here we describe the synthesis and characterization of a novel gene delivery vector, 

a chemical conjugate of branched PEI (PEI, Mw = 25 kDa) and hyaluronic acid (HA, Mw 

= 2.3 kDa), the later of which is a natural ligand for receptors CD 44, CD 54 and CD 168 

on hMSCs70' 71 '72. Previous PEI-ligand polymers have shown increased targeting and 

higher transfection efficiencies63'73'74 as compared to unmodified PEI alone. Between 80 

- 90% of hMSCs express CD 44 receptors that can bind to HA oligomers, and the density 

of these receptors can be increased with biological stimuli including the presence of 

HA75. In addition to improving cell targeting, we hypothesized that HA would also 

mitigate the toxicity notoriously associated with the cationic amine groups of PEI76'77 by 

countering them with the carboxylic groups present on HA. Recent studies where 

PEI/pDNA complexes were coated with HA have shown improved gene delivery due to 

easier dissociation of pDNA from PEI78. Similarly, PEI/pDNA complexes immobilized 

on HA crosslinked hydrogels successfully transfected T3T cells79. Furthermore studies 

have shown that HA oligomers are involved in angiogenesis80'81, modulate proteoglycan 

synthesis82, and activate cell signaling pathways83, which are vital for tissue engineering 

applications. 

The studies presented here describe the synthesis and characterization of PEI-HA as 

a gene delivery vector. The specific goals involve determining the influence of salt 

concentration on the size of the vector as well as the vector/plasmid complex at ambient 

and physiological temperatures. We further investigate the influence of the size of these 

complexes on transfection efficiency in hMSCs. The studies also investigate the 
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performance of vector PEI-HA as compared to PEI in terms of cell viability and 

transfection efficiency in hMSCs. 

Experimental Procedures 

Materials 

Chemicals used for synthesis, namely sodium borate, sodium cyanoborohydrate and 

PEI (Mw = 25 kDa) were purchased from Sigma-Aldrich (St. Louis, MO). Sodium 

hyaluronate (Mw = 2.3 kDa) was generously provided by Genzyme. hMSCs were 

purchased from the laboratory of Dr. Darwin Prockop at the Tulane Center for Gene 

Therapy and grown using protocols established by Prockop et al.84. Materials for cell 

culture including a- Modified Eagle's Medium (a-MEM), glutamine, trypsin and PBS 

were obtained from Gibco (Carlsbad, CA). Plasmid DNA with cytomegalovirus (CMV) 

promoter and enhanced Green Fluorescent Protein (eGFP) as the reporter gene (pCMV-

eGFP, 4.7 kb, cat # 6085-1) from Clontech, Palo Alto, CA, USA, and CMV promoter 

induced Bone Morphogenic Protein - 2 (BMP-2), (pCMV-BMP-2, 6.7 kb, cat # 

SCI08987) from Origene, Rockville, MD. 

Synthesis of PEI-HA 

PEI-HA was synthesized by the process of reductive amination. PEI (250 mg) and 

HA (500 mg) were added to a three-neck round bottom flask in the presence of 0.1 M 

sodium borate buffer (pH 8.5). Sodium cyanoborohydrate (0.2 mg) was added as a 

reducing agent at the beginning of the reaction and the mixture was heated to 40°C with 
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constant stirring. An additional 0.15 mg of sodium cyanoborohydrate was added at 30 h 

into the reaction. The reaction was maintained for 48 h. The products were dialyzed 

against 0.02 M of sodium borate buffer in a VivaSpin centrifuge tube (Molecular weight 

cut-off (MWCO) 30 kDa) (Sartorius Corp., Edgewood, NY) and the dialysate was 

transitioned to pure water. The dialyzed products were then lyophilized resulting in a dry 

powder that was used for subsequent analysis. 

Nuclear Magnetic Resonance Analysis 

Proton NMR spectra were acquired using a 400 MHz spectrophotometer (Bruker 

Avance 400, Zurich, Switzerland). DEPT-135 13C NMR spectra were acquired using a 

Bruker Avance 500 spectrometer. Samples of PEI, HA and PEI-HA were prepared by 

dissolving the materials in D2O at 37°C on a shaker table. NMR spectra were recorded at 

ambient temperature and processed using the MestRe-C software (Mestrelab Research 

S.L., Spain). To improve signal-to-noise, line broadening of 2 Hz and 10 Hz was used to 

process the forward induction decay (FID) of the proton and carbon spectra respectively. 

Chemical shifts in the spectra obtained were expressed as parts per million using HDO (8 

= 4.79 ppm) as an internal reference. By integrating the peaks corresponding to the 

protons of the CH2 groups of PEI and CH3 groups of HA, the percentage conjugation of 

PEI and HA was established. 
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Fluorescence Assisted Carbohydrate Electrophoresis (FACE) 

To confirm the amount of HA attached to PEI, FACE with 2-aminoacridone 

(AMAC) was performed85'86,87. 10 mg of HA and PEI-HA were separately dissolved in 

150 raM NaCl solution and the pH was adjusted to 5.5. The samples (5 ul each) were 

mixed with 80 ul of 0.1 M ammonium acetate and treated with 15 ul of chondroitinase 

AC II (cleaves galactosaminidic linkage)88 overnight at 37°C. The following day the 

samples were lyophilized and reconstituted with 0.1 M AMAC solution (85% of total 

volume) in glacial acetic acid-DMSO (3:17, v/v, 15% of total volume) and freshly 

prepared sodium cyanoborohydride solution (3xl0"5 M per sample). The mixtures were 

centrifuged for 5 min at 13,000 rpm and incubated at 37°C overnight to allow 

derivatization with AMAC. Fluorescent standards were prepared by diluting known 

quantities of maltotriose and performing the same fluorescent labeling. After 

derivatization samples were mixed with 20 ul of glycerol and protected from light for 

FACE analysis. 

A two layered polyacrylamide gel was used to isolate the HA bands. The layers 

consisted of: i) resolving gel (final concentration 20% acrylamide/bis-acrylamide 

(acryl/bis) (37.5 : 1), 2.5% glycerol and 44.8 raM tris acetate (pH 7.0)); total volume 5 ml 

and ii) stacking gel (final concentration 8% acryl/bis (37.5 : 1), 2.5% glycerol, 44.8 raM 

tris acetate (pH 7.0) and PEG (Mw 8000, 4.4% w/v)); total volume 5 ml. These solutions 

were made freshly each time. 28 ul of 10% ammonium persulfate and 7.5 ul TEMED 

were added to facilitate cross-linking of the gels. The solution was mixed rapidly and 

placed between glass plates such that the resolving gel formed the bottom layer and the 
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stacking gel formed the top layer, where an 8-10 well comb was inserted before the 

stacking gel was formed. 8 ul of each sample (experimental samples along with the 

maltotriose samples for quantification) were loaded in each well. Electrophoresis was 

performed at 500 V until satisfactory resolution of the bands was obtained (60-75 min). 

The gels were illuminated with UV light and digitally imaged using a Kodak Gel Logic 

100 imaging system and Kodak ID software (Kodak, Rochester, NY, version 3.6.0). 

Quantitative analysis was performed with densitometery on Gel Pro Analyzer software 

(Media Cybernetics, Silver Spring, MD; v 4.5.0). 

Electrophoresis Band Retardation 

PEI-HA/pDNA (pCMV-eGFP) complexes at nitrogen : phosphate (N:P) ratios of 

2:1, 7.5 : 1 and 13.5:1 were assembled in NaCl solutions of molarities ranging from 150 

mM to 1000 raM. Total number of nitrogens at physiological pH were determined by the 

total moles of primary and secondary amines in PEI-HA and the total number of 

phosphates were determined as the total moles of phosphate groups contributed by 

pDNA62 89. PEI/pDNA complexes were also assembled at N:P ratios 2:1, 7.5:1 and 

13.5:1. PEI/pDNA complexes at 2:1 showed some precipitation and hence were not used 

for analysis. The samples were vortexed and incubated for 1 h. The samples were then 

loaded on 0.5% agarose gels synthesized in 0.5X Tris-borate-EDTA (TBE) buffer. 5 ul of 

ethidium bromide (EthBr) was added to 50 ml of agarose solution during the assembly of 

the gels to visualize free pDNA. 10 [4,1 the sample (containing either 1 ug free DNA or 

vector complexed with 1 ug pDNA) were added to the wells in the presence of 5 ul of IX 
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loading dye. Electrophoresis was performed for 50 min at 80 V in 0.5X TBE buffer, after 

which the migration of free DNA towards the anode was assessed under a UV light. 

Dynamic and Static Light Scattering 

(A) Creating PEI-HA and PEI-HA/pDNA complex solutions 

PEI-HA was dissolved in 150, 300, 500, 700 and 1000 mM NaCl solutions to make a 

0.1 M PEI-HA solutions. pH was adjusted to 7.4 using 0.1 N HC1 dissolved in 150 - 1000 

mM NaCl solutions respectively and filtered with a 0.2 urn filter (Whatman, NJ). The 

solutions were introduced drop-wise into plasmid DNA pCMV-BMP-2 at N:P ratio of 7.5 

: 1. For dynamic light scattering (DLS) and static light scattering (SLS) experiments, the 

above solutions were freshly made and distributed into 250 (il batches at 25°C. 

(B) DLS 

For measuring the hydrodynamic radii (Rh), dynamic light scattering (DLS) results 

were obtained using a 90PLUS Particle Size Analyzer (Brookhaven Instruments), the 

laser operating at 659 nm wavelength. The solutions were allowed to equilibrate at 25°C 

for 10 min in cuvettes prior to acquiring the readings. The temperature was then raised to 

37°C and allowed to equilibrate with the solution for 10 min prior to acquiring additional 

readings. Similarly, readings were performed at both 25°C and 37°C with PEI-HA/pDNA 

complexes at NaCl concentrations of 150, 500, and 1000 mM. The cumulant method was 

used to derive information about the Rh distribution and Laplace inverse program Non-

Negative Least-Squares (NNLS) was used to determine the intensity weighted aggregate 
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particle size in the form of Rh. The dust-cut off was set at 1000 nm and values higher 

than 1000 nm were not accounted for during processing. 

(C) SLS 

Using toluene as the reference solvent, scattering intensities were recorded for the 

samples and toluene in batch mode using a DAWN-EOS instrument (Wyatt Technology, 

equipped with a 30 mW GaAs laser at X = 690 nm) for SLS. Measurements were carried 

out at both 25°C after letting the solutions equilibrate for 10 min and 37°C after letting 

the solutions equilibrate for 10 - 15 min. dn/dC ratios were calculated to be 0.1 mg/ml 

using toluene as the reference solvent on a Wyatt Technologies optilab device. Each SLS 

measurement was repeated at least three times and one representative measurement was 

used to obtain the Zimm plot. This plot allows the determination of the weight average 

molecular weight (Mw) and the second virial coefficient (A2) using the Zimm equation: 

27t\h{dnldC))2 C 1 „ , „ 

A4xNa R{6) Mv 2 

where n is the refractive index of the solvent, dn/dC is the refractive index of the 

polymer, X is the wavelength of the laser beam used, Na is Avogadro's number, C is the 

concentration of the polymer in solution, and R(0) is the Reyleigh ratio. Mw is to be 

derived. 
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Cell Viability Studies 

The toxicity of the synthesized PEI-HA was compared to the toxicity of PEI on 

hMSCs. hMSCs were seeded on 96-well, clear bottom plates at a density of 4xl04 

cells/cm2. Cells were allowed to attach to the surface overnight then exposed to PEI, or 

PEI-HA at concentrations ranging from 10 to 500 ug/ul. PEI and PEI-HA solutions were 

prepared by dissolving the respective polymers in a-MEM followed by filtration through 

a 0.2 urn filter. hMSCs were exposed to the polymer solutions for 24 h then washed with 

PBS and complete media (a-MEM, 20% FBS, 10% glycine, 10% penicilline-

streptomycine) in the wells. Cells were tested for viability at 24 and 72 h post exposure to 

the polymers using a Live/Dead Viability/Cytotoxicity assay for mammalian cells 

(Molecular Probes, Carlsbad, CA; 4 uM Ethidium homodimer-1 (EthD-1) and 2 uM of 

Calcein-AM). Cells were washed with PBS prior to addition of 100 ul Live/Dead reagent, 

then incubated for 30 min. Untreated hMSCs grown in complete medium were used as 

live controls. Fluorescence was measured using a fluorescent microplate reader (FLx800 

Bio-TEK instruments) equipped with a 485/582 (excitation/emission) filter to measure 

calcein (green fluorescence). The fraction of live cells was calculated as described by 

Temenoff et al.90. Furthermore, live and dead cells were visualized by fluorescence 

microscopy using Nikon-Eclipse E600 and Image-Pro Plus software v 5.1 (Media 

Cybernetics Inc., Bethesda, MD, v 5.1). 

Transfection Studies 

Cell culture 
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hMSCs were plated on 6-well plates at a density of 5xl03 cells/cm2. hMSCs were 

allowed to attach overnight in the presence of complete medium after which the medium 

was replaced by a-MEM. Before the cells were transfected with the plasmids, the cell 

cycles were synchronized with the assumption that the doubling time of hMSCs is -30 

h91. To this end, the cells were incubated in serum free medium (a-MEM) for 30 h. Once 

synchronized, cells were incubated in complete medium for 6 h to allow reactivation of 

the normal cell cycle. 

Assembly of PEI-HA/pDNA andPEI/pDNA complexes 

PEI and PEI-HA were each separately dissolved in 150 and 500 raM of NaCl 

solution and filtered through a 0.2 urn filter. Each of the solutions was divided into two 

batches; one batch was placed at room temperature for dissolution, the other was placed 

in a 37°C incubator. On complete dissolution of the two polymers, 0.1 N HC1 dissolved in 

150 or 500 mM NaCl were used to titrate the polymer solutions to physiological pH (7.4). 

Additional NaCl solutions were used to bring the final concentration of the two polymers 

to 1 mg/ml upon which they were returned to the incubator or room temperature 

overnight. The following day, 1.0, 2.5 and 3.8 ul reporter plasmid (concentration 4 ug/ul) 

was aliquoted into tubes and the volume was adjusted to 50 ul with NaCl solutions. These 

solutions were then independently combined with vectors either in a 37°C water bath or 

at room temperature. PEI or PEI-HA was added drop-wise with frequent mixing such that 

the N:P ratio in each case was preserved at 7.5 : 1. The samples were briefly centrifuged 

and returned either to the incubator or left at room temperature to stand for 2 h. 
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Transfection ofhMSCs with PEI/pDNA and PEI-HA/pDNA complexes 

hMSCs were allowed to attach overnight in 6-well plates and their cell cycles were 

synchronized as described above. Complexes assembled at 37°C were kept in the water 

bath until they were introduced drop-wise onto the cells, and after transfection the cells 

were immediately returned to the incubator. Complexes assembled at room temperature 

were introduced onto cells similarly and then returned to the incubator as well. Two 

groups served as controls; one treated only with complete medium and the other group 

treated with pDNA alone. Flow cytometry was used to determine the percentage of 

transfected cells. 

Flow cytometry 

(a) Fixing cells: Cell-wells were washed three times with sterile PBS to remove any 

dead cells, then treated with 0.5 ml of 0.5 X trypsin (Gibco, Bethesda, MD) at 37°C for 3 

minutes. Trypsinization was terminated with the addition of complete medium. The cells 

were collected in suspension and centrifuged for 10 min at 10,000 rpm. The medium was 

aspirated and replaced with chilled 1% formaldehyde solution for 1 h on ice. The cells 

were centrifuged again and the formaldehyde solution was replaced with PBS. 

