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Abstract 

Methods for detecting multi-locus genotype-phenotype 
association 

by 

Jeffrey R. Kilpatrick 

Solutions to the genotype-phenotype problem seek to identify the set of genetic 

mutations and interactions between them which modify risk for and severity of a 

trait of interest. I propose association graph reduction (AGR), a novel algorithm 

to detect such genetic lesions in genome-wide data, particularly in the presence of 

high-order interactions. I describe several existing methods and evaluate their perfor­

mance in terms of computational cost and power to detect associations. An objective 

comparison of the results shows that AGR successfully combines high power with 

computational efficiency, while providing a detailed account of interactions present in 

the data. No other known method combines these three properties. When applied to 

real data, AGR can be used to discover genetic causes of common diseases such as 

arthritis, hypertension, diabetes, asthma, and many others, which will facilitate the 

discovery of novel diagnostic tools and treatment protocols. 
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Definitions 

Allele One possible state of a polymorphic locus. For example, a SNP may have 

alleles G and T. 

Complex trait A phenotype with multi-factorial etiology, often consisting of several 

genetic and environmental components. 

Hardy-Weinberg Equilibrium (HWE) A situation in which the frequencies of 

alleles and genotypes remain constant in a population over several generations. 

When in HWE, the frequencies of the alleles A and B for a biallelic locus in 

a diploid population are expected to be related to that of its genotypes by 

KAA — T^A, KAB — KAKB, and TTBB = TT|-

Genotype The set of alleles present at a particular locus. Human genotypes have 

two alleles, one from each parent. 

Linkage disequilibrium (LD) Association of alleles at two loci due to a phe­

nomenon other than random chance. 

Locus A heritable quantity that follows Mendel's laws of inheritance. 

Marker A locus which can be reliably observed, typically through genotyping. 

Penetrance The conditional probability of observing a particular phenotype given 

a specific factor, such as a genotype. 

Phenotype An observable trait, such as eye color, blood pressure, or presence of a 

particular disease. 



xii 

Polymorphism A locus found to be in more than one state in a population in 

appreciable quantities. Typically, a locus is considered polymorphic when its 

more frequent allele has a population frequency less than 95% [1]. 

Prevalence The proportion of a population with a particular phenotype. 

Single nucleotide polymorphism (SNP) A locus with a single base substitution. 

Due to their abundance and ease of detection, SNPs are often used as markers 

in genome-wide association studies. 



Chapter 1 

Introduction 

This thesis introduces association graph reduction (AGR), a novel method to 

identify genomic regions associated with heritable traits. Complex biological systems 

make discovery of such effects particularly difficult. As a result, many algorithms 

have already been developed to tackle this problem, of which I describe several. In 

contrast to others, AGR uses a greedy strategy to identify both interacting and non-

interacting regions in order to discover the structure of genetic etiologies. As a result, 

AGR is as accurate as any known method and over an order of magnitude faster 

under most circumstances. When applied to any of the genome-wide data sets that 

proliferate recent literature, AGR may help elucidate the genetic causes of disease, 

resulting in better diagnostic tools and treatments. 

1.1 Motivation 

Much as the 20th century was heralded by many as the Century of Physics, a rapid 

increase in the rate of development of genomic and other basic biological research has 

led many to believe that this is the Century of Biology. Thanks to promised advances 

in our understanding of biological processes and the causes of their dysfunction, we 

expect medical treatment to become increasingly tailored to individual patients. Ad­

ditionally, gene therapy may provide means to correct genetic aberrations leading to 

disease. 
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To fulfill these promises, scientists have embarked on several projects to provide 

the genetic infrastructure and technologies on which future research can be conducted. 

The most widely known of these efforts, the Human Genome Project, has determined 

the complete sequence of letters making up one subject's genome. The resulting 

genetic map has catalyzed the development of technologies that have reduced the 

effort required to search the human genome for mutations that predispose to disease 

and other traits of interest. In particular, with genotyping microarrays, a small 

lab may determine the state of over a million genetic markers in a matter of days. 

Many researchers have taken advantage of these technologies, which has led to the 

publication of several genome-wide association studies (GWAS) seeking to find the 

genetic causes of many diseases and other traits. 

Unfortunately, these GWAS have proved less useful than one may hope. A review 

of 600 positive associations, 166 of which have been studied multiple times, found only 

six consistently replicated effects [2]. Faced with such a terrible result, it is clear that 

the community of biological researchers must determine and address the difficulties 

in discovering the mechanisms of heritable traits. Several causes of this failure have 

been proposed. Among these are the expected weakness of association signals due to 

the influence of other susceptibility factors, the effects of genomic differences among 

population strata, the baffling and hard to predict correlation of markers in close 

proximity, and the inherent complexity of cellular machinery. 



3 

1.2 Context 

The complexity of cellular mechanics has two principal implications for genomic re­

search. First, interactions between molecular species suggest that many mutations 

may be involved in determining the fate of an organism with respect to a given trait. 

Second, the redundancy of cellular processes implies that loss of function of a partic­

ular protein may be tolerated, while two or more may not. As a result, individual 

lesions may display little or no statistical effect when tested individually, though 

examining the correct combination of interacting markers shows strong association. 

For these reasons, I believe a methods to detect genetic associations must take into 

account the effect of several individual markers and interactions among them. 

Of course, approaches to finding mutations responsible for phenotypes (observable 

traits) of interest that take into account multiple markers must face unique challenges. 

In particular, testing all possible sets of markers for interactions is not only impossibly 

difficult, but statistically unsound. Consider a modern data set with one million 

markers and a computer capable of executing 1,000 tests per second. While it is 

reasonable to test all pairs of markers, one would have to wait over 5,000 years to 

check all sets of three. Even if one could wait that long, any responsible correction to 

account for the possibility of positive results by random chance would likely negate 

any real results. 

To cope with these and other challenges, novel methods frequently appear in the 

literature. With very few exceptions, these approaches fall into one of three categories. 

Exhaustive searches apply brute force in an attempt to uncover all interactions up to 
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the largest computable size. In practice, such a strategy is limited to small candidate 

marker studies and not applicable to genome-wide data sets. Stochastic algorithms 

perform a random investigation of the search space. Some start with a model con­

sisting of a random set of markers and attempt to improve its classification accuracy 

while others use expensive methods on a small, randomly selected subset of the data. 

While intriguing, such methods often rely on random chance to select interacting 

markers and as data sets grow larger, the chances of guessing correctly drop. Fi­

nally, greedy methods simply make the best choice at a given time based on available 

information. In general, such a tactic will find many effects, but is likely to miss 

interactions between markers showing no statistical significance on their own. 

For the most part, methods presented in the literature fail in one of three ways. 

Several, particularly those implementing an exhaustive search, are simply too slow. 

Most researchers lack the massive computational resources required to deploy these 

on a genome-wide scale. In spite of optimistic initial publications, some approaches 

simply do not work. A few, notably those which fit a fixed-size model, do not identify 

all markers which confer risk. For example, one group of methods attempts to find the 

single best set of markers of size k for some user-specified value of k. These failures 

motivate a different approach to the problem of finding genetic causes of interesting 

traits. 

1.3 Association Graph Reduction 

To address these shortcomings, I present association graph reduction (AGR), a novel 

method to detect genotype-phenotype association. AGR is designed to be a hybrid 
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greedy/exhaustive approach based on two ideas. First, the association graph is a data 

structure which represents everything interesting known about markers and possible 

interactions among them. Specifically, it is a graph with both edge and vertex weights. 

Nodes represent non-empty sets of markers and edges possible interactions. After ini­

tial construction, this structure is reduced through a series of elementary operations. 

If the weight of an edge is sufficiently significant, it may be contracted, resulting in 

the construction of a new vertex to replace the ends of the edge. On the other hand, 

if such a weight is less than that of its ends, the ends are assumed to not interact 

and they may therefore be removed from the graph. These steps are repeated in a 

specific order until the graph is empty, at which time nodes are reported along with 

their weight for consideration by the user. 

AGR operates as a greedy or exhaustive algorithm depending on operation param­

eters. At each step, the weight of a potential edge or vertex must exceed a minimum 

significance threshold to be admitted into the graph. Use of an insignificant vertex 

threshold value will cause all pairwise interactions to be tested. The flexibility gained 

by the thresholds allows AGR to perform eitheran exhaustive search when the size of 

a data set allows or a partial greedy search of the set of possible interactions when 

appropriate. 

1.4 Results 

I constructed a series of benchmarks based on simulated data sets to determine the 

performance characteristics of AGR and provide a meaningful comparison with other 

methods. In addition to AGR, ten algorithms representing several search strategies 
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were evaluated in terms of computational costs and statistical power. Anticipating 

long execution times by some algorithms, each method was run on small 1,000-

marker data sets generated under a variety of genetic models. I then performed 

similar testing of the three best performing methods using 10,000 markers. In every 

case in which the generative model predicted some level of single-marker significance 

without considering interactions, AGR was the fastest and most powerful algorithm 

tested. When considering a model displaying no such marginal effects, AGR remained 

powerful. 

1.5 Outline 

The remainder of this thesis begins with background material in Chapter 2. I then 

present a review of the literature with details of several algorithms in Chapter 3, 

followed by a thorough description of association graph reduction in Chapter 4. The 

methodology used to evaluate the methods is presented in Chapters 5 and 6 on the 

SimGE simulation package and genetic models used for testing, respectively. Chapter 

7 contains complete performance results. I conclude and suggest future work in 

Chapter 8. 



Chapter 2 

Background 

In recent years, many large-scale genome-wide association studies have been con­

ducted in an attempt to discover the genetic etiology of complex diseases. Examples 

include efforts to uncover the causes of Alzheimer disease [3], inflammatory bowel dis­

ease [4], age-related macular degeneration [5], systemic lupus erythematosus (SLE) 

[6], cardiac repolarization [7], and seven other common diseases in a set of related 

cohorts [8]. These impressive studies have been possible due to the collection of large 

numbers of samples and advances in genotyping technology. With genotyping mi-

croarrays, even small laboratories can produce millions of genotypes per day. But 

masses of data alone cannot solve the genotype-phenotype problem. 

There are a number of issues that make the discovery of complex disease etiology 

a difficult task. If one wishes to consider the effect of multiple causative mutations 

influencing a phenotype, the problem becomes considerably more difficult. Aside from 

the obvious computational challenges posed by what is essentially a high-dimensional 

data mining problem, there are a number of biological and statistical issues that need 

to be taken into account. Biologically, the discovery of the genetic etiology of common 

complex diseases is confounded by the complicated mechanisms that underlie cellular 

processes. Statistically, testing a potentially large number of interactions may require 

a severe correction for multiple testing to maintain an experiment-wide significance 

level. 
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2.1 Biology 

The basic description of biological structures and processes is encoded in deoxyri­

bonucleic acid (DNA), which can be regarded as a blueprint for life. The information 

encoded in the nucleotides of DNA is transcribed into ribonucleic acid (RNA), which 

may then be translated into proteins which form structures and react to stimuli in­

ternal and external to the cell. Many of these proteins can react to perturbations and 

other events by activating or inhibiting the production of still other proteins. In this 

framework, life can be seen as a system of molecular processes which are mediated 

by the production of proteins, their interaction with themselves or other molecules, 

and their eventual degradation. 

A simple example of how a specific sequence of nucleotides can influence a phe-

notype can be seen in the melanocortin 1 receptor (MC1R) [9]. This protein plays a 

key role in the determination of skin and hair color in humans: specific variants of 

MC1R are associated with red hair, fair skin, and freckles [10, 11]. 

Unfortunately, most phenotypes are not determined by the presence or absence of 

any single genetic variant. Rather, many traits have each been associated with several 

distinct genetic loci. For example, even before a large consortium of researchers pooled 

their data to identify several SNPs associated with SLE [6], over a dozen different 

mutations were widely accepted to play a role in pathogenesis of the disease [12]. 

Currently, there are over 20 candidate genes with significant evidence for association 

with SLE and researchers appear poised to discover still more. 

The complexity of this etiology raises some fundamental questions. How do these 
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implicated mutations modify risk for developing disease? Is risk additive in the sense 

that more genetic lesions confer proportionally more risk? Are there high-level in­

teractions among these genes or their protein products? Unfortunately, there are no 

clear answers in the case of SLE or many other complex phenotypes, though we can 

draw from biological design principles to gain some hints. 

Cellular mechanisms rely on complex interactions. For example, consider the 

partner-switching network motif depicted in Figure 2.1. In the absence of external 

stimuli, anti-cr (hereafter referred to as Aa) phosphorylates anti-anti-er (denoted AAc) 

and binds any free a, rendering a unable to activate transcription of a specific target. 

Upon receiving an external signal, AAa is dephosphorylated, causing it to bind Aa, 

freeing o to perform its intended function. 

The partner-switching network motif, which is found in multiple stress response 

pathways of Bacillus subtilis [13] is a complicated mechanism which may respond 

variously to genetic changes, depending on their nature. For example, loss of or 

sufficiently serious damage to a might induce the same phenotype as a change to Aa 

that rendered it unresponsive to AAcr. In this phenotypically homogeneous 

population may harbor two distinct genetic lesions. Alternatively, it is not difficult to 

imagine a combination of less severe mutations in any of these genes that might result 

in pathway dysfunction, while any individual change may be only mildly detrimental. 

Most phenotypes are the result of complex systems such as partner-switching net­

works and others which may consist of considerably more molecular species, physical 

interactions, and functional redundancy. Consequently, most common diseases are 

the result of several distinct genetic lesions. The relative paucity of single genetic 
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Signal 

Figure 2.1 : A partner-switching network showing complex molecular interactions 
(adapted from [13]). a is a transcription factor, such as the general stress factor aB 

or first sporulation-specific factor aF in the bacterium Bacillus subtilis. Depending 
on the presence of a specific signal, ACT may bind to a, rendering it inactive, or AAcr, 
allowing a to function. 
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mutations with serious deleterious effect can also be explained in evolutionary terms. 

It is much simpler to de-select a single genetic lesion that is only detrimental to an 

organism. However, a set of many mutations, some of which may be neutral or even 

beneficial when considered alone, are unlikely to be evolutionary removed from a 

population. 

Given such reasoning and other arguments put forth by others [14, 15], it is clear 

that genome-wide studies for association should take interactions into account. In­

deed, considerable evidence has been published demonstrating the evidence of epista­

sis, the interaction of genes. The heat shock pathway described above contains several 

examples of functional epistasis, which refers to the physical interaction of proteins 

[16, 17]. At the genetic level, compositional epistasis, in which the effect of one allele 

is masked by another has been shown in many species [18, 19] and is illustrated in 

Figure 2.2. Finally, the term statistical epistasis was established to describe a devi­

ation from the multiplicative* combination of the effects of two loci on a phenotype. 

While few studies explicitly test for statistical epistasis, it has been observed in a 

few circumstances in both model species [20, 21, 22, 23, 24, 25, 26, 27] and humans 

[28, 29, 24, 30, 31, 27, 32], suggesting the phenomenon is real and possible to detect. 

*When he proposed the root term epistacy, FLA. Fisher described a deviation from an additive 

model. A better understanding of population genetics and evolution led to the corrected meaning 

used today [16]. 
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Figure 2.2 : Mouse coat color demonstrating compositional epistasis [16]. Presence of 
an A allele of the Agouti gene shown in rows normally results in a light coat. However, 
the ee genotype of Mclr performs a downstream modification in the responsible 
pathway, resulting in a light coat, irrespective of the state of Agouti. 

2.1.1 Models of Genetic Phenotypic Etiology 

To explain genetic variation in phenotypic etiology, two broad classes of models have 

come into common use. The first, Mendelian, is the classic formulation proposed by 

Gregor Mendel and later generalized to support incomplete penetrance and additive 

risk. For a given biallelic locus, there are three possible genotypic outcomes. A 

Mendelian model is constructed by assigning the risk of developing a specific trait, 

conditional on the presence of each genotype. Three simple models are portrayed in 

Figure 2.3. These basic modes of inheritance—dominant, recessive, and additive—and 

others describe the effect a single mutation can have on risk for genetic phenotypes. 

While such single-locus models remain the basis of most methods for detecting 

genotype-phenotype association, they do not accurately represent the complexity of 

the etiologies present in most traits studied today. As indicated in the previous sec­

tion, many mutations may play a role in the genetic causes of a phenotype. Broadly, 

such effects may each individually confer a small risk or they may exhibit epistasis. 
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• Dominant (70%) 
• Recessive (40%) 
• Additive 

Aa 

Genotype 

AA 

Figure 2.3 : Three examples of Mendelian inheritance. The dominant model (black) 
requires only one risk allele (̂ 4) to achieve maximum penetrance (70%). Recessive 
models, such as that shown in a dark grey, require the presence of two risk alleles to 
confer risk (40% in this case). A more general additive model is shown in the light 
grey; each additional allele increases risk. 
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Locus heterogeneity describes the effect of several genetic factors individually con­

tributing risk. Such a situation may arise at an individual or population level: several 

genetic lesions may raise the chance of developing a phenotype in a single person or 

different sets of mutations might arise in different populations, giving rise to indistin­

guishable phenotypes. Locus heterogeneity among population strata may confound 

case-control studies in particular. Stratification is primarily due to ethnic background, 

though there are exceptions. For example, a homogeneous sub-population of Ashke-

nazi Jewish women harbors polymorphisms in two distinct genes that cause familial 

breast cancer [33]. 

Multi-locus epistatic inheritance can be particularly difficult to detect [34]. While 

few realistic interaction models predict components displaying no marginal effect [35, 

36], we must consider the action of non-linear interactions [37]. Failure to acknowledge 

the complexity of the systems we wish to understand seems likely to impair our 

understanding of complex genetic etiology. 

