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Abstract 

Parameter Estimation in Mathematical Models of 
Lung Cancer 

by 

Deborah L. Goldwasser 

The goal of this thesis is to improve upon existing mathematical models of lung 

cancer that inform policy decisions related to lung cancer screening. Construction 

of stochastic, population-based models of lung cancer relies upon careful statistical 

estimation of biological parameters from diverse data sources. In this thesis, we fo-

cus specifically on two distinct aspects of parameter estimation. First, we propose a 

model-based framework to estimate lung cancer risk due to repeated low-dose radia-

tion exposures using the two-stage clonal expansion (TSCE) model. We incorporate 

the TSCE model into a Bayesian framework and formulate a likelihood function for 

randomized screening data. The likelihood function depends on model-based risk 

correlates and effectively penalizes parameter values that correspond to model-based 

contradictions. The net result is that both the sensitivity and specificity of parameter 

estimation relating to excess lung cancer risk is increased. This methodology is ap-

plied to data from the Mayo Lung Project and estimates of 10-year excess lung cancer 

risk as a function of age at enrollment and number of screens are derived. Second, we 

describe a new statistical approach aimed at improving our understanding of the nat-

ural course of lung cancer. Specifically, we are interested in evaluating the evidence 

for, or against, the bi-modal hypothesis which proposes that lung cancers are of two 
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categories, either slow-growing and non-invasive cancers (tending to over-diagnosis) 

or rapidly-growing and highly aggressive. We represent the growth trajectory of lung 

tumors using the evolutionary parameters of cancer stem cell branching fraction (/) 

and cell mutation rate (fi). While concern over widespread implementation of lung 

cancer screening has focused primarily on the extent of over-diagnosis, these results 

are consistent with the presence of a high percentage of rapidly-growing, aggressive 

cancers. 
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Chapter 1 

Introduction 

1.1 Overview: Lung Cancer Screening 

Lung cancer has the second highest incidence for both genders, second only to prostate 

cancer in men and breast cancer in women. Because lung cancer is primarily detected 

at an advanced stage, it is responsible for the largest number of cancer deaths in both 

men and women [58] in the U.S. and most advanced countries. A key focus of cancer 

prevention efforts has been centered on smoking cessation. However, because former 

smokers remain indefinitely at an increased lung cancer risk, smoking cessation pro-

grams have had only a limited effect on lowering lung cancer mortality. There is a 

continued need for effective secondary prevention in the form of early detection and 

early treatment. The paradigm in the early detection of lung cancer is that the earlier 

the disease is detected, the less likely it is to have spread to distal regions of the body, 

and the higher the curability and survival rate. 

Despite the theoretical advantages of early detection, in practice lung cancer screen-

ing trials have produced ambiguous results. In particular, they have failed to show 

a mortality benefit attributable to screening in the context of a randomized clinical 

trial. The Mayo Lung Project (MLP) was the most extensive randomized clinical 

1 
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trial designed to evaluate a mortality benefit attributable to screening by chest x-ray. 

However, in the MLP, despite the detection of a higher number of early-stage cancers 

in the screening arm, there were more lung cancer deaths in the screening arm than 

the control arm [18, 19]. After more than twenty years of follow-up, there were a 

greater number of both lung cancers and lung cancer deaths among screened partic-

ipants [40, 41]. Computed tomography (CT) may prove superior to chest x-ray as a 

means of early detection. A study appearing in the New England Journal of Medicine 

reported that CT screening resulted in the estimated 10-year survival of 88% of Stage 

I-detected cancers [30]. On the other hand, there are potential risks associated with 

screening resulting from repeated radiation exposures and from unnecessary surgical 

interventions. Presently, no national cancer advisory source is willing to endorse lung 

cancer screening in the broader population [32, 4], 

In order to predict the impact of an early detection program in lung cancer, we need 

a quantitative understanding of both the disease's natural course and of the risks 

associated with screening. The biology of lung cancer progression may limit the ef-

fectiveness of early detection methods. A high prevalence of very aggressive cancers 

that metastasize rapidly at a small size and/or very slow-growing tumors can limit 

the effectiveness of a screening program within a targeted population. The latter phe-

nomenon of detecting slow-progressing cancers that are unlikely to shorten a patient's 

life expectancy is commonly referred to as "over-diagnosis". In the first scenario, the 

time window for early detection is too short to be practically implemented and in the 

second scenario, early detection does not improve survival because the tumor was not 

life-threatening. 

Over-diagnosis has been frequently cited as an explanation to the seemingly paradox-

ical findings of improved survival of screen-detected cases in the Mayo Lung Project 

[7, 41, 57]. However, a pathologic review of cases detected in the MLP confirmed the 
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histologic diagnosis of cancer in all cases it studied although a higher rate of carci-

noma in situ detected in the screening arm was noted [11]. Other studies indicate 

that the power of the MLP may have been lower than initially planned, and that 

the initial findings of the MLP were not inconsistent with a model of moderately ag-

gressive tumor progression and a modest mortality benefit [15, 24]. The inconclusive 

findings of the MLP have led to debate as to whether randomized clinical trials are 

an efficient way to study the benefits of screening [45, 50]. 

In lieu of a high degree of over-diagnosis, another distinct aspect of cancer biology 

may also explain the failures of lung cancer screening trials to date, namely the 

micro-evolution of pre-malignant cells in the lung. Mathematical models of lung can-

cer that describe the growth of pre-malignant cells have been shown to be consistent 

with age and exposure-dependent patterns of lung cancer risk in epidemiologic data-

sets [44, 46]. This same population of pre-malignant cells may likewise be susceptible 

to malignant transformation due to radiation exposures incurred during screening. 

The survival advantage of early detection may be negated if the total lung cancer 

incidence rate in screened arm participants is elevated. 

The failure to demonstrate a mortality benefit in lung cancer screening trials has 

been near-unanimously attributed to over-diagnosis, without considering evidence 

supporting competing hypotheses. Using the statistical estimation techniques out-

lined in this thesis, we will focus separately on the estimation of excess lung cancer 

risk attributable to low-dose radiation exposure in individuals with long prior ex-

posures to cigarette smoke and on the estimation of the proportion of aggressive, 

rapidly-growing and over-diagnosed lung cancers in the population. 



4 

1.2 Overview: Excess Lung Cancer Risk Estima-

tion 

In order to estimate the excess lung cancer risk attributable to repeated screening by 

chest x-ray, we modify a two-stage clonal expansion (TSCE) model and estimate ex-

cess lung cancer risk using a Bayesian framework. The advantage of this approach is 

the ability to incorporate information on risk correlates which are specific to radiation-

induced lung cancer risk. In contrast to the proportional hazards model, the TSCE 

model predicts a correlation of excess lung cancer risk with age at exposure and ex-

posure frequency. A key feature of the long-term follow-up data in the MLP is that 

excess lung cancer risk in screened arm participants is correlated with the number of 

screens received and age at enrollment. By parameterizing our estimation methodol-

ogy in accordance with the TSCE model, we increase the power to detect an excess 

risk of radiation exposure compared to the proportional hazards method. Whereas 

the original report of the long-term follow-up MLP data found that the increase in 

lung cancer deaths was not significant, we find that excess lung cancer risk in the 

MLP is significantly higher among screened arm participants versus control arm par-

ticipants (>=0.002). 