(b) Counting cells: The cells were counted using flow cytometry (Becton Dickenson 

FACS Scan) at high flow using CellQuest Pro software (BD Biosciences, San Jose, CA, v 

5.1). To determine the location ofhMSCs on the graph, sterile PBS (background signal) 

followed by hMSCs suspension in PBS was run through the flow cytometer. The location 
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of hMSCs was gated and this gate used to identify cells in experimental samples. The 

FACS machine was further calibrated to register green fluorescence emitted by cells that 

were successfully transfected, while a separate channel recorded the total number of cells 

passing through the capillary of the FACS. A maximum limit of 5xl03 cells per sample 

was implemented on the gated population of all experimental groups. In cases where cell 

mortality was too high to obtain the set cell-count, the reading terminated if no new cells 

were registered after 3 min. The total number of cells counted up to that point was used to 

calculate the transfection efficiency 

., , _ . . _ „ . Cell Count of Experimental Cells ... _, „ _ . 
Absolute Transaction Efficiency = - — x (% Cells Transjected) 

Cell Count of Control Sample 

While analyzing transfection percentage, markers were placed at 1% of control samples 

(untreated cells) to determine the population of cells with a relative rightward shift. 

Statistical Analysis 

Statistical analysis was performed between groups for the live/dead assay and flow 

cytometry transfection studies. Groups were analyzed with ANOVA using a p-value 

<0.05 and pair-wise comparisons were performed using the Tukey's Honestly Significant 

test. 
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Results 

Synthesis and NMR Spectroscopy 

The conjugates of HA and PEI were synthesized in aqueous buffer by reductive 

amination according to the scheme shown in Figure 3.1. This reaction involves the 

formation of an imide intermediate at the anomeric CI of HA, which is reduced to a 

secondary amine by sodium cyanoborohydride. The PEI-HA conjugate was then purified 

by ultrafiltration and finally lyophilized to form a dry powder. 

The *H NMR spectrum of HA showed a signal of 5 ~ 5.15 ppm for the anomeric 

carbon CI of HA, which did not appear in the spectrum for the purified PEI-HA 

conjugate (Fig. 3.2a). Signals corresponding to all other functional groups of HA and PEI 

were found in the NMR spectrum of the conjugate as follows (Figs.l and 2a): 8 ~ 2.0 

ppm (H of -NCOCH3 from HA); 5 2.5 - 3.2 ppm (H of N-CH2-CH2-N from PEI); 8 -

3.35 ppm (H of C2' from HA); 8 3.4 - 3.7 ppm (H of C4, C5, C 3 \ C4' from HA); 8 3.7 -

4.0 ppm (H of C2, C3, C6a, C4\ C5' from HA); 8 ~ 4.15 ppm (H of C6a from HA); 8 ~ 

4.45 ppm (H of CI ' from HA); 8 ~ 4.55 ppm (H of CI from HA). 

The DEPT-135 13C NMR spectrum of PEI-HA further confirmed the presence of PEI 

and HA in the conjugate (Figs. 3.1 and 3.2b). The peaks of the expected functional 

groups can be assigned as follows93'94: 8 - 2 5 ppm (NCOCH3 from HA); 8 40 - 55 ppm 

(methylene N-CH2-CH2-N from PEI); 8 - 5 7 ppm (methine C2 from HA); 8 - 6 3 ppm 

(methine C6 from HA); 8 - 7 1 ppm (methine C4 from HA); 8 74 - 76 ppm (methine C3, 

C3' from HA); 8 78 - 80 ppm (methine C5, C5' from HA); 8 - 8 2 ppm (methine C4' 
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from HA); 8 - 8 8 ppm (methine C3 from HA); 8 ~ 103 ppm (methine CI from HA); 8 ~ 

106 ppm (methine CI ' from HA). The CI signal of a- and P-anomer was only found in 

the spectrum of HA at 8 ~ 94 ppm and 8 ~ 98 ppm, respectively. Due to a low signal-

noise ratio in the PEI-HA spectrum the absence of the anomeric CI signal could not be 

confirmed as clearly as for the *H spectrum. To quantify the amount of HA attached to 

PEI by 'H NMR, the peaks corresponding to H of -NCOCH3 from HA at 8 ~ 2.0 ppm and 

H of N-CH2-CH2-N from PEI at 8 2.5 - 3.2 ppm were integrated and the ratios of *H 

atoms were compared to determine the amount of HA incorporated into PEI. This 

analysis showed that between 11.4 to 13.0 % of primary amines of PEI had reacted with 

HA to form PEI-HA via reductive amination. 

Fluorescence Assisted Carbohydrate Electrophoresis (FACE) 

A sample gel containing HA and PEI-HA, before and after treatment with 

chondroitinase ACII is shown in Figure 3.3. As seen in lane 5 of the gel, the undigested 

HA sample has a mixture of oligomers within the sample obtained from the 

manufacturer. When treated with chondroitinase AC II, which cleaves galactosaminidic 

linkages, HA multimers reduce to dimers as shown in lane 6. Lane 3 contains untreated 

PEI-HA and does not show the presence of HA, even at high exposures, indicating that 

the polymer does not contain non-covalently attached HA contributing to the 

stoichiometry of the polymer. When the same samples were treated with chondroitinase 

ACII however, we can see HA dimers in lanes 2 and 4, suggesting that HA has been 

cleaved from the parent molecule, PEI-HA. The amount of HA attached to PEI was 
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calculated using densitometry on the bands of HA in the gels. Relative ratios of the 

oligomers within the HA used were determined from lane 5. These ratios were then 

applied to the HA band in lanes 2 and 4, while standards were used to quantify the total 

HA in these lanes. FACE studies were repeated two additional times to confirm the 

average amount of HA. 

Calculations showed that taking into account the various "mers" present within the 

reactant HA, 13 ± 1% of the primary amine groups of PEI were substituted with HA via 

reductive amination. This is in good agreement with the data obtained from NMR 

analysis. 

Electrophoresis Band Retardation 

To determine weather salt concentration would facilitate pDNA packing within the 

vector, PEI-HA and pDNA complexes were assembled after PEI-HA was equilibrated in 

NaCl solutions of various concentrations ranging from 150 to 1000 mM. As seen in 

Figure 3.4, the amount of unbound pDNA detected on the agarose gel decreased with 

increasing salt concentrations at N:P ratios of 2:1 and 7.5:1. At NaCl concentrations 

equal to or greater than 500 mM, the amount of unbound pDNA decreased at N:P ratio 

2:1 and was absent, even at high exposures, at N:P ratio 7.5:1. However, at N: P ratio of 

13.5:1 none of the samples showed unbound pDNA. No free pDNA was observed with 

PEI/pDNA complexes assembled at 7.5:1 and 13.5:1. 
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Dynamic Light Scattering 

(A)PEI-HA 

In pure water, PEI-HA has limited solubility and forms visible aggregates. These 

aggregates can dissipate completely when the solution is incubated at 37°C for 3 days or 

alternatively if the vector is dissolved in 150 mM NaCl solution. Once the polymer was 

completely dissolved in NaCl solutions, DLS studies on PEI-HA showed a range in Rh of 

the vector with increasing salt concentrations. The Rh distribution of PEI-HA shifted 

significantly to higher Rh as higher molarity NaCl solutions were used (Table 3.1). As 

seen in Table 3.1, the peak intensity occurred at 2.0 ± 1.1 nm for the vector dissolved in 

150 mM of NaCl, 11.4 ± 5.2 nm in 500 mM of NaCl, and 366.0 ± 149.0 in 1000 mM 

NaCl. 

(B) PEI-HA/pDNA Complexes 

At 25°C PEI-HA/pDNA complexes assembled in all salt solutions displayed a 

bimodal distribution. Increasing the salt concentrations resulted in more complexes with 

smaller Rh. After increasing the temperature to 37°C most populations with smaller Rh 

shifted slightly towards higher Rh while their size distribution became narrower (Figure 

3.5 and Table 3.2). 

Static Light Scattering 

The scattering intensity of the polymer complexes at 25 and 37°C was used to 

construct Zimm plots. Data points for the Zimm plots were obtained by diluting the 
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sample with their respective salt solutions then measuring light intensities at eighteen 

different scattering angles. Using regression analysis, data points were fitted to a trend 

line (not shown) in order to determine the A2 as well as molecular weight. Representative 

molecular weights of the complexes at 25 and 37°C were similar for complexes 

assembled at 150, 300 and 500 mM of NaCl solution as seen in Table 3.3. 

Cell Viability Studies 

As shown in the plot in Figure 3.6(a), at both 24 and 72 h for all tested 

concentrations, PEI was extremely toxic to hMSCs with 7.0 ± 2.8% of hMSCs cells 

surviving after exposure to PEI alone. In contrast, PEI-HA exhibited reduced toxicity to 

hMSCs even at the highest concentration tested (500 ug/ml), where an average of 86.0 ± 

6.7% of cells remained viable. With longer exposure for 72 h to PEI-HA, cell mortality 

was higher, where on average 61.6 ± 2.7% of cells survived. However, at concentrations 

used for transfection (<50 ug/ml), cell viability was high at 87.6 ± 4.6% at 24 h and even 

higher at 72 h (101.6 ± 11.6%). Fluorescent microscopy images reflect the quantitative 

findings. hMSCs treated with PEI-HA display normal morphology and are prevalent 

throughout the wells. However, cells treated with PEI are fewer in number and present as 

cell clusters with abnormal morphology indicative of dead or dying cells (Figure 3.6(b)). 

Transfection Studies 

(A) Dose response of PEI-HA vs. PEI as transfection agents 

Preliminary studies showed that maximum transfection with PEI-HA and PEI can be 

achieved within a 24 h incubation period. Also, PEI-HA/pDNA complexes assembled in 
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500 mM of NaCl solution exhibited improved transfection over those complexes 

assembled in 150 mM NaCl solution. However, higher transfection efficiencies and cell 

viability were achieved when PEI/pDNA complexes were assembled in 150 mM of NaCl. 

Hence, these salt concentrations were used to form complexes to transfect hMSCs with 

20 (xg/ml, 50 ug/ml or 75 ug/ml of plasmid DNA. As shown in Table 3.4, cells 

transfected with PEI had significantly reduced cell counts as compared to those 

transfected with PEI-HA. Transfection efficiencies decreased with increasing pDNA 

amounts due to reduced cell counts from PEI associated toxicity. With PEI-HA, a 

maximum transfection efficiency of 33.6 ± 13.9% was observed with 50 ug/ml of pDNA 

(Figure 3.7 and table 3.4). However, with increasing the concentration to 75 ug/ml of 

pDNA, the transfection efficiency decreased to 22.9 ± 4.3%. Nevertheless, the 

transfection efficiency of PEI-HA/pDNA complexes was still higher than that of 

PEI/pDNA complexes even at 50 ug/ml (7.25 ± 2.9%) and 75 ug/ml of pDNA, where the 

cell count was too low to assess transfection. 

(B) Effect of NaCl concentration and temperature on transfection efficiencies 

To establish a correlation between light scattering data and transfection efficiencies, 

PEI-HA was dissolved in 150 and 500 mM NaCl solution complexed with pDNA at 

either 25 or 37°C. PEI-HA dissolved in 150 mM NaCl solution and complexes assembled 

at both temperatures exhibited low transfection efficiencies, (3.8 ± 1.5% and 4.3 ± 3.8% 

respectively) (Figure 3.7 and table 3.5). However, when PEI-HA was dissolved in 500 
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mM of NaCl, transfection efficiency significantly improved to 12.7 ± 4.3% and 19.1 ± 

4.4% at 25 and 37 °C respectively. 

Discussion 

PEI-HA is a novel polymeric gene delivery vector designed with the objectives of (i) 

reducing the toxicity of PEI and (ii) increasing specific interactions with hMSCs95' 96. 

Experiments described here focus on the synthesis of covalently conjugated PEI-HA and 

the dynamic behavior of the vector in ionic (NaCl) solutions of different concentrations 

in ambient versus physiological temperatures. The two temperatures studied here are 

most commonly used to assemble and transfect vector/plasmid complexes to cells 

respectively. Experimenting with these variables provides an insight into utilizing ions 

and temperature to optimize transfection efficiencies. 

PEI-HA is synthesized by covalently linking PEI to HA via reductive amination 

(Figure 3.1) and the resulting zwitterionic polymer is purified by repeated dialysis. 'H 

and C NMR spectrometry of the PEI-HA conjugate revealed characteristic signals from 

both precursors (Figure 3.2) and a conversion of 11.4-13.0 % primary PEI amines into 

secondary amines. These results were further confirmed with FACE, which showed that 

13 ± 1% of primary amines were conjugated to HA. 

One of the objectives for conjugating anionic HA with PEI was to reduce the toxicity 

associated with PEI. A major drawback associated with PEI as demonstrated here with 

hMSCs and elsewhere with rat MSCs97 (rMSCs), as well as cell lines76 is the toxicity 

associated with the polymer. This toxicity has been attributed to the cationic charges on 
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PEI ' that cause cell death by disrupting the cell membrane and organelles . In 

hMSCs, even low concentrations of PEI (10 ug/ml) cause significant mortality (<10% 

viability), which is persistent even after PEI is complexed to pDNA (Table 4). However, 

at PEI-HA concentrations relevant to transfection studies performed here (< 50 ug/ml), 

cell viability is consistently high at 87.0 ± 4.6% after 24 h of exposure and 101.7 ± 11.6 

% 48 hours after the cells are returned to complete medium (Figure 3.5). 

The objective of increasing transfection efficiency of PEI by using HA as a ligand to 

hMSCs receptors was also achieved in studies described here. Transfection efficiencies in 

the range of 7.3 to 12.0 % were obtained with PEI/pDNA complexes, which are similar to 

values reported in literature66'67. As shown in Table 4, a maximum transfection efficiency 

of 33.6 ± 13.9% was obtained for PEI-HA complexed with 50 ug/ml of pDNA. Although 

at lower concentrations of pDNA (20 ug/ml) PEI and PEI-HA performed similarly, the 

toxicity associated with PEI/pDNA complexes was significantly higher than that seen 

with PEI-HA/pDNA complexes as evident in the cell counts shown. At still higher 

concentrations of pDNA, the transfection efficiency dropped to 22.9 ± 4.3% for PEI-

HA/pDNA complexes. This could be attributed to an increase in complex size or complex 

aggregation in small transfection volumes (200 ul), although the experiments described 

here do not provide any conclusive evidence. 

We further evaluated the influence of salt and temperature on the size of the vector 

and its complexes with pDNA with the objective that we can optimize the transfection 

efficiency of PEI-HA by modulating these parameters. Based on the ligand and the 

mechanism of uptake (receptor-associated versus receptor free), various groups have 
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associated the influence of complex size on gene delivery. Due to opposite charges on 

PEI and HA, the zwitterionic polymer PEI-HA is capable of inter- and intra-molecular 

bonds that can induce aggregation. Transferrin-PEI vectors, also formed by conjugating 

anionic and cationic molecules have better transfection efficiencies when pDNA 

complexes are as large as 500 nm in diameter100. This has been attributed to improved 

uptake due to "increased sedimentation of larger particles on cell surfaces" and better 

endosomal release of larger complexes due to the proton sponge effect101. However, 

ligand conjugated vectors associated with receptor-mediated endocytosis, have performed 

better with smaller pDNA complexes102. In this case, formation of aggregates in PEI-

HA/pDNA complexes due to electrostatic interactions would limit transfection103. Hence, 

we modulated salt concentrations to study its influence on the vector and the vector's 

ability to pack pDNA. Furthermore, we modulated salt and temperature to understand 

their influence on the size of the vector/plasmid complex and understand how size relates 

to transfection efficiency. 