2.2 Statistical Considerations 

Unfortunately, exploring the space of interactions among loci on a genome scale may 

prove extraordinarily difficult. The most obvious stumbling block is the computa­

tional infeasibility of examining all k-way interactions in a data set with 106 markers, 

as is common in genome-wide association studies. While such analysis is possible 

with modest computational resources for k < 2 [38], it is unlikely to become possible 

for the average researcher to test higher order interactions (Table 2.1). 

Even if it were possible to complete such computations, statistical concerns may 
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Table 2.1 : Time required to exhaustively evaluate all ^-combinations of of 1,000,000 
features. Figures assume one processor testing 1,000 ^-combinations of features per 
second. 

k ^-combinations CPU Time Required 

1 106 17 minutes 

2 5 x 1011 16 years 

3 1.7 x 1017 5,280 years 

4 4.2 x 1022 1.3 x 1012 years 

prevent its use. In order to avoid discovery of false positives, a correction for executing 

multiple tests must be used. As the number of tests grows large, such adjustments be­

come increasingly severe, diminishing power to detect real association effects. Even 

the best choice for type of correction is controversial [39]. The simplest option is 

Bonferroni correction, which scales the nominal significance level by the number of 

independent tests conducted. In the context of genomic data, this method is conser­

vative, since nearby loci are correlated. Another popular option is to control the false 

discovery rate (FDR) [40], possibly by associating a q-value with each hypothesis test 

[41]. Rather than controlling the proportion of false positives as Bonferroni does, 

FDR controls the proportion of false positive rejected tests. The q-value is a measure 

analogous to the p-value which quantifies the significance of each test according to 

FDR. While the best choice of correction remains an active area of research, FDR 

appears to be the best option at present [42]. 

While avoiding false positive results is an important concern, studies must also 

have sufficient power to detect true associations. More observations are required 
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to detect interactions than main effects. While there is no simple rule defining the 

correct number of subjects required to adequately power a given association study, 

it is known that 10-20 cases are required per variable when modelling with logistic 

regression [43]. Given the existence of genome-sized data sets with over 106 markers, 

one may wonder if it is possible to collect sufficient observations. To compound 

matters further, modeling interactions based on main effects may have relatively 

little power [44, 45]. Even standard frequentist variable selection has been ruled out 

as too expensive and likely to find suboptimal models [46]. 

With so many confounding factors and claims that various classes of methods will 

not work, it is no wonder there have been so many statistical and computational 

approaches developed to detect multi-locus genotype-phenotype associations. Not 

surprisingly, none of these has been found to be optimal. As we shall see in Chapter 

3, many are very similar, following closely related procedures to search for locus 

heterogeneity and statistical epistasis. 

2.3 Summary 

The molecular machinery contained within cells is complex. Through evolution, path­

ways have developed countless physical interactions among proteins and considerable 

redundancy. As a result, most common phenotypes with genetic etiology are caused 

by multiple mutations that individually confer risk (locus heterogeneity) or interact 

to modify risk non-linearly (epistasis). In order to discover the genetic causes of such 

traits, it is therefore important to consider the effect of multiple loci. 

Such consideration presents several challenges. Most importantly, it is infeasible 
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to exhaustively test all k-sets of loci for interaction for k > 2 and conducting such 

experiments is likely to remain out of the reach of most researchers. Even given 

adequate computational resources, statistical challenges remain. Correction for mul­

tiple testing reduces chances of identifying true positive results. Consequently, the 

sample sizes required to detect interactions by simply evaluating all £;-sets of loci in 

genome-wide data sets may never be collected. 



Chapter 3 

Methods 

There is no shortage of methods to search for statistical epistasis in genome-wide 

case-control data sets. In a review of the literature, I identified 29 algorithms and 

frameworks in use, to which I added my own. This count excludes many specializa­

tions, tweaks, and general-purpose methods with limited success in the context of 

genome-wide association studies. To determine the state of the art and put my own 

work in context, I classified these methods and selected a representative set to explore 

in depth. 

An overview of algorithms to detect genetic interactions is depicted in Figure 3.1. 

To establish an appropriate scope, algorithms which make use of expert knowledge 

are excluded.* The methods can be broadly classified into two groups: those that 

explicitly test every possible interaction up to some size and those that avoid an 

exhaustive enumeration of the search space. This distinction is particularly pertinent 

in the presence of increasingly dense microarray products which more thoroughly 

interrogate the genome. 

As the size of available data sets exceeds one million markers, it is clear that a 

brute-force search for interactions will present computational and statistical difficul­

ties as infeasibility and the need to control for multiple testing are taken into account. 

'However, some of the methods discussed below can be adapted to take advantage of biological 

information. 
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Figure 3.1 : Classification of methods to detect statistical epistasis. Methods with 
bold names are described in detail and evaluated for performance. 
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Still, incomplete examination of all possibilities brings with it another set of issues. 

How can we be certain that the interactions we choose to ignore are uninteresting? 

Do pure interactions really exist in genetics? How many iterations are required for a 

random search to reach a reasonable conclusion? It is difficult or impossible to satis­

factorily answer these questions. As an approximation, I describe eleven approaches 

below that represent many common interaction search paradigms. In Chapter 7, I 

will describe the results of a head-to-head comparison of the selected algorithms. 

3.1 Exhaustive Algorithms 

An exhaustive method is one that enumerates all possible fc-way interactions for some 

k in order to identify the effect or effects which best predict phenotypic outcomes. 

Some methods go even further, testing every possible partitioning of alleles [47]. This 

exhaustive property leads to their most important characteristic from a computational 

standpoint: Q(f • n2) running time to investigate pairwise interactions, where / is the 

time complexity to quantify the association of a pair of markers. While this lower 

bound is feasible for even the largest data sets available today, generalizations to 

identify higher-order interactions are unreasonably expensive. 

3.1.1 Multifactor Dimensionality Reduction 

Introduction Multifactor dimensionality reduction (MDR) is a non-parametric 

data mining method [48, 49, 50]. It exhaustively searches the space of fc-tuple factors 

(such as markers or discrete environmental influences), constructing a classifier for 

each combination. Each of these classifiers is tested by ten-fold cross-validation. Its 
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authors have published several papers describing the method, comparing it to others, 

and applying it to several data sets (citations inline below). As a result of this effort, 

MDR is currently one of the most widely used methods to detect epistasis, as evi­

denced by the 167 papers found by PubMed when searching all fields for "multifactor 

dimensionality reduction." 

MDR's basic premise is to reduce the multidimensional search space to a single 

one-dimensional predictor variable. Multi-locus genotypes are pooled into high- and 

low-risk categories and the resulting scheme appears to be a single dimension, though 

others have determined through analysis of deviance that the "effective dimensional­

ity" of the result to be typically much larger than one. 

Unlike many less popular methods, MDR has been studied extensively by the 

original authors and others. For example, it has been determined to be very similar 

to a naive Bayes classifier when genotypes in the Bayes classifier are collapsed into 

aggregate multi-locus genotypes [51]. This is a particularly attractive attribute, as 

Bayes classifiers have been shown to be optimal with respect to minimizing classifi­

cation errors [52] and particularly useful when the dimension of the feature space is 

high [53]. 

Ritchie et al. evaluated the power of MDR to detect gene-gene interactions in the 

presence of several sources of realistic error. Specifically, they simulated 100 data sets 

each consisting of 2 functional and 8 non-functional SNPs in 200 cases and 200 controls 

in six different models with either no noise or one or more of 5% genotyping error, 

5% missing data*, 50% phenocopies, or 50% genetic heterogeneity [54]. They found 

1"While they reported power for data sets with missing data, they fail to disclose how they handled 
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good (> 90%) power to detect both functional loci in four of the six models, except 

in the presence of genetic heterogeneity or phenocopies and any other source of error. 

It is worth noting, however, that the four models for which MDR had good power 

had relatively high minor allele frequencies (/„ > 0.25), which implies a relative ease 

to detect association and/or somewhat unrealistic population prevalence (TT > 0.05 

for models 1,3, and 4). The remaining models had lower causative allele frequency 

(fa = 0.1) and more realistic population prevalence for a common trait {TT = 0.026 

and 7r = 0.017, respectively), which may account for MDR's poor performance [55]. 

Algorithm MDR is a four step algorithm depicted in Figure 3.2, which takes as a 

parameter k, the size of interaction to test: 

1. Select k factors - Choose k input variables to model. In most cases, these will 

be SNPs, though qualitative environmental variables may be chosen. The only 

effective restriction is on the size of the selected set, which must be small enough 

for step 2 to be tractable. 

2. Calculate case-control rations for each multi-locus genotype - A table is con­

structed with a cell for each multi-locus genotype. For example, two biallelic 

markers with three outcomes each will result in a 3-by-3 table. For each cell, 

the ratio of cases to controls with the genotypes corresponding to that cell is 

computed. 

absent alleles. Indeed, their current software implementation has no provision for handling missing 

data and the best strategy for using MDR under these circumstances remains an active area of 

research. 
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Figure 3.2 : Overview of the MDR algorithm [48]. In step 1, genetic polymorphisms or 
discrete environmental factors are selected. Next, case-control ratios for each multi-
factor outcome are computed. In the third step, cells are labeled as high- or low-risk. 
To conclude, ten-fold cross-validation repeats the first three steps. 
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3. Identify high-risk multi-locus genotypes - For some specified threshold T, label all 

cells with case-control ratio R > T as high-risk, those with R < T as low-risk, 

and ignore empty cells. A typical threshold value is T — 1.0. The authors argue 

this step reduces the dimensionality of the input variables by pooling high-risk 

cells into one group and low-risk cells into another, creating a one-dimensional 

predictor. This assertion has been called into question by others, who found 

the "effective dimension" is typically much larger than one [56]. 

4. Estimate prediction error by 10-fold cross-validation - The subjects are randomly 

divided into 10 equally-sized parts and steps 1-3 executed on on each possible 

9/10 of the data. With each resulting model, the prediction error is determined 

in the remaining 1/10. To reduce the chance of poor estimates of predictor error 

due to random chance, the 10-fold cross-validation is repeated 10 times and the 

prediction errors are averaged. 

Once the above procedure has been completed for all values of k to be considered 

(typically k — 1 . . . t, where i « 2, the largest feasible value of k), the best value 

for this parameter is selected. The set of factors which minimizes prediction error 

over all tested values of k is selected as the best supported model. The significance 

of this result is established through Monte Carlo simulations. The average cross-

validation consistency of an empirical distribution derived from 1,000 permutations 

generated under the null hypothesis of no association is compared to the observed 

cross-validation consistency. The null hypothesis is rejected when the Monte Carlo 

p-value is < 0.05. 
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Summary MDR is a well known and often used method to analyze candidate-

gene and other data sets of moderate size for interactions. It has been validated by 

multiple simulated [48, 54] and real-world data sets [48, 27]. Its strategy of building 

a single-variable classifier (whether or not one-dimensional) verified by ten-fold cross-

validation stands apart from most well-known methods, such as \ 2 tests for trend 

and logistic regression analysis. A few key advantages and drawbacks are summarized 

below. 

Advantages 

• MDR has good power to detect association, assuming reasonable genetic models 

[54, 55]. 

• Built-in model validation by way of ten-fold cross validation reduces false posi­

tives [57]. 

• MDR is well characterized and has been evaluated and extended by different 

research groups [51, 58, 59, 60, 61]. 

• When coupled with dendrograms and other epistasis visualization tools [62] as 

they are in the authors' own software, results are easy to interpret. 

• The authors provide an easy to use albeit slow implementation of MDR [50, 49]. 

Disadvantages 

• While MDR is asymptotically less expensive than some other methods [47] and 

further gains may be made with a more efficient implementation, it is likely to 
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remain intractable at the genome-wide scale. Its G ((™)) complexity implies 

that most researchers will never have access to the computational resources to 

evaluate modern data sets with m > 1,000,000 for k > 2. Given the improb­

ability of searching higher dimensions, it is unclear whether MDR represents a 

substantial improvement over more traditional methods, especially those mak­

ing use of cross-validation for model verification. 

• The power of MDR has been shown to suffer in the presence of locus heterogene­

ity. Given the large number of susceptibility loci identified in common traits 

such as SLE by marginal testing [12, 63, 6], such difficult conditions seem likely. 

• It is unclear how to cope with missing data. Three methods have been proposed: 

removal of subjects and/or factors with missing observations; imputing data 

based on observed frequencies; and imputation based on all available genomic 

data. The latter approach has been found to be of greatest promise [64], though 

it is computationally expensive and requires the use of additional third-party 

software. 

3.1.2 All-Pairs Simultaneous Search 

Introduction Perhaps the most straightforward strategy to identify interactions 

between all pairs of loci is to exhaustively test every such combination using a full 

interaction model. This method was put forth by Marchini et al. [38], reviewed by 

Ionita and Man [65], and implemented in PLINK [66, 67]. In their study of 300,000 

simulated SNPs generated under three models of interaction, Marchini et al. found 
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this strategy has more power to identify all markers exhibiting pairwise epistasis than 

a locus-by-locus search, even when Bonferroni correction was applied. Later, Ionita 

and Man conducted a similar power study in which they added three-locus models 

and concluded conditional search (Section 3.2.1.1) is likely to be more powerful. 

A generalized version of simultaneous search was presented by Millstein et ai, 

which they call the Interaction Testing Framework [68]. Their algorithm considers 

high-order interactions constructed from significant lower-order interaction terms. In 

this way, it is not a pure simultaneous search, but rather a hybrid approach. 

Hoh and Ott suggest a related approach that searches for loci interacting in cases 

but not controls or vice versa [69]: 

1. For every pair of SNPs, construct separate 3 x 3 contingency tables for cases 

and controls to compute a x\ test for trend. 

2. Form the ratio R = cs/ci, where cs is the smaller x2 a n d Q the larger. 

3. In all pairs with R > 7.78 (the 90th percentile of the xl distribution), determine 

significance by 5,000,000 random R values. 

4. Use FDR [40] to establish experiment-wide significance. 

A further related simultaneous approach proposed by Yang et al. makes use of only 

cases [70]. They test for independence between genotype frequencies and the pheno-

type in the population. They conclude that the case-only model is a valid approach 

requiring fewer cases than the case-control design to detect gene-gene interactions. 

Algorithm 
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1. Evaluate all pairs of loci - For each pair of loci X and Y 

(a) Evaluate the full interaction model P~X + Y + X: Y, where P is the 

phenotype under study. 

2. Control for multiple testing - Apply Bonferroni correction or FDR [40]. 

S u m m a r y All-pairs simultaneous search is perhaps the most straightforward gener­

alization of the standard locus-by-locus search. Applying familiar regression methods, 

one must only check all possible pairs of loci. Like many naive approaches, the si­

multaneous search comes with its own set of notable problems. First, the number 

of tests is the square of the number of markers, resulting in a severe correction for 

multiple testing. While some have found the significance of interaction effects is likely 

to overcome any such control measures [38], others find non-exhaustive searches to 

be more powerful in most settings [65]. Second, interactions involving more than two 

loci that exhibit no main or pairwise effect will be missed. Third, there is no attempt 

to validate models through cross-validation or similar techniques, which may result 

in incorrect models. Finally, the method does not penalize complex models with 

non-zero interaction coefficients, which may result in over-fitted interaction models 

of heterogeneous effects. 

Advan tages 

• Simple all pairs search may be the fastest exhaustive method available. 
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• Simultaneous search may have good power to detect association, assuming rea­

sonable models [38]. 

• The method is implemented in the widely used PLINK package [66, 67]. 

Disadvantages 

• Exhaustive testing of all pairs of loci is computationally expensive. 

• Loci involved in higher-order interactions may not be identified in the absence 

of lower-order effects. 

• Lack of validation may result in spurious models. 

• Lack of control of model complexity may result in false positive interactions. 

• It is unclear how to deal with missing data. 

3.1.3 Res t r i c t ed Search 

I n t r o d u c t i o n A unique approach to effectively exhaustive search has been pro­

posed by Xiang Zhang and adviser Wei Wang with the support of others. Their three 

methods exploit some property of the test statistic used to mitigate the multiple test­

ing problem that plagues most exhaustive algorithms. Instead, they filter all pairs 

on a property unrelated to phenotype and evaluate only loci capable of producing 

significant results. The result is a set of methods with quadratic time complexity 

that executes only a linear number of tests, hence avoiding severe multiple testing 

penalties. Unfortunately, their methods were published in proceedings typically ig­

nored by biologists and statisticians, are described in a manner difficult to understand 
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by their potential users, and lack freely available implementations which may impair 

their adoption in practice. 

Their first restricted search approach, FastANOVA realizes their paradigm in the 

context of a search for pairwise interactions predisposing to a quantitative phenotype 

using an ANOVA test and permutations to control the family-wise error rate [71]. 

The method consists of an algorithm to prune the search space by computing an 

upper bound on the value a particular test statistic can take. The computed value 

is based on a single-locus test statistic and a permutation-based phenotypic measure 

independent of phenotype. 

Later, Zhang et al. developed FastChi, a search for pairwise interactions predis­

posing to qualitative phenotypes, based on the the Pearson x 2 test [72] and permu­

tations to control the false positive rate [73]. FastChi is essentially an adaptation of 

FastANOVA for use with quantitative phenotypes. 