We believe that this approach has broader implications beyond the scope of this 

study. While the number of patients recruited for a given clinical trial may be lim-

ited, the range of data collected for each patient is ever-increasing. This represents 

the classical "small n, large p" problem. A model-based framework for estimation 

imposes constraints on the parameter space of solutions, which is reflected in the like-

lihood function. Parameter values that are inconsistent with the model predictions 

for a given data-set will be penalized more strongly than if a model-based estimation 

framework was not used. Ultimately, this increases the power to assign statistical 

significance to a given parameter value (p < 0.05) when risk correlates are consis-
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tent with model assumptions, but also increases the ability to reject a parameter as 

statistically significant when the risk correlates violate the model assumptions. Both 

sensitivity and specificity are thereby improved simultaneously. The drawback of 

such an approach is that the model framework must be well-validated and based on 

a priori biological knowledge. In the case of a flexible version of the TSCE model in 

lung cancer, this condition is satisfied. 

1.3 Overview: Tumor Progression Modeling 

We evaluate the ability of our existing stochastic model of lung cancer progression, 

calibrated to incidence data from the MLP, to explain findings from annual repeat 

screening in the Mayo CT screening trial. The Mayo CT trial found 66 cancers, of 

which there were 15 incidence non-small cell lung cancers found in males, the cohort 

comparable to the MLP. Despite the small size of the data-set, there were a signif-

icantly greater percentage of advanced-stage cancers appearing during the annual-

repeat screens than predicted by the model. The radiologic size of advanced-stage 

cancers in the Mayo CT study was smaller on average than the early-stage cancers 

detected by chest x-ray, with implications for evaluating a size-driven model of lung 

cancer progression. The large size of early-stage cancers in the MLP compared to 

the small advanced cancers in the Mayo CT challenges the notion that large early-

stage cancers progress to advanced-stage disease. We test whether both sets of data 

can be reconciled by a single statistical model of tumor growth and progression. In 

the first model, we assume tumors grow exponentially with a size at stage transi-

tion governed by the Gaussian distribution, independent of growth rate. We reject 

homogeneity of the data based on a significant difference between the mean size at 

stage transition between the two data-sets. Next, we define a statistical model gov-

erned by a multi-type Galton-Watson branching process representing tumor growth 
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and stage transition as a function of two evolutionary parameters, namely, the cancer 

stem cell branching fraction (/) and cell mutation rate (u). We simulate a likelihood 

distribution for each cancer case reflecting tumor size, its prior history, and stage at 

detection. We again reject homogeneity of the two data-sets based on a model in 

which cancers from the MLP and Mayo CT derive from a common distribution gov-

erned by a single parameter combination of / and u. However, when we cluster the 

MLP cancers based on a concordance matrix representing similarity of likelihoods, we 

find that the advanced-stage cancers detected in the Mayo CT are consistent with a 

unique cluster of advanced-stage MLP cancers, but not distinct clusters representing 

early-stage cancers. 

Our analysis lends support to a bi-modal model of tumor progression, in which some 

lung tumors progress to an advanced stage rapidly whereas others progress slowly 

and may reach modest sizes without transitioning to advanced-stage disease. The 

analysis methods we describe and apply depend upon lung cancer data detected by 

different screening modalities. CT can identify cancers early in the natural course of 

lung cancer due to its low size at detection threshold and high sensitivity. Therefore, 

data from CT screening trials (both single-arm and randomized) detected at annual 

repeat screens represent a unique opportunity to evaluate the size and frequency of 

advanced-stage cancers, potentially at smaller sizes than previously ever recorded. 

Additional comparisons of data from CT screening with data from cancer registry 

and chest x-ray trials may prove highly informative to models of lung cancer natural 

course because they provide a window into different time points of disease (early and 

late) progression. Our methodology may be particularly applicable to data from the 

National Lung Screening Trial (NLST) when it becomes available. The NLST is a 

randomized clinical trial comparing chest x-ray to CT in reducing lung cancer mor-

tality. Additional data on chest x-ray screening outcomes from the Prostate, Lung, 

Colorectal, and Ovarian Cancer Screening Trial (PLCO) are forthcoming as well. 
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1.4 Data-Sets 

1.4.1 Mayo Lung Project 

The MLP, initiated in 1971 and completed on July 1, 1983, recruited 10,933 male 

smokers over the age of 45 years to receive a baseline chest radiography screen. Of 

those initially recruited in the MLP, 91 prevalence cases, i.e. patients who tested pos-

itively for lung cancer on the initial screen, were identified and followed separately. Of 

those that remained, 9,211 satisfactorily passed other entry criteria and were random-

ized into two groups: a screening and a control arm. The screening arm participants 

were instructed to receive a chest radiograph and a sputum cytology test every four 

months for a period of six years. The control arm received an annual reminder in the 

mail to undergo a chest radiograph, in line with the 1970 Mayo recommendations, 

and also a follow-up survey. In addition to the six years of active trial, there was an 

additional year of follow-up. 

Table 5.1 summarizes data on detected cancers found during the first seven years of 

the MLP trial, referenced by the enrollment date for each trial participant[18, 19]. A 

total of 151 lung cancers were detected in the screening arm whereas 120 lung cancers 

were detected in the control arm (an excess of 31 lung cancers in the screening arm). 

A higher percentage of the total number of lung cancers found in the screening arm 

was Stage I (79/151 or 53%) compared to the control arm (33/120 or 27.5%). A mor-

tality review committee reviewed the causes of death for deceased participants during 

the trial. According to death certificate records, there were 82 deaths attributed to 

lung cancer in the screening arm (five were study-related deaths) and 70 lung cancer 

deaths in the control arm (an excess of 12 lung cancer and study-related deaths in the 

screening arm). In addition, there were 606 deaths by causes other than lung cancer 
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in the screening arm and 595 in the control arm. 

In order to determine the impact of the MLP screening regimen on lung cancer mor-

tality over a longer time frame, Marcus et al. (2000) searched death certificate records 

available through the National Death Index (NDI) reported on or before December 

31, 1996. A detailed description of the search algorithm used to identify lung cancer 

deaths in trial participants is provided [40]. The search resulted in a total number of 

337 lung cancer-attributed deaths in the screening arm versus 303 in the control arm 

(an excess of 34 deaths in the screening arm). In addition, there were 2,156 deaths by 

a cause other than lung cancer in the screening arm and 2,142 in the control arm. The 

median reported follow-up time was 20.5 years including the six-year trial duration. 

Table 5.2 summarizes the aggregated incidence and mortality data. 