As vector PEI-HA was dissolved in NaCl solutions of increasing ionic strength, the 

Rh of the molecule increases by at least an order of magnitude. While the vector had a 

mean Rh of 2.0 ± 1.1 nm at 150 mM NaCl, the Rh increased to 11.4 ± 5.2 nm at 500 mM 

NaCl and further to 366.0 ± 149.0 nm at 1000 nM NaCl solution (Table 3.1). This 

suggested that the polymer continues to unfold as the ionic concentration increases due to 

the shielding effect on intra-molecular bonds104. In addition, increasing ionic strength 

also allows for better pDNA packing as observed in the band retardation studies (Figure 

3.4). The appearance of pDNA as shown in the gel in Figure 3.4 is dependent on the 
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number of free phosphate groups in the pDNA backbone available to intercalate with 

EthBr. Hence, the absence of EthBr staining within the lanes suggests the absence of free 

pDNA in those lanes. While complexes assembled at 150 niM and 300 mM NaCl 

solutions show residual unbound pDNA at N:P ratios of 2:1 and 7.5:1 , solutions greater 

than 500 mM NaCl have very little residual pDNA within their respective lanes. When 

these results are considered together, a larger Rh of PEI-HA vectors correlates to 

improved pDNA packing. Previous studies have shown that when pure cationic polymers 

such as PEI are bound to pDNA at increasing NaCl concentrations, the binding affinity 

between the plasmid and vector decreases significantly105. However, the complete 

retardation of pDNA with increasing ionic concentration suggests a possible mechanism 

whereby the ions in solution unravel the PEI-HA vector thus allowing pDNA to better 

interact with the cationic backbone of the vector. Improved packing of the plasmid within 

the vector indicates protection of the plasmid DNA from degradation by lysosomal 

enzymes45, thus leading to better gene delivery76'106. 

Light scattering studies further elucidate the dynamic behavior of PEI-HA/pDNA 

complexes at increasing ionic concentrations. At both 25 and 37°C, higher ionic 

concentrations significantly reduced the mean hydrodynamic radius of the complexes as 

shown in Figure 3.5 and Table 3.2. The mean complex size did not decrease below 100 

nm at 500 mM of NaCl (used for transfection), while complexes assembled at 150 mM 

NaCl were largest with an average Rh of 595.0 ± 44.6 nm (25°C) and 766.5 ± 137.2 nm 

(37°C). Furthermore, at 37°C the complexes exhibited a narrower distribution range with 

increasing ionic concentration. Two possible explanations for larger hydrodynamic radii 
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at the higher temperatures are that : (a) the pDNA complexes formed aggregates driven 

by thermal energy, or (b) the individual PEI-HA/pDNA complexes themselves 

experienced a changing conformational expansion due to the thermal energy introduced. 

To test these hypotheses, SLS data were analyzed using Zimm equations to determine the 

average molecular weight of the complexes. As seen in Table 3.3, the data obtained by 

batch method suggest that complexes assembled at similar ionic concentrations but at 

different temperatures did not differ in molecular weights, indicating that the increase in 

Rh may not be due to the formation of larger aggregates. 

Subsequent transfection studies examined the influence of complex size on gene 

delivery. Results show that, in general, larger complexes with Rh > 500 nm do not 

perform well as gene delivery agents. Hence, complexes assembled at 150 mM of NaCl 

at both ambient and physiological temperatures showed very low transfection despite 

relatively high exposure periods to cells (24 h). However, as the ionic strength was 

increased and the pDNA complexes reduced in mean Rh, gene delivery efficiencies 

improved significantly. Maximum GFP expression was obtained with complexes 

assembled in 500 mM of NaCl at physiological temperature. Although these complexes 

showed a significantly larger Rh than those assembled at ambient temperatures, this 

population had a narrower standard deviation in complex sizes. The improvement in gene 

delivery could be attributed to a variety of factors including, (i) a narrower population 

distribution of the complexes, (ii) an improved proton sponge effect due to a more open 

conformation of PEI-HA, subsequently causing an earlier release of the complex from 

endosomes, or (c) improved release of plasmid DNA from the complexes due to their 
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association with HA as observed by Yoshihiro et al.104. The current studies cannot 

sufficiently identify any one of these factors as being responsible for improved 

transfection and further studies will be needed to elucidate the mechanisms involved in 

gene delivery with this vector. 

Conclusion 

The synthesis of PEI-HA, a novel gene delivery vector, via reductive amination was 

described in this study. We show that by modulating the NaCl concentration and 

temperature, we can control the hydrodynamic radius of PEI-HA/pDNA complexes. 

Results indicate that increasing the ionic concentration reduces the Rh of the PEI-

HA/pDNA complexes and increases the transfection efficiency. Complexes at a higher 

temperature have a more narrow Rh range, which further improves transfection. The 

studies performed here demonstrate transfection efficiencies as high as 33.6 ± 13.9%, 

with a mean cell viability of 86.0 ± 6.7%. PEI-HA is comparable with other commercial, 

non-viral gene delivery agents while being more cytocompatible and feasible for tissue 

engineering applications. 
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Figure 3.1: Reaction scheme to conjugate branched polyethyleneimine (PEI) and 

hyaluronic acid (HA) by the process of reductive amination. Note that the structure of 

PEI has been simplified for brevity. All structures are depicted in the undissociated state. 

The carbon atoms of the structural subunits of HA, N-acetylglucosamine (CI - C6) and 

glucuronate (CI' - C6'), are numbered for reference. PEI represented in the reaction 

products contains two different forms of primary amines, those that participate in the 

chemical bond with HA and those that do not. 
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Figure 3.2: *H NMR spectra of PEI-HA and HA (A). DEPT-135 13C NMR spectra of 

PEI-HA and HA. DEPT-135 13C NMR spectra of PEI-HA and HA. The corresponding 

structures are depicted in Figure 3.1 (B). 
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Figure 3.3: Fluorescence Assisted Carbohydrate Electrophoresis (FACE) of PEI-HA. 

Lanes represent ladder (1); PEI-HA treated with the enzyme chondroitinase AC II (2) and 

(4); PEI-HA not treated with the enzyme (3); pure undigested HA as obtained from the 

manufacturer (5) and pure HA digested with chondroitinase AC II (6). The enzyme was 

delivered in excess of the sample (>100X) and cleaves galactosaminidic linkages within 

the sugar molecule. Standards of maltotriose used to quantify HA are shown at the top. 
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Figure 3.4: Agarose gel electrophoresis representing pDNA binding studies with PEI-

HA and PEL 1 ug of pCMV-eGFP plasmid was combined with PEI-HA at N:P ratios of 

2:1, 7.5:1 and 13:1 and with PEI at ratios 7.5:1 and 13.5:1. The lanes represent the 

following: Lane 1: 1 ug uncomplexed pDNA, Lanes 2-6: PEI-HA/pDNA complexes at 

N:P :: 2:1, assembled in 150 mM NaCl (2); 300 mM NaCl (3); 500 mM NaCl (4); 700 

mM NaCl (5); lOOOmM NaCl (6); 1 ug uncomplexed pDNA (7); Lanes 8-12: PEI-

HA/pDNA complexes at N:P :: 7.5:1, assembled in 150 mM NaCl (8); 300 mM NaCl (9); 

500 mM NaCl (10); 700 mM NaCl (11); 1000 mM NaCl (12); Lanes 13-17: PEI-

HA/pDNA complexes at N:P ratios 13.5:1, assembled in 150 mM NaCl (13); 300 mM 

NaCl (14); 500 mM NaCl (15); 700 mM NaCl (16); lOOOmM NaCl (17). PEI/pDNA 

complexes atN:P ratios 7.5:1 (19) and 13.5:1 (20). 
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Figure 3.5: Dynamic light scattering distribution for PEI-HA/pDNA complexes 

assembled at N:P ratios of 7.5 : 1 at (A) 25°C and (B) 37°C. Mean Rh shifts to the left 

(smaller values) with increasing salt concentrations. However, at higher temperature 

(37°C) the Rh shifts to the right, (larger Rh) while exhibiting a narrower size distribution. 
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Figure 3.6: Cell viability at 24 and 72 h after exposure to polymers PEI and PEI-HA. 

(A) hMSCs were treated with a range of PEI and PEI-HA concentrations ranging from 

10 ug/ ml to 500 ug/ml. Cells were exposed to the polymers for 24 h after which 

transfection medium was replaced with complete medium. Error bars indicate 1 standard 

deviation with n = 4. 

(B): Cells treated with PEI-HA (left) and PEI (right) after 8 h of exposure to the 

respective gene delivery vectors. Green represents uptake of calcein dye by live cells, 

whereas the red dye represents binding of the ethidium homodimer to the nucleic acid of 

damaged cells. 
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Figure 3.7: Transfection efficiency of PEI-HA and PEI on hMSCs represented with 

expression of green fluorescent protein. Representative fluorescence images of MSCs 

treated with 200 ul of transfecting solutions containing (A) 20 ug/ml pDNA alone; (B) 

PEI complexes with 20 ug/ml of pDNA; PEI-HA complexes with (C) 20 ug/m ug and 

(D) 50 ug/m of pDNA at 25°C in 150 mM NaCl solution; PEI-HA complexes with (E) 20 

Ug/ml and (F) 50 ug/ml of pDNA at 25°C in 500 mM NaCl solution; PEI-HA complexed 

with (G) 20 ug/ml of pDNA at 37 °C in 500 mM NaCl solution; and (H) 75 ug/ml of 

pDNA at ambient temperature in 500 mM NaCl solution. Expression of green fluorescent 

protein (GFP) is represented in green in the cells. Bar represents 100 um for all images. 
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NaCl concentration 

Range of Rh(nm) 

Mean Rh (nm) 

150 mM 

1.0-3.2 

2.0± 1.1 

500 mM 

4.0-27.0 

11.4 ±5.2 

1000 mM 

212.0-556.0 

366.0 ± 149.0 

Table 3.1: Range and averages of hydrodynamic radii (Rh) obtained with PEI-HA at 

different salt concentrations; 150, 500 and 1000 mM NaCl solution. 
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NaCl 

concentration 

25 "C 

Distribution (nm) 

Mean Rh (nm) 

37"C 

Distribution (nm) 

Mean Rh (nm) 

150 mM 

33.4-1000 

595.0 ±44.6 

187-1140 

766.5 ±137.2 

300 mM 

47.3-1000 

295.0 ±25.0 

40-1000 

517.2 ±44.7 

500 mM 

3.2-1000 

119.9 ±35.6 

30-1000 

193.5 ± 13.7 

700 mM 

2.9-847 

105.9 ± 19.2 

32-1000 

74.2 ±23.0 

Table 3.2: Distribution and peak intensities describing the range of hydrodynamic radii 

(Rh) observed with DLS for PEI-HA/pDNA complexes at ambient (25°C) and 

physiological temperature (37°C). 
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NaCl 

concentration 

MW at 25°C 

MW at 37°C 

150 mM 

4.04 x 107 

4.19 xlO7 

300 mM 

4.33 x 107 

4.05 xlO7 

500 mM 

1.68 xlO7 

1.95 xlO7 

700 mM 

1.07 xlO7 

8.9 xlO6 

Table 3.3: Representative molecular weights of PEI-HA/pDNA complexes at different 

salt concentrations and ambient (25 °C) versus physiological (37 °C) temperatures. 

Molecular weight is reported as g/mol. The values were obtained by using SLS data and 

Zimm equations. 
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Vector 

DNA 

amount 

Cell Count 

(max. 5000) 

Transfection 

Efficiency 

PEI 

20 ug /ml 

1974.0 ± 

780.0 

12.0 ±4.2 

50 ug /ml 

1087.0 ± 

333.7 

7.3 ± 2.9 

75 ug/ml 

Cell count 

<500 

PEI-HA 

20 ug/ml 

4957.0 ± 

10.2 

12.7 ±4.3 

50 ug/ml 

4999.0 ± 

120.6 

33.6 ±13.9* 

75 ug/ml 

4885.0 ± 

59.3 

22.9 ±4.3** 

All groups had a sample size ofn= 4-6 and were assessed for statistical difference atp< 0.05. * 
and ** represent statistical difference between the corresponding PEI/DNA complexes. 

Table 3.4: Gene delivery efficiency of PEI and PEI-HA in 200 ul of transfecting solution 

at 20 ug/ml, 50 ug/ml and 75 ug/ml of DNA in hMSCs after exposure for 24 h to the 

gene delivery complexes. The table represents the maximum cell counts obtained after 

transfection with PEI/DNA or PEI-HA/DNA complexes (population limit is set at 5000 

cells). The percentage of transformed cells obtained after transfection with PEI/DNA and 

PEI-HA/DNA complexes. Transfection efficiencies noted here have been corrected for 

cell viability. 
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Amount of 

DNA delivered 

20 ug/ml 

DNA only 

1.8 ±0.4 

150 mM at 25 

°C 

3.8 ±1.5* 

500 mM at 25 

°C 

12.7 ±4.3 

150 mM at 37 

°C 

4.3 ±3.8 

500 mM at 37 ° C 

19.1 ±4.4** 

All experimental groups (n=4) were assessed for statistical difference at p<0.05. * represents statistical 
difference between samples transfected with DNA alone, whereas ** represents statistical difference 
between samples transfected at 25"C in ISOmMNaCl. 

Table 3.5: Percentage of cells transfected by PEI-HA/DNA complexes at different NaCl 

concentration and temperature. Total volume of the transfecting solution was 200 ul. 

Complexes assembled at 150 mM NaCl showed a significantly decreased gene delivery 

rate as compared to those assembled at 500 mM NaCl. Complexes assembled at 

physiological temperatures also showed significantly increased transfection efficiency as 

compared to those assembled at ambient temperatures for higher NaCl concentrations. 
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Chapter IV 

Fabrication of Non-woven Coaxial Fiber Meshes by Electrospinning 

Abstract 

There is a great need for biodegradable polymer scaffolds that can regulate the 

delivery of bioactive factors such as drugs, plasmids and proteins. Coaxial 

electrospinning is a novel technique that is currently being explored to create such 

polymer scaffolds by embedding within them aqueous based biological molecules. In this 

study we evaluated the influence of various processing parameters such as sheath 

polymer concentration, core polymer concentration and molecular weight, and salt ions 

within the core polymer on coaxial fiber morphology. The sheath polymer used in this 

study was poly(e-caprolactone) (PCL) and the core polymer was poly(ethylene glycol) 

(PEG). We examined the effects of the various processing parameters on core diameters, 

total fiber diameters and sheath thicknesses of coaxial micro fibers using a 24 full factorial 

statistical model. The maximum increase in total fiber diameter was observed with 

increase in sheath polymer (PCL) concentration from 9 to 11 wt % (0.49 ± 0.03 urn) and 

salt concentration within the core from 0 to 500 raM (0.38 ± 0.03 am). The core fiber 

diameter was most influenced by the sheath and core polymers (PCL and PEG, 

3 This chapter has been published as follows: Saraf A, Lozier G, Rasper FK, Baggett LS, Raphael RM, 
Mikos AG, "Fabrication of Non-Woven Coaxial Fiber Meshes by Coaxial Electrospinning" Tissue 
Engineering, C. 2009, doi:10.1089/ten.tec.2008.0422. 
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respectively) concentrations, the latter of which increased from 200 to 400 mg/ml (0.40 ± 

0.01 (xm and 0.36 ± 0.01 urn, respectively). The core polymer (PEG) concentration had a 

maximal negative effect on sheath thickness (0.40 ± 0.03 urn), while salt concentration 

had the maximal positive effect (0.28 ± 0.03 urn). Molecular weight increases in core 

polymer (PEG) from 1.0 kDa to 4.6 kDa caused moderate increases in total and sheath 

fiber diameters and sheath thicknesses. These experiments provide important information 

that lays the foundation required for the synthesis of coaxial fibers with tunable 

dimensions. 