In an attempt to solve the problem once and for all, Zhang et al. developed 

COE, the Convex Optimization-based Epistasis detection algorithm, a generalization 

of FastANOVA and FastChi to all convex test statistics [74]. They demonstrate the 

convexity of common test statistics, including the \ 2 test, likelihood ratio goodness 

of fit test, entropy statistics based on mutual information [75, 76], and the Cochran-

Armitage test for trend. 

S u m m a r y Zhang and Wang's restricted search framework is an innovative approach 

to dampen the severity of multiple testing issues. While it remains computationally 

expensive with 0(n 2 ) non-phenotypic tests required, their algorithms require only a 
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small number of tests for association. Unfortunately, it seems unlikely these methods 

will be used in practice due to a lack of appropriate publicity or a freely available 

implementation. 

3.2 Non-Exhaustive Algorithms 

If an exhaustive method is one that searches all possible A;-way interactions, a non-

exhaustive algorithm performs a partial search of the possible interaction space to 

terminate relatively quickly. While they are typically faster than exhaustive proce­

dures, it is impossible to know if any such method will identify or even test the correct 

solution for any given data set. 

Non-exhaustive algorithms can be further classified according to their search space 

reduction strategy. Greedy methods perform filtering based on non-epistatic or lower-

order interaction results to filter markers displaying no main or low-order effects. The 

success of the greedy strategy depends on the nature of interactions present in the 

data set: pure epistatic interactions displaying no main effects are likely to be missed. 

Stochastic algorithms iteratively select a small number of loci and perform a thorough 

test for epistasis. This strategy relies on luck to select interacting loci in at least one 

iteration. 

3.2.1 Greedy Search 

3.2.1.1 Two-Stage Search 



(a) 
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Figure 3.3 : Two-stage search methods. In both procedures, a set of marginally 
associated loci Sf is identified from the set of all loci under study S. Panel (a) shows 
a simultaneous search, which tests all possible pairs of loci in Sf. A conditional 
search, as shown in panel (b), tests interactions between members of Sf and S. 

Introduction There are are two very similar procedures to detect statistical epis-

tasis that involve two stages (Figure 3.3). In the first, a simultaneous search (Section 

3.1.2) of all loci meeting some low level of significance is conducted. This procedure, 

as presented by Marchini et al. [38], relies on the existence of main effects: in the 

presence of pure epistasis, it has little power to identify epistatic interactions. The 

second procedure, as described by Daly and Altshuler [77], identifies the set of loci 

meeting a more stringent level of significance and examines all possible interactions 

between members of that set and all other loci. This conditional search was evalu­

ated by Ionita and Man, who found that although it is not an exhaustive method, 

conditional search is likely to have better power to detect association than all-pairs 

simultaneous search [65]. They cite the penalty imposed by correction for multiple 

32 
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testing as a possible explanation, though Hoh and Ott remind us that the conditional 

strategy will fail to identify epistatic interactions in the absence of marginal effects, 

which suggests simultaneous search may still be required [69]. Both methods are 

implemented in PLINK [66, 67]. 

Algorithm 

1. Define significance levels - Let « / and ae be the filtering and experiment-wide 

significance levels, respectively. If conducting a conditional search, a.f should 

be stringent. Otherwise, a minimal level such as a / = 0.1 may be used. 

2. Stage 1 - Let Sf be the set of loci from all loci S whose significance meets a.f 

according to a single-marker test for association. 

3. Stage 2 

(a) For simultaneous search, evaluate all pairs {(x,y)\(x,y) 6 Sf x Sf,x ^ y} 

for association with the phenotype under study. 

(b) For conditional search, evaluate all pairs {(x, y)\{x, y)ESfXS,x^y} for 

association with the phenotype under study. 

4. Correct for multiple testing - Apply an appropriate correction for multiple testing, 

such as Bonferroni or FDR [40]. Reject all pairs (x, y) with adjusted probability 

P{x,y) > OLe. 

Summary Two-stage search methods are an intuitive and reasonably powerful 

method to search for epistasis in genome-wide data sets. Their simplicity and ease of 
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implementation makes them a attractive candidates to screen data. Of course, the lack 

of conceptual complexity stems from the lack of features available in other methods. 

For example, there is typically no provision for model validation. Typical two-stage 

scans lack formal tests of improvement in interactive models over single-locus ver­

sions, making it difficult to clearly distinguish between epistasis and heterogeneity. 

Nevertheless, I suspect two stage scans will remain a dominant approach in analyzing 

genome-wide association data for the foreseeable future. 

Advantages 

• Two-stage scans are tractable, with asymptotic bounds o(n) and 0(n), corre­

sponding to the extreme cases when Sf = 0 and Sf = S, respectively. 

• The method is conceptually simple and easy to implement. 

• Both procedures are implemented in PLINK [66, 67]. 

D isad vant ages 

• Two-stage scans do not test higher-order interactions. 

• Identification of epistasis in the absence of marginal effects is hindered by an 

incomplete search of the space of possible interactions. 

3.2.1.2 Classification Trees 

Introduction Classification trees, such as those constructed by the Classification 

and Regression Trees (CART) method, are widely used in data mining applications 
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Figure 3.4 : Because classification trees recursively bifurcate their input, they cannot 
create arbitrary divisions such as those shown on the left. Instead, the result is a 
"rectangular" partitioning as shown at the right [53]. 

[78, 53, 79]. In this context, a tree is a recursive partitioning of an input on some 

predictor based on its classification performance. A predictor is typically defined as a 

single locus, though it could also be a linear combination of variables [80]. Once the 

initial input is split by the classifier associated with the tree's root, the resulting leaves 

may be further split on other classifiers. The result is a "rectangular" partitioning 

of the sample space: general partitioning cannot be achieved with the binary splits 

provided by classification trees (Figure 3.4). 

Zhang and Bonney applied regression trees to genotypic data [82]. They computed 

splits based on the number of risk alleles at a single locus (for example "none" vs 

"1 or 2"), as illustrated in Figure 3.5. With Bonney and others, Zheng applied 

this method to the small genome-wide data sets GAW 9 [81], GAW 12 [83], and 

GAW 14 [84] provided by the Genetic Analysis Workshop ??. In their study of the 

GAW 14 data, the authors allowed for multiple deterministic trees to explain different 
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Figure 3.5 : A classification tree from [81]. At each non-leaf node of this particular 
tree, a decision is made based on the number of risk alleles present at the locus 
indicated under the node. For example, the root bifurcates the population according 
to the presence of any risk variants at marker D5G23A7. 



37 

pathways to the same outcome. This strategy is similar to deterministic forests [85] 

and related to random forests (Section 3.2.2.4), though the authors adamantly assert 

the reproducibility of their data, a feature lacking in random forests. 

CART and the related Multivariate Adaptive Regression Splines (MARS) method 

[86], a generalization of CART intended to improve its regression performance, were 

used to study gene-gene interaction models for ischemic stroke in 92 polymorphisms in 

319 cases and 56 controls [87]. Unlike previous studies, they explicitly use a variable 

coding to facilitate consideration of additive, dominant, and recessive effects. The 

authors noted the increased power of MARS to detect interactions in the absence of 

strong main effects, though both methods identified the same pair of SNPs, which 

were found to confer additive risk. 

The idea of constructing forests grown from estimated haplotypes to detect epista-

sis was explored by Chen et al. [88]. They reported good power to detect association 

with high specificity across a range of models that included epistasis and locus het­

erogeneity. In addition, they replicated a known association between a marker and 

age-related macular degeneration and uncovered a novel result. 

Algorithm The most widely used method to construct classification trees is CART 

[78]. In the context of classification, its goal is to choose a set of splits on predictors 

that minimize node impurity Qm{T). Different measures of impurity include [53]: 

• Misclassification error: Qm(T) = ^L Y^i&Rm I{Vi ¥" k(m)) = 1 _ Pmk(m), where 

each of the regions (leaves) Rm contains iVm observations and I(yi ^ k(m)) is 

1 if observation i is in class m and 0 otherwise; 
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• Gini index: Qm(T) = Y^k+k'VmkVmk' = Z)£=iPmfc(l ~ Pmk), where K is the 

number of classes; and 

• Cross-entropy or deviance: Qm(T) = — y^^,_1 f>mk 
log 

Like the exhaustive methods presented in Section 3.1, optimal selection of binary splits 

is computationally infeasible. Instead, CART greedily splits the root on the predictor 

j which minimizes the specified measure of impurity. The data are then recursively 

split on the remaining inputs. The algorithm terminates when some criterion such as 

minimum node size is met. To reduce over-fitting, the resulting tree may be pruned 

to achieve the desired balance between cost and complexity. 

Summary Classification trees, such as those constructed by the popular and freely 

available [79, 89] CART method, can be constructed quickly and should identify 

causative loci under a variety of genetic models. They are especially useful in the 

presence of heterogeneity. Unfortunately, CART relies entirely on marginal signals, 

which effectively eliminates the possibility of detecting interactions exhibiting no main 

signals. However, poor performance in the presence of interaction can be improved 

by bumping, a method which builds CART classifiers based on bootstrap samples 

and keeps the model with the smallest prediction error [90, 53]. 

Advan tages 

• Construction of classification trees requires only linear time. 

• Visualization is straightforward and easy to understand. 
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• Locus and/or population heterogeneity is handled in an elegant manner: differ­

ent population strata are split at or near the root and fitted by different subtrees 

[91]. 

• CART is implemented in the freely R package tree [79, 89]. 

D isad vant ages 

• Node impurity criterion only considers single predictor variables: interactions 

without marginal effects are likely to be missed. One possible approach to 

alleviating this problem is bumping [90]. 

• Trees have no built-in model validation. 

• There is no best method or criterion to control model complexity. 

• Trees can be difficult to interpret, as demonstrated by the initial interpretation 

by Cook et al. of a heterogeneous effect as interactive [87]. 

• It is unclear how to deal with missing data. Imputation is likely required. 

3.2.1.3 Set-Association 

Introduction The set-association method is a fast algorithm designed to detect 

loci in the presence of heterogeneity [39, 92]. Unlike many other techniques that offer 

sophisticated modeling [78, 93, 56] or complex algorithms [94, 95, 96], set-association 

simply computes the sum of single-locus statistics as a measure of association. Its 

goal is to combine as much information about the measured loci as possible without 
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Figure 3.6 : Significance of sum statistics in a real-world sample of 779 heart disease 
patients in 89 SNPs in 62 candidate genes [39]. Six months after angioplasty, 342 
showed restenosis and were considered cases. As the number n of statistics summed 
increases, maximum significance is reached at a globally minimum p-value. 

resorting to interaction testing, in an effort to reduce error associated with multiple 

testing. While it has extremely limited capacity to detect epistatic interactions in the 

absence of main effects, it can quickly identify effects comprised of single loci with 

moderate to high significance, even when the susceptibility mutations they represent 

do not confer risk in all cases. 

Algorithm Set-association is a simple process that attempts to combine infor­

mation from several measures that have been shown to be indicative of genotype-

phenotype association. In particular, it uses a x2 test of Hardy-Weinberg disequilib­

rium (HWD) in controls to filter markers with low genotyping rates and in cases or 

all samples as a measure of association [97]. This x2 is combined with a standard 

X2 test of allelic association in order to increase power over using either separately. 

The n most significant of these combined statistics are summed to create a summary 

statistic of all putative susceptibility loci. As n increases, one expects the nominal 

significance pn of the sum to decrease to a global minimum before increasing as adding 

more noise markers are added (see Figure 3.6). The process is outlined in Figure 3.7. 
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Trimming: Compute 
Xz for HWD in controls 
and determine number 
d of outlying %2 values. 

Allelic Assoc­
iation: Compute 
statistic f, for ;-th 
SNP. 

HWD for assoc­
iation: Compute 
u,(c/) in affected 
individuals. 

Compute s, = /, * u,{d) for i-Vn SNP and order values 
by decreasing size such that sfn > sl2, > .... 

Calculate sums Sa(d) = s()) + sf2J + ... + s(n; with 
increasing numbers n of terms. Evaluate p-value, 

p(nxl). of each sum via permutation tests. 

T 
Pick smallest of these p-values, minj>(n ,d). and eval­
uate its significance level. p„„.,, via permutation tests; 

p„„„ represents the final significance of the procedure. 

Figure 3.7 : Overview of set-association algorithm [39]. 

1. Trim loci - Compute a XHWD f° r HWD in controls only for each locus. Since high 

HWD can indicate the presence of genotyping error, we wish to trim outliers. 

For the d SNPs above the (1 — a) percentile, set X^IWD
 = 0- I n future x2 tests 

of HWD in cases, controls, or both, set the result to zero. 

2. Weight loci - Compute a XHWD f° r HWD as U{ and XAA
 a s ** f° r allelic associ­

ation for each locus i. If cases are considered affected and controls unaffected, 

use cases only in the XHWD-> otherwise, use all subjects. 

3. Compute sums - Set s, = U x Ui for each locus i for 1 < i < n and sort such 

t h a t S(i) > S(2) > • • • > «(„). 

4. Determine significance of sums - For each n — 1, 2 , . . . , N for some parameter 

N, let S(n) — Y17=i s(i) an (^ determine the associated p-value pn by taking a 

random sample of all possible case-control relabellings and computing S(n) for 
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each. 

5. Select final sum - Select pmin = niin„p„, the p-value of the most significant sum 

of single-locus statistics. 

6. Determine final significance - Permute the samples and re-compute statistics to 

estimate the significance of Pmin • 

S u m m a r y Set-association is a simple method that attempts to increase power 

through two strategies. First, it minimizes the number of tests executed in an effort 

to avoid the penalties associated with correcting for false positive results. Second, 

it extracts association information from each tested marker using multiple statis­

tics that measure different phenomena. The result is an interesting and relatively 

fast algorithm that merits further exploration. I believe the ideas to combine differ­

ent measures of association and filtering potentially noisy data by testing for HWD 

should be more widely deployed. 

Advan tages 

• No explicit interaction testing reduces execution time. 

• Combines two distinct measures of association to increase power. 

• Loss of significance due to multiple testing is avoided by not testing interactions. 

• Missing data handled elegantly by x2 statistics. 

• Implemented in freely available sumstat software [92]. 
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Disadvantages 

• Ability to identify interaction effects without marginal is significantly impaired 

by lack of testing. 

3.2.2 Stochastic Search 

3.2.2.1 Bayesian Epistasis Association Mapping 

Introduction BEAM (Bayesian Epistasis Association Mapping) is a framework 

developed by Zhang and Liu to perform Bayesian partitioning and compute the pos­

terior probability that a marker or set of markers is associated with a trait under 

study [98, 99]. By making use of Bayesian statistics, they make possible the incorpo­

ration if expert knowledge, such as known information about gene-gene interactions. 

They further define a novel frequentist test statistic, the B-statistic, to evaluate the 

significance of a marker or set of markers. 

Algorithm 

1. Let / = (7 i , . . . , II) be the set of L markers with Ij € {0,1,2}. Ij — 0 denotes 

marker j is unassociated, Ij = 1 means it independently influences phenotype 

risk, and Ij = 2 means it interacts with other loci. Define P(I), the prior 

probability on / . The authors suggest an uninformative Dirichlet prior. 

2. Use the Metropolis-Hastings (MH) MCMC algorithm to approximate the pos­

terior distribution 

P(I\D,U) oc P{D1\I)P(D2\I)P(D0\I)P(I), 
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where D — {Do (J D\ \J D2} is the set of case genotypes of unassociated (Do), 

marginally associated (Di), and interacting markers (D2), and U is the set of 

control genotypes. To force the modeling of high-order interactions, start with 

a minimum number of markers in D2 during burn-in, gradually decreasing this 

bound to zero. Potential moves are accepted according to the MH ratio. Use 

one of the following random move types: 

(a) randomly change the partition of a marker or 

(b) randomly swap the partitions of two markers. 

3. For a frequentist interpretation of the posterior, compute the B-statistic [98]. 

Summary BEAM is a straightforward application of Bayesian statistics to cate­

gorize the posterior probability that a marker or set of markers is associated with a 

phenotype of interest. It uses the popular Metropolis-Hastings algorithm to sample 

from the posterior, with certain provisions that high-order interactions are explored 

during burn-in. While it is somewhat slower than most non-exhaustive search meth­

ods, BEAM's power to detect associations rivals or exceeds even some exhaustive 

methods, such as MDR [98]. 

Advantages 

• Bayesian frameworks, such as BEAM, allow for the incorporation of expert 

knowledge in the prior distribution P(I). 
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• BEAM retains astonishingly good power with low minor allele frequencies under 

some models of interaction [98]. 

• Software implementing BEAM is freely available [99]. 

D isad vant ages 

• The Monte Carlo search may not correctly classify interacting markers display­

ing no main effect, diminishing power to detect pure epistasis. 

• Running time is slow relative to other non-exhaustive methods. 

• Implementation generates random genotypes based on allele frequencies in cases 

and controls, rather than more sophisticated and widely accepted multi-locus 

imputation techniques [99]. 

3.2.2.2 SNPHarvester 

Introduction SNPHarvester is a stochastic search method specifically designed to 

detect interactions between SNPs affecting trait risk in genome-wide analyses [96]. 

Conceptually, the algorithm can be viewed as a cross between fc-means clustering and 

Markov chain Monte Carlo: it attempts to find the k SNPs which best explain trait 

status by repeatedly replacing one of the members of a current "best set" of SNPs. I 

find SNPHarvester to be one of the most promising methods for detecting statistical 

epistasis. Unfortunately, it suffers from poor marketing on the part of its authors and 

an implementation [100] that is likely to be unusable by its target users. 
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Algorithm The SNPHarvester method consists of two algorithms. PathSeeker 

finds sets of SNPs of fixed size k whose association scores exceed some threshold. 