In addition, a further follow-up study identified additional lung cancer incidence cases 

in MLP participants through December 31, 1999 [Mareus06]. An assignment of lung 

cancer status relied upon data from multiple sources including medical records, next-

of-kin and participant surveys, and death certificates. A detailed classification algo-

rithm was used to assign a participant's lung cancer status and an assessment of the 

algorithm's validity and sensitivity was performed [41]. The search resulted in the 

identification of a total number of 585 lung cancers in the screening arm versus 500 

in the control arm (an excess of 85 lung cancers in the screening arm). Due to the 

nature of the search methodology, 885 participants in the screening arm were classi-

fied as having an unknown lung cancer status, versus 943 in the control arm. Under 

the assumption that the ability to identify lung cancer status was independent of true 

lung cancer incidence, the authors projected a total of 724 lung cancer cases in the 

screening arm versus 630 in the control arm as of December 31, 1999 (an excess of 94 

cancers in the screening arm). The median reported follow-up time was 23.5 years, 

including the six-year trial duration. 
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We obtained the original data recorded during the MLP trial and merged it with 

the patient-level records from the two long-term follow-up studies to form a unified 

MLP data-set. The original data collected during the MLP trial is made available 

to CISNET participants on its website. Data integrity is guaranteed by Phil Prorok, 

PhD of the National Cancer Institute (NCI). These data contain individual patient 

records on medical and smoking histories at the time of enrollment, annual follow-up 

questionnaire results, chest x-ray visit dates and findings, cytology results (including 

staging of lung diagnoses) as well as death records (including attributed causes of 

death by trial participants). Data from the two long-term follow-up studies was pro-

vided by Pamela Marcus, PhD, of the NCI. These data contain patient-level records 

on lung cancer incidence status as well as vital status and attributed causes of death 

during the respective follow-up periods. 

1.4.2 Mayo CT 

The Mayo CT study was a prospective cohort study which began in 1999 and re-

cruited 1,520 individuals (788 male, 732 female), greater than 50 years of age, with 

a smoking history of more than 20 pack-years. The study was intended to assess the 

extent of a stage shift toward Stage IA and IB diagnoses among detected lung cancers 

resulting from screening by CT. Since the Mayo CT study was a single-arm study, 

no control arm exists. The absence of a control arm has prompted several model-

ing groups to simulate a control arm against which to compare the observed results [3]. 

All 1,520 participants received a baseline CT screen and also an annual CT scan for 

a period of four additional years. The study confirmed that in 68% of the patients 

(1,049), at least one non-calcified pulmonary nodule was identified. Up to six nodules 

were reported at each annual screen, including the prevalence screen, and each re-
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ported nodule was followed separately over time. Recommendations regarding nodule 

follow-up were provided but decisions regarding patient management were left to the 

discretion of the attending physician. Confirmed cancers were classified as incidence, 

prevalence or interval/symptomatic cancers. Importantly, prevalence cancers are de-

fined as those cancers that resulted from a visible nodule detected at the time of the 

prevalence screen, but possibly removed years later. Given this classification scheme 

and the high sensitivity of CT, the reported incidence cancers are likely to have arisen 

spontaneously during the period of screening. 

A total of 66 cancers were found, comprised of 58 non-small cell lung cancers (NSCLC) 

and eight small cell lung cancers (SCLC). All cancers had available radiologic data 

with the exception of three interval cancers (2SCLC, 1 NSCLC). A summary of the 

Mayo CT findings for the 58 NSCLC is depicted in Table 5.10. There were equal 

numbers of prevalence and incidence cancers: 29 prevalence and 29 incidence can-

cers (including one interval cancer) in total. However, there were more than twice 

as many prevalence cancers in women than in men: 20 prevalence cancers in women 

and nine in men. There were 16 incidence cancers in men and 13 incidence can-

cers in women. However, in men, there were seven advanced-stage incidence cancers 

(one stage unknown) whereas in women, there were three advanced-stage incidence 

cancers. Among the 58 NSCLC cases, there were 13 NSCLC deaths reported in the 

data-base. Nine of the 13 total NSCLC deaths were attributable to males with re-

ported incidence or interval NSCLC cases (Table 5.11). 

We compare and contrast the maximum reported radiologic tumor diameter (mm) 

between incidence cancers detected in the Mayo Lung Project and the Mayo CT 

study. A summary of these findings can be found in Table 5.12. Among males in 

the Mayo CT, the median maximum reported radiologic tumor diameter was 7.96 

mm (n=7) among Stage I cancers and 11.97 mm (n=7) among advanced-stage can-
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cers. Among males in the Mayo Lung Project having measurable tumors, the median 

maximum reported radiologic tumor diameter was 24.00 mm (n=49) among Stage 

I cancers and 40.00 mm (n=30) among advanced-stage cancers. Therefore, for each 

data-set considered separately, early-stage cancers had a smaller tumor diameter than 

advanced-stage cancers, but advanced-stage cancers detected in the Mayo CT study 

were smaller than early-stage cancers detected in the Mayo Lung Project. We con-

sidered the possibility of contamination of Mayo Lung Project Stage I cancers with 

advanced-stage tumors. Due to a change in staging guidelines between the two stud-

ies, there were nine node-positive tumors among Stage I cancers in the Mayo Lung 

Project. However, after excluding the nine Stage I, node-positive cancers, the median 

maximum reported radiologic tumor diameter among Stage I cancers in the Mayo 

Lung Project decreased by 0.5 mm to 23.5 mm (n=40). 

1.4.3 International Early Lung Cancer Action Program (I-

ELCAP) 

The International Early Lung Cancer Action Program (I-ELCAP) originated in New 

York and is now an international effort in lung cancer screening with 38 participating 

centers worldwide, under the direction of Claudia Henschke, MD, PhD of the Weill 

Cornell Medical College in New York. Each participating institution was permitted 

to set its own entry criteria but was required to adhere to the I-ELCAP screening 

protocol so that data can later be pooled. Enrollees in the trial must be at least 40 

years old, and have elevated risk for lung cancer due to either a history of cigarette 

smoking or another type of environmental exposure. Each enrollee receives a baseline 

screen using low-dose CT. The workup of a positive result on the initial low-dose 

baseline CT and annual repeat screening differs. A key distinction between the base-

line and annual repeat screenings is the size at which biopsy is performed by use of 

fine needle aspiration. For baseline screenings, nodules less than 15 mm in tumor di-
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ameter are not biopsied in the absence of nodule growth (evaluated by a CT interval 

of 3 months). In contrast, for new nodules identified during annual repeat screen-

ing, biopsy is performed on nodules as small as 5 mm in the absence of further growth. 

For 31,567 asymptomatic individuals, there were 410 lung cancers found to have lung 

cancer on the baseline screen, and there were 74 lung cancers that arose during an-

nual repeat screens. Of the 410 baseline lung cancers, 348 were stage I (85%) and of 

the 74 annual repeat cancers, 64 were Stage I. Notably, the frequency of advanced-

stage cancers is equal for baseline and annual repeat screenings. A comparison of 

radiologic tumor sizes directly prior to treatment for all annual-repeat cancers in the 

Mayo CT and I-ELCAP data-sets may be informative in explaining the decreased 

rate of advanced-stage annual repeat cancers in I-ELCAP. However, size data on 

I-ELCAP annual-repeat cancers is unavailable. We have obtained partial data for 

baseline cancers from the New York ELCAP with initial recorded radiologic sizes 

of the first-seen tumor nodule. A comparison of the first reported radiologic sizes of 

prevalence cancers between Mayo CT and ELCAP cancers is illustrated in Table 5.13. 