Abbreviations 

BSA: 

CH3OH: 

CHCI3: 

FITC: 

NaCl: 

PCL: 

PDGF: 

PEG: 

Bovine Serum Albumin 

Methanol 

Chloroform 

Fluoresceine Isothiocynate 

Sodium Chloride 

Poly(e-caprolactone) 

Platelet Derived Growth Factor 

Poly(ethylene glycol) 

Introduction 

The fabrication of non-woven fiber meshes with electrospinning is becoming 

increasingly popular in numerous fields. This technology is now being adapted in 
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textiles108 '109 ' 110 '1U, drug delivery112 ' U3 '114 '115 '116 '117, surgical and wound dressings118 ' 

ii9,120,121,122, i a t i s s u e e n g i n e e r ing 1 2 4 ' , 2 5 - 1 2 6 > 1 2 7 ' 1 2 8 as well as in the field of electronics129' 

13°. A modification of the well-known single polymer-solvent electrospinning technique 

(hereafter referred to as conventional electrospinning) is coaxial electrospinning; a 

fabrication method that produces fibers with a coaxial core and sheath component, where 

each component can have different solubilities in organic and aqueous solvents. In this 

case the core is hydrophilic to facilitate the loading and preservation of bioactivity of 

biological molecules, whereas the sheath is hydrophobic to allow fiber formation after 

evaporation of the volatile organic solvent. The advantages of such a technique to the 

tissue engineering community are significant; it allows for the creation of scaffolds that 

act as reservoirs, and fibers that allow for controlled release of aqueous based biological 

molecules. Although biological molecules such as plasmids , growth factors ' 

and drugs117'134'135 have been incorporated into conventional electrospun fibers, coaxial 

fibers have shown greater potential in maintaining bioactivity and extended release. For 

example Zhang et al.136 and Jiang et al.137 amongst others have demonstrated that when 

proteins such as bovine serum albumin (BSA) and lysozyme were incorporated into the 

cores of coaxial fibers, they exhibited minimal burst release, an extended duration of 

sustained release, and significantly less aggregation of the bioactive compound as 

compared to their incorporation by conventional blend and emulsion electrospinning 

techniques. Additionally, experiments by Liao et al. have demonstrated that platelet 

derived growth factor (PDGF), when released from coaxial fiber meshes over a period of 

20 days, is as potent as fresh PDGF in promoting proliferation of NIH 3T3 fibroblasts. 
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An increasing number of attempts are being made to determine the parameters that 

control the morphology and dimensions of the coaxial fibers. These parameters can play 

an integral role in the rate of degradation of coaxial fiber scaffolds as well as diffusion 

and release of the compounds embedded within them. Thus far, there has been a 

reasonable understanding of the mechanism behind conventional electrospinning and the 

factors that control the fiber morphology. For example, numerous studies have shown 

that an increase in polymer viscosity by increasing either the molecular weight or 

concentration increases the average fiber diameter and decreases bead formation within 

fibers139' 140' 141. Furthermore, increasing the dielectric constant of the electrospun 

solvents causes the fiber diameter to decrease142'143'144. Other factors such as humidity145, 

flow rates146, voltage139, distance between the polymer outlet and collecting plate147 and 

diameter of the polymer ejecting orifice148 also play significant roles in determining fiber 

morphology. However, similar data on coaxial fiber morphology is more limited. Initial 

studies by Zhang et al. have shown a positive correlation between the core polymer 

(gelatin) concentration149 as well as core flow rates137 on overall fiber diameters. In other 

studies Wang et al.150 reported that increases in core and sheath polymer flow rates 

increase the inner and outer diameters of the fibers. Some of the limitations in 

identifying these relationships come with a limited understanding of the complex electro-

hydrodynamic interactions between the core and sheath solutions during the 

electrospinning process, which in turn contributes to limitations in designing coaxial 

fibers with specific dimensions. 
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In this study the following four factors and their role in coaxial fiber morphology 

were evaluated: (i) sheath polymer concentration, (ii) core polymer concentration (iii) 

core polymer molecular weight, and (iv) sodium chloride (NaCl) ionic concentration in 

the aqueous core polymer solution. This study describes the variability in fiber 

morphology within a scaffold based on the factors mentioned above. Furthermore, this 

study also describes the influence of the factors mentioned above upon core, sheath and 

total fiber diameters using a full factorial statistical model. This model is a powerful 

method for determining the influence of each of the processing parameters upon fiber 

dimensions. Although other biodegradable polymers can be used to manufacture similar 

coaxial fiber scaffolds, we have used poly(e-caprolactone) (PCL) in an organic 

(hydrophobic) solvent as the sheath polymer and poly(ethylene glycol) (PEG) in an 

aqueous solvent as the core polymer. These polymers were selected as model polymers 

because they have been used and characterized extensively for various applications, both 

in our laboratory as well as by the research community in general. To differentiate the 

location of the PCL sheath and the PEG core fibers, fluorescent markers were added to 

each of the polymer solutions, which allowed their visualization with confocal 

microscopy. The red fluorescence (associated with Dil, mixed with the PCL sheath 

solution) and green fluorescence (associated with fluorescein isothiocyanate (FITC) 

mixed with the aqueous PEG core solution), facilitated distinction of the sheath and core 

morphology of the fibers. This methodology has elucidated the parameters necessary for 

the fabrication coaxial fibers of desired dimensions. 
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Experimental Procedures 

Polymer Solution for Fiber Sheath 

For the fabrication of sheaths for the microfibers, poly(e-caprolactone) (PCL, MW = 

80 000, Sigma, St. Louis, MO) was dissolved overnight in 3:1 w/v chloroform (CHCI3): 

methanol (CH3OH) at 9 or 11 wt %. Immediately before electrospinning, Vibrant® Dil 

(Molecular Probes, Carlsbad, California; Cat. # V-22885) was mixed with the PCL 

solution at 1.33 uL of Dil per 1 ml of PCL solution followed by thorough mixing with the 

vortexer. Aluminum foil was wrapped around the vials containing the solutions to protect 

them from light. 

Polymer Solution for Fiber Core 

For fabricating the cores of the coaxial microfibers, poly(ethylene glycol) (PEG, 1.0 

kDa or 4.6 kDa) (Sigma, St. Louis, MO) was mixed with water or 500 raM NaCl solution 

at 200 mg/ml or 400 mg/ml concentration. The solutions were vortexed and placed on a 

shaker table until complete dissolution was achieved. 0.05 wt % FITC (Sigma, St. Louis, 

MO) was added to the PEG solutions immediately before electrospinning. After addition 

of FITC, the solutions were mixed with the vortexer for homogeneity. Aluminum foil 

was wrapped around the vials containing the solutions to protect them from light. 

Factorial Analysis of Variables 

A 24 factorial design was formulated followed by Analysis of Variance (ANOVA) to 

evaluate the influence of PCL concentration, PEG molecular weight, PEG concentration, 
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and NaCl concentration on total fiber diameters and sheath thicknesses as noted in Table 

1. "High" and "low" concentrations of PCL were synthesized at 11 wt % and 9 wt % 

respectively. PEG molecular weights with a "high" value of 4.6 kDa and a "low" value of 

1.0 kDa were similarly used. PEG solutions from each of the two molecular weights 

were mixed at a "high" PEG concentration of 400 mg/ml and a "low" concentration 200 

mg/ml. The PEG polymers were dissolved either in water ("low" value for NaCl 

concentration) or 500 mM of NaCl solution ("high'Value for NaCl concentration). 

Electrospinning Apparatus Setup 

The schematic in Figure 4.1 represents the electrospinning setup for the electrospun 

non-woven coaxial fibers. The setup consisted of two syringe pumps (Cole Parmer, 

Vernon Hills, IL) set to different flow rates (15 ml/hr for the sheath flow rate and 0.6 

ml/hr for the core flow rate), a power supply (Gamma High Voltage Research, Ormond 

Beach, FL), and a square grounded copper plate (11 x 11 x 0.3 cm). Two 10 mL syringes 

were filled with the core solution (PEG) and sheath solution (PCL), respectively. The 

syringes were connected to the reservoir via silicon tubes attached to luers (Small Parts 

Inc. Miramar, FL) that screwed into a steel reservoir. The reservoir had three luers, two 

of which were connected to needles; a 22 gauge (ID = 0.0464 mm) inner needle and a 16 

gauge (ID = 1.3589 mm) outer needle, respectively, (Brico Medical Supplies, Metuchen, 

NJ) placed concentric to each other (Figure 4.1, inset b). The needles were locked into 

their respective luers, after which the leurs were threaded into the reservoir (C) as shown 

in figure 4.1(b). This fixed the needles in a concentric conformation during the process of 
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electrospinning. The third luer lead into the reservoir and provided an inlet for the PCL 

solutions. The positive lead from the power supply was attached to the needle, whereas 

the negative lead was connected to the copper plate placed at a distance of 22 cm from 

the tips of the concentric needles. The reservoir, needles and the copper and glass plates 

were set-up in a plexi-glass box as shown in Figure 4.1 with the syringes and power 

supply directly outside for easy manipulation. The non-woven coaxial fibers were 

collected onto a glass plate (0.22 cm thick) placed above the copper plate in a vertical 

setup. Prior to use, the glass plates were washed with warm water and soap and dried 

with Kim wipes. 

A voltage between 19-21 kV was applied between the needle and copper plate to 

induce electrospinning of the polymer solutions for 3 minutes. After electrospinning, the 

electrospun sheets were dried overnight in a chemical fume hood. For confocal analysis, 

the sheets were cut into sections (3.5 cm x 1.5 cm, cut from the periphery towards the 

center of each mat) and placed between two glass cover slips (Fisherbrand, Pittsburgh, 

PA). For SEM analysis, the sheets were cut into 1 cm x 1 cm squares and placed on a 

stage lined with non-conducting tape. Three non-woven mats were spun for each of the 

parameters and used for analysis. 

Analysis of Fiber Morphology 

(A) Scanning Electron Microscopy (SEM) 

SEM analysis on the fibers was performed as previously described151. Briefly, 

electrospun scaffolds were sputter-coated with gold for 1 min and observed with an FEI-
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XL 30 environmental scanning electron microscope (Mawah, NJ) at an accelerating 

voltage of 20 kV. For quantification of fiber diameter, measurements were made on the 

first eight fibers that intersected from left to right, a line drawn horizontally across the 

middle of an image (at 2500x magnification). Images from four random locations 

(selected blindly at 50x magnification) from each of the 3 scaffold mats were used for a 

total of 96 measurements. 

(B) Confocal Microscopy 

Sections of non-woven electrospun scaffolds were placed between glass cover 

slips as noted above and were mounted on the stage of a Zeiss LSM 510 (Thornwood, 

NY) confocal microscope. The scaffolds were excited with argon (488 ran, 6% power) or 

helium-neon (543 nm, 25% power) lasers configured for multi-track imaging and imaged 

with a 63x/1.4NA objective. The emission of FITC was detected using a510 to550nm 

bandpass filter and the emission of Dil was detected using a low pass 560 nm filter. This 

configuration was used to prevent overlap between the two emission wavelengths. 

The cover slips were scanned along the long axis moving from the right edge to the 

left. Four independent visual fields were selected randomly on each of the samples at 

approximately 20, 40, 60 and 80% of the total length from the right most edge of the 

cover slips. All fibers within a focal plane in that field were scanned and recorded. The 

focal plane was then reconfigured to record additional fibers in that location. A total of 30 

fibers were imaged per mat. The core and total fiber diameters were measured using 
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Zeiss LSM 5 Image Browser (v. 3,2,0,115) by two independent observers. Sheath 

thicknesses were calculated as a difference between the total and inner fiber diameters: 

Sheath thickness = Total fiber diameter - Core fiber diameter 

Readings by both observers were incorporated and evaluated by statistical software 

(JMP® software, SAS Institute Inc., v 5.1) to determine the influence of the various 

processing parameters on fiber morphology. 

Analysis of Fibers on Incubation in Aqueous Medium 

To determine if the submicron fibers had a thin PCL sheath that surrounded the 

fibers, 5 scaffolds each of 8 mm diameter from two groups of scaffolds made from 9 wt 

% PCL were incubated in 2 ml phosphate buffer solution (PBS) for a period of 3 days. 

The fibers were placed on a shaker table operating at 115 rpm in a warm room (37°C). 

The polypropylene tubes holding these scaffolds were covered with aluminum foil to 

prevent photo-bleaching. After 3 days, 2 scaffolds from each group were analyzed using 

confocal microscopy as previously described. Three scaffolds were analyzed with SEM 

for fiber diameter measurements as described above. 

Statistical Analysis 

The resultant data of inner and total fiber diameters and the sheath thickness were 

analyzed using Analysis of Variance (ANOVA) with the SAS JMP software. The total 

diameter, inner diameter and sheath thickness were selected as response variables, 

whereas PCL concentration, PEG molecular weight, PEG concentration and NaCl 
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concentration were selected as predictors. The analysis provided least squares mean 

diameters at each of the "high" and "low" levels of the predictors. To estimate the 

influence of each of the factors at "high" versus "low" values the "high" least squares 

mean diameter was subtracted from the "low" least squares mean diameter value and the 

resultant standard errors were calculated using the following formula: 

Resultant Standard Error = ((Standard Error of "high " values)2-(Standard Error of 

"low" values)2 )Vl 

Results and Discussion 

The specific objective of this study was to understand the influence of sheath 

polymer concentration, core polymer concentration and molecular weight and NaCl 

concentration within the core solution on coaxial fiber morphology. The factors used to 

study the influence of these processing parameters are shown in Table 4.1. These 

parameters were selected based on preliminary studies that established concentration and 

molecular weight ranges that resulted in a stable Taylor cone and produced continuous 

fibers without apparent defects (such as beading or clumping). 

The study evaluated transverse dimensions of coaxial fiber morphology, i.e. outer 

sheath of the fibers made from PCL and inner core made from PEG using confocal 

microscopy. These were clearly distinguished with the fluorescent markers used in the 

study as shown in Figure 4.2. Other methods of analysis such as Transmission Electron 

Microscopy (TEM) did not provide sufficient visualization of the core/sheath 

morphology in coaxial microfibers, although it has successfully been used previously for 
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visualization of coaxial nanofibers152. The sheath fibers appeared red due to the 

incorporation of Dil in the PCL solution whereas the core fibers appeared green due to 

the incorporation of FITC in the PEG solution. Although the fluorescent markers were 

not covalently tagged to the polymers, evidence in the literature strongly indicates that 

mixing between the sheath and core solutions is minimal, thus confining the dyes to their 

respective polymers153'154. 

Variation in the Distribution of Fiber Diameters 

SEM analysis of the coaxial fiber meshes shows a significant change in the 

distribution of the fiber diameters as the sheath polymer (PCL) is increased in 

concentration from 9 wt % to 11 wt % as indicated in Figures 4.2 and 4.3. Fibers made 

from 9 wt % PCL had a significant increase in the percentage distribution of submicron 

fibers (diameters < 1 urn). The average population of submicron fibers increased from 3.0 

± 2.9 % to 25.7 ±8.1 % when PCL concentration across all groups dropped from 11 wt 

% to 9 wt %. Similarly, intermediate fibers with diameters between 1.1 and 2.0 urn 

increased from 4.8 ± 3.3 % to 13.8 ± 5.0 %. The prevalence of a population of 

significantly smaller fibers within coaxial fiber meshes have been widely reported in 

literature46. Thus far, however, the composition of these fibers has been unknown. 