The SNPHarvester algorithm eliminates eliminates marginally associated loci and 

runs PathSeeker for several values of k. A final post-processing step attempts to 

filter spurious interactions. 

PathSeeker 

1. Select k SNPs at random to be in the active set A. 

2. For each SNP s ^ A, check if the association score of A is improved by removing 

any member of A and replacing it with s. If so, keep the best combination as a 

new A. 

3. Return all sets A with scores more significant than some specified threshold as 

the best final set. 

SNPHarvester 

1. Select all SNPs marginally associated according to a \ 2 test with 2 degrees of 

freedom following Bonferroni correction. Add these as singleton sets to S, the 

set of groups of associated SNPs and remove them from further consideration. 

2. For each k from 2 to log^Nd — 1, where Nd is the number of cases with the trait 

under study, 

(a) r «- 0 
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(b) While r < SuccessiveRun: 

i. Run PathSeeker with score function X^- i -

ii. If PathSeeker identified any sets A exceeding the significance thresh­

old, add them to S and set r <— 1. Otherwise, increment r. 

iii. Remove from further consideration all SNPs in the best set identified 

by PathSeeker whether or not its score exceeded the threshold. 

3. Return S as the set of groups of associated SNPs. 

Post Processing 

1. For each group of associated SNPs with size k in S, use 3 and 3j dummy variables 

to code each SNP and j'-way SNP interaction, respectively, for 2 < j < k. 

2. Fit the L2 penalized logistic regression model 

L(0o,0,X) = -l(0o,0) + ^\\0\\l 

where 1(00,(3) is the binomial log-likelihood and A a regularization parameter 

using forward-backward variable selection with Bayesian Information Criterion 

as a measure of model complexity and cross-validation to select A (see [53] for 

details and [56] for a straightforward application of L2 penalized regression to 

genotypic data). 

3. Report the epistatic interactions selected by the regression. 
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Summary SNPHarvester is an intriguing multi-step randomized algorithm designed 

to detect statistical epistasis in genome-wide SNP data sets. It reduces runtime com­

plexity by initially filtering SNPs with marginal effects and later removing those found 

to interact. It further eliminates tests by randomly and incompletely searching the 

interaction space. 

Searching the space of non-significant markers k SNPs at a time is an interesting 

notion. It appears the authors intended to search for up to A;-way interactions at 

each step. However, beginning k = 2 and incrementally increasing model complexity 

eliminates the chance of finding larger interactions involving fewer than k SNPs found 

to be significant at an earlier stage. Since these simpler models are not discovered 

for use in the post-processing stage, real interactions involving several loci are likely 

to be missed. Given the implausibility of interaction models displaying significance 

only when many members are taken into account, running SNPHarvester with k > 2 

seems unlikely to yield positive results. Further, the random nature of the algorithm 

that makes the algorithm applicable to large genome-scale data sets quickly becomes 

a liability as the number of SNPs grows: as the number of possible interactions 

grows, the probability that enough members are randomly selected by PathHarvester 

shrinks. 

The authors of SNPHarvester acknowledge the integration of expert knowledge 

may improve the performance of their method. A straightforward extension would 

be to bias SNP selection in the first step of PathSeeker according to known biological 

interactions. 
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Advan tages 

• Complexity is effectively linear. SNPHarvester will continue to call the linear-

time PathSeeker while significant results are identified and then terminate with 

a constant number of unproductive calls. In practice, it is reasonable to expect 

that most SNPs in a genome-wide study are not associated and do not interact*, 

which implies an approximately linear running time. 

• Removing SNPs with significant marginal effects for the straightforward detec­

tion of epistatic interactions. 

• Modeling by Li penalized logistic regression creates easy to interpret results. 

Disadvan tages 

• Removing SNPs with significant marginal effects from further consideration 

limits the possibility of identifying spectacular results amplified by epistatic 

interactions. 

• The method's random nature requires sufficient luck to select SNPs in epistasis 

the initial active set A in an invocation of PathSeeker. While repeated starts 

mitigate this problem, it is unclear whether the reduced running time facilitated 

by the random nature of SNPHarvester provides sufficient reasons to abandon 

an all-pairs search of SNPs without marginal effects. 

• Its difficult to use implementation [100] may impede widespread adoption by 

non-programmers. 

*In fact, this assertion forms the basis of diverse methods, including [101] and [102]. 
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• Algorithm does not model interactions due to linkage disequilibrium caused by 

locus proximity. 

3.2.2.3 Logic Regression 

Introduction Logic regression is a framework that builds classifiers by identifying 

predictive combinations of binary features, typically moving through the model space 

with simulated annealing [93]. Its goal is to identify additive and non-linear interac­

tions between observed variables to predict class. As such, it appears to be ideally 

suited to the task of selecting SNP alleles associated with disease status. 

In the logic regression framework, predictive models are represented as binary 

trees in which leaves correspond to predictor variables and other nodes represent 

AND or OR operations. For example, the Boolean expression 

(X : A XI) A [(X3 A X4) V (X5 A (X3
C V X6))} 

can be represented by the tree depicted in Figure 3.8. Once in the tree form, a may 

be changed by one of six atomic operations, which are illustrated in Figure 3.9. 

Two studies have constructed different genetic association search strategies based 

on logic regression. The first, by Kooperberg and Ruczinksi, explores the interaction 

space by Markov chain Monte Carlo [103, 104], while the other, which its authors 

Schwender and Ickstadt call logicFS, performs bootstrapping the samples [105, 106]. 

As the latter method was designed for use with genome-wide SNP and is hence 

deserving of more focus in this review, I focus on logicFS. 



and 

51 

and 

3 4 5 or 

f\ 
El 6 

Figure 3.8 : Tree representation of the Boolean expression (Xi A X | ) A 
[(X3 A Xt) V (X5 A (X% V X6))] [93]. The number in each leaf indicates the index 
of the variable it represents. Nodes with dark background indicate the complement 
of the corresponding variable. 
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Figure 3.9 : Permissible moves on a logic regression tree [93]. The initial tree is in the 
lower-left panel and the results of applying the moves are shown in panels (a)-(f). 
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Algorithm At its core, logicFS follows a familiar strategy similar to that used by 

classification trees (Section 3.2.1.2) and random forests (Section 3.2.2.4): construct a 

tree or set of trees representing Boolean expressions that explain as much variability 

in the outcome as possible. Apart from the interpretation of the resulting trees and 

a different set of moves with which the model space can be explored, the distinction 

between logicFS and other tree-based methods is its use of simulated annealing, which 

prevents convergence on local maxima. 

logicFS for S N P s 

1. Recode the biallelic input data such that each locus i is represented by two 

variables. Su indicates whether the subject is heterozygous for the less frequent 

variant and 5*2 indicates homozygosity for the minor allele. 

2. Identify a bootstrap sample of size n from the data set consisting of n observa­

tions. 

3. Using simulated annealing, move through the search space using the tree moves 

shown in Figure 3.9 to identify the tree (or set of trees) that best explains 

the cases. When using multiple trees, logic expressions L, i — 1 , . . . ,p can be 

constructed and combined using the generalized linear model 

g(E(y))=(30 + Yj(3iLi 
i = i 

where Y indicates response, /% are parameters, and g(-) is a link function. In 

case-control studies, g(-) is the logit function. 
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4. Convert the identified trees into Boolean expressions in disjunctive normal form. 

Such a transformation eliminates ambiguity among the expressions identified in 

each bootstrap sample. 

5. Repeat steps 1-4 B times. 

6. Determine the significance of the resulting tree(s) using one of the following 

importance measures. In both cases, the variable importance measure VIM 

indicates either significance of a model (VIM > 0), insignificance (VIM = 0), 

or the that it is obtrusive to correct classification (VIM < 0). 

(a) Variable importance of a single logic regression tree is defined as 

VIMsingle = 1 I £ (iVb - Nb~) + J2 W ~ N») I 
\b-P£Lb b:P$Lb J 

where L& is the set of loci and interactions identified in the 6th iteration 

for b = 1 . . . B, Nb is the number of out of observations in the 6th iteration 

that are classified by the regression model, and Nb~/Nb
+is the number of 

out of bag observations correctly classified by the 6th model after the locus 

or interaction P has been removed from/added to the model. 

(b) Variable importance of a logic regression forest is defined as 

1 B 1 
VIMMultiple = ^J2^~ Nb) = B S (N" ~ Nb) 

6=1 b:P€Lb 

where iV6* is the number of correctly classified out of bag observations. 

Summary Logic regression methods, such as logicFS, attempt to identify one or 

more Boolean expressions that best explain case-control status. logicFS explores the 
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search space by a combination of greedy moves and, with small probability, random 

mutation of the tree(s) representing the current best tree or forest. Bootstrapping is 

used to avoid over-fitting and important loci and interactions are identified through 

variable importance measures. 

Advantages 

• Greedy search of the interaction space is fast. 

• Interpretation of resulting Boolean expressions is straightforward. 

• logicFS and MCMC logic regression are implemented in the freely available R 

packages logicFS and LogicReg, respectively [106, 104, 89]. 

Disadvantages 

• Identification of interactions displaying no main effects requires random selec­

tion of correct loci during a rare random step, which diminishes the method's 

power to detect such effects. 

• Splitting of input loci into two variables may be excessive. Dominant and/or 

recessive coding might suffice (See Section 7.1.9). 

• Interpretation of nominal importance measures is unclear. 

• It is unclear how to cope with missing data. 
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3.2.2.4 Random Forests 

Introduction A random forest, as conceived by Leo Breiman, is an ensemble of 

classification trees grown on a small set of input variables selected with replacement 

from the set of all features [107, 108, 109] (see also Section 3.2.1.2). After construction 

of the forest, typically using CART, the class of a testing sample is determined by 

majority vote. The result is an easy to implement extension to standard tree classifiers 

that have a theoretically better chance of detecting interactions whose components 

display no marginal effects. 

Lunetta et al. assessed the ability of random forests to detect interactions dis­

playing no significant main effects in simulated data. In the most comprehensive 

search of the interaction model space I am aware of, the authors generated data sets 

containing up to 32 loci in complex models displaying locus heterogeneity and epis-

tasis. They determined the ability of random forests to correctly rank causative loci 

as highly significant when compared to "noise loci" generated under the assumption 

of no association. As compared to Fisher's Exact Test, random forests have signifi­

cantly improved performance in nearly every observed case, especially as the number 

of SNPs tested grows large. 

Algorithm There are many ways to adapt random forests to a problem of interest 

and the choices made can improve or impair the method's performance [107]. Here, 

I outline the algorithm as it is implemented in the RandomJungle package, a fast, 

multi-threaded implementation of random forests [109]. Note that other options that 

may change the algorithm or its results are available. 
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1. For a chosen value t, which defaults to 500 in Random Jungle, construct t trees: 

(a) Select n cases from the training set containing n cases with replacement. 

(b) Select m features at random on which to compute splits in the tree. By 

default, RandomJungle selects the square root of the number of available 

features. 

(c) Grow the tree as large as possible using CART. 

2. Compute the importance of each variable according to its intrinsic importance 

(i.e., Gini index) or permutation importance. 

S u m m a r y Random forests are a straightforward extension to tree classifiers in 

which the input data are bootstrapped and predictor variables are chosen at random. 

They share some properties with bagging [110] and boosting [111, 112, 113] and may, 

along with bumping [90], be viewed as an extension of CART that can detect non­

linear interactions between features with a chance of identifying interactions among 

partners displaying little marginal effects. 

Advan tages 

• Random forests are fast to construct. 

• Pure epistasis might be detected. 

• Random forests are implemented in the excellent RandomJungle package [109], 

which allows for the specification of many options, supports several file types, 

and makes use of threads to reduce execution time. 
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Disadvantages 

• The ability to detect interactions between features displaying little or no marginal 

effect depends on their selection at random. 

• The random nature of this method implies that results may not be reproducible 

[85]. 

• Consensus vote eliminates chance to meaningfully recover model, giving only a 

list of putative susceptibility loci without an indication of their relationships. 

3.3 Summary 

Algorithms to detect multi-locus genotype-phenotype association may be classified 

as exhaustive or non-exhaustive. Members of the former category test all possible 

interactions up to a user-specified size, while the others use a greedy heuristic or 

stochastic search strategy to quickly identify causative loci. There are several broad 

strategies to conduct an efficient partial search of the space of partial interactions, 

many of which are outlined in Figure 3.1. While it is beyond the present scope to 

describe and test all published methods, I have selected a set of ten which represent 

most search strategies. 

In this chapter, I reviewed several existing methods to detect multi-locus associ­

ation. Each is described in the context of other methods, presented as an algorithm, 

and several advantages and disadvantages enumerated. These, along with a novel 

method, are evaluated for statistical performance and computational efficiency in 

Chapter 7. 



Chapter 4 

Association Graph Reduction 

Association graph reduction (AGR) is a tunable search framework that, depending 

on the parameters specified, bears resemblance to all-pairs simultaneous search (Sec­

tion 3.1.2), two-stage conditional search (Section 3.2.1.1), or the Interaction Testing 

Framework [68]. The method explores possible locus interactions by greedily per­

forming a series of operations on a graph structure that represents current knowledge 

about genotype-phenotype associations and potential epistatic interactions. It is a 

flexible, fast, and extremely powerful framework for the detection of both locus het­

erogeneity and statistical epistasis in the presence or absence of main effects. 

Definitions Let A = (V,wv,E,we) be an association graph (AG) with vertex set 

V and edge set E, with vertex- and edge-weight functions wv : V —> R + and we : 

V x V —* 1R+, respectively. Define G to be the set of genotype vectors and P 

the phenotype vector in the case-control cohort under study. An AG represents 

everything relevant known about an instance of the genotype-phenotype problem, 

including the significance of possible interactions. To accomplish this goal, each 

weighted vertex v €. V represents a non-empty set of loci whose weight quantifies 

the strength of association between the loci it represents and the phenotype vector; 

a vertex set containing more than one locus represents an interaction between its 

members. Similarly, a weighted edge V1V2 € E represents a potential interaction 

between its ends: if U1U2 were contracted it would be replaced by a new combined 
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vertex v\t2 representing the union of the sets of loci in v\ and V2- Such an action 

would reflect the belief that vx and v^ take part in an epistatic interaction. 

Weigh ts To guide the search for susceptibility loci and interactions between them, 

define weight measures wv(vi) = (f)v{Gi\ P) and either 

we(vi, Vj) — 4>e(combine(Gi; Gj)\ P) (4-1) 

or 

we(vi,Vj) = 4>v{Gu Gj), (4.2) 

where 4>v and 0e are measures of association such as a x2 test for trend and Gi C G 

is a vector multi-locus genotypes for the loci represented by vertex i. The helper 

function combine takes the genotypes of two loci or sets of loci and creates a new 

sequence of multi-locus genotype identifiers. For example, combining two biallelic 

makers with three genotypic outcomes each will result in a sequence comprised of 

nine multi-locus alleles. Similarly, combining a pair of biallelic markers with a third 

results in a 27-outcome sequence. Note that the association functions <f>v and <f>e need 

not be the same, though comparison of their results must be well-defined. 

Two types of edge weights are available. The first simply defines the weight of 

an edge to be the strength of association between the combination of its ends and 

the phenotype (4.1). In this case, evaluation of an edge is equivalent to testing its 

ends for interaction in a manner similar to an all-pairs simultaneous search (Section 

3.1.2). An alternative edge weight ignores the phenotype vector and instead quantifies 

similarity between the loci represented by the ends (4.2). This definition tests for locus 
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interaction in a manner similar to one suggested by Hoh and Ott [69]. Since P is not 

used in the test, it can be argued that edge calculations should not be counted when 

applying correction for multiple testing (as seen in Section 3.1.3), resulting in a less 

severe penalty. Such a measure may be carried out in cases alone or in all subjects. 

In addition to the requirement of weight comparability, there is one further con­

straint on the choice of an appropriate association functions <j>v and <f>e: they must 

correct appropriately for increased degrees of freedom as edges are contracted and 

vertices combined. For example, to test some number of loci with n possible multi-

locus genotypes, a test statistic T with T ~ Xn-i w o u l d be a reasonable selection. 

On the other hand, standard mutual information 

t^t^r \v{x)p{y)J 
x€XyeY 

would be inappropriate, since / will increase with the number of possible multi-locus 

genotypes, regardless of their strength of association. Mutual information may be 

adapted, however, by applying a normalization. One such corrected measure is 

where H(X) = E(I(X)) = — YH=iP(xi) l°gp(xi) is the entropy of variable X. 

For any choice of weight functions, the relation "more significant than" must also 

be defined. Such a comparison acts as a means of model regularization, allowing the 

user to penalize complex models. In the case of x2 weights, let 

be a test of "significant" improvement where x\ a n d xl a r e the results of x2 tests on 
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an edge e and vertex v with ve and vv degrees of freedom, respectively. Let e 3> v 

indicate that edge e is more significant than v for the purposes of graph reduction if 

P r ( / ) < ctf, a parameter specific to \ 2 weights. By contrast, let x > y indicate that 

object x has more significant weight than y without regard to the magnitude of the 

difference. 

Thresholds Beyond weight types, two further parameterizations are available. To 

perform a greedy search of possible interactions, we may wish to establish a minimum 

level of significance for inclusion of vertices and edges in the graph. Let av and ae be 

the vertex and edge thresholds, respectively. No vertex v with wv(v) ^ av nor any 

edge e with we(e) ~fi ae may be included in the graph. 