1.4.4 Lung Screening Study (LSS) 

The Lung Screening Study (LSS) was a pilot and feasibility study for the National 

Lung Screening Trial (NLST) designed to compare the use of chest x-ray versus 

low-dose computed tomography for lung cancer screening in over 50,000 high-risk 

individuals. The study began in September, 2000 and a total of 1660 subjects were 

randomized to the CT arm and 1658 randomized to the chest x-ray arm. The enroll-

ment criteria restricted enrollment to individuals between the ages of 55 and 74 years 

old, with at least 30 pack-years of smoking. Former smokers were admitted if they 

met these criteria and quit within the last 10 years. As in the Mayo CT study, work-

up of positive screens and individual patient management was left to the discretion 
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of the patients' personal health care provider. 

Table 5.14 outlines the reported findings from the LSS study. A total of 40 lung 

cancers were reported in the CT arm and a total of 20 lung cancers were reported in 

the chest x-ray arm. Furthermore, there were a total of 16 Stage III-IV lung cancers 

detected in the CT arm and 9 Stage III-IV lung cancers detected in the chest x-ray 

arm. We note however that 9 of the stage III-IV lung cancers detected in the CT 

arm were detected at baseline. Due to small numbers of total cancers, the difference 

in advanced-stage cancers between the two groups was considered not statistically 

significant. 



Chapter 2 

Excess Lung Cancer Risk 

Estimation 

2.1 Mathematical Models of Carcinogenesis 

The process of carcinogenesis is known to consist of multiple stages. Mathematical 

models of this multi-stage process have been formulated and fitted to epidemiologi-

cal data, offering a mechanistic explanation of age and exposure-related patterns of 

cancer incidence. According to the two-stage clonal expansion (TSCE) model, the 

process of carcinogenesis is governed by two rate-limiting stages [46]. A normal cell 

(NC) must first transform to become an intermediate cell (IC), an irreversible step 

called initiation. Next, an intermediate cell must give rise to a malignant cell (MC), 

which gives rise to cancer with certainty; this is known as transformation. The TSCE 

model parameterization also accounts for the clonal expansion of intermediate cells 

(promotion), a key model feature used to account for exposure effects such as smoking 

in carcinogenesis models of lung cancer [44]. Extensions of the TSCE model include 

a wide range of multi-stage stochastic models of carcinogenesis accounting for initi-

ation, promotion, and progression [38, 47], An earlier, distinct mathematical model 

of carcinogenesis by Armitage and Doll allows for several rate-limiting steps, but not 

14 
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for clonal expansion of intermediate cells [1]. 

2.2 Atomic Bomb Survivor Data 

Estimates of excess lung cancer risk attributable to radiation from medical imaging are 

largely based on models derived from data on Japanese atomic bomb survivors from 

Hiroshima and Nagasaki, collected as part of the extended Life Span Study (LSS). 

These estimates of excess lung cancer risk for a single time exposure, when extended 

to cumulative exposures of chest x-ray are approximately two orders of magnitude 

lower than needed to explain the lung cancer incidence trends in the MLP [8, 6]. 

Current estimates of chest x-ray lung organ dose range from 0.06 - 0.25 mSv [14, 26], 

whereas dose estimates reported at the time of the Mayo Lung Project were higher 

(approximately 0.7 mSv [16]). Estimates of excess lung cancer risk attributable to 

chest x-ray rely on linear scaling of estimated ERR/Sv [9]; if the true model is some-

what less than linear, then estimates of excess lung cancer risk based on these models 

will be higher. Moreover, the excess lung cancer risks derived from the LSS may be 

substantially underestimated with respect to the MLP cohort, due primarily to the 

MLP participants' older ages and therefore, longer smoking histories at the time of 

enrollment. 

According to the TSCE model, if the pool of NC remains constant in adults and 

radiation acts only to transform normal cells to IC, the absolute excess lung can-

cer risk attributable to radiation exposure should not increase with age-at-exposure. 

Several analyses of the LSS data have found it to be consistent with a TSCE model 

parameterization that assumes radiation acts only to induce NC to become IC [34, 28] 

(initiation effect). An age-at-exposure effect on radiation-induced initiation rates is 

rejected despite evidence that birth cohort effects are significant in estimating the 
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parameters of the TSCE model [34], A study using the Armitage-Doll model also 

supports the absence of an age-at-exposure effect on stage transition rates for most 

solid cancers [52], An analysis that merges data on smoking history and radiation 

exposure suggests that the observed higher excess relative risk among older LSS in-

dividuals is a spurious finding that reflects differences in smoking histories by birth 

cohort and finds the joint effect of radiation exposure and smoking is consistent with 

an additive but not a multiplicative effect [53]. This latter result supports a model in 

which both radiation exposure and smoking act synchronously to increase the pool 

of IC (via initiation), but radiation does not act on the IC directly (via promotion or 

transformation). 

The original publication of the LSS data reports that the excess lung cancer relative 

risk is nearly three times higher in individuals whose age-at-exposure is greater than 

40 compared to individuals whose age-at-exposures are between 25 and 39 years and 

persists over time [62, 56]. As discussed, this finding has been attributed to birth 

cohort differences in smoking histories among LSS participants [53, 56]. However, a 

close inspection of the LSS data incorporating smoking histories indicates that this 

data subset is approximately half the original size with an age-at-exposure distribu-

tion shifted to the left due to the requirement that cohort members be alive at the 

time smoking histories were collected. The excess LC mortality risk observed in the 

MLP is restricted to the group of individuals over the age of 60 at the conclusion of 

the MLP, a group with virtually no representation in the combined smoking and LSS 

data-set [40, 53], 

Other modeling studies have suggested that the LSS data is more consistent with a 

radiation effect on both promotion and initiation [27, 33] than with an initiation effect 

alone. Furthermore, due to a delay in data collection after the bombings: "second-

hit" lung cancers arising during the earliest time window are necessarily absent from 



17 

the data-set. Additionally, several case-control studies examining the risk of second 

cancers following radiation treatment for a primary cancer do suggest a significant 

super-additive effect of smoking and radiation [20, 49, 21]. 

Theoretical considerations of the TSCE model may help reconcile the conflicting 

studies on excess lung cancer risk. If radiation acts on both rate-limiting stages, its 

observable effect on the second stage will be negligible in younger individuals due to 

the small number of IC [46]. As individuals age, the effect of radiation on the second 

stage will increase due to the growing population of IC. Smoking will tend to en-

hance this effect of age, due to its role in promotion and initiation. Consequently, the 

absence of an age-at-exposure effect and an observed additive relationship between 

smoking and radiation are expected as long as the accumulated number of IC is small. 

Current models derived from the LSS data assume that either excess lung cancer risk 

or excess lung cancer relative risk depend on gender and smoking history but not on 

age-at-exposure [8, 6], most consistent with a relatively young exposure group such 

as the LSS data subset from which they are derived [53]. 