However, two theories have been proposed. Yu et al.153 suggested that these fibers are 

mainly composed of the core polymer and are formed when the charge density of the 

polymer solutions is high. The core polymer is extruded at a higher rate than the sheath 

polymer feed line can provide for entrainment. The other hypothesis states that sub-jets 
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are formed from the sheath polymer solution during the process of electrospinning due to 

Maxwell's stresses136 acting on the polymer jet due to the surrounding electric field. This 

creates fibers that do not exhibit core/shell morphology and are composed of the shell 

polymer. 

Confocal microscopy images of these fibers, as in Figure 4.4, show that the fibers 

less than 1 um in diameter appear to be predominantly PEG (core) polymer. The potential 

presence of an undetected thin PCL sheath surrounding the predominantly PEG fibers 

could not be excluded due to the limited resolution of optical microscopy. Hence, two of 

the synthesized groups of 9 wt % PCL polymer fiber scaffolds were incubated in 

phosphate buffer solution (PBS) for 3 days at 37°C on a shaker. SEM analysis of the 

fibers showed that there was on average a decrease in the population of submicron fibers 

(pWCn scaffolds decreased from 17.78 ± 2.34 to 11.44 ± 1.72 % whereas the pwcn 

scaffolds decreased from 30.11 ±2.11 to 20.5 ± 1.68 %) as noted in Table 4.2. Confocal 

microscopy analysis further suggests that the submicron fibers observed after 3 days of 

incubation in PBS had both PCL and PEG present within them as shown in Figure 4.5. 

The intermediate fibers with diameters between 1.1 and 2.0 urn had a significantly 

increased PEG content as compared to the coaxial microfibers > 2.0 um (46.1-85.0% 

versus 25.2-52.7%). The mechanism behind the formation of these submicron and 

intermediate fibers cannot be explained by the experiments described here. However, 

these data suggest that by increasing the sheath polymer concentration, the prevalence of 

submicron and intermediate fibers decreases significantly. 
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Influence ofPCL Sheath Concentration on Fiber Morphology 

An additional goal of this study was to evaluate the influence of the different 

parameters listed in Table 4.1 on total and core diameter and sheath thickness. The "high" 

and "low" values of the parameters were selected on the condition that they produced 

continuous, uniform coaxial fibers. PCL concentration was evaluated at a "low" value of 

9 wt % and a "high" value of 11 wt %, as shown in Table 4.1. Figure 4.6 and Table 4.3 

show the influence of the PCL sheath concentration on total and core diameters, as well 

as sheath thicknesses with dimensions at "low" concentration treated as baselines. Hence, 

increasing the PCL concentration contributed to an increase in the total and core fiber 

diameters as well as the sheath thickness. The total diameter increased by 0.49 ± 0.03 um 

whereas the sheath diameter increased by 0.11 ± 0.03 um. The data suggest that the core 

fiber diameters were also affected by the increase in PCL concentration; the mean 

increased by 0.40 ± 0.01 um. The increase in thickness of the fiber sheaths due to an 

increase in sheath polymer concentration can be explained as an effect of increasing the 

viscosity of the polymer. However, the relatively greater effect on the overall fiber 

diameter as well as on the core fiber diameter requires further discussion. 

The increase in core diameters due to increase in PCL concentration could be an 

indirect effect related to the decreased prevalence of submicron fibers in meshes made 

from 11 wt % PCL formulations. Since the flow rate, and hence the total core polymer 

supplied to the meshes remains constant, the core polymer either becomes part of 

submicron fibers (with 9 wt % PCL formulations) or gets embedded within the coaxial 

fibers (with 11 wt % PCL formulations). Thus there is a significant increase in average 
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core diameters (by 5.91 ± 0.22 %) of fibers made from 11 wt % PCL. This increase in the 

core diameters further translates to an increase in the total diameter of the coaxial fibers. 

Influence ofPoly (ethylene glycol)Molecular Weight on Fiber Morphology 

Increasing the molecular weight of the core polymer moderately increases the total 

and core diameters as well as the sheath thickness. Molecular weight is a contributing 

factor to the viscosity of the polymer solution and possibly increases the overall viscosity 

of the polymer jets. For example, in our experience when the molecular weight of PEG is 

increased to 10,000 kDa the polymers precipitate at the coaxial needle outlet. Upon 

increasing the PEG molecular weight, the total diameter of the fibers increases by 0.12 ± 

0.02 um, whereas the core diameter increases by 0.06 ± 0.01 um, or 0.63 ± 0.31 %. There 

is also a comparable increase in the sheath thickness (0.08 ± 0.03 um) of the fibers. To 

our knowledge, thus far, studies have not looked at the influence of polymer molecular 

weights on coaxial fiber morphology. However, we can draw upon few studies that have 

addressed the influence on conventional fibers. A study by Koski et al.155 reported that 

increasing the molecular weight of poly(vinyl alcohol) increased the fiber diameter of 

conventional fibers from 200 nm to 2 um. A similar study published by Eda et al.156 

investigated the influence of a wider range (44,100, 393,400, and 1,877,000 g/mol) of 

molecular weights. Although none of the above concentrations produced uniform, bead-

free fibers, the study reported a change in the electro-hydrodynamic cone jet properties 
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that further resulted in the change in morphology of the polymer jet as well as the 

morphology of the fibers. Influences of a smaller range of molecular weights such as the 

ones tested here may be more subtle but still significant in affecting fiber diameters as 

reported here. 

Influence ofPoly (ethylene glycol) Concentration on Fiber Morphology 

Increasing the PEG concentration from 200 mg/ml to 400 mg/ml caused a significant 

effect on the morphology of the fibers. The total diameter of the fibers decreased by 0.05 

± 0.03 urn. The core fiber diameter increased by 0.36 ± 0.01 urn (9.89 ± 0.30 %), 

whereas the sheath thickness decreased by 0.4 ± 0.3 urn. A study by Zhang et al.147 

reported a similar increase in core diameters in coaxial fibers, however, they also 

reported an increase in the total diameters contrary to the results reported here. The main 

difference between these two studies is the dimensions of the fibers analyzed; while the 

study by Zhang et al. was testing nanofibers between 277 and 378 nm, this study is 

examining microfibers with average sheath thicknesses of 2.50 ± 0.35 urn. Zhang et al. 

have explained their results with the help of the "swell effect" of viscoelastic polymers, 

whereby the core fluid diameter enlarges after it is extruded from a narrow space, such as 

a needle. This swell effect of the core polymer translates to the fiber sheaths, which in 

turn increases the total diameter. The elasticity of the PEG and PCL may translate 

differently in microfibers than in nanofibers. In the case of fibers that have sheath 

thicknesses in the micrometer range, the swell effect may translate only to a few layers 

within the wall of the sheath polymer, causing their compression, which in turn provides 
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more volume for the core polymer to expand. The finding that the sheath thickness 

decreases with an increase in the core polymer concentration further supports the theory 

that the core polymer compresses the inner sheath layers. The resulting sheath thickness 

versus the structural density profile of the coaxial sheath may play a significant role in 

the degradation kinetics of the fibers and the release of the molecules embedded within 

them. 

Influence of Salt (Sodium Chloride) Concentration on Fiber Morphology 

The influence of charge density on the behavior of polymer jets and consequently on 

fiber morphology is relatively well characterized in the literature in the context of 

conventional electrospinning141,142. Charge densities of electrospun jets are attributed to 

the dielectric permittivity of the solvents or the conductivity of the polymers within 

them . Increasing the charge density by using a solvent with a higher dielectric constant, 

using a more conducting polymer, or increasing the electric current applied causes a 

decrease in the resultant fiber diameter157,140. Adding salts such as palladium diacetate157 

or NaCl140 also decreases the fiber diameter by increasing the conductivity and charge 

density. However, similar data on coaxial fibers is limited. 

Contrary to results with conventional electrospinning, when 500 mM NaCl was 

added to the aqueous core PEG solution of the coaxial jet, the total and core diameters, as 

well as the sheath thicknesses increased. The average increase in total diameter was 0.38 

± 0.03 (im, the core diameter increased by 0.12 ± 0.01 jam whereas the sheath thickness 

increased by 0.28 ± 0.03 urn. Although these results seem counterintuitive, consideration 
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of the theories proposed thus far with regards to conventional electrospinning can offer 

some insight. It is well known that the addition of salt increases the conductance of 

solvents thereby increasing the dielectric constant of the solution. With conventional 

electrospinning models, increasing the conductance of the polymer increases the bending 

instability of the polymer jet. When radial Maxwell forces cause sufficient repulsion 

between the charges, the resultant jet splits, consequently forming fibers with smaller 

1 SS 

diameters . However, the electro-hydrodynamics in coaxial systems are more complex. 

Although similar Maxwell repulsive forces may be present within the charged core 

polymer, a less conductive PCL polymer sheath may mitigate these forces. Thus, in 

coaxial systems the charge repulsion may not overcome the cohesive forces and instead 

translates to larger fiber diameters. Characterization of the complex interactions involved 

in a coaxial system that are responsible for this phenomenon is beyond the scope of this 

study. Further elucidation with theoretical models for coaxial spinning, similar to those 

provided for conventional electrospinning by Reneker et al.139,159 and Rutledge et al.142' 

143, 144, 147, 160 a m o n g S t others will be required to appreciate the complex electro-

hydrodynamic interactions involved in coaxial systems. 

Conclusion 

The experiments described here evaluate the influence of various processing 

parameters on coaxial fiber morphology. The influence of sheath polymer (PCL) 

concentration, core polymer (PEG) concentration and molecular weight, and NaCl 

concentration within the core polymer on total and core fiber diameters and sheath 
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thickness were tested using confocal microscopy. The results show that increasing PCL 

concentration and NaCl concentration have the most influence of total fiber diameters. 

Core diameters are most influenced by PCL and PEG concentrations. Core polymer 

concentrations have a negative influence on sheath thicknesses, whereas NaCl 

concentration has maximal positive influence on sheath thickness. The information 

generated by these studies has the potential to facilitate the synthesis of coaxial fibers 

with tunable dimensions, which consequently may affect the release kinetics of the 

compounds embedded within them. 
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(b) 

Figure 4.1: The electrospinning setup, 

(a) The device involves two syringes (A 

and B) that contain the aqueous and 

organic phase of the coaxial solutions, 

respectively. The solutions are 

independently fed to a reservoir (C). 

The reservoir contains an opening at the 

top that allows for attachment of a male 

luer (D) with a 22 gauge needle. 

Similarly, another male leur (E) screws 

into the side of the reservoir which 

carries the organic solution into the 

reservoir. The reservoir empties into an 16 gauge needle (F) attached to the bottom of the 

reservoir. The 22 gauge needle passes coaxially through the reservoir and the 16 gauge 

needle and its tip is flush with the 16 gauge needle. Potential difference is applied 

between a copper plate and the 16 gauge needle as indicated. Fibers are collected on a 

glass plate (G) placed on top of the copper plate (H). This setup is housed in a plexi-glass 

box (I) as indicated, (b) The actual reservoir used for these experiments is made from 

stainless steel. The inset shows the concentric needle tips. Outer needle is 16 gauge and 

inner needle is 22 gauge. The setup can be assembled and disassembled easily due to the 

screw threads that have been designed into the reservoir and luers as shown. The threads 

as well as the luers help lock the needles in a concentric position. 
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Figure 4.2: Confocal microscopy and corresponding SEM images of the coaxial 

electrospun microfibers. The core of the coaxial fibers is an aqueous mixture of PEG and 

FITC (hence appears green in the confocal images) and the sheath is an organic mixture 

of PCL (3:1 CHCI3 : CH3OH) and Dil (hence appears red). Yellow arrows represent 

sections of fibers not in focus, whereas the grey arrows are sections in focus. Images are 

labeled according to the combination of variables used, (e.g. "PWCn" stands for "high" 

PCL wt %, "high" PEG MW, "high" PEG concentration, and "low" NaCl concentration). 

The scale bars represent 5 um for confocal images and 10 um for SEM images. 
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Figure 4.3: Distribution of coaxial electrospun PCL/PEG fibers. The percentage of 

submicron (<1 urn, red) and micron fibers <2 um (yellow) increases when the PCL 

(sheath) concentration changes from 11 wt % to 9wt %. Fibers greater than 2 urn in total 

diameter are represented in the orange sections of the bar graphs. The circles (•) 

represent the average diameter of the micron fiber > 2 urn, triangles (A) represent 

average diameter of fibers between 1-2 um and squares (•) represent average fiber 

diameter of submicron fibers (< 1 micrometer), each with their respective standard 

deviations. 
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Figure 4.4: Distribution of coaxial electrospun PCL/PEG fibers. SEM (A) and confocal 

(B,C,D) images of 9 wt % coaxial electrospun PCL/PEG fibers displaying 3 populations 

of fibers based on coaxial morphology. Submicron fibers (< 1 urn) (B, C) are indicated 

by white arrows. Fibers between 1-2 um have a thin PCL sheath and are largely 

comprised of PEG as indicated by the black arrows, and fibers > 2 um comprise the 

majority of the population of the coaxial fibers and have a thicker sheath as indicated by 

the yellow arrows. Scale bars are indicated on their respective images. 
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Figure 4.5: Effect of immersion in PBS on coaxial fibers. Confocal 1(a) and 1(b) and 

SEM 2(a) and 2(b) images of coaxial fibers made from 9 wt% PCL before (1(a) and 2(a)) 

and after (1(b) and 2(b)) incubation in PBS for 3 days. 
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Figure 4.6: Main effects of processing parameters on fiber diameters. Effect of the 

variable processing parameters PCL concentration, PEG molecular weight, PEG 

concentration and NaCl concentration within the core solution on total fiber diameter (A), 

sheath thickness (B) and core diameter (C). Error bars represent standard error. 
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Tables 

Variables 

High 

Low 

PCL 
Concentration 

(wt%) 
11 (P) 

9 (P) 

PEG Molecular 
Weight 
(kDa) 

4.6 (W) 

l(w) 

PEG 
Concentration 

(mg/ml) 
400 (C) 

200 (c) 

NaCl 
Concentration 

(mM) 
500 (N) 

0(n) 

Table 4.1: Values of parameters used in formulating the experimental design. 24 factorial 

design to evaluate the influence of PCL concentration, PEG molecular weight, PEG 

concentration and NaCl concentration on coaxial electrospun fibers. Two levels of each 

of the 4 factors were used for evaluation; the levels are denoted as "high" for higher 

concentrations and "low" for lower of the two concentrations of each of the factors. The 

letters next to the values denote the symbol used for representing each of the conditions 

in subsequent explanation of results and discussion. 
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Group: pWCn 

Average 
Diameter (um) 
% prevalence 

Group: pwcn 
Average 

Diameter (um) 
% prevalence 

D a y O 
< 1 um 

0.65 ±0.19 

17.78 ±2.34 

0.62 ±0.13 

31.11 ± 2.11 

1-2 um 

1.37 ±0.29 

17.90 ±4.01 

1.64 ±0.30 

14.44 ±1.89 

>2 um 

3.42 ±0.81 

64.44 ± 3.89 

3.48 ±0.85 

54.44 ± 3.24 

Day 3 (after immersion in PBS) 
< 1 um 

0.70 ±0.18 

11.44 ± 1.72 

0.64 ±0.16 

20.5 ±1.68 

1-2 um 

1.44 ±0.30 

15.60 ±3.90 

1.48 ±0.30 

15.5 ±0.80 

>2 um 

3.45 ± 0.8 

74.36 ±4.08 

3.41 ±0.79 

64.84 ±3.44 

Table 4.2: Distribution of coaxial fiber diameters before and after immersion in PBS. 