4.1 Algorithm 

Once suitable weight functions and other parameters have been selected, AGR anal­

ysis proceeds in two phases: construction and reduction of an AG. Construction is 

effectively a two-stage simultaneous search (Section 3.2.1.1) of all loci meeting some 

threshold av. Through a series of modifications of an AG, reduction explores the 

space of possible locus combinations to approximately identify susceptibility loci and 

interactions. Two possible moves are defined for reduction: vertex removal and edge 

contraction (Figure 4.1). At each step, the most significant object in the graph is 

selected and modified according to one of the moves until the graph is empty or a 

significant edge representing a weak interaction is selected. Note that the latter ter­

mination criterion is only possible when using the genotype similarity weight defined 
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(c) (d) 

Figure 4.1 : Reduction moves on an association graph. In panel (a), vertex 3 is 
determined to be the most significant object in the graph and consequently removed 
(b). By contrast, the most significant object could be an edge, such as 2—3 in panel 
(c), which is contracted into vertex 2,3 in panel (d). Dashed edges are new and may 
be rejected if its weight is less significant than the edge threshold ae. 

in (4.2). 

Association Graph Construction 

1. Initialization - A = 0. 

2. Add vertices - For each locus i, construct a vertex Vi and determine its signifi­

cance Pi = wv(vi). If pi > av, add Vi to A. 

3. Add edges - For each vertex pair {(vi,Vj)\vi,Vj G V A vi ^ Vj}, construct the 

edge ViVj and determine its significance Pij = we(vi,Vj). li Pij > cte, add ViVj 

to A. 
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Association Graph Reduction 

1. Initialization - Let R = 0 be a list of vertices which have been removed from 

the graph, which is maintained in order with decreasing order of significance 

according to the relation >. 

2. Reduction - While the association graph A is not empty: 

(a) Let x be the vertex or edge with the most significant weight w. 

(b) If x € V, remove x and all edges for which x is an end from A and insert 

x into R. 

(c) If x G E, w 3> wv(vi), and w S> wv(v2) for ends v\ and v%, contract 

x, creating a new vertex vx. For every vertex i other than vx, compute 

Pi = we(vxVi) and add the edge vxVi to A if pi > ae. Otherwise, add all 

remaining vertices to R and terminate. 

3. Correction - Adjust the probabilities of the vertices in R for multiple testing by 

Bonferroni, FDR [40], or other corrections. 

4. Termination - Return the elements of R whose probabilities meet the experiment-

wide level of significance. 

4.2 Summary 

Association graph reduction is a new procedure capable of identifying individual loci 

and epistatic interactions that predispose to a phenotype of interest. It operates 

by constructing a new data structure, the association graph, to represent current 
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knowledge about genotype-phenotype association and locus-locus interactions. This 

simple algorithm allows the user to conduct genome-wide association studies with a 

variety of approaches by simply adjusting parameters. 

The present formulation of AGR is entirely computational. However, expert 

knowledge such as information about biological interactions could be incorporated 

into the edge weight definitions to presumably improve power to detect association 

and epistasis. One way to incorporate such knowledge is to define vertex and edge 

weights in a Bayesian framework. In such a scenario, the purely computational AG 

would make use of non-informative priors, while the expert knowledge-based version 

might define edge prior probabilities based on biological information about interac­

tions. While promising, such an extension remains future work. 

AGR is a simple and elegant method to approach the genotype-phenotype associa­

tion problem. It is capable of extremely fast operation, especially when pure epistatic 

interactions are not believed to be present. When an exhaustive search of all pairs of 

loci is desired, AGR can also accommodate. However, unlike the one- and two-stage 

simultaneous searches described in Chapter 3, AGR will execute as many stages as 

necessary. While allowing for the exploration of very high-order interactions, appro­

priate controls for model complexity are provided by the use of a custom comparison 

relation between edges and vertices to ensure identified interactions are not merely 

the effect of locus heterogeneity. These and further advantages and disadvantages are 

summarized below. 

Advantages 
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• AGR is extremely fast at best and tractable at worst. Depending on the param­

eters av and ae, the expensive graph construction step has cost near its lower 

bound Q(n) or upper bound 0(n2) on n loci. Given appropriate model regu-

larization through a weight comparison operator S>, graph reduction requires a 

edge contractions proportional to the number of interactions in the data. 

• AGR is capable of detecting interaction effects ranging in magnitude from het­

erogeneity (no interaction) to pure epistasis (no marginal effects). 

• Through the parameterization of edge and vertex thresholds and custom weight 

definitions, AGR is extremely flexible. The extent of exploration for pure inter­

actions and the consequential running time costs and potential power gains are 

chosen by the user. 

• Graph construction and reduction operations are easily parallelizable. 

• The contraction of edges into combined vertices facilitates interpretation of 

results. Single vertices in the result representing multiple loci can be interpreted 

as significant interaction, while the entire set of vertices returned shows the 

structure of locus heterogeneity. 

• Missing data is handled in an elegant manner when supported by the selected 

weight functions. 

• AGR is implemented in an easy-to-use and fast multi-threaded software pack­

age. 
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Disadvantages 

• Users must select appropriate weights and threshold parameters av and ae. 

• Combining loci intensifies missing data problems. When a subject is not geno-

typed at any locus contained in the arguments of a call to combine, the result 

is undefined. 



Chapter 5 

Data Simulation 

In order to evaluate the relative performance of methods to detect genotype-

phenotype association, benchmark data must be used. Typically, such data may 

come in the form of real-world observations with known associations or synthetic 

data generated with known risk and error models. Real data are preferable under 

many circumstances, since contrived models may not accurately represent complex 

biological processes. Unfortunately, since few instances of statistical epistasis have 

been discovered and replicated, one must resort to simulations. While a few software 

packages to manufacture synthetic genotype-phenotype data have been described 

(examples include [114, 115, 116]), no currently available software supports disease 

models involving epistatic interactions*. To address the need to create simulated 

data involving interactions, I have developed SimGE, an easy to use Java program to 

generate random case/control data that may contain epistasis. 

5.1 Algorithm 

SimGE uses a simple algorithm to generate interacting and non-interacting genotypes 

associated with a phenotype, as well as noisy, unassociated data (Figure 5.1). In short, 

the program first creates a set of associated loci, some of which may actually represent 

"The genomeSim package supports interactions [114], though it remains unavailable over three 

years after its published description. 
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Genetic 
Model 

Parameters 

Generate error-
free genotypes 

Generate single-
locus genotypes 

Unpack multi-
locus genotypes 

Post-Processing 

Change 
genotypes 

Delete genotypes 

Introduce linkage 
disequilibrium 

Synthetic data 

Figure 5.1 : Overview of the SimGE simulator. The user specifies a genetic model by 
assigning a penetrance to each multi-locus genotype and other parameters, such as 
the number of unassociated loci to generate. A set of single-locus genotypes are then 
created, which may include interaction loci. Next, interacting markers are unpacked 
from the interaction loci. Finally, a set of post-processing filters may be applied and 
the data are written to a file for further analysis. 
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Table 5.1 : A pure interaction model between loci A and B. In this case, 0.4 of subjects 
with the genotype aa at locus A and BB at locus B will develop the phenotype. 

aa 

Aa 

AA 

bb 

-

-

0.4 

Bb 

-

0.2 

-

BB 

0.4 

-

-

epistatic interactions. 

1. Specify model and parameters - The user must specify a genetic model and other 

parameters. Phenotype risk is specified as the penetrance associated with each 

possible multi-locus genotype. For example, a two-locus pure interaction may 

be expressed with the values in Table 5.1. Other parameters are described in 

Table 5.2. 

2. Generate error-free genotypes - SimGE generates a complete set of risk and 

nuisance genotypes by the following steps. 

(a) From the specified associated genotype frequencies and penetrances, com­

pute the probability pi of each multi-locus genotype i. 

(b) Generate unassociated genotypes at risk loci for controls using the user-

specified population genotype frequencies. 

(c) For each case, draw a random multi-locus genotype for an interaction locus 

representing all susceptibility loci, which is drawn from the piS. Unpack 
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Table 5.2 : SimGE parameters. 

Parameter 

numCases 

numControls 

numVariants 

assoc ia tedFrequenc ies 

pene t rances 

format 

Meaning 

The number of affected cases to generate under the 

specified genetic model at risk loci. 

The number of unaffected controls to generate with 

completely random data. 

The number of variants (genotype outcomes at the 

risk loci). 

Genotype frequencies for each associated locus. 

Penetrances for each possible outcome in the ge­

netic model. 

The format of the output file. Supported types are 

MDR, PLINK, and SimGE. 
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the interaction locus into individual loci. 

(d) Generate random genotypes for unassociated loci by selecting the fre­

quency of one allele from [7(0,1) and assuming Hardy-Weinberg Equi­

librium. 

3. Post-processing - If requested, apply post-processing to the genotypes. Possi­

bilities include: 

(a) introduction of random errors; 

(b) random marking of some genotypes as missing; or 

(c) generation of markers in linkage disequilibrium with the susceptibility loci. 

4. Output - Write the data to a file for further analysis by other means. 

5.2 Example 

As a concrete demonstration, I present a complete SimGE configuration file, which 

will be later used in Chapter 7 to evaluate the performance of the methods described 

in Chapters 3 and 4. With this set of parameters, SimGE will generate a total of 

10,000 loci in 1,000 cases and 1,000 controls. Four of these loci, which are each 

biallelic, will be associated with case status. The model is mixed, containing both 

epistasis and heterogeneity. 

# 
# SimGE configuration file 
# 
# Four-locus mixed model which combines 
# (a) two-locus lethal/missing genotype and 
# (b) two recessive susceptibility loci conferring additive risk. 
# 

numCases = 1000 
numControls « 1000 
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immLoci = 10000 
numVariants = 3 3 3 3 

# f(a) = 0.7; assumption of HWE 
associatedFrequencies = \ 
0.49 0.42 0.09 \ 
0.49 0.42 0.09 \ 
0.49 0.42 0.09 \ 
0.49 0.42 0.09 

# A four-locus model is specifii 
# aabbccdd Aabbccdd AAbbccdd 
# aabbCcdd AabbCcdd AAbbCcdd 
# aabbCCdd AabbCCdd AAbbCCdd 
# aabbccDd AabbccDd AAbbccDd 
# aabbCcDd AabbCcDd AAbbCcDd 
# aabbCCDd AabbCCDd AAbbCCDd 
# aabbccDD AabbccDD AAbbccDD 
# aabbCcDD AabbCcDD AAbbCcDD 
# aabbCCDD AabbCCDD AAbbCCDD 
# 
penetrances = \ 
0 0 0.0379893424 
0 0 0.0379893424 
0.02 0.02 0.0579893424 
0 0 0.0379893424 
0 0 0.0379893424 
0.02 0.02 0.0579893424 
0.02 0.02 0.0579893424 
0.02 0.02 0.0579893424 
0.04 0.04 0.0779893424 

# 
# Output options 
# 

sd as 
aaBbccdd 
aaBbCcdd 
aaBbCCdd 
aaBbccDd 
aaBbCcDd 
aaBbCCDd 
aaBbccDD 
aaBbCcDD 
aaBbCCDD 

0 
0 
0.02 
0 
0 
0.02 
0.02 
0.02 
0.04 

AaBbccdd 
AaBbCcdd 
AaBbCCdd 
AaBbccDd 
AaBbCcDd 
AaBbCCDd 
AaBbccDD 
AaBbCcDD 
AaBbCCDD 

0.0189946712 
0.0189946712 
0.0389946712 
0.0189946712 
0.0189946712 
0.0389946712 
0.0389946712 
0.0389946712 
0.0589946712 

AABbccdd 
AABbCcdd 
AABbCCdd 
AABbccDd 
AABbCcDd 
AABbCCDd 
AABbccDD 
AABbCcDD 
AABbCCDD 

0 
0 
0 
0 
0 
0 
0 
0 
0 

aaBBccdd 
aaBBCcdd 
aaBBCCdd 
aaBBccDd 
aaBBCcDd 
aaBBCCDd 
aaBBccDD 
aaBBCcDD 
aaBBCCDD 

0.0379893424 
0.0379893424 
0.0579893424 
0.0379893424 
0.0379893424 
0.0579893424 
0.0579893424 
0.0579893424 
0.0779893424 

AaBBccdd 
AaBBCcdd 
AaBBCCdd 
AaBBccDd 
AaBBCcDd 
AaBBCCDd 
AaBBccDD 
AaBBCcDD 
AaBBCCDD 

0 
0 
0 
0 
0 
0 
0 
0 
0 

AABBccdd 
AABBCcdd 
AABBCCdd 
AABBccDd 
AABBCcDd 
AABBCCDd 
AABBccDD 
AABBCcDD 
AABBCCDD 

0 \ 
0 \ 
0 \ 
0 \ 
0 \ 
0 \ 
0 \ 
0 \ 
0 

Output file format, which may be one of the following: 
MDR 
PI ink 
SimGE 

# 
# 
# 
# 
# 
# The value is not case-sensitive. 
# File format may be overridden from the command line 
format = MDR 

5.3 Performance 

In order to determine the cost to synthesize random genotypes using SimGE, I per­

formed a series of benchmarks using the above parameter file. Testing took place 

on an 8-core MacPro running a 32-bit Java virtual machine on MacOS X 10.5. For 

each data set size investigated, SimGE was invoked ten times and the fastest time 

recorded. Results are shown in Table 5.3. 
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Table 5.3 : User and real time costs of of SimGE in seconds. Simulations were 
conducted using the above parameter file, varying only the number of loci to generate. 
Figures are the minimum time measured over ten runs. 

Loci 

1,000 

10,000 

100,000 

User 

3.5 

31.5 

913.0 

Real 

3.0 

27.4 

387.2 

5.4 Summary 

In spite of a spate of algorithms to detect genotype-phenotype association, there 

is a lack of tools capable of simulating statistical epistasis. To facilitate objective 

benchmarking and comparison of competing methods, I have presented SimGE, an 

easy-to-use and fast genotype-phenotype simulator. Through a simple configuration 

file, users may specify arbitrary generative models, including those involving epistasis 

and/or locus heterogeneity. With little effort on the part of its users, SimGE can 

quickly generate realistic genome-sized data sets. 



Chapter 6 

Models of Multi-Locus Risk 

In order to perform a meaningful evaluation of methods to detect multi-locus 

association, it is important to have realistic mathematical models of the effects such 

genetic changes have on phenotype susceptibility. Just as there are many methods 

for detecting genotype-phenotype associations, several models of risk conferral have 

been proposed (for example, see [36, 35, 34, 38, 5, 37, 117]). Given the complexity of 

biological processes, it is not meaningful to select one of these as a gold standard of 

realism. Instead, I present a few models that have previously been used to establish 

the utility of several important methods outlined in Chapters 3 and 4. 

While I have selected models that span much of the space defining plausible genetic 

disease processes, I have elected to hold constant well studied parameters such as 

minor allele frequency (MAF) and the amount of linkage disequilibrium between 

observed markers and the hypothetical disease locus. Instead, I assume risk loci 

are genotyped (or, equivalently, in complete linkage disequilibrium with the risk-

conferring mutations), that all markers are in Hardy-Weinberg Equilibrium, and that 

there are no other sources of genetic risk. I set the population prevalence to 0.01 

and MAF of risk loci to fa = 0.3 for most models, which I select for its high power 

to detect association over models with lower MAF. The only exception is a purely 

epistatic model displaying no marginal risk, whose risk loci have MAF fa = 0.5. 

Allele frequencies for unassociated alleles are drawn from /„ ~ t/(0.05,0.5), which 
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Table 6.1 : Multi-locus model parameters. 

Parameter 

MAF (associated locus) 

MAF (unassociated locus) 

Phenotype prevalence 

Number of cases 

Number of controls 

Number of markers m 

Value 

fa = 0.3 

/ t t ~ £7(0.05,0.5) 

pp = 0.01 

na = 1000 

nu = 1000 

= 1000, m = 10,000 

resembles the empirical distribution found in recent Affymetrix™ genome-wide SNP 

microarrays. These parameters, which are summarized in Table 6.1, represent very 

realistic conditions under which a genome-wide scan for association may take place. 

The only notable exception is the selection of only m = 1000 markers, which is 

insufficient for a genome-wide study. This value was chosen as way to make tractable 

evaluation of exhaustive methods such as MDR [48], which test all possible A;-way 

interactions (see Section 3.1.1). In Chapter 7, three well-performing methods were 

selected for further analysis of m = 10,000 simulated SNPs under otherwise identical 

conditions. 

6.1 Categories of Multi-Locus Association 

The risk conferred by susceptibility loci can be described as either additive or epistatic. 

Additive effects are those that confer risk independent of other risks, while epistasis 

describes interactions between loci. 
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Figure 6 1 : Simple two-locus additive risk model. Loci A and B have risk alleles 
A and B, respectively. Each susceptibility allele confers a small amount of risk in a 
dominant mode of inheritance. 

When multiple additive effects are present, a condition known as locus hetero­

geneity, risk may increase additively or multiplicatively. While each locus or set of 

interacting loci in a heterogeneous system will show a marginal statistical effect, the 

magnitude of risk conferred by each locus may be very small. Furthermore, loci may 

play different roles in different study subjects, which makes their detection more dif­

ficult than simple Mendelian genes. A simple two-locus example is depicted in Figure 

6.1. A pair of susceptibility loci A and B each operate additively: each disease allele 

further impairs the system, resulting in increased risk or severity of phenotype. 