The original TSCE model parameterization assumes that if an acute exposure acts 

on the second transition rate, then the excess risk will be evident after a short lag 

time following the exposure. A literal interpretation of the TSCE model is that IC 

comprise a homogeneous group of cells that have all accumulated a single mutation. 

The "second hit" occurs when the complementary gene is mutated, resulting in a 

loss of function phenotype. Our approach is tantamount to allowing the population 

of IC to be heterogeneous, while sharing a common growth advantage as well as an 

increased probability of acquiring a subsequent mutation. However, the number of 

mutations in any particular IC is random as are the number of total mutations needed 

to result in a cancer phenotype. It follows that an acute radiation exposure may act 

on an existing population of IC to either directly induce a second hit or to irreversibly 
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increase the probability of the second transition. 

2.3 Mathematical Model of Natural Course of Lung 

Cancer 

A mathematical model of the natural course of lung cancer in a screened popula-

tion was previously described and calibrated to the initial seven years of MLP data 

[Flehinger93]. This model accounts for the essential features of disease onset and 

progression which are: (1) the individual's lifetime susceptibility to lung cancer in 

a high-risk population of male smokers, (2) the distribution of the age of onset of 

lung cancer in susceptible high-risk male smokers, (3) the duration of early stage 

(Stage I) disease after lung cancer onset, (4) the duration of advanced stage (Stage 

II/III) disease, and (5) the distribution of the age of death by other causes. The 

following features of a screening regimen are superimposed onto the natural history 

model of disease to reconstruct the temporal trends observed in a screen-based detec-

tion program: (1) sensitivity of chest radiography to detect early stage disease, (2) 

sensitivity of chest radiography to detect late stage disease, (3) regimen adherence 

frequency among the screening arm participants, and (4) cure probability of detected 

early-stage disease. Table 5.3 provides a summary of the parameterization and dis-

tributional forms of the natural history and screening variables used in our analysis. 

The calibration and verification of the model fit is based upon the simulation of 2,500 

sample trial populations. We compare the observed early stage incidence, advanced 

stage incidence, lung cancer deaths, and other-cause deaths in the first seven years of 

the MLP with the mean simulated values over the same time frame. 

Two key modifications are made to the model of natural history of disease in order to 

refine the calibration and fit to the MLP data. In prior studies, the age at death by 
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other causes was assumed to have a trapezoidal distribution [15]. In our analysis, we 

use a table of smoking-history and age-dependent annual hazard rates to simulate the 

age at death by other causes than lung cancer. This hazard table was developed by 

Margie Rosenberg, PhD and provided as a CISNET resource (www.cisnet.cancer.gov). 

We verified the consistency of this hazard table with the MLP data; we estimate the 

age-specific hazards from the MLP trial directly and compare the associated cumu-

lative distribution of age of death of other causes from both sources. In addition, we 

sample from the empirical distribution of age at enrollment of MLP participants in 

order to generate the age at enrollment in our simulations. This approach is in con-

trast to prior studies in which the distribution of the age at enrollment was assumed 

to be right-skew triangular [15]. 

We project lung cancer mortality and incidence in the follow-up period, extending 

the time frame of the simulation from seven to 24 years. We separately employ two 

different models of screening frequency in the follow-up period. The first model as-

sumes that, upon completion of the MLP, the screen frequency of adherent screening 

arm participants reverts to baseline levels of random periodic screening. The second 

model assumes that, upon completion of the MLP, screening arm participants receive 

annual screening for a period of random duration, averaging ten years, after which 

they revert to baseline levels of random periodic screening. 

2.4 Framework for Estimating Lung Cancer Risk 

in the MLP 

We describe a biological framework for estimating excess lung cancer risk resulting 

from repeated chest Xray screens. As in the TSCE model, we assume two rate-

limiting steps in the carcinogenesis process, namely the transition from NC to IC and 

http://www.cisnet.cancer.gov
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the transition from an IC to the first MC. Due to their smoking histories, we assume 

that by age 40, MLP participants have accumulated :c0 IC, which is an exponential 

random variable with parameter A : xq ~ exp(A). We assume a minimum number 

z of IC has accumulated in an individual by age 40, so that xq has a lower bound 

of z. Whereas the total number :z;0 of IC at age 40 is stochastic, we assume that 

subsequently, the number of IC increases deterministically each year by a common 

factor Cj, where i represents indexing by attained age. The probability that a single 

IC becomes a MC in a given year is fis. Given an a priori set of discrete-time annual 

probabilities ki of developing lung cancer at age i. we can express each in terms 

of the parameters A, (jls, q, and z. As in the original natural course of lung cancer 

model, we assume that the age of lung cancer onset follows a right-skewed triangular 

distribution, such that ki = c(i — 39). We extend the range of age-of-onset from 80 

to 85, while keeping the total lung cancer susceptibility equal to 0.226. This overall 

lower susceptibility compared to the simulation model reflects the fact that lung can-

cer cases that are treated and cured will not be represented in the mortality data. 

In our model, radiation acts directly upon the IC to increase their genetic instability. 

For the periods during and prior to the MLP, we assume that the distribution of 

age of lung cancer onset is not influenced by radiation exposure due to screening. 

However, after the MLP has concluded, the probability that an IC becomes a MC 

increases to /j,s + k/ir, for an individual having received k screens. Consistent with 

the assumption of deterministic growth of IC, the number of IC is assumed to be 

sufficiently large such that radiation exposure does not influence the total number of 

IC nor their annual growth rate. A depiction of the modified TSCE model is shown 

in Figure 1. 

In the following section, we describe our methodology for estimating the key model 

parameters. To summarize, we first optimize the fit of the triangular lung cancer 



21 

age of onset distribution to the control arm data. This step entails updating the 

probability that a single IC transforms to an MC in a given year to fj,'s — n s + nadj, 

and estimating the ratio ra = directly from the control group data. Next, 

we estimate the ratio r r = from the screening arm data and evaluate whether 

rr is significantly greater than one (equivalent to the case when fir is significantly 

greater than zero). Finally, we incorporate the estimate of rr into a re-formulation of 

the discrete annual probabilities of lung cancer age of onset to derive the post-MLP 

annual age of lung cancer onset probabilities k\. 

2.4.1 Mathematical Formulation of the Model 

The annual probability of lung cancer onset at age % in the absence of radiation ex-

posure, ki, can be expressed as a function of the model parameters as follows: 

ki = fz°°( 1 - fis)^i=ioXoCiXe-^xo-^dxo, for i = 40, ...,85. 

Solving the integral in (1), we obtain: 

k i = , + , f , , for i = 40,..., 85. 