Fiber distribution and average diameters of 2 types (pWCn and pwcn) of coaxial fibers 

made from 9 wt% PCL before and after incubation in PBS for 3 days. 
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Total Diameter 

Core Diameter 

Sheath Thickness 

PCL Cone, 
(nm) 

0.49 ± 0.03 

0.4 ± 0.01 

0.11 ±0.03 

PEGMW 
(Mm) 

0.12 ±0.03 

0.06 ±0.01 

0.08 ± 0.03 

PEG Cone, 
(nm) 

- 0.05 ± 0.03 

0.36 ±0.01 

- 0.4 ± 0.03 

NaCl Cone. 
(Mm) 

0.38 ±0.03 

0.12 ±0.01 

0.28 ± 0.03 

Table 4.3: Main effects of evaluated parameters on coaxial fiber diameters. Quantitative 

summary of the effect of variable parameters (PCL concentration, PEG molecular weight, 

PEG concentration and NaCl concentration) on total fiber diameter, core diameter and 

sheath thickness. 
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Chapter V 

Regulated Non-Viral Gene Delivery from Coaxial Electrospun Fiber Mesh 

Scaffolds4 

Abstract 

In an effort to add to the versatility of three-dimensional scaffolds for tissue 

engineering applications, recent experimental designs are incorporating biological 

molecules such as plasmids and proteins within the scaffold structure. Such scaffolds act 

as reservoirs for the biological molecules of interest while regulating their release over 

various durations of time. Here, we describe the use of coaxial electrospinning as a means 

for the fabrication of fiber mesh scaffolds and the encapsulation and subsequent release 

of a non-viral gene delivery vector over a period of up to 60 days. Various fiber mesh 

scaffolds containing plasmid DNA (pDNA) within the core and the non-viral gene 

delivery vector poly(ethylenimine)-hyaluronic acid (PEI-HA) within the sheath of coaxial 

fibers were fabricated based on a fractional factorial design that investigated the effects 

of four processing parameters at two levels. Poly(e-caprolactone) sheath polymer 

concentration, poly(ethylene glycol) core polymer molecular weight and concentration, 

and the concentration of pDNA were investigated for their effects on average fiber 

"This chapter has been submitted for publication as follows: Saraf A, Baggett LS, Raphael RM, Kasper FK, 
Mikos AG, "Regulated Non-Viral Gene Delivery from Coaxial Electrospun Fiber Mesh Scaffolds "to the 
Journal of Controlled Release. 
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diameter, release kinetics of PEI-HA, and transfection efficiency. It was determined that 

increasing the values of each of the investigated parameters caused an increase in the 

average diameter of the fibers. The release kinetics of PEI-HA from the fibers were 

affected by the loading concentration of pDNA (with PEI-HA concentration adjusted 

accordingly to maintain a constant nitrogen to phosphorous (N:P) ratio within the 

complexes). Two-dimensional cell culture experiments with model fibroblast-like cells 

demonstrated that complexes of pDNA with PEI-HA released from fiber mesh scaffolds 

could successfully transfect cells and induce expression of enhanced green fluorescent 

protein (EGFP). Peak EGFP expression varied with the investigated processing 

parameters, and the average transfection observed was a function of poly(ethylene glycol) 

(core) molecular weight and concentration. Furthermore, fibroblast-like cells seeded 

directly onto coaxial fiber mesh scaffolds containing PEI-HA and pDNA showed EGFP 

expression over 60 days, which was significantly greater than the EGFP expression 

observed with scaffolds containing pDNA alone. Hence, variable transfection activity can 

be achieved over extended periods of time upon release of pDNA and non-viral gene 

delivery vectors from electrospun coaxial fiber mesh scaffolds, with release and 

subsequent transfection controlled by tunable coaxial fiber mesh fabrication parameters. 

Abbreviations 

CMV: Cytomegalovirus 

DMEM: Dulbecco's Modified Eagle Medium 

DMSO: Dimethyl Sulfoxide 
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EDTA: 

EGFP: 

GAM: 

HA: 

LSM: 

MEM: 

NEAA: 

N:P: 

PBS: 

PCL: 

pDNA: 

PEG: 

PEI: 

PEI-HA: 

r-PEI-HA: 

Ethylenediaminetetraacetic Acid 

Enhanced Green Fluorescent Protein 

Gene Activated Matrix 

Hyaluronic Acid 

Least Squares Mean 

Minimum Essential Medium 

Non Essential Amino Acids 

Nitrogen : Phosphorus Ratio 

Phosphate Buffered Saline 

Poly(e-Caprolactone) 

Plasmid Deoxyribonucleic Acid 

Poly(Ethylene Glycol) 

Poly(Ethylenimine) 

Poly(Ethylenimine)-Hyaluronic Acid 

Rhodamine-Poly(Ethylenimine)-Hyaluronic Acid 

Introduction 

Traditionally, the role of tissue engineering scaffolds has been to provide mechanical 

support to damaged or excised tissue while facilitating the infiltration and attachment of 

cells. However, the development of novel processing techniques has significantly 

broadened their scope by allowing the incorporation and subsequent release of bioactive 

molecules, thus transforming the scaffolds into multifunctional bioactive factor delivery 
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units. The scaffold can operate as a reservoir for biological molecules, the release of 

which can be modulated by controlling the scaffold processing parameters. Such 

scaffolds have shown sustained release of a variety of proteins161 as well as 

plasmids162'163. It has become increasingly feasible to deliver plasmid DNA (pDNA) to 

cells so as to facilitate in situ production of the encoded growth factors, signaling 

molecules and insoluble bioactive molecules of interest. This approach carries a 

significant advantage over the direct delivery of these biological agents, as intracellular 

expression of the delivered plasmids can be sustained over a period of days, thus 

mitigating the drawbacks of limited bioactivity associated with short half-lives of most 

biological factors. Furthermore, concerns related to gene delivery, such as low 

transfection efficiencies and the general requirement of high plasmid doses are gradually 

being mitigated with the development of new non-viral vectors and improved delivery 

strategies. 

Tissue engineering scaffolds that entrap and release plasmid DNA have been 

adapted by various groups162,164, and such scaffolds are popularly referred to as gene 

activated matrices (GAMs). The release of pDNA encoding a protein from three-

dimensional biodegradable scaffolds has resulted in greater expression of the encoded 

protein than a similar amount of pDNA delivered to two-dimensional cell culture 

systems165"167. The enhancement in expression has been attributed to the close proximity 

of the cells to the gene delivery reservoir, as well as the sustained release of the plasmid 

over time165'168. Scaffolds similar in concept to GAMs created by gas foaming162, 

emulsion169'170, or electrospinning166 have all been shown to successfully incorporate 
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pDNA, release it over an extended period of days to weeks, and preserve plasmid 

bioactivity over the duration of release. Successful expression of pDNA released from 

biodegradable scaffolds has been demonstrated using plasmids encoding reporter proteins 

1 f\*l 171 177 177 1 74 

such as luciferase ' ' , beta-galactosidase " and enhanced green fluorescent 

protein 65,1 as well as functional genes such as parathyroid hormone-1175 and bone 

morphogenetic protein-4 . 

Coaxial electrospinning has previously not been employed to produce scaffolds for 

gene delivery in the context of tissue engineering. Coaxial fiber mesh scaffolds have a 

sheath/core fiber morphology where individual fibers can be fabricated from two separate 

immiscible polymer solutions, which allows for physical separation of aqueous-based 

biological molecules from the organic solvents essential for scaffold fabrication and 
1 77 1 7R 

minimizes the interaction between the two to the order of microseconds ' . 

Furthermore, electrospinning allows for the fabrication of multi-layered scaffolds, as 

demonstrated by previous experiments in our laboratory179, where each layer can 

potentially incorporate and release a plasmid encoding a unique protein. Hence it is 

essential to determine the processing parameters that control the incorporation of pDNA 

into and release kinetics from such coaxial electrospun fiber meshes. 

In this study we have incorporated a non-viral gene delivery vector previously 

developed in our laboratory, a hyaluronic acid (HA) derivative of poly(ethylenimine) 

(PEI) (PEI-HA) into non-woven coaxial electrospun fiber meshes. We incorporated 

pDNA into an aqueous poly(ethylene glycol) (PEG) solution to fabricate the core section 

of the fiber and the gene delivery vector PEI-HA into an organic sheath polymer solution 
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of poly(e-caprolactone) (PCL) in chloroform and methanol. The coaxial electrospinning 

method not only minimized the interaction of the plasmid with the organic solvents, but 

also allowed the integration of pDNA without the need to process it through methods 

such as lyophilization, which in some cases has been shown to reduce the plasmid 

1 o f t i o 1 

bioactivity ' . Furthermore, the volatile sheath polymer solution facilitated the 

processing and solidification of the fibers into non-woven fiber meshes. The plasmid was 

incorporated within the core of the fibers and the gene delivery vector was contained 

within the sheath. The hypothesis in generating these scaffolds was that, as the 

electronegative plasmids diffused out of the fiber cores, they would complex with the 

positively charged PEI-HA released from the fiber sheath and transfect cells present on 

the fiber surface. 

To this end, we formulated a fractional factorial design to investigate the effects of 

various processing parameters, including (a) core polymer concentration and (b) 

molecular weight, (c) sheath polymer concentration, and (d) pDNA concentration, on 

fiber diameter distribution, PEI-HA release kinetics, and transfection efficiency. The 

gene delivery vector was tagged with a fluorescent molecule, rhodamine-B-

isothiocyanate, to monitor its release, whereas the plasmid release was indirectly 

monitored through its reporter protein (EGFP) activity. 
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Materials and Methods 

Materials 

Chemicals for PEI-HA synthesis, namely, sodium borate, PEI (Mw = 25kDa) and 

sodium cyanoborohydrate, were purchased from Sigma-Aldrich (St. Louis, MO). 

Rhodamine-B-isothiocyanate for fluorescence tagging of PEI-HA was also purchased 

from Sigma. Sodium hyaluronate (Mw= 2.3 kDa) was generously provided by Genzyme 

Corp. (Cambridge, MA). Solvents used for electrospinning, namely, chloroform and 

methanol, were purchased at ACS grade from Fisher Scientific (Pittsburgh, PA). 

Chemicals used for tissue culture purposes such as Phosphate Buffered Saline (PBS), 

Dulbecco's Modified Eagle Medium (DMEM) with high glucose, Minimum Essential 

Medium (MEM) Amino Acid Solution (50X), MEM Non Essential Amino Acids 

(NEAA) (100X), L-Glutamine (200 mM), MEM Vitamin solution (100X) and sodium 

pyruvate (100 mM) were purchased from Gibco (Carlsbad, CA). Plasmid DNA encoding 

enhanced green fluorescent protein (EGFP) with a cytomegalovirus (CMV) promoter 

(pCMV-EGFP) was generously donated by Dr. Michael Barry from Mayo Clinic 

(Rochester, MN). Qiagen Plasmid Giga Kits for pCMV-EGFP amplification and 

purification were purchased from Qiagen (Valencia, CA). 

Synthesis ofRhodamine Tagged PEI-HA 

The synthesis of PEI-HA has previously been described by our laboratory182. For the 

current study, the published protocol was adapted for increased quantities of reactants. 

500 mg of PEI and 1 g of HA were mixed in a 3-neck flask in the presence of 0.2 M 
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sodium borate buffer (pH 8.5) maintained at 40°C. The solution was stirred continuously 

after addition of 0.27 g of sodium cyanoborohydrate on initiation of the reaction and an 

additional 0.20 g 30 hrs after the initiation of the reaction. The reaction was carried out 

over 120 hrs, after which the product was dialyzed against 0.02 M of sodium borate 

buffer, and the dialysis solution was gradually transitioned to water. The product was 

lyophilized, and the chemical structure was confirmed with 1H NMR as previously 

described. Based on NMR analysis, 11.67 ± 0.45% of the amine groups within PEI were 

chemically modified due to reductive amination with HA. 

Lyophilized PEI-HA was dissolved in 0.2 M sodium bicarbonate buffer at 10 mg/mL 

concentration at pH 9.0. 10 mg of rhodamine-B-isothiocyanate was dissolved in 1 mL 

dimethyl sulfoxide (DMSO), and the mixture was added to 50 mL of the PEI-HA 

solution. The reaction solution was placed on a rotating table for 2 hrs, after which the 

solutions were dialyzed initially with 0.1 M sodium bicarbonate solution. The dialysis 

process was repeated until the dialysate showed a steady fluorescence reading during 

three consecutive dialysis cycles. The dialysis solution was then switched to water for 

three dialysis cycles. The product obtained at the end of dialysis, rhodamine-PEI-HA (r-

PEI-HA), was lyophilized and stored at 4°C. 

Plasmid Amplification 

Plasmid DNA encoding EGFP with a CMV promoter was amplified as described 

previously182. Briefly, pCMV-EGFP (4.7 kb) was amplified in E. Coli bacterial cultures. 

Plasmids were extracted and purified using standard protocols with the Qiagen Plasmid 
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Giga Kit. The total plasmid yield was determined from the UV absorbance at a 

wavelength of 260 nm (A260). The plasmid was dissolved in Millipore water at 5 mg/mL 

and stored at -20°C. The ratio of A260/A280 was determined to be between 1.8 and 2.0 

to assess purity of the plasmid produced. 

Fabrication of Coaxial Electrospun Scaffolds 

(A) Experimental Design 

A two-level fractional factorial design with 4 parameters was formulated to evaluate 

the release and the related transfection efficiency of r-PEI-HA and pDNA from 

electrospun coaxial fiber mesh scaffolds. The parameters tested were (1) PCL 

concentration (Cone), (2) PEG molecular weight (MW), (3) PEG Cone, and (4) pDNA 

Cone, within the core fiber. Hence, 8 different types of scaffolds were formulated using 

all the parameters described above at either a high (+1) or low (-1) concentration. The 

concentration of r-PEI-HA was also modified with changes in pDNA concentration so as 

to maintain the same N:P ratio across all formulations. Table 5.1 summarizes the 

combination of parameters examined in this study. The range of values used with each of 

these parameters was predetermined by an elimination process, where a variety of 

combinations of PEG and PCL polymer concentrations and molecular weights were 

electrospun together, to determine the values that produced a stable Taylor cone over a 

period of several minutes. r-PEI-HA release from the scaffolds as well as transfection 
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ability of the released supernatant containing r-PEI-HA and pDNA were studied over a 

period of 60 days. 

(B) Coaxial Electrospinning Setup 

The setup for coaxial electrospinning was developed and described in detail 

previously . The syringes containing PCL/r-PEI-HA in the setup for the present study 

were covered to prevent fluorescence bleaching. 