One says that statistical epistasis is present when a deviation from additive (or 

multiplicative) risk is observed if the contribution of multiple susceptibility loci are 

considered [16]. In such a system, interacting loci may or may not show marginal 
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statistical significance. An example of each scenario is depicted in Figure 6.2. In 

panel (a), the presence of two or more risk alleles from either susceptibility locus 

confers maximal risk. In such a threshold model, risk is dichotomous. The second 

panel depicts a lethal genotype model. One dysfunctional allele sufficiently impairs a 

process to develop disease, while more are incompatible with life. 

Most methods are restricted in the type of multi-locus association effects they 

may discover. For example, MDR [48, 49] seeks only effects caused by an interaction 

between k loci for some user-specified value k. On the other hand, Set-Association 

[39] simply sums single-locus marginal statistics, which likely precludes the possibility 

of identifying purely epistatic effects. Other strategies may be capable of identify­

ing both types, but remain restricted in other ways. For example, a typical two-

stage simultaneous search will identify all loci meeting some low level of marginal 

association and then test all two-way interactions within that set [38]. Still other 

important methods might be theoretically capable of detecting all meaningful types 

of models, but only if entire sets of interacting loci without marginal effects are se­

lected simultaneously in a random trial [107]. To provide a meaningful comparison 

and performance-based classification of methods, I have selected models consisting of 

marginal effects, interactions, and a combination of each. 

6.1.1 Locus Heterogeneity 

Methods capable of detecting locus heterogeneity (for example, Set-Association [39]) 

tend to be designed to detect several non-interacting susceptibility loci. Therefore, 

I propose two additive models consisting of two and four loci, each of which confers 
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Figure 6 2 • Simple two-locus epistatic risk models. In (a) , two or more risk alleles are 
required to express the phenotype; each locus will show some marginal association. 
A pure epistatic interaction with no detectable marginal effect is shown in panel (b) , 
in which the presence of precisely one risk allele is required at each locus, a plausible 
scenario when some risk genotypes are lethal. 
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risk in a recessive pattern of inheritance. Marginal penetrances for the two-locus 

model are 0.07 and 0.0411. The four-locus model has penetrances 0.018, 0.023, 0.03, 

and 0.0401. These extremely low values reflect the extreme difficulty in detecting 

susceptibility loci when multiple risk factors are involved, even in the absence of 

epistatic interactions displaying no main effects. 

6.1.2 Epis tas is 

Epistatic models are comprised of multiple interacting loci which display non-linear 

risk and often little or no marginal significance individually. There are 255 two-locus 

models of epistasis that confer risk [36], of which I have selected three for evaluation 

(Table 6.2). The first resembles panel (a) in Figure 6.2 in which multi-locus genotypes 

with at least two risk alleles from either or both loci elevate risk to a maximum level. 

It is similar to the threshold model evaluated by Marchini et al [38]. The second is a 

slightly less extreme version of Figure 6.2 panel (b), which is based on the "Missing 

Lethal Genotype Model" of lonita and Man [65] and is similar to the two-locus model 

used to demonstrate the utility of MDR [48]. One copy of a susceptibility allele from 

each locus raises risk to a level (3 while two risk alleles from one susceptibility locus 

confer risk 2(3. Multi-locus genotypes with more than two risk alleles are fatal and 

hence not present in the study population. The final model displays pure epistasis: 

the loci appear to confer no risk when considered individually. The penetrance matrix 

for this third model is similar to that of the lethal genotype model, differing primarily 

in its MAF, which must be fa = 0.5 to avoid marginal statistical significance. 
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Table 6.2 : Epistatic models under study: (a) a threshold effect, (b) the consequences 
of lethal genotypes for a study population, and (c) a model that displays pure epistasis 
with no marginal risk. Unlike all other models under study, (c) requires MAF fa — 0.5. 

(a) 

aa 

aA 

AA 

bb 

0 

0 

0 

Bb 

0 

0.038 

0.038 

BB 

0 

0.038 

0.038 

(b) 

(c) 

aa 

aA 

AA 

bb 

0 

0 

0.057 

Bb 

0 

0.028 

0 

BB 

0.057 

0 

0 

aA 

AA 

bb 

0 

0 

0.04 

Bb 

0 

0.02 

0 

BB 

0.04 

0 

0 

6.1.3 Mixed Model 

Few strategies for detecting multi-locus association are capable of efficiently detecting 

both interactions and locus heterogeneity. To my knowledge, no comparison of any 

methods has taken place under such circumstances. Therefore, I present a mixed 

model comprised of four risk loci, two of which (A and B) interact in a missing lethal 

genotype model and the others (C and D) confer risk independently. The interacting 

pair of loci confer risk in a manner similar to panel B of Table 6.2: risk is doubled 

if two susceptibility alleles are inherited from the same locus. The other loci confer 

risk in a recessive mode of inheritance. A complete listing of penetrances associated 

with four-locus genotypes is presented in Table 6.3. 
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Table 6.3 : Mixed model penetrances 

Genotype 

aabbccdd 

aabbccDd 

aabbccDD 

aabbCcdd 

aabbCcDd 

aabbCcDD 

aabbCCdd 

aabbCCDd 

aabbCCDD 

aaBbccdd 

aaBbccDd 

aaBbccDD 

aaBbCcdd 

aaBbCcDd 

aaBbCcDD 

aaBbCCdd 

aaBbCCDd 

aaBbCCDD 

A/B Penetrance 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

C Penetrance 

-

-

-

-

-

-

0.02 

0.02 

0.02 

-

-

-

-

-

-

0.02 

0.02 

0.02 

D Penetrance 

-

-

0.02 

-

-

0.02 

-

-

0.02 

-

-

0.02 

-

-

0.02 

-

-

0.02 

Total Penetrance 

0 

0 

0.02 

0 

0 

0.02 

0.02 

0.02 

0.04 

0 

0 

0.02 

0 

0 

0.02 

0.02 

0.02 

0.04 
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Table 6.3 : (continued) 

Genotype 

aaBBccdd 

aaBBccDd 

aaBBccDD 

aaBBCcdd 

aaBBCcDd 

aaBBCcDD 

aaBBCCdd 

aaBBCCDd 

aaBBCCDD 

Aabbccdd 

AabbccDd 

AabbccDD 

AabbCcdd 

AabbCcDd 

AabbCcDD 

AabbCCdd 

AabbCCDd 

AabbCCDD 

A/B Penetrance 

0.038 

0.038 

0.038 

0.038 

0.038 

0.038 

0.038 

0.038 

0.038 

-

-

-

-

-

-

-

-

-

C Penetrance 

-

-

-

-

-

-

0.02 

0.02 

0.02 

-

-

-

-

-

-

0.02 

0.02 

0.02 

D Penetrance 

-

-

0.02 

-

-

0.02 

-

-

0.02 

-

-

0.02 

-

-

0.02 

-

-

0.02 

Total Penetrance 

0.038 

0.038 

0.058 

0.038 

0.058 

0.058 

0.058 

0.078 

0 

0 

0.02 

0 

0 

0.02 

0.02 

0.02 

0.04 



Table 6.3 : (continued) 

Genotype 

AaBbccdd 

AaBbccDd 

AaBbccDD 

AaBbCcdd 

AaBbCcDd 

AaBbCcDD 

AaBbCCdd 

AaBbCCDd 

AaBbCCDD 

AaBBccdd 

AaBBccDd 

AaBBccDD 

AaBBCcdd 

AaBBCcDd 

AaBBCcDD 

AaBBCCdd 

AaBBCCDd 

AaBBCCDD 

AAbbccdd 

A/B Penetrance 

0.019 

0.019 

0.019 

0.019 

0.019 

0.019 

0.019 

0.019 

0.019 

-

-

-

-

-

-

-

-

-

0.038 

C Penetrance 

-

-

-

-

-

-

0.02 

0.02 

0.02 

-

-

-

-

-

-

-

-

-

-

D Penetrance 

-

-

0.02 

-

-

0.02 

-

-

0.02 

-

-

-

-

-

-

-

-

-

-

Total Penetrance 

0.019 

0.019 

0.039 

0.019 

0.019 

0.039 

0.039 

0.039 

0.059 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.038 



Table 6.3 : (continued) 

Genotype 

AAbbccDd 

AAbbccDD 

AAbbCcdd 

AAbbCcDd 

AAbbCcDD 

AAbbCCdd 

AAbbCCDd 

AAbbCCDD 

AABbccdd 

AABbccDd 

AABbccDD 

AABbCcdd 

AABbCcDd 

AABbCcDD 

AaBbCCdd 

AaBbCCDd 

AaBbCCDD 

AaBBccdd 

AaBBccDd 

A/B Penetrance 

0.038 

0.038 

0.038 

0.038 

0.038 

0.038 

0.038 

0.038 

-

-

-

-

-

-

-

-

-

-

-

C Penetrance 

-

-

-

-

-

0.02 

0.02 

0.02 

-

-

-

-

-

-

-

-

-

-

-

D Penetrance 

-

0.02 

-

-

0.02 

-

-

0.02 

-

-

-

-

-

-

-

-

-

-

-

Total Penetrance 

0.038 

0.058 

0.038 

0.038 

0.058 

0.058 

0.058 

0.078 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Table 6.3 : (continued) 

Genotype 

AaBBccDD 

AaBBCcdd 

AaBBCcDd 

AaBBCcDD 

AaBBCCdd 

AaBBCCDd 

AaBBCCDD 

A/B Penetrance 

-

-

-

-

-

-

-

C Penetrance 

-

-

-

-

-

-

-

D Penetrance 

-

-

-

-

-

-

-

Total Penetrance 

0 

0 

0 

0 

0 

0 

0 
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6.2 Summary 

In order to determine a method's ability to detect genotype-phenotype association 

through simulation, realistic generative models are required. In this chapter, I have 

presented six such models that exhibit either epistasis, locus heterogeneity, or both. 

When combined with the specified minor allele frequencies, the models predict pop­

ulation prevalence of 1%. In Chapter 7, I will use these models to evaluate the 

performance of our method (AGR) as well as the methods described in Chapter 3. 



Chapter 7 

Evaluation of Methods 

In order to conduct a meaningful comparison of the methods described in Chap­

ters 3 and 4, I evaluated their statistical and computational performance on several 

simulated data sets. Data were generated under the six generative models discussed 

in Chapter 6 using SimGE (Chapter 5). Each method was executed in turn, record­

ing runtime expense and rates of detecting actual and spurious associations. Results 

for each method as well as specific parameters used can be found in the following 

sections. An overview and discussion of my findings are presented in Chapter 8. 

Performance was evaluated according to three criteria: sensitivity, specificity, and 

running time. Let Pt and Pj be the number of true and false positives discovered in 

each data set, respectively. Similarly denote the number of true and false positive 

discoveries as Nt and Nf. Sensitivity sn = Pt/(Pt + Nf) is the rate at which true 

susceptibility loci are recovered from the data. Similarly, specificity sp = Nt/(Nt+Pf) 

quantifies a method's ability to avoid spurious hits. Given that million-marker data 

sets are likely to become increasingly common, it may be difficult to intuitively grasp 

the importance of a low rate of specificity. Therefore, I include as a performance 

measure the expected number of false positives in a million-locus experiment sp x 106. 

Of particular interest is the feasibility of each method. To quantify an algorithm's 

ability to scale to genome-wide data sets, I measured average user and real (clock) 

time required to correctly complete analysis. User time measures non-system related 
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computations and can be expressed in CPU-time units. For serial implementations, 

user and real time measurements are closely related. However, parallel implementa­

tions may decrease real time computational requirements on multi-processor systems. 

When evaluating software performance, it is typical to conduct several runs and select 

the minimum as the true computational cost. However, given the stochastic nature 

of some methods under study, running time statistics were aggregated by averaging 

to avoid biases created by fast random runs. 

All experiments were conducted on the Shared University Grid at Rice (SUG@R). 

Though none of the tested software is capable of using multiple nodes, some are multi­

threaded. Parallel computations took place on eight CPU cores and serial algorithms 

were executed simultaneously on up to eight data sets. 

7.1 1 ,000 Loc i 

I first present the results of all methods run on 1,000-locus data sets. While such 

a small set of markers does not accurately represent genome-wide data sets, it does 

provide a useful starting point, allowing expensive methods a chance to demonstrate 

their utility, even if larger data sets show their futility. 

7.1.1 A G R 

P a r a m e t e r s Association graph reduction allows for the specification of vertex and 

edge weight types and significance thresholds for accepting objects into a graph. For 

the present analysis, I selected x2 weights with ae = av = 0.1 for models displaying 

marginal association and ae = av — 1 for the model of pure epistasis. In all cases, 
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edge weights did not take into account phenotypic status: the second edge weight 

formulation (Equation 4.2) was used. To control for multiple testing, I applied the 

conservative Bonferroni correction, multiplying the probability of each vertex removed 

from the graph with the total number of tests executed upon termination. 

The choice to use different parameters based on a priori knowledge of the un­

derlying generative model may prove controversial. In my view, the likelihood of 

discovering pure epistatic interactions seems minute, given their paucity of appear­

ance in the literature.* While it is certainly possible that my inability to find a single 

such result is due to a bias in favor of practical methods that complete analysis in 

a short amount of time, I find this reasoning unsatisfying. Were there a real world 

example of pure epistasis, I contend that proponents of MDR and other exhaustive 

methods would be eager to find and publicize them. While their failure may be 

technical, it underscores the rarity of such circumstances, if nothing else. 

Still, I wished to demonstrate that AGR is flexible enough to discover interactions 

displaying no effects, should one choose to conduct such a search. In so doing, I found 

it to be reasonably fast and quite powerful, as the results below indicate. 

AGR is implemented in parallel as a multi-threaded program. To accurately quan­

tify its performance on modern multi-core machines, eight CPU cores were allocated 

to computation. 

*While it is not difficult to construct mathematical interaction models without marginal effects, 

it us unclear whether such scenarios exist in real data [118]. I am unaware of a single published 

instance of statistical epistasis exhibiting no marginal association. 
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Statistical Performance AGR's sensitivity to detect all causative loci and speci­

ficity are presented in Table 7.1. It correctly identified all susceptibility loci displaying 

main effects with high specificity. The model showing pure epistasis provided a par­

ticular challenge, resulting in a small decrease in sensitivity. I suspect this drop to 

be caused by the correction for multiple testing, which is particularly severe when all 

pairs are tested. The expected number of false positives in a million-marker experi­

ment is reasonable. In all cases, the level of error would require at most a few custom 

microarray experiments to eliminate spurious hits. 

Computational Costs The time required to conduct analysis is summarized in 

Table 7.2. The computational cost to identify associated loci in the 1,000-SNP data 

set was negligible in most cases. Not surprisingly, exhaustive enumeration of all pairs 

of loci required longer, though it remained quite reasonable. 

7.1.2 M D R 

Parameters Multifactor dimensionality reduction software [49, 50] requires the 

specification of one key parameter k, the size of interaction to test. For the present 

study, I investigated all single markers and pairs thereof (1 < k < 2). MDR's im­

plemented specify a default case/control ratio threshold T = 1 for classification of 

multi-locus genotypes as high or low risk. MDR is multi-threaded and was allowed 

to use eight CPU cores during execution. 

Statistical Performance MDR successfully identified all risk factors in models 

with two risk loci while maintaining a low level of false detection (Table 7.3). Unfor-
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Table 7.1 : AGR performance in 1,000 loci. 

Sensitivity (%) 

Specificity (%) 

Expected False Positives 

Lethal 

100.0 

99.8 

2,041 

Epistasis 

Threshold 

100.0 

99.8 

2,047 

Pure 

99.0 

99.8 

1,984 

Heterogeneity 

2-locus 

100.0 

99.8 

2,042 

4-locus 

100.0 

99.6 

4,049 

Mixed 

100.0 

99.6 

4,041 

Table 7.2 : AGR cost in 1,000 loci averaged over 1,000 simulated data sets. In cases 
where edge and vertex thresholds were used (ae < 1,0:̂  < 1) termination was nearly 
instantaneous. Examining all pairs of loci took longer, but remains very reasonable. 

User (s) 

Real (s) 

Lethal 

0.1 

0.2 

Epistasis 

Threshold 

0.1 

0.2 

Pure 

66.0 

8.6 

Heterogeneity 

2-locus 4-locus 

0.1 0.1 

0.2 0.2 

Mixed 

0.1 

0.2 
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Table 7.3 : MDR performance in 1,000 loci. 

Sensitivity (%) 

Specificity (%) 

Expected False Positives 

Lethal 

100.0 

99.8 

2,004 

Epistasis 

Threshold 

100.0 

99.8 

2,004 

Pure 

100.0 

99.7 

3,003 

Heterogeneity 

2-locus 

100.0 

99.8 

2,004 

4-locus 

50.0 

99.8 

2,008 

Mixed 

62.8 

99.7 

4,061 

tunately, it consistently failed to identify all associated loci in more complex models. 

In the 4-locus heterogeneous model, MDR appears to have identified one locus during 

its scan of single markers and then paired the same marker with another risk locus 

during its search for interactions. It performed somewhat better on the mixed model, 

often selecting a different marker in its first stage than those identified by its second. 

Computational Costs MDR's exhaustive search should have consistent and pre­

dictable computational costs. This notion is supported by runtime statistics, which 

remained nearly constant across all tested models (Table 7.4). Unfortunately, this ex­

pense is substantial. Assuming a fixed cost of cm = \ /s / i000 per marker for observed 

average cost c, it would take over a CPU-day to analyze 10,000 SNPs and nearly 122 

CPU-days to evaluate all pairs in a 100,000-SNP data set. 

7.1.3 All-Pairs Simultaneous Search 

Parameters I conducted all-pair simultaneous search with PLINK [66, 67]. For 

each pair of markers A and B, PLINK performs logistic regression on the model 
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Table 7.4 : MDR cost in 1,000 loci. In all cases, MDR examines all pairs of loci, 
resulting in predictable runtime costs. 