Since c40 = l,ci:i< 40=0, k40 = 1 + and therefore: A = 

It follows that £ ; = 4 0 k i = 1 + Setting X i = (1 - fis)z^'i=™Ct and = £t=4 

assigning a value to fisz, we can apply Newton's method to solve for each in the 

equation J2t=io^t — 1 = in^Xz > an<^ thereby obtain solutions for c,. Provided that 

sufficiently greater than (1 — k4o), the quantity fisz has little influence on the 

solutions for c*. In this scenario, the probability that lung cancer onset will occur at 

age 40 in an individual with z intermediate cells, is negligible, and is consistent with 

maximal variance in the number of intermediate cells at age 40. 
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This mathematical framework allows for the modification of the discrete annual prob-

abilities of lung cancer onset by incorporating changes in the probability that an IC 

transforms into a MC, relative to jis. For example, if the lifetime probability of IC 

transition increases from jis to fis + , we let racij = ; and after re-arranging 

(2), we obtain: 

1 ~ radjln(xi-l)-\z ' radjln(xi)-\z 

However, our model assumes that excess lung cancer cases attributable to screening 

exposure are expected only after the MLP has concluded, resulting in a further mod-

ification of kL We define rr = ^s+
/
>lr and r — where k is the number of screens 1 r Ms ' 

received during the MLP, such that the relationship between racij, r r , and r is defined 

by: r = ra<#( 1 + (rr — 1 )k). For a screening arm participant who received k screens 

and completed the MLP at age a, we define ra%i — I ct/YH=40 ANC^ EXPressed 

the annual probability of lung cancer after age a as follows: 

k , _ -Az^Xx^rC" . ' - ! ) \z{xa
adl)(xi)rr^ 1 ~ ra%ln(xa)+Tr(a<i_1)ln(xi-{)-\z Ta^lnix^+rr^^l^x^-Xz 

2.4.2 Likelihood-Based Estimation of the Model Parameters 

In order to estimate the adjusted annual probabilities k[, reflecting the excess lung 

cancer risk attributable to screening, we first isolate the data from individuals who 

were alive at the end of the first seven years of the MLP trial and eligible for inclusion 

in the long-term follow-up analysis of lung cancer mortality. Outcomes are coded to 

reflect three possibilities: the participant was alive at the end of the follow-up period, 

he died of lung cancer, or he died of other causes. If a participant died of other 

causes, or was alive at the end of the follow-up period, then this record is censored 
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with respect to lung cancer onset. The number of screens each participant received 

during the first seven years of the MLP is also recorded. A summary of the relation-

ship between screen frequency and subsequent lung cancer incidence and mortality is 

summarized in Tables 5.7 and 5.8. 

Given a censoring event at age t, age at enrollment a0, we apply the Bayesian data-

augmentation algorithm [63] to generate an age of lung cancer onset x from the 

distribution: 

The time of lung cancer progression from lung cancer onset to death, s, has a distribu-

tion which is a convolution of two exponential distributions [15]. Using the augmented 

data, a likelihood function can be defined according to the following three scenarios: 

Censored data, lung cancer onset at age i after data-augmentation: 

Pr[x = i\a0, (s + x) > (a0 + 7)] = kjPr[s>(t-i)}I{ao<i<t}+kiI{i>t} 

Pr[x — i\a0, (s + x) > (a0 + 7)] = fciPr[s>(q0+7-i)lJ{ao<i<aD+6>+fci/{i>an+7} 

Censored data, no lung cancer onset after data augmentation: 

Pr[x = oo|a0, (s + x) > (a0 + 7)] = 
1-EJ

8ian(fcj^k>("0+7-i)]/{a0<j<a0+6}+fcj/{j>a0+7}) 
^Pr[s<(a0+7-j)} 

Lung cancer death in original follow-up data-set at age t: 

Pr[d = t\a0, (s + x) > (ao + 7)] = - Ej=on kjPr[(t-j)<s<(t~j+1)] '-<3=a Q }* U J t v i 
^ k}-E;°:o

e k0Pr\S<(a0+7-j)) 

We estimate radj using the Bayesian data augmentation as follows: 1) Augment con-
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trol arm data n times with the initial condition: radj = 1 . 2 ) Obtain the maximum 

likelihood estimate of (radj) for each of n iterations. 3) Compute the mean value 

of radj over the n iterations. 4) Repeat 1) with the mean of from 3) until the 

mean value of r^dj converges to the starting value. 

To estimate rr, we augment the study arm data n times with the initial conditions: 
radj — fadj, Tr = 1, allowing r r only to vary in the estimation procedure. To test the 

significance of r>, at each iteration of 4) we compute the likelihood ratio, composed of 

the ratio of the likelihood with radj = r^dj, rr = fr to the likelihood with radj = r^dj, 

r> = 1. According to statistical theory, twice the negative logarithm of the likeli-

hood ratio has a chi-squared distribution with one degree of freedom. We validate 

the null distribution by bootstrapping the control arm data n times, applying data 

augmentation, and computing the p-value of the log likelihood ratio, under the chi-

square assumption. A uniform distribution of p-values, under the null distribution, 

is expected and observed. If the median p-value in the augmented study arm sample 

(with convergence) is less than 0.05, then we conclude that f r is significant. 

2.4.3 Simulations Using the Estimated Distribution of k[ and 

Calculation of Lung Cancer Excess Risk 

We incorporate the parameter rr into the original ki, assuming rarj:1 = 1 in order to 

rescale the mortality-derived estimates to fit an incidence distribution. We compute 

the 10-year excess lung cancer probability for an individual having received 5, 10, or 

20 screens at the conclusion of the MLP, for attained ages of 50, 60, or 70. We also 

incorporate k[ into our original simulation model and compare the simulation results 

to the observed follow-up data on incidence and mortality. 



25 

2.5 Results 

2.5.1 Model Calibration and Stochastic Variability 

Table 5.4 compares the simulated lung cancer incidence and deaths in the first seven 

years to the deaths and incidence observed in the MLP. Figure 2 illustrates the simu-

lated mean annual incidence cases for both the stop-screen and ongoing-screen models 

and the simulated annual lung cancer deaths for the stop-screen model over the dura-

tion of the median follow-up period of mortality and incidence. The difference in the 

simulated mean annual lung cancer deaths between the stop-screen model and the 

ongoing-screen model is negligible and only the stop-screen model is shown. Table 

5.5 summarizes these simulation results. 

We evaluated the stochastic variability of our simulation results with respect to the 

observed cumulative lung cancer incidence and mortality differences (screening - con-

trol). Among the 2,500 individual trajectories in our simulations, we report the 

frequency of observing a difference in the cumulative lung cancer incidence greater 

than or equal to 85 cases after 23.5 years of follow-up. In the stop-screen model, 

there were 10 (p=0.004) such trajectories whereas in the ongoing-screen model, there 

were 26 (p=0.0104) such trajectories. We also report the frequency of observing a 

difference in the cumulative lung cancer deaths (screening - control) greater than or 

equal to 34 cases after 20.5 years of follow-up. In the stop-screen model, there were 

132 (^=0.0528) such trajectories, and in the ongoing screen model, there were 106 

(p=0.0424) such trajectories (Table 5.6). 

2.5.2 Maximum Likelihood Estimation of Excess Risk 

Beginning with the initial value of = 0.925 in the augmentation procedure, we 

obtain a median MLE of radj = 0.925573 and a mean MLE of 0.9261446 after 120 it-

erations, illustrating convergence of the estimate of ra(jj. Next, we verify the assumed 
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null chi-square distribution. The distribution of p-values resulting from the likelihood 

ratio test after 30 iterations is approximately uniform with a median p-value of 0.437. 