(C) Fabrication of Coaxial Electrospun Scaffolds 

PCL sheath and PEG core solutions were made according to parameters described in 

Table 5.1. PCL was dissolved in 2:1 chloroform: methanol solution (v/v), whereas PEG 

solution was made in 150 mM of NaCl solution prepared with Millipore water. r-PEI-HA 

was ground into a fine powder in the dark using a mortar and pestle and added to the PCL 

solutions. The amount of r-PEI-HA to be incorporated was calculated at a 7.5:1 N:P ratio 

of vector polymer to pDNA, assuming that the electrospinning process would be carried 

out for 50 min with each scaffold type. Hence, 

T , . , v /Volumetric \ 
r ™.T,. \ / Concentration \ ' a *- ' 

amount of pDNA = / o f p D N A ^ c o r £ \ x 

incorporated within / \ , , .. / 
„, I \polymer solution/ kU1.IUvi , 
fiber mat / v 3 \ v ' . I 

\ solution / 

flow rate 
of core 
polymer 

/ Duration of \ 
\electrospinning/ 

The r-PEI-HA/PCL solution was protected from light with an aluminum foil wrap, 

vortexed thoroughly and left on an orbital shaker overnight. Similarly, aqueous PEG 

solution was added drop-wise to pDNA solution to a final pDNA concentration of either 

4 mg/mL or 2 mg/mL, based on the spinning parameters. An outer (sheath) flow rate of 8 
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mL/hr and an inner (core) flow rate of 0.1 mL/hr were used for the fabrication of the 

scaffolds for a period of 50 min. The schematic of the scaffolds produced with the 

respective location of its components is described in Supplemental Figure 5.1. 

Scanning Electron Microscopy Analysis of Fiber Diameters 

Three scaffolds of 1 mm diameter each were punched out from the coaxial fiber 

mesh mats and mounted on a steel stage above insulating tape. Samples were sputter 

coated with gold for 1 min at 100 mA, after which the scaffolds were observed with SEM 

(FEI Quanta 400, Hillsboro, OR). A total of 90 fibers were measured from 3 scaffolds 

from each group, as described previously by our laboratory179'183. 

Release and Quantification 

(A) Release and Quantification ofr-PEI-HA 

Circular scaffolds of 10 mm diameter were punched out of each fiber mat and 

weighed. Amount ofr-PEI-HA and pDNA within each scaffold of 10 mm diameter was 

estimated from the theoretical amount of pDNA incorporated within the fiber mat and the 

fractional weight of the scaffold compared to that of the fiber mat. 

Amount of r-PEI-HA per scaffold was further determined with the assumption that 

the N:P ratio between r-PEI-HA and pDNA was maintained at 7.5:1. Scaffolds of weights 

between 10.5 and 12.8 mg were selected from each fiber mat group and placed in 5 mL 

polypropylene tubes covered with aluminum foil. The scaffolds were sterilized with 

ethylene oxide over a period of 14 hrs. The samples were then individually submerged in 
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1 mL of PBS and placed on a shaker table rotating at 115 rpm at 37 °C. The PBS 

supernatant was collected at predetermined time points and replaced with fresh PBS. The 

collected supernatant was lyophilized over 48 hrs, and the residue was resuspended in 

either 1.0 mL or 0.5 mL of PBS, determined by sampling the amount of fluorescence 

present in the sample. 100 uL of the resuspended solution was added into opaque 96-well 

plates and fluorescence was measured using a plate reader, Spectra Max M2 (Molecular 

Devices, Downingtown, PA) at Ab/Em 555/592 nm, with the emission cut-off 

wavelength of 590 nm. These wavelengths were determined as optimal based on a 

spectral frequency sweep of wavelengths ranging from 350 nm to 700 nm. Fluorescence 

values were compared to a standard curve generated using known concentrations of r-

PEI-HA/DNA complexes of 7.5:1 N:P ratio to determine the concentration of r-PEI-

HA/DNA complexes in solution, with the assumption that there was no significant 

difference between the fluoresce emitted by r-PEI-HA and r-PEI-HA/pDNA complexes 

of different N:P ratios. Data obtained was analyzed using Softmax Pro (v 4.6, Molecular 

Devices, Downingtown, PA). 

(B) Release and Preparation of Solutions for Transfection 

To assess the transfection ability of the pDNA in the release solution of the scaffolds, 

additional 10 mm diameter scaffolds of weights between 10.5 and 12.8 mg were placed 

individually in 5 mL polypropylene tubes. The samples were similarly submerged in 1 

mL of PBS and placed on a shaker table at 115 rpm at 37°C. The PBS supernatant was 

obtained at predetermined time points and replaced with fresh PBS. The supernatant was 
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lyophilized over 48 hrs and resuspended in transfection medium composed of MEM 

Amino Acid solution, MEM NEAA and MEM Vitamins diluted to IX concentration, 

1000 mg/L of glucose, sodium pyruvate (final concentration 1 mM) and L-glutamine 

(final concentration 2 mM), approximately 1 hr before transfection. The resuspended 

solutions were centrifuged at 2000 rpm for 10 min, and the samples were allowed to 

stand for 50 min. 

Cell Line and Cell Culture 

Fischer rat fibroblast cell line (CRL 1764) was obtained from American Type 

Culture Collection (Manassas, VA). Cells were expanded in T75 flasks with complete 

medium, (DMEM supplemented with 10 vol. % FBS, 100 ug/mL penicillin, 100 U/mL 

streptomycin, and 0.5 ug/mL amphotericin B) and cultured at 37°C in 5% CO2 and 95% 

humidity. 

Cell Transfection and Reporter Gene Expression 

After expansion of the cells in T75 flasks, cells were trypsinized with 0.025% 

Trypsin EDTA, centrifuged, quantified, and replated onto 6-well cell culture plates at 

250,000 cells per well. The cells were suspended in 2 mL of tissue culture media 

overnight to facilitate attachment, after which the media was removed and replaced with 

the transfection solutions described above. The plates were covered in foil and allowed to 

sit in the incubator overnight. The next morning 1.5 mL of cell culture medium was 

added to the cells, and the cells were incubated at 37°C for 48 hrs. To assess transfection 
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by flow cytometry, the cells on the 6-well plates were treated with 0.5% trypsin EDTA 

for 5 min, after which the cells were collected in their respective 5 mL tubes and 

centrifuged at 2000 rpm for 10 min. The supernatant was decanted, and the cells were 

washed with PBS. The PBS was further replaced with 2% chilled formaldehyde solution 

in PBS, and the cells were allowed to fix on ice for 1 hr. The cell solution was further 

centrifuged (2000 rpm, 10 min), and the formaldehyde was replaced with PBS solution. 

Cell fluorescence was quantified using a Becton Dickenson FACS Scan instrument (BD 

Biosciences, San Jose, CA) at high flow and CellQuest Pro software (BD Biosciences, 

San Jose, CA, v. 5.1). Base-line fluorescence was quantified using cells treated with 

complete medium alone throughout the cell culture and transfection duration. A total of 

2000 events were counted for each sample, and fluorescent cells were determined using a 

marker at 5% of the untreated cell population. 

Reporter Gene Expression of Cells Seeded on Coaxial Fiber Meshes 

Cells expanded in T75 flasks were trypsinized as described above. A cell suspension 

of 100,000 cells/mL was prepared in cell culture medium and 1 mL added to each 5 mL 

polypropylene tube. Ethylene oxide-sterilized 10 mm scaffolds were added to the tubes, 

and negative pressure was applied until no bubbles were observed to facilitate infiltration 

of the cells into the scaffolds. The cell suspension and the scaffold were then placed into 

24-well plates and incubated up to predetermined time points, with media changes every 

2-3 days. Expression of EGFP within CRL 1764 cells was observed using confocal 

microscopy at 10X and 20X magnification using a Zeiss LSM 510 confocal microscope 
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(Thornwood, NY). Scaffolds were excited with an argon laser (488 nm, 6% power). 

Emission wavelengths were monitored between 510-550 nm. Images thus obtained were 

further visualized using LSM 5 Image Browser (v 3,2,0,115). 

Statistics 

The influence of changing values of the main parameters PCL Cone, PEG MW, 

PEG Cone, and DNA Cone, on fiber diameter, release kinetics and transfection 

efficiency were analyzed using analysis of variance with SAS JMP software (v. 7.0.1, 

Cary, NC). The analysis evaluated means as well as least squares mean (LSM) values 

with the standard error associated with the computations. Further differences between 

specific results were evaluated using Tukey's honestly significant differences (HSD) test. 

To determine the influence of the main parameters at the 2 levels evaluated, LSM values 

at the low parameter value (-1) were subtracted from the high value (+1). Significance 

was determined at p < 0.05 unless otherwise specified. 

Results 

Fiber Distribution of Electrospun Coaxial Scaffolds 

Eight different scaffold types were formulated based on a fractional factorial design 

with parameters summarized in Table 5.1. Electrospun coaxial fiber mesh mats had 

approximate dimensions of 10 x 10.8 cm. Theoretical calculations estimated that the 

amount of pDNA present per scaffold in the form of a disk of 1 mm diameter was 

approximately 2 \x.g for Groups 2, 3, 5 and 8, which contained the high pDNA loading 
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concentrations and approximately 1 ug for the remaining groups that had low pDNA 

loading concentrations. Fiber diameters were assessed with SEM, as described in in the 

"Methods and Materials" section. The formulations showed a distribution of fiber 

diameters ranging from about 200 nm to 4 urn across 8 groups of scaffolds. Assessing the 

main effects of the parameters on fiber diameter showed that all four parameters, namely, 

PCL Cone, PEG MW, PEG Cone, and DNA Cone, significantly increased total fiber 

diameter when the value was increased from low (-1) to high (+1) as shown in Figure 

5.1. The maximum effect on fiber diameter was observed with PCL Cone. (0.52 ± 0.06 

um), followed by PEG MW (0.31 ± 0.06 urn), PEG Cone. (0.28 ± 0.06 um), and pDNA 

Cone. (0.27 ± 0.06 (am). A previous study involving electrospun coaxial fibers that did 

not contain any bioactive molecules suggested that some of the fibers within the meshes 

were composed entirely of the core polymer, which is hydrophilic and easily soluble in 

aqueous medium . To test if the meshes fabricated with the non-viral vector and pDNA 

showed fibers with similar properties, the meshes were immersed in PBS with agitation at 

115 rpm at 37 °C for 7 days. Figure 5.2A shows the fiber diameter distribution of fibers 

directly after fabrication and 2B after immersion in water for 7 days. Groups that had a 

significant percentage of fibers within the smallest fiber diameter distribution range (100-

300 nm), i.e., Groups 1 and 2, showed a decrease of 25.1 and 11.5%, respectively, in the 

percentage distribution of these fibers after 7 days in PBS. Other groups showed a 

decrease in fiber diameter across different fiber distributions. Taken together, these 

results suggest that, based on the values of parameters used, some fibers composed 
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predominantly of the core polymer PEG were distributed at various diameters within the 

coaxial fiber meshes. 

Release ofr-PEI-HA 

The release of fluorescence tagged r-PEI-HA was monitored with a fluorescence 

plate reader over a period of 60 days. The 60 day duration for monitoring r-PEI-HA 

release was further divided into four groups; burst release (0-24hrs), Phase 1 (2-10 days), 

Phase 2 (11-28 days), and Phase 3 (35-60 days). Burst release during the first 24 hrs 

ranged from 9.3 ± 1.8% for Group 6 to 47.3 ± 13.3% for Group 7, as described in Table 

5.2 and Figure 5.3. The main effects of the parameters on the average release ofr-PEI-

HA are illustrated in Figure 5.4. The concentration of pDNA (with the concentration ofr-

PEI-HA scaled accordingly, to maintain the same N:P ratio) was the only parameter that 

significantly affected the kinetics of r-PEI-HA released. Sheath PCL Cone, core PEG 

Cone, and PEG MW did not significantly affect the release kinetics of r-PEI-HA. 

Cumulative release at the end of 60 days ranged from 35.2 ± 5.7% of theoretical loading 

for Group 6 to 144.1 ± 14.0% for Group 5, as stated in Table 5.2. 

There were significant differences between groups related to the burst release of r-

PEI-HA, as stated in Table 5.2. However, there were no statistical differences between 

groups with respect to the r-PEI-HA released per day between Phases 1 to 3. 

Transfection Efficiency of Released pDNA in 2D Cultures 

Compared to the control (Group 9) that carried only pDNA within the fiber core and 

had no r-PEI-HA, all the experimental groups showed a significant increase in 
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transfection efficiency as compared to the cells treated with media alone. A graphical 

representation of transfection efficiencies across 60 days for all groups is shown in Figure 

5.5. Although there were specific differences in average transfection efficiencies 

between groups as shown in Table 5.3, transfection efficiencies were not statistically 

different from each other after day 21. Across the groups over a period of 60 days, only 

PEG MW and PEG Cone, had a significant effect on transfection at p = 0.09 and p = 0.10 

respectively as represented in Figure 5.6. 

Transfection of Cells Seeded onto Coaxial Electrospun Fiber Mesh Scaffolds 

Compared to the pDNA only group, CRL 1764 cells seeded onto scaffolds with both 

r-PEI-HA within the fiber sheath and pDNA within the fiber core showed a significant 

number of cells expressing EGFP as shown in Figure 5.7. EGFP expression by the cells 

was observed over the duration of the experiment, with qualitative differences in 

transfection efficiencies observed between groups and time points, as shown in Figure 

5.7. 

Discussion 

The study described here was designed to determine the effect of certain processing 

parameters on electrospun fiber diameter distribution, PEI-HA release kinetics, and 

transfection efficiencies of pDNA released from electrospun coaxial fiber mesh scaffolds 

incorporating pDNA and PEI-HA, a non-viral gene delivery vector. Coaxial 

electrospinning has thus far not been employed for delivery of pDNA, and factors 
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influencing the formation of coaxial fiber meshes and their release properties are largely 

unknown. The experimental plan was formulated with the goal of establishing parameters 

that allowed for the formation of coaxial electrospun fiber meshes and determining if the 

examined values of these parameters could dictate the release kinetics of pDNA and r-

PEI-HA, as well as the associated transfection efficiencies. Just as the process of 

electrospinning is dependent on the interaction of multiple factors, including the 

dielectric properties of the solvents used144'142, flow rates of polymer solutions during 

extrusion146, the electric potential and quantity of charge circulating through the 

electrospinning circuit139, and the distance between the needle and collecting plate147; the 

coaxial electrospinning process has a similar set of complex governing interactions. 

In the experimental design implemented here, pDNA was incorporated within the 

core polymer (PEG) solution, whereas r-PEI-HA was pulverized and dissolved within the 

sheath polymer (PCL) solution. We had previously described experiments where a set of 

coaxial electrospun fiber mesh scaffolds were fabricated based on a full factorial design 

using parameters similar to those described in this study183. These common parameters 

included sheath (PCL) Cone, core (PEG) Cone, and (PEG) MW. It was observed that 

the range of the parameters tested had to be limited significantly to allow the coaxial 

electrospinning of polymer solutions incorporating the cationic gene delivery vector and 

anionic pDNA, thus limiting the versatility of the coaxially electrospun groups. 

Furthermore, despite the formation of a stable Taylor cone during fabrication of the fiber 

meshes for all the formulations, the coaxial fibers showed a greater distribution of fiber 

diameters, as shown in Figure 5.2 and discussed in "Fiber Distribution of Electrospun 
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Coaxial Scaffolds". Previously, DNA has been incorporated into uniaxial electrospun 

fibers by Luu et al.166, and the fibers obtained had a significant variation in fiber 

diameters. Both these observations suggest that the inclusion of highly charged moieties, 

such as a cationic gene delivery vector and anionic pDNA, significantly affect the 

electrospinning properties of polymer jets. 