User (s) 

Real (s) 

Lethal 

1049.9 

136.6 

Epistasis 

Threshold 

1051.6 

137.3 

Pure 

1047.7 

136.3 

Heterogeneity 

2-locus 4-locus 

1048.9 1051.1 

136.6 136.8 

Mixed 

1051.8 

136.9 

P ~ Po + 01-A. + 0iE> + 0^AB + e, where P is the phenotype under study. For the 

purposes of identifying interactions, 0O, 01: and 02 are treated as nuisance parameters. 

While investigators typically elect to perform a locus-by-locus scan for main effects 

as a first step, such analysis was not conducted here. After PLINK analysis, I applied 

Bonferroni correction to obtain a set of associated loci. 

Statistical Performance Despite its examination of every pair of loci under study, 

the all-pairs simultaneous search performs poorly for most models considered. For 

all except the threshold and pure epistasis models, sensitivity was poor. For models 

displaying main effects, this shortcoming may be explained and made acceptable by 

the fact that a marginal scan would have had perfect sensitivity for all models except 

one (data not shown). 

In the face of poor performance by an all-pairs search, one may be consoled by 

the fact that most associated loci are, in fact, likely to be identified by a scan for 

main effects. Unfortunately, the simultaneous search fails to find strong interactions, 

which may abandon valuable information about phenotype etiology and render results 
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Table 7.5 : All-pairs simultaneous search performance in 1,000 loci. Figures do not 
include discovery by a genome-scan for marginal effects as would often accompany an 
all-pairs simultaneous search. 

Sensitivity (%) 

Specificity (%) 

Expected False Positives 

Lethal 

100.0 

99.7 

2,548 

Epistasis 

Threshold 

70.4 

99.8 

2,005 

Pure 

100.0 

99.7 

2,548 

Heterogeneity 

2-locus 

0.0 

99.9 

573 

4-locus 

54.3 

99.7 

2,749 

Mixed 

51.3 

99.7 

2,633 

Table 7.6 : All-pairs simultaneous search cost in 1,000 loci. In all simultaneous 
search examines all pairs of loci, resulting in predictable runtime costs. 

User (s) 

Real (s) 

Lethal 

818.3 

824.3 

Epistasis 

Threshold 

818.0 

824.0 

Pure 

817.5 

823.6 

Heterogeneity 

2-locus 4-locus 

817.2 819.2 

823.3 825.2 

Mixed 

818.7 

824.6 

impossible to reproduce. 

Computational Costs Like MDR, an all-pairs simultaneous search has predictable 

and nearly constant cost (Table 7.6). While somewhat lower than MDR's, the fixed 

cost associated with exhaustive search remains prohibitive at a genome-wide scale. 

Assuming the same fixed cost model as above, a scan of 10,000 SNPs would require 

over 22 CPU-hours and 100,000 markers would consume nearly 95 days of CPU time. 
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7.1.4 Two-Stage Search 

Parameters There are two types of two-stage searches, simultaneous and condi­

tional, both of which were conducted with PLINK [66, 67]. In both cases, PLINK 

identified a set of marginally associated markers at the a = 0.1 level after either 

Bonferroni or FDR correction for multiple testing. Simultaneous search considered 

all pairs of loci identified in the first stage, while conditional tested all marginally 

suggestive markers with all others, regardless of evidence for association. After the 

second stage, I applied Bonferroni correction to identify a final set of associated loci. 

Statistical Performance A two-stage scan necessarily conducts a locus-by-locus 

scan for main effects as its first step. In that context, I am interested in determining 

what information, if any, can be gained from a second stage. Indeed, a marginal 

scan at an appropriate experiment-wide significance threshold of a = 0.05 has 100% 

sensitivity in all except the pure epistasis model with reasonable specificity (data not 

shown). Table 7.7 summarizes statistical performance of two-stage search methods, 

ignoring results which may arise as part of a related scan for marginally associated 

loci. Neither method had better sensitivity for most models nor were they likely to 

identify associated loci displaying no main effect. 

Computational Costs Runtime expense to conduct a two-stage search is summa­

rized in Table 7.18. If ai is the lax level of significance required for a marker to pass 

from a stage one scan of m markers, a simultaneous scan requires © ((na/)2) steps, 

while conditional takes 0 (n2ai), assuming in each case that most markers follow the 
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Table 7.7 : Two-stage simultaneous and conditional search performance in 1,000 loci. 
Figures do not include discovery by a genome-scan for marginal effects as would often 
accompany these methods. A one-stage marginal scan with an appropriately stringent 
a level has 100.0% sensitivity in all models except that which displays no main effect. 

(a) Simultaneous 

Sensitivity (%) 

Specificity (%) 

Expected False Positives 

Lethal 

100.0 

99.8 

2,056 

Epistasis 

Threshold 

70.4 

99.8 

1,731 

Pure 

0.2 

100.0 

4 

Heterogeneity 

2-locus 4-locus 

0.0 

100.0 

60 

66.8 

99.7 

2,729 

Mixed 

54.2 

99.8 

2,228 

(b) Conditional 

Sensitivity (%) 

Specificity (%) 

Expected False Positives 

Lethal 

100.0 

99.8 

2,006 

Epistasis 

Threshold 

67.2 

99.8 

1,350 

Pure 

0.0 

100.0 

8 

Hetero 

2-locus 

0.0 

100.0 

4 

geneity 

4-locus 

50.2 

99.8 

2,019 

Mixed 

50.8 

99.8 

2,042 
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Table 7.8 : Two-stage simultaneous and conditional search cost in 1,000 loci. Figures 
include the cost of the first-stage marginal scan, one second in every case. 

(a) Simultaneous 

User (s) 

Real (s) 

Epistasis 

Lethal Threshold Pure 

11.0 11.2 10.6 

11.0 11.2 10.7 

Heterogeneity 

2-locus 4-locus 

11.0 11.5 

11.1 11.5 

Mixed 

11.5 

11.5 

(b) Conditional 

User (s) 

Real (s) 

Epistasis 

Lethal Threshold Pure 

20.0 20.4 19.2 

20.0 20.4 19.3 

Heterogeneity 

2-locus 4-locus 

20.1 21.0 

20.2 21.0 

Mixed 

21.0 

21.0 

null distribution. This cost is small for 1,000 loci and scaling to genome-wide data 

sets seems possible with a fast enough implementation. 

7.1.5 Classification Trees 

Parameters There are two popular algorithms for constructing classification trees, 

of which I chose the more readily available CART method, as implemented by the R 

package tree [78, 79, 89]. Splits were selected by minimizing deviance. 

Statistical Performance In models displaying any marginal significance, CART 

performed extremely well (Table 7.9). Sensitivity for each of these models was 100% 

and specificity was no lower than most other methods. Unfortunately, CART had no 

power to recover pure interactions. 
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Computational Costs CART was not the fastest method tested, though it was 

not unreasonably slow (Table 7.10) when testing 1,000 loci. However, the method 

must recompute impurity at each split, which costs 0 (n) and suggests CART may 

not scale to genome-wide data sets with such a high cost per locus. 

7.1.6 Set-Association 

Parameters I evaluated the performance of the original authors' implementation 

of Set-Association, sumstatS [92, 39]. Relevant analysis parameters which may be 

specified include the maximum number of terms in a sum of statistics and the number 

of permutation samples to draw. I performed analysis using the authors' defaults, 

allowing N = 10 terms in a sum and P = 2,000 permutations. 

Statistical Performance Set-Association performs a scan for marginal association 

signals and attempts to identify locus heterogeneity by summing test statistics. It 

is designed to exploit multiple independent measures of association, such as a stan­

dard x2 test for association, as well as a \ 2 test for Hardy-Weinberg Disequilibrium. 

Unfortunately, the simulated data do not include alternative hints of association, so 

sumstatS must rely only on allelic association. 

Even though the data were not generated in a manner to most clearly demonstrate 

the power of the Set-Association method, the algorithm performed well under nearly 

all circumstances (Table 7.11). It successfully identified all effects with any marginal 

signal and maintained a predictable 1% false positive rate. Its only shortcoming is an 

apparent inability to identify interactions displaying no main effect, which is expected. 
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Table 7.9 : Classification tree performance in 1,000 loci. 

Sensitivity (%) 

Specificity (%) 

Expected False Positives 

Lethal 

100.0 

99.8 

2,005 

Epistasis 

Threshold 

100.0 

99.8 

2,006 

Pure 

0.0 

100.0 

15 

Heterogeneity 

2-locus 

100.0 

99.8 

2,004 

4-locus 

100.0 

99.6 

4,020 

Mixed 

100.0 

99.6 

4,031 

Table 7.10 : Classification tree cost in 1,000 loci. Cost is dominated by calculating 
single-locus statistics, resulting in nearly predictable runtime expense. 

User (s) 

Real (s) 

Lethal 

22.3 

22.6 

Epistasis 

Threshold 

22.0 

22.4 

Pure 

21.8 

22.1 

Heterogeneity 

2-locus 4-locus 

22.1 22.2 

22.4 22.5 

Mixed 

22.4 

22.7 

Table 7.11 : Set-association performance in 1,000 loci. 

Sensitivity (%) 

Specificity (%) 

Expected False Positives 

Lethal 

100.0 

99.0 

10,020 

Epistasis 

Threshold 

100.0 

99.0 

10,020 

Pure 

1.1 

99.0 

10,020 

Heterogeneity 

2-locus 4-locus 

100.0 100.0 

99.0 99.0 

10,020 10,040 

Mixed 

100.0 

99.0 

10,040 



100 

Computational Costs The cost of Set-Association is linear in the number of mark­

ers analyzed. However, this analysis hides a large constant associated with determin­

ing the significance of the iV terms through P permutation samples. When n is of the 

same order of magnitude as P, the cost of determining significance can be a relatively 

large proportion of runtime complexity. 

Empirical runtime measurements were unsurprising (Table 7.12). sumstatS' cost 

was similar to other methods employing a greedy search and permutation-based de­

termination of significance. 

7.1.7 B E A M 

Parameters BEAM has numerous parameters whose optimization could be the 

subject of an ambitious study. I pursued recommendations by the authors, which 

proved difficult due to contradictions between configuration file documentation and 

program defaults. In the present study, configuration options specified by the author 

in her software distribution [99] were used, which resulted in automatic detection 

of reasonable parameters. For a data set of L markers, BEAM runs 10 x L burn-in 

Table 7.12 : Set-association cost in 1,000 loci. In all cases, the method tests each 
locus once, resulting in predictable runtime costs. 

User (s) 

Real (s) 

Lethal 

818.3 

824.3 

Epistasis 

Threshold 

818.0 

824.0 

Pure 

817.5 

823.6 

Hetero 

2-locus 

817.2 

823.3 

geneity 

4-locus 

819.2 

825.2 

Mixed 

818.7 

824.6 
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updates, L x max(L, 100) MCMC updates, and executes L updates between posterior 

draws. 

Statistical Performance The performance of BEAM depended highly on the gen­

erative model (Table 7.13). While it correctly identified heterogeneous effects in every 

data set, epistatic models proved to be a challenge, particularly when the population 

contained lethal genotypes. The method had reasonable specificity. 

Computational Costs BEAM was by far the slowest non-exhaustive method eval­

uated (Table 7.14). Even a competently implemented all-pairs search required over 

seven times less CPU time and over 55 times less clock time (see AGR with pure 

epistatic model in Table 7.2). 

7.1.8 SNPHarvester 

Parameters SNPHarvester is implemented by the authors in a very difficult to use 

Java program [100, 96]. To facilitate the present study, I made minor modifications 

to allow for the changes in parameters without recompilation and added support for 

an additional input format. In the SNPHarvester analysis, interactions up to size 

two were sought using a x2 measure of interaction. Interactions with Bonferroni-

corrected probability pg < 0.01 were retained by PathSeeker. The default value of 

SuccessiveRun = 20 was used for the number of consecutive calls to PathSeeker 

which return no significant SNP sets. 



Table 7.13 : BEAM performance in 1,000 loci. 

Sensitivity (%) 

Specificity (%) 

Expected False Positives 

Lethal 

14.0 

100.0 

438 

Epistasis 

Threshold 

99.6 

99.0 

9.895 

Pure 

0.0 

100.0 

56 

Heterogeneity 

2-locus 4-locus 

100.0 100.0 

99.8 99.6 

2,004 4,020 

Mixed 

90.7 

99.6 

3,928 

Table 7.14 : BEAM cost in 1,000 loci. 

User (s) 

Real (s) 

Lethal 

471.2 

483.9 

Epistasis 

Threshold 

533.4 

534.0 

Pure 

477.1 

477.5 

Heterogeneity 

2-locus 4-locus 

506.3 519.8 

509.8 520.4 

Mixed 

533.6 

534.4 
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Statistical Performance SNPHarvester performed very well under all tested cir­

cumstances (Table 7.15). The method had reasonable power to detect all causative 

loci under all models without excessively many spurious results. 

Computational Costs The majority of SNPHarvester's expense is in a few calls 

to PathSeeker, which whose cost is directly proportional to the number of SNPs n 

under study. Under the reasonable assumption that a small number of SNPs are asso­

ciated with the phenotype under study relative to the size of the available marker set, 

repeated invocations to PathSeeker by SNPHarvester can be regarded as a constant 

factor, resulting in an effectively linear overall runtime complexity. This analysis 

is supported by the empirical measurements outlined in Table 7.16. In each case, 

cost was a factor of SuccessiveRun more expensive than a locus-by-locus search as 

implemented by PLINK [66]. 

7.1.9 Logic Regression 

Parameters There are two types of logic regression that have been previously ap­

plied to genomic data. Here, I used the logicFS version made available as a Bio-

conductor package [106, 119]. I applied simulated annealing with upper and lower 

annealing chain temperatures start = 2 and end = —2, respectively, and 10,000 an­

nealing iterations. In 20 logicFS iterations, one tree was constructed with up to 10 

leaves. 

logicFS software provides a dummy coding that splits a single genotype variable 

into two allele values. While flexible, such a transformation may lead to excessively 



Table 7.15 : SNPHarvester performance in 1,000 loci. 

Sensitivity (%) 

Specificity (%) 

Expected False Positives 

Lethal 

99.2 

99.8 

2,003 

Epistasis 

Threshold 

100.0 

99.8 

2,016 

Pure 

99.2 

99.8 

2,003 

Heterogeneity 

2-locus 

100.0 

99.8 

2,015 

4-locus 

100.0 

99.6 

4,020 

Mixed 

100.0 

99.6 

4,026 

Table 7.16 : SNPHarvester cost in 1,000 loci. 

User (s) 

Real (s) 

Lethal 

21.7 

22.0 

Epistasis 

Threshold 

22.0 

22.3 

Pure 

23.0 

23.3 

Heterogeneity 

2-locus 4-locus 

21.8 21.7 

22.1 22.0 

Mixed 

21.7 

21.9 
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large trees or other problems. Therefore, I tested two further codings which explicitly 

model dominant and recessive effects. 

Statistical Performance logicFS had fair power to detect true associations in 

most models (Table 7.17). The sensitivity in each model depended largely on the 

coding used, varying as much as 49.2% between the best and worst (4-locus hetero­

geneous model). In all cases, logicFS had poor specificity. The study predicts over 

10,000 false positive associations in a million-marker genome scan. 

Computational Costs Logic regression's performance was not buoyed by reduced 

runtime complexity (Table 7.18). To analyze 1,000 markers required about 100 sec­

onds, which places it behind only BEAM as the second slowest non-exhaustive method 

evaluated. 

7.1.10 Random Forests 

Parameters Random forests [107] analysis was carried out using the RandomJun-

gle package [109]. For each data set, t = 500 trees were constructed based on yjn 

markers, where n is the total number of available loci. Every tree is grown as large 

as possible using the CART algorithm [78] and the importance of each variable is 

quantified by its Gini index. 

RandomJungle is multi-threaded software. To obtain realistic real time measure­

ments, eight CPU cores were allocated for analysis. 
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Table 7.17 : Logic regression performance in 1,000 loci using (a) dummy, (b) domi­
nant, and (c) recessive coding. 

(a) D u m m y coding 

Sensitivity (%) 

Specificity (%) 

Expected False Positives 

Epistasis 

Lethal Threshold Pure 

99.4 100.0 8.8 

98.6 98.3 97.2 

13,909 16,643 28,321 

Heterogeneity 

2-locus 4-locus 

98.6 79.2 

98.7 98.8 

12,809 11,697 

Mixed 

94.8 

98.7 

12,572 

(b) Dominant coding 

Sensitivity (%) 

Specificity (%) 

Expected False Positives 

Epistasis 

Lethal Threshold Pure 

91.0 100.0 4.8 

97.9 98.4 97.2 

21,326 16,239 27,558 

Heterogeneity 

2-locus 4-locus 

50.4 50.5 

98.1 97.9 

19,169 20,567 

Mixed 

58.0 

97.9 

21,224 

(c) Recessive coding 

Sensitivity (%) 

Specificity (%) 

Expected False Positives 

Epistasis 

Lethal Threshold Pure 

100.0 76.8 4.2 

98.9 97.7 97.2 

11,223 22,674 27,658 

Heterogeneity 

2-locus 4-locus 

99.6 79.2 

98.8 98.8 

12,119 11,626 

Mixed 

93.8 

98.9 

10,983 
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Statistical Performance Random forests were able to correctly determine all sus­

ceptibility loci with few spurious results for all models exhibiting marginal association 

(Table 7.15). Like many other algorithms, random forests were unable to detect pure 

interactions, though they seldom implicated unassociated markers. 