Beginning with initial values rac^ = 0.925 and rr = 1.008, we obtain a median MLE 

of rr = 1.00823 and a mean MLE of rr = 1.0080 after 125 iterations. The median 

p-value resulting from these 125 iterations is p = 0.0021. 

Incorporating the parameter rr = 1.008 (p=0.0021) into the original age-at-onset dis-

tribution, we estimate that the 10-year excess lung cancer probability for a 60-year 

old male smoker having received 10 chest X-ray screens is 0.574%. Figure 3 illustrates 

the 10-year probability of lung cancer at the conclusion of the MLP by attained age 

and the number of chest X-rays received. 

2.5.3 Simulation of the Natural Course of Lung Cancer As-

suming Excess Risk and Stochastic Variability 

We repeat the MLP simulations after updating the annual probabilities of lung cancer 

onset k[ with our obtained estimate of rr. Within the spectrum of 1,000 individual 

trajectories in our simulations, we examined the frequency of observing a difference 

in the cumulative lung cancer incidence (screening - control) greater than or equal 

to 85 cases after 23.5 years of follow-up. In the stop-screen model there were 42 

such trajectories (p=0.042). In the ongoing-screen model there were 53 (p=0.053) 

such trajectories. We also examined the frequency of observing a difference in the 

cumulative lung cancer deaths (screening - control) greater than or equal to 34 cases 

after 20.5 years of follow-up. In the stop-screen model there were 147 (p=0.147) such 

trajectories. In the ongoing-screen model, there were 115 (p=0.115) such trajectories. 
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2.6 Discussion and Conclusions 

The usual interpretation of the MLP findings is that there is strong evidence that 

screening for lung cancer is plagued by over-diagnosis. In particular, there was no 

reduction in lung cancer mortality after the trial or after long-term follow-up [40] and 

the cumulative incidence of total lung cancer cases in the control arm did not " catch-

up" to the cumulative incidence of total lung cancer cases found in the screening arm 

[41]. However, over-diagnosis does not explain the excess lung cancer deaths in the 

screening arm or the steady increase in lung cancer cases after the end of the MLP. At 

the end of 20.5 years of median follow-up, there were 34 more lung cancer-attributed 

deaths in the screening arm compared to the control arm. There were 31 more re-

ported lung cancer cases in the screening arm versus the control arm at the end of the 

initial seven years of the MLP. At the end of 23.5 years of median follow-up, there were 

85 more lung cancer cases detected in the screening arm compared to the control arm. 

We examined the stochastic variability within our simulation model encompassing the 

time frame of the long-term incidence and mortality follow-up and discovered that 

the observed long-term incidence and mortality results deviate significantly from the 

expected mean behavior. A difference in the cumulative incidence of 85 or more cases 

after 23.5 years of follow-up occurred in only 0.40% and 1.04% of our simulation tra-

jectories in the stop-screen and ongoing screen models, respectively. A difference in 

the cumulative number of lung cancer deaths of 34 cases or more after 20.5 years of 

follow-up occurred in only 4-5% of trajectories. While the observed data do lie within 

the range of variation that our model forecasts, their occurrence would be unlikely. 

While our simulation model forecasts the total number of lung cancer deaths nearly 

exactly in the control arm, our model underestimates the number of lung cancer in-

cidence cases by 53 cases in the control arm, excluding any projected cases among 

participants having unknown lung cancer status (Table 5.5). A key source of infor-
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mation used to assign a participant's lung cancer status was based on next-of-kin 

questionnaire information [41], The ability of next-of-kin to provide accurate infor-

mation was determined by a sensitivity study based upon the ability of next-of-kin 

to correctly report lung cancer in already known lung cancer cases. Sensitivity was 

shown to be greater than 90%. However, a specificity study demonstrating the ability 

to correctly report the absence of lung cancer was not performed. Low specificity may 

have resulted in an inflation of reported lung cancer cases, thereby explaining the lack 

of consistency between reported lung cancer incidence and mortality in the follow-up 

period. 

We sought a mechanistic explanation for the observed excess lung cancer risk among 

the screening arm participants. It has been suggested that the initial randomization 

procedures were flawed but this hypothesis has generally been discounted [41, 42]. 

The TSCE model predicts an age-at-exposure effect when the population of interme-

diate cells is large, such as expected in a population of high-risk smokers. The excess 

lung cancer mortality in the study arm participants was restricted to trial partici-

pants older than 55 at the time of enrollment and was greatest in individuals over 

the age of 65 at the time of enrollment. Furthermore, among screening arm partici-

pants, a higher number of screens received during the MLP trial corresponded to a 

higher frequency of lung cancer incidence and deaths reported in the follow-up period. 

A Bayesian framework allows us to incorporate a single parameter of excess lung 

cancer risk, namely rr, into an existing distribution of age-at-onset based on the tri-

angular distribution. An advantage of our model-based estimation methodology is 

the improved power compared to traditional statistical methods for estimating excess 

risk. The parameter rr was found to be highly significant (p=0.0021), due in part to 

the ability of our model framework to incorporate key correlates of excess lung cancer 

risk, age and screen frequency. The model-based predictions of 10-year excess lung 
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cancer probability recapitulate the observed relationship between excess lung cancer 

risk, attained age and screen frequency at the conclusion of the MLP. 

Incorporating excess lung cancer risk into the simulation model of the natural course 

of lung cancer increases the likelihood of observing the differences in cumulative in-

cidence and mortality (screening-control) as high as those observed in the reported 

long-term follow-up. We note two discontinuities between our estimation procedure 

and the simulation model. First, because we consider the number of screens to be a 

pre-existing factor in our estimation data-set, we eliminate any lung cancer deaths 

that occurred within the first seven years of the MLP, including the excess 12 lung 

cancer and study-related deaths in the study arm. Second, our simulation model of 

the MLP incorporates an estimate of early-stage disease curability of 35% and fore-

casts a net mortality benefit of six to seven deaths by year twelve. In our estimation 

procedure, the null hypothesis assumes equivalent lung cancer expected incidence 

and mortality in the screening and control arms following the conclusion of screening. 

This latter feature reflects the potentially conservative nature of our estimates of lung 

cancer excess risk. 

In our view, the MLP results reiterate the value of the randomized trial in providing a 

measure of net mortality benefit, given uncertainty of the nature and quantification of 

the risks and benefits associated with early detection. In contrast to previous papers, 

our study suggests that excess lung cancer risk attributable to being a member of the 

screening arm of the MLP may provide a more satisfactory explanation of the MLP 

outcome than over-diagnosis. A reliance on an aggregate measure of trial efficacy to 

reflect one potential contributor of efficacy can be misleading. Our analysis further 

suggests the need for novel quantitative methods to directly estimate the stochasticity 

of tumor progression, and likewise, over-diagnosis. 
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As for the nature of the excess risk attributable to screening, a natural hypothesis 

invokes mutagenic effects of radiation. Our mathematical model has been formulated 

in such terms. However, other hypotheses might be invoked, such as a weakening 

of immunity by the stress of unknown nature caused by frequent screening. Since 

mutation rate results from a balance between DNA damage and repair, as well as 

removal of transformed cells, the net effects cannot be easily attributed to a single 

cause. Ideally, in the future, the risks associated with screening for lung cancer can 

be fully understood and successfully managed in order to maximize the number of 

lives saved by early detection. 