The assessed parameters showed a similar effect of increasing sheath polymer 

concentration and core polymer molecular weight on fiber diameter, as was previously 

observed in the absence of the vector and plasmid. The average fiber diameter increased 

with the increase in sheath (PCL) Cone, and PEG MW. In addition, an increase in the 

concentration of PEG, pDNA and r-PEI-HA also caused a similar increase in the average 

fiber diameter. To determine if all fibers within the mesh were truly coaxial, we 

immersed them in PBS for 7 days. Analysis showed a significant number of fibers across 

various groups that completely dissolved in a period of 7 days, which suggested that 

these fibers were composed predominantly of PEG and were prevalent in various size 

ranges within different groups. However, there was also a significant and larger 

population of fibers that did not change in prevalence across subgroups of fiber 

diameters, suggesting that these fibers were indeed coaxial. 

As one of the goals of this experiment, we attempted to characterize the release of 

incorporated r-PEI-HA from the sheath of coaxial fibers. The direct release of pDNA 

could not be monitored in this case, as r-PEI-HA significantly decreased binding of 

pDNA to dyes such as PicoGreen or ethidium bromide during complex formation. Hence, 

the release of r-PEI-HA was monitored via fluorescence. In the case of uniaxial 



122 

electrospinning Luu et al.166 observed that most of the burst release occurred at 2 hrs, 

after which pDNA release decreased precipitously. Similar to observations made by Luu 

et al., r-PEI-HA contained within the sheath fibers of the present study displayed a burst 

release within 24 hrs after immersion in PBS. However, in the fibers fabricated here, 

there was also a significant amount of r-PEI-HA released between days 2 to 10, ranging 

from 1.75 ± 0.39 to 6.30 ± 1.60% of theoretical loading. Only the loading concentration 

of pDNA (and subsequently that of r-PEI-HA, which was increased to maintain a 

constant N:P ratio among groups) appeared to significantly influence the release kinetics 

of r-PEI-HA. Some of the burst release observed here could be attributed to the 

dissolution of fibers made predominantly from PEG as described above. 

The release kinetics were also significantly influenced by the location of PEI-HA 

and DNA within the coaxial fibers. The initial design of the experiments described here 

attempted to electrospin r-PEI-HA/pDNA complexes entirely within the core of the 

coaxial fibers by preassembling the complexes before mixing them with the core polymer 

solution. To accommodate for the solubility of PEI-HA/pDNA complexes, dextran 

(instead of PEG) was used as a core polymer and the optimal viscosity for spinning was 

attained at concentrations noted in the table in the supplemental section (Supplemental 

Table 5.1). However, the core polymer containing the complexes showed negligible 

release of PEI-HA/pDNA complexes (Supplemental Figure 5.2). Although we could not 

determine the cause behind the absence of release of PEI-HA/pDNA complexes, a 

possible reason could be that the interactions between the core and sheath polymer 

limited the incorporation of the PEI-HA/pDNA complexes within the coaxial fibers. 
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Some of the coaxial fiber mesh scaffold groups in the study where PEI-HA was 

incorporated within the polymer sheath and pDNA was incorporated within the fiber core 

showed greater than 100% cumulative release over the duration of the study. Although, 

during the fabrication of the scaffolds, the r-PEI-HA and pDNA were loaded such that 

the N:P ratio between them was constant at 7.5:1, it is feasible that the ratio at which r-

PEI-HA and pDNA were released was not constant over the duration of the experiment. 

The r-PEI-HA/pDNA release values were calculated using a calibration curve generated 

from known concentrations of r-PEI-HA/pDNA in solution (constant N:P ratio of 7.5:1), 

with the assumption that there was no significant difference between the fluorescence of 

r-PEI-HA and r-PEI-HA/pDNA complexes of differing N:P ratios. However, it was 

found that calibration curves generated by measuring the fluorescence corresponding 

with known concentrations of r-PEI-HA alone (N:P ratio of 1:0) and r-PEI-HA/pDNA 

complexes (N:P ratio of 7.5:1) in solution were significantly different from each other, as 

illustrated in Supplemental Figure 5.3. The inability of the detection method employed in 

the release study to differentiate between free r-PEI-HA and r-PEI-HA/pDNA complexes 

of different N:P ratios in solution was a limitation of the study and taken together with 

the differences in fluorescence for a given concentration of free r-PEI-HA versus r-PEI-

HA/pDNA complexes, may account for the greater than 100% cumulative release 

observed for some groups. 

The temporal differences between peaks of r-PEI-HA/pDNA complex release (Table 

2) and maximum EGFP expression in CRL 1764 cell lines (Figure 5.5) further suggests a 

potential variation in the ratios of r-PEI-HA and pDNA in the duration of the release. In 



124 

general, EGFP expression could be more directly correlated to the release of pDNA 

rather than r-PEI-HA. However, pDNA release could not be directly detected in this 

experimental design and is a limitation associated with this study. However, transfection 

efficiencies with scaffolds containing r-PEI-HA were significantly higher than with those 

containing pDNA alone, suggesting that the presence of r-PEI-HA in the fibers did 

enhanced transfection, relative to pDNA alone in the fibers. Transfection efficiency 

seemed to be most influenced by core polymer parameters; PEG MW and concentration. 

Changing PEG concentration from low to high values decreased the observed 

transfection of cells. The decrease in transfection could be related to a potential decrease 

in the amount of pDNA released due to the increase in PEG concentration, as has been 

observed in other controlled release systems with proteins and peptides184. The lower 

release observed in other studies has been attributed to an increase in the matrix density 

of the polymer holding the bioactive molecule of interest. However, pDNA release was 

not directly measured in the present study, so the effects of PEG Cone, on pDNA release 

are not known in the context of this study. 

A similar phenomenon can be expected when the core polymer MW is increased. 

The increase in PEG MW, however, caused an increase in transfection, which is counter 

to expectations. However, this effect can be attributed to a number of factors. Increase in 

the MW of PEG has been reported to increase condensation of pDNA in the presence of 

NaCl, which is present within the core fiber185. pDNA with a more compact structure 

would potentially have less retention within the coaxial fiber, which could lead to an 

increase in release and subsequently in transfection. Furthermore, any interaction 
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between the r-PEI-HA and pDNA within the coaxial fiber may also influence release 

kinetics, due to a differential degree of condensation of pDNA after its interaction and 

complexation with r-PEI-HA. 

We observed a significant effect of PEG Cone, and MW on transfection efficiencies 

at days 14 and 21. There were significant differences in transfection between groups up 

to day 21. However, after day 21 there were no significant differences in transfection 

between groups. It can be surmised that the observed transfection efficiency is dependent 

on the core polymer properties, i.e., molecular weight and concentration. Further 

changing the amount of r-PEI-HA loaded within the sheath fibers, which in turn would 

affect the N:P ratio at which complexes are formed, may give additional insight into the 

change in release kinetics of r-PEI-HA and the effect on pDNA transfection efficiency. 

Lastly, cells directly seeded onto the fabricated coaxial fiber mesh scaffolds 

showed successful expression of EGFP, and this expression was significantly higher than 

that observed on meshes containing pDNA alone. The increase in EGFP expression in 

meshes containing both PEI-HA and pDNA suggests that, despite separating the pDNA 

and the gene delivery vector (r-PEI-HA) in different components of the coaxial fibers, the 

pDNA and r-PEI-HA are able to form complexes, be it inside or outside of the coaxial 

fibers, which are able to transfect cells with a greater efficiency than released pDNA 

alone. 
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Conclusions 

We have successfully designed coaxial electrospun fiber mesh scaffolds containing a 

non-viral gene delivery vector (r-PEI-HA) and pDNA within the sheath and core of the 

fiber, respectively. These studies elucidate the role of the processing parameters used to 

fabricate fiber meshes, i.e., (A) PCL sheath polymer Cone, (B) PEG core polymer MW, 

(C) PEG core polymer Cone, and (D) Cone, of pDNA within the fiber core, using a 

fractional factorial design. The results suggest that increasing the parameters above 

increases the average diameter of the fiber across all groups. Furthermore, the release of 

r-PEI-HA from the fiber sheath is dependent upon the concentration of pDNA, and the 

associated concentration of r-PEI-HA, embedded within the fibers. Most of the fabricated 

scaffolds show extended release of the gene delivery vector over a period of 60 days. 

Additionally, the transfection efficiency of the pDNA released from scaffolds also 

incorporating r-PEI-HA was sustained up to 60 days, and the transfection efficiency was 

dependent upon the concentration and MW of the core polymer, (PEG). Since statistical 

differences in transfection were observed between groups at different time points, it can 

be surmised that coaxial fiber mesh scaffolds with differential transfection properties can 

be fabricated by changing the parameters examined in this study. Such scaffolds with 

variable and sustained transfection properties can be applied for tissue engineering and 

other gene delivery applications involving gene therapy. 
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Figures 

Figure 5.1: Main effects of PCL Cone, PEG MW, PEG Cone, and pDNA Cone, on 

average total fiber diameter of electrospun coaxial fiber meshes. A positive number 

represents an increasing effect of the particular parameter as its value increases from low 

(-1) to high (+1); the low (-1) and high (+1) values of the respective parameters are listed 

in Table 5.1. Error bars represent standard error of the effect for n=3 per scaffold type 

(and thirty fibers per scaffold). 
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Figure 5.3: Cumulative release of rhodamine-tagged PEI-HA (r-PEI-HA) from 

electrospun coaxial fiber meshes at 37 °C in PBS with agitation at 115 rpm. Error bars 

represent standard deviation for n=4. 
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values of the respective parameters are listed in Table 5.1. Error bars represent standard 

error of the effect for n = 4. 
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Figure 5.5: Transfection efficiency of released pDNA in 2D cultures of fibroblast-like 

cells (CRL 1764) over a period of 60 days. Formulation parameters of the Groups 1 to 8 

are described in Table 5.1. Group 9 is composed of scaffolds containing pDNA within the 

fiber core and no r-PEI-HA during fabrication. Error bars represent standard deviation for 

n=4. 
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Figure 5.6: Main effects of PCL Cone., PEG MW, PEG Cone., and pDNA Cone, on cell 

transfection efficiency. A positive number represents an increasing effect of the 

particular parameter as its value increases from low (-1) to high (+1); the low (-1) and 

high (+1) values of the respective parameters are listed in Table 5.1. Error bars represent 

standard error of the effect for n =4. 
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Group # 

Group 1 
Group 2 
Group 3 
Group 4 
Group 5 
Group 6 
Group 7 
Group 8 

Mean ± Standard 
Error 

14.45 ± 0.62111 

13.46 ±0.60ni 

16.23 ±0.60*#t 

17.54 ±0.60* 
17.37 ±0.60*" 
13.25i0.6111 

15.45 ±0.62*#I 

14.54 ± 0.60"111 

Table 5.3: Average transfection efficiencies over 60 days for 8 groups of coaxial 

electrospun fiber mesh scaffolds. Data are presented as means ± standard error for n=4. 

Groups with similar symbols are not statistically different from each other. 

http://13.25i0.6111
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Supplemental Data 

High 

Low 

PCL Cone. 

16wt% 

14 wt % 

Dextran MW 

200 kDa 

68kDa 

Dextran Cone. 

200 mg/mL 

lOOmg/mL 

pDNA Cone. 

1.5 mg/mL 

0.5 mg/mL 

Supplemental Table 5.1: Values of parameters tested in a fractional factorial design in 

which PEI-HA/pDNA complexes were incorporated in the fiber core, with dextran as the 

core polymer. 
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from coaxial electrospun fiber meshes, where r-PEI-HA/pDNA complexes were 

preassembled and incorporated within the coaxial fiber core. Release samples were 

placed at 37 °C in PBS with agitation at 115 rpm. Error bars represent standard error for 

n=4. 
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Chapter VI 

Summary 

The work presented in this thesis aims at adapting existing biomaterials to create 

novel and creative solutions for the purpose of tissue engineering. This was achieved by 

focusing on two application related to tissue engineering; firstly, non-viral gene delivery 

vectors that can effectively transfect multi-potent cells and secondly, novel three 

dimensional scaffolds that can present biological factors such as plasmids over extended 

durations. 

A novel non-viral gene delivery vector was created by chemically conjugating PEI, a 

potent, inexpensive and widely used polymeric gene delivery vector, with HA a 

ubiquitous extracellular matrix molecule. A zwitterionic polymer containing a cationic 

PEI and anionic HA was thus synthesized. The novel vector thus created displayed 

significantly reduced cytotoxicity and better transfection efficiency on multipotent 

hMSCs. Further experiments with this novel polymer elucidated the role of ions in 

controlling the conformational dynamics of this vector, which provide significant insight 

into the behavior and optimization of zwitterionic polymers. This has implications in 

determining transfection efficiencies of non-viral gene delivery vectors. 

In addition to non-viral gene delivery, biomaterials were used for the fabrication of 

three dimensional scaffolds through the process of coaxial electrospinning. PCL and PEG 
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were dissolved in organic and aqueous solvents respectively and spun together under the 

influence of the electric field to form sheath and core components (respectively) of a 

coaxial fiber mesh. A full factorial design evaluated the influence of PCL concentration, 

PEG concentration and molecular weight and the presence of salt within the aqueous core 

polymer solution. This study provided insights into the influence processing parameters 

have in fabricating fibers with variable morphologies. 

Finally, PEI-HA and plasmid DNA were incorporated within the coaxial fibers and a 

fractional factorial design was implemented in understanding the role of processing 

parameters on fiber diameters, release kinetics and transfection efficiencies. Introduction 

of charged moieties such as PEI-HA and DNA significantly influenced the fiber 

diameters and morphologies of the fibers produced. Furthermore, the dose of PEI-HA or 

DNA influenced the release kinetics of the vector, whereas the core polymer properties 

influenced the transfection efficiencies observed. In summary, tunable release kinetics 

could be achieved by modulating the processing parameters used for the fabrication of 

coaxial electrospun fibers. 

Although these scaffolds were synthesized with gene delivery in mind, the scaffolds 

are versatile in their applications. Similar results can be expected with the incorporation 

of other biological molecules. Furthermore, extended bioactivity observed with these 

scaffolds is an added bonus for tissue engineering and other applications related to gene 

delivery. 
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Future Direction 

Although these studies provide a significant insight into the fabrication and 

application of three dimensional scaffolds for gene delivery purposes, numerous aspects 

of these experiments can be elaborated upon to optimize this gene delivery system. 

Firstly, the experiments described here utilize a single molecular weight of HA (2.3 kDa) 

conjugated to PEI at a single concentration. The influence of varying the molecular 

weight and percentage of chemical conjugation can potentially have an influence on the 

transfection efficiency and release kinetics. Furthermore, different molecular weights of 

HA oligomers have varied intracellular signaling effects which can be examined in the 

context of chondrogenesis or osteogenesis. 

The potential of non-viral gene delivery applications are also numerous in the 

context of tissue engineering. Although traditional signaling molecules including TGF-P 

and BMPs can be encoded into plasmids and delivered with a potential increase in the 

efficacy of gene delivery with the system described here, it would also be interesting to 

investigate the feasibility of delivering plasmids encoding transcription factors such as 

Sox-5, Sox-6, Sox-9 and Runx-2 for chondrogenesis and osteogenesis applications. Since 

transcription factors initiate a signaling cascade that promote multi-potent cells long a 

specific differentiation pathway, the strategy of delivering transcription factors can be 

more effective than delivery of individual cytokines or signaling molecules from a tissue 

engineering perspective. 
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Lastly, it would be important to investigate the influence of the different types of 

scaffolds described here (i.e., with varying fiber diameters and fiber morphologies) on 

their ability to initiate and preserve chondrogenesis and osteogenesis in multi-potent cells 

such as hMSCs. Since fiber diameters play an important role in defining the porosity of 

these scaffolds, the pore size and porosity can potentially have an influence on gene 

expression, extracellular matrix production as well as the morphology of the cells seeded 

onto these scaffolds. 
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