Computational Costs Random forests fit the largest possible classification tree 

to a data set consisting of y/n markers. Since binary split computation requires 

determining node impurity for each marker not used in an earlier split, complexity 

is linear in the number of loci under study. One may expect empirical running times 

to be more expensive than that of a linear search as realized by PLINK [66] by a 

factor of t, but in reality, RandomJungle is much faster (Table 7.20). I attribute this 

to a particularly thoughtful and efficient implementation of random forests, which is 

further sped up by parallelization. 

Table 7.18 : Logic regression cost in 1,000 loci. 

User (s) 

Real (s) 

Lethal 

103.9 

106.4 

Epistasis 

Threshold 

102.2 

104.6 

Pure 

104.6 

107.5 

Heterogeneity 

2-locus 4-locus 

103.2 102.7 

105.7 105.2 

Mixed 

103.5 

106.1 



Table 7.19 : Random forest performance in 1,000 loci. 

Sensitivity (%) 

Specificity (%) 

Expected False Positives 

Lethal 

100.0 

99.8 

2,214 

Epistasis 

Threshold 

100.0 

99.8 

2,098 

Pure 

4.8 

100.0 

465 

Heterogeneity 

2-locus 

100.0 

99.8 

2,095 

4-locus 

100.0 

99.6 

4,113 

Mixed 

100.0 

99.6 

4,224 

Table 7.20 : Random forest cost in 1,000 loci. 

User (s) 

Real (s) 

Lethal 

15.2 

3.1 

Epistasis 

Threshold 

14.4 

2.9 

Pure 

15.6 

3.2 

Heterogeneity 

2-locus 4-locus 

14.7 15.1 

3.0 3.1 

Mixed 

15.4 

3.1 
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7.2 10,000 Loci 

The human genome consists of approximately 3 x 109 base pairs. Even given the 

correlation of nearby sequences, a scan of 1,000 loci would be woefully inadequate to 

detect association without prior information. Indeed, data sets with more than 106 

SNPs and copy number variations are currently generated with increased frequency 

as genotyping costs fall. 

While it is not feasible in the present context to conduct a power study of the 

above methods with such large data sets, it may be useful to evaluate the performance 

of a few methods with more than 1,000 loci. To this end, I selected three algorithms 

based on their statistical performance and computational tractability. In particular, I 

chose AGR, random forests, and SNPHarvester for evaluation with 10,000 loci under 

the models presented in Chapter 6. 

Statistical Performance The performance of the three selected methods is pre­

sented in Table 7.21. The algorithms exhibited no appreciable difference when ana­

lyzing the 2-locus heterogeneous or the threshold or lethal genotype epistatic models. 

Random forests, however, suffered from slightly reduced sensitivity under the 4-locus 

heterogeneous model (93.1%) and poor sensitivity to detect associated loci in the 

mixed and pure epistasis models. 

The inability of random forests to consistently detect susceptibility loci generated 

under the mixed model may come as a surprise, as the method had perfect sensitivity 

when considering the smaller 1,000-locus data sets. The negative impact of a larger 

data set with comparatively more noise serves to emphasize the shortcomings of 
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stochastic methods, which may only consider a small number of features at once: the 

set of associated loci must be selected simultaneously at random. As the number of 

unassociated loci and susceptibility loci increases, the probability of such an event is 

diminished. 

Computational Performance Computationally, the selected methods performed 

predictably (Table 7.22). AGR was extremely fast in every case in which exhaustive 

pairwise enumeration was not requested, requiring only half a second to input, pro­

cess, and report on 10,000 SNPs. The complexity of random forests does not depend 

on the data under study. Consequently, its linear runtime was practically invariant 

over all models. SNPHarvester was also consistent in its cost, though it took notice­

ably more time to analyze the data set containing a pure interaction. One possible 

explanation for this phenomenon is that PathSeeker identifies few interacting SNPs 

at each invocation, requiring evaluation of more markers during further calls. 

7.3 Summary 

In this chapter, I described an evaluation of the methods presented in Chapters 3 and 

4 using data generated by SimGE (Chapter 5) under the models outlined in Chapter 

6. Initially, only 1,000 loci were generated in order to identify which methods might 

be capable of feasibly detecting multi-locus association at a genome-wide scale. 

Based on their performance in the initial small data sets, I selected three algo­

rithms for further study using 10,000-locus simulated data sets. Of these, association 

graph reduction and SNPHarvester showed markedly superior performance over ran-
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Table 7.21 : Performance of association graph reduction (AGR), random forests (RH), 
and SNPHarvester (SH) in 10,000 SNP data sets. Here, SNS is the sensitivity of the 
method, SPC the specificity, and FP the expected number of false positives in a 
study comprised of 1,000,000 markers with a similar generative process. 

SNS 

-? SPC 

FP 

SNS 

•2 SPC 

FP 

2 SNS 
o 

£ SPC 
H 

FP 

SNS 

o SPC 
i—i 

F P 

'5b 

| SPC 
o 

Z P P 

| SPC 

FP 

AGR RF SH 

100.0 100.0 100.0 

99.8 99.8 99.8 

2,024 2,004 2,014 

100.0 93.1 100.0 

99.6 99.6 99.6 

4,037 3,738 4,024 

100.0 100.0 100.0 

99.8 99.8 99.8 

2,029 2,004 2,017 

100.0 100.0 100.0 

99.8 99.8 99.8 

2,033 2,004 2,013 

97.4 0.0 100.0 

99.8 100.0 99.8 

1,952 0 2,013 

100.0 50.3 99.8 

99.6 99.8 99.6 

4,036 2,002 4,020 
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Table 7.22 : Performance of association graph reduction, random forests, and 
SNPHarvester in 10,000 SNP data sets. 

Epistasis Heterogeneity 

Ctf User (s) 

< 
Real (s) 

fc User (s) 

Real (s) 

_̂  User (s) 
m 

Real (s) 

Lethal Threshold Pure 

1.3 1.2 6275.5 

0.5 0.5 801.2 

53.6 52.6 53.8 

12.2 11.9 12.2 

233.2 233.7 250.1 

234.1 234.5 250.9 

2-locus 4-locus 

1.2 1.2 

0.5 0.5 

53.0 50.9 

12.1 11.2 

234.2 235.1 

235.1 236.0 

Mixed 

1.3 

0.5 

51.2 

11.4 

234.8 

235.8 

dom forests, which was incapable of identifying pure interactions. In Chapter 8, I will 

discuss these methods further and propose possible improvements to each as future 

work. 



Chapter 8 

Summary 

Many common phenotypes are caused in part or entirely by genetic mutations. 

The identification of these changes is the goal of the genotype-phenotype problem. In 

most cases, this task is made difficult by the complexity and redundancy of cellular 

processes. Due to the action of evolutionary selection, few easy to identify single-gene 

deleterious phenotypes exist. Rather, many genetic lesions collude to increase risk 

either linearly (locus heterogeneity) or non-linearly through interactions (epistasis). 

Identifying genotype-phenotype associations can be computationally intractable, 

depending on the methods used to investigate them. For example, any attempt to 

discover k-w&y interactions must somehow cope with the enormity of the space of all 

such combinations. Indeed, exhaustive enumeration of all combinations of markers in 

a genome-wide association study is likely to remain infeasible for k > 2 (Table 2.1). 

Instead, practical algorithms must resort to partial searches of this space by making 

use of greediness or randomness. 

Even these approaches may be problematic. While greedy strategies can bring the 

running time of an algorithm arbitrarily close to linear in the number of markers, they 

necessarily rely on marginal and low-order interaction effects to identify participants 

of an interaction. However unlikely in real data, some generative models predict 

little or no marginal effect, which suggests that approximate searches may fail to 

find pure interactions. Stochastic algorithms face similar challenges. Rather than 
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climbing a hill of significance, most rely on randomly selecting the correct group of 

interacting markers. As the number of observable loci increases, the chance of such 

an event decreases. No matter the method, exhaustive, greedy, or stochastic, the 

genotype-phenotype association problem is fraught with computational difficulty. 

8.1 Contributions 

In this thesis, I have described four contributions representing progress in addressing 

the genotype-phenotype association problem. First, I performed an in-depth liter­

ature review and classified 30 methods designed to detect multi-locus associations 

according to their search strategy (Figure 3.1). Detailed descriptions of a subset of 

these methods chosen to represent many classes of algorithms appear in Chapter 3. 

Having familiarized myself with the state of the art, I designed a novel approach 

called association graph reduction (AGR). To determine its utility, I implemented a 

multi-locus genotype simulator and conducted performance testing of AGR and ten 

other methods. 

Association Graph Reduction AGR is a novel approach to the genotype-phenotype 

association problem. The purpose of an association graph is represent relevant knowl­

edge about associations between individual loci or combinations thereof. After con­

struction, the graph is reduced by contracting edges between vertices representing 

loci with evidence of interaction. 

Through the use of av and ae vertex and edge inclusion thresholds, the proportion 

of the interaction space examined is finely controlled. In the case of x2 tests where 
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the resulting p-value is the quantity of interest, setting av = ae — 1 results in an 

exhaustive pairwise search of all markers followed by complete testing of combined 

vertices with all others. Alternatively, setting av = 0.05 and ae — 1 would cause AGR 

to test only 0.052 of all possible pairwise interactions. This parameterization provides 

flexibility that sets my method apart from most others. I have created a very efficient 

multi-threaded implementation of AGR. Testing 10,000 markers required only half a 

second when av = ae = 0.1, which are thresholds with high power to recover all but 

pure interactions. 

SimGE To address the lack of genotype simulation software capable of producing 

epistatic effects, I have introduced SimGE. This Java-based program can quickly syn­

thesize genome-sized data sets with markers generated under any association model 

that can be expressed as a set of phenotype probabilities conditional on a multi-locus 

genotype. To introduce realistic errors, SimGE can apply noise to already produced 

genotypes. The system is already capable of introducing genotyping errors and miss­

ing data and can be easily extended to provide markers in linkage disequilibrium with 

susceptibility loci. 

Evaluation of Methods I have evaluated eleven algorithms designed to detect 

multi-locus association. These were tested for their ability to quickly detect associated 

loci while minimizing false positives. Initially, each method was applied to 1,000 

unrealistically small 1, 000-locus data sets generated under six genetic models with the 

aim of eliminating from further consideration algorithms which were too inaccurate or 
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slow. Surprisingly, eight of the eleven methods evaluated had less than 90% sensitivity 

for at least one genetic model. Others test only pairwise interactions, which can 

severely reduce the chance of identifying epistasis. While a few were particularly slow, 

none of the remaining three was removed consideration for poor performance. Based 

on this analysis, I selected the AGR, random forest, and SNPHarvester methods for 

further consideration. 

Having identified three methods fast and accurate enough to merit further con­

sideration, I evaluated their performance on 1,000 random 10,000-locus data sets 

generated under the same genetic models. With relatively fewer susceptibility loci 

present when compared to the size of the entire data set, the sensitivity of random 

forests suffered. The method builds classification trees based on a small random 

set of the input variables without regard to prior information or marginal associa­

tion. As a result, the models with more loci (4-locus heterogeneous and mixed) as 

well as that displaying no marginal statistical significance were more difficult. Given 

the large number of susceptibility loci already associated with many common dis­

eases with complex etiology, the random forests algorithm appears ill-suited to detect 

multi-locus genotype-phenotype associations in genome-wide data. 

In contrast, AGR and SNPHarvester performed well under all models studied. 

Both attained perfect sensitivity in five of six models. In the remaining cases, 

SNPHarvester had 99.8% sensitivity in the mixed model and AGR 97.4% in the 

presence of pure epistasis. SNPHarvester's loss of power may be attributed to the 

large size of the mixed model, which incorporates epistasis. It is possible that, in a 

few trials, PathSeeker paired an independently significant locus with one enhanced by 
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interaction. As a result, the remaining interaction locus may not be identified. While 

shy of perfection, AGR's 97.4% sensitivity in detecting susceptibility loci displaying 

no main effect is impressive. Fewer than 3% of true positive results were missed, in 

spite of the application of conservative Bonferroni correction. 

After careful evaluation, I conclude that AGR and SNPHarvester are likely to pro­

vide the best performance in genome-wide SNP data sets. Both are reasonably fast, 

with SNPHarvester requiring about 4 CPU-minutes and AGR about 1.2 CPU-seconds 

when edge and vertex thresholds av = ae = 0.1 are used. Statistical performance 

is comparable in nearly all circumstances, though SNPHarvester may suffer when 

many risk loci are present and AGR requires exhaustive evaluation in the absence 

of main effects. However, given a notable lack of published instances of pure epista-

sis, AGR appears to be the best and fastest all-around method to detect multi-locus 

association. 

In addition to providing good statistical power and speed, AGR provides insight 

into the roles loci play in interactions. The result of an association graph reduction 

is a weight-sorted list of vertices, whose top entries may exceed the experiment-wide 

significance level. When taken together, these may be interpreted as a linear model. 

For example, if the weights of the three vertices containing markers (w,x), y, and z 

exceed the experiment-wide significance level, we may view this as evidence of epistasis 

between w and x as well as heterogeneity involving that pair and the remaining loci, 

suggesting the model P ~ wx + y + z for phenotype P. Such extra information is 

unavailable in every other method tested. 
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8.2 Future Work 

The efforts of the current study provide several possibilities for enhancement and fur­

ther research. Specifically, this future work may come in three areas. First and most 

easily, SimGE can be improved and made into a truly remarkable software package. 

Next, investigation into AGR parameters and improvements to other methods may 

be explored. Finally, the most promising methods should be applied to real-world 

data. 

SimGE is already a fast, advanced, and easy to use genotype simulator. However, 

like most software products, it may be improved. While it is already efficient enough 

to generate genome-sized data sets in a short amount of time, it could be made 

much faster. Improvements to internal data structures, more refined data types, and 

parallelization may vastly decrease the time required to generate data, making it easier 

to create large numbers of large synthetic data sets. Such improvements in speed may 

prove particularly important as real data sets grow larger. To make the data more 

realistic, additional data corruption post-processing steps should be implemented. 

Most importantly, markers in linkage disequilibrium (LD) should replace directly 

observed susceptibility loci. In actual studies, researchers are seldom lucky enough 

to test causal variants by chance. Rather, they must rely on strong LD to identify 

markers near causative loci. Finally, haplotypes may be created by incorporating 

HapMap [120] structure according to an existing algorithm [121]. Incorporation of 

the HapMap data will allow for the accurate assessment of tests with realistic and 

varying levels of correlation in the observed data. 
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Though I have investigated several AGR parameterizations and choices for those 

parameters, the consequences of such choices deserve further research. In Chapter 

4, I presented two types of edge weights, those that take into account phenotypic 

status and those relying only on genotypes. Additionally, a genotypes-only measure 

may look for strong dependence in cases only or a difference in dependence between 

cases and controls. While each combination of these edge weight parameters has been 

implemented and informally tested, no rigorous comparison or determination of their 

strength and weaknesses exists. Also, the effects of av and ae inclusion thresholds 

should be quantified conditional on the model of genetic etiology. While an F-test 

provides effective control for model complexity, other options should be explored. Fi­

nally, with so many genotype-phenotype association test statistics available (notably 

entropy-based statistics such as [75] and [76]), weight measures other than x2 should 

be investigated. 

One relatively unknown method showed particular promise deserving of further 

development. While it has been used little by parties other than its authors, SNPHar-

vester performed very well in the simulated tests presented in Chapter 7. The method 

is a stochastic search which chooses as its starting points k randomly selected SNPs 

for a user-specified value of k. Since genes interact in biologically meaningful ways, 

it is reasonable to assume that prior biological knowledge can be profitably used to 

bias this random selection. Specifically, I would like to investigate the effect of in­

tegrating expert knowledge from interaction databases such as GeneNetwork [122]. 

By comparing any changes induced by this bias to those from random assortments 

of this gene-gene interaction network, I might quantify possible improvements in the 
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quality of results identified by the method. 

As explained in Chapter 5, practical circumstances led me to make use of only 

synthetic data to compare existing methods and establish the utility of AGR. In 

particular, there are few instances of published statistical epistasis, most likely due 

to a lack of effort to discover the phenomenon. Worse, I am unaware of any pub­

licly available genome-wide genotype-phenotype data sets containing widely-accepted 

interaction effects. Without real-world benchmark data, little choice remains other 

than to synthesize data with known generative models. 

Having identified a small set of methods showing promise to identify locus het­

erogeneity and epistasis, it may prove useful to apply these algorithms to real-world 

data. Recently, genome-wide data have been made available through large scale multi-

phenotype studies such as the Wellcome Trust Case Control Consortium [8] and the 

Database of Genotypes and Phenotypes [123]. Evaluating several such data sets with 

the set of best methods may provide interesting insights into the phenotypes under 

study and the methods, themselves. Effects found by most or all methods may rep­

resent robust associations worthy of further scrutiny, while discrepancies may point 

to shortcomings in one or more method. Disagreements among methods should be 

given intense examination. 

8.3 Conclusion 

Many familiar phenotypes are caused in part by genetic anomalies. Among these are 

hypertension, arthritis, and cancer. While biomedical research has made progress in 

diagnosis and treatment of many such conditions, the underlying causes often remain 
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a mystery. Deciphering the complex etiology of such diseases through genetic studies 

with tools such as association graph reduction may provide valuable insights into their 

causes. With such information, researchers may develop vastly improved diagnostic 

tools and treatments, extending and improving the lives of the affected. 
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