Chapter 3 

Tumor Progression Modeling 

3.1 Introduction 

A key component in the evaluation of the effectiveness of lung cancer screening strate-

gies is the development of a descriptive model of lung cancer natural course. Once 

such natural history models are developed, screening strategies can be optimized with 

respect to variables such as the timing between screens, the clinical detection thresh-

old upon which to act and treat early cancers. Ultimately, individual risk factors 

may be incorporated into the natural course model in order to personalize screening 

strategies. Key components of lung cancer natural course models include a charac-

terization of population heterogeneity in tumor growth rates, the tumor size at which 

stage transition occurs, the correlation between tumor growth rate and size at stage 

transition as well as the relationship between cancer subtypes and these model vari-

ables. Despite the clear utility and value of lung cancer natural course models, they 

must be informed by data which are censored and incomplete. In a population of 

screened individuals, if a small, early lung cancer is detected, it is removed and the 

patient is treated. It is therefore unknown as to whether the cancer would progress 

and at what rate. Furthermore, cancer registry information provides a snapshot of 

advanced-stage symptomatic disease, typically of cancers arising in the absence of 

31 
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screening. From registry data, the prior history of disease is unknown, in particu-

lar the duration of early-stage disease and the timing at which the stage transition 

occurred. In this chapter, we review data relevant to inference of models of lung 

cancer growth and progression and their current interpretation as well as underlying 

model parameter estimation strategies. We lay the foundation and background for 

a new statistical methodology used to evaluate data arising from different screening 

modalities, and thereby offering a more comprehensive view into the window of lung 

cancer natural course. 

3.2 Relationship Between Tumor Size and Tumor 

Stage 

The presence of a positive correlation between tumor size and tumor stage is a neces-

sary but not sufficient condition supporting the basic premise of lung cancer screen-

ing, which is that small, early cancers detected by screening represent precursors to 

advanced-stage disease. 

3.2.1 Cancer Registry Data 

Evidence from the Surveillance, Epidemiology and End Results (SEER) cancer reg-

istry data supports the notion that the smaller the tumor size, the more likely it is 

that the cancer is in an early stage and has not yet spread to the lymph nodes or 

metastasized. In a study of 84,152 non-small cell lung cancer cases documented in the 

SEER cancer registry, among tumors less than 15 mm in diameter, the proportion of 

stage I cancers was 54% (N=7,327) whereas among tumors greater than 45 mm in 

diameter, the proportion of stage I cancers was 15% (N=31,623), with intermediate 

size strata reflecting a declining proportion of Stage I lung cancers [65]. The authors 

highlight that sampling biases in the SEER database, namely under-representation of 

small, asymptomatic early cancers and under-reported size information among large, 
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un-resected advanced stage cancers, are unlikely to negate the reported relationship 

between tumor size and stage, but rather to strengthen it [67, 65]. The presence of a 

stage shift among small T1 tumors (< 3 cm) is considered particularly relevant be-

cause active lung cancer screening has the ability to detect smaller lung cancers. In the 

SEER analysis, among tumors between 16 and 25 mm in diameter, 46% (N=15,853) 

were in Stage I, a significantly smaller percentage than the 54% proportion of Stage I 

cancers less than 15 mm in diameter [65]. We identified similar analyses of the stage 

distribution among T1 cancers stratified by size based on within-institution cancer 

registries. These studies had smaller sample sizes (N < 1,000) with correspondingly 

lower precision and in some cases failed to detect a stage shift [17, 31]. 

While sampling biases are known to affect statistical inferences based on cancer reg-

istry data, we furthermore note that cancer registry data are retrospective with re-

spect to the natural course of lung cancer. Even if a stage shift with respect to size is 

shown to be present within a cancer registry, it does not preclude a scenario in which 

advanced-stage cancers undergo a stage transition at a small size and then proceed 

to grow rapidly until they reach the size at symptomatic detection. More compelling 

evidence would demonstrate a stage shift with respect to size prospectively, such as 

in a screening setting where all cancers are diagnosed at the smallest possible size 

threshold and there is a significant decline in the total number of advanced cancers 

relative to the number that are expected to arise in the absence of screening. We 

describe a new methodology for the prospective evaluation of cancers arising during 

screening in this chapter. 

Also relevant to a model of lung cancer natural course are analyses of stage I lung 

cancers indicating that increasing tumor size is correlated with declining survival. If 

lung cancer progression is the result of genetic changes accumulated gradually over 

time, eventually leading to invasive and metastatic disease, then one might expect 
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that the larger the tumor, the more tumor cells present with the potential for causing 

a stage transition, and the worse the prognosis. We note however that an inverse 

relationship between tumor size and survival among stage I cancers may be circum-

stantially explained by higher rates of pseudo-disease among the smallest cancers. 

Extensive studies on the relationship between tumor size and survival within Stage 

I have been carried out with the aim of optimally defining the TNM staging criteria 

to include gradations of tumor size. A 1997 study based on data from MD Anderson 

Cancer Center found that among a group of 5,319 stage I cancers, there was a highly 

significant survival difference between two groups of Stage I cases separated by a size 

threshold of a 3 cm tumor diameter [48]. These data supported the introduction of 

revisions to the TNM staging criteria, namely to distinguish between Stage la and 

Stage lb tumors [48] using a tumor size threshold of 3 cm. Many subsequent analyses 

of within-institution and SEER registries expanded the range of evidence used to sup-

port the TNM staging criteria and examine the 3 cm threshold [64, 43, 39, 51, 55, 10]. 

In particular, SEER data indicates that a 2 cm threshold distinguishing Stage la and 

Stage lb tumors provides improved classification accuracy with respect to survival 

and that a further refinement of the size range among Stage lb tumors (> 3cm) may 

be justified [43, 64]. These findings are incorporated in the recent revisions to the 

International Lung Cancer Staging guidelines in which the T component (tumor siz-

ing) of the TNM methodology remains an important predictor of survival [13]. 

3.2.2 Lung Cancer Screening Data 

Data from lung cancer screening trials differs significantly from cancer registry data. 

For one, active screening can lead to the detection of small, asymptomatic lung lesions. 

Studies based on chest radiography (x-ray) and more recent studies using CT clearly 

demonstrate the ability to detect increasingly small Stage I lung cancers with signifi-

cant increases in five-year survival of screen-detected cancers. The Mayo Lung Project 
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has been described and the data outlined in Table 5.1. Within the initial seven-year 

period of active trial, the screening arm identified a total of 56 Stage I non-small 

cell lung cancers with a mean tumor diameter of 23.65 cm, and 48 advanced-stage 

non-small lung cancers with a mean tumor diameter of 41.07 mm (excludes 11 O/I 

cancers) whereas the control arm identified a total of 30 Stage I non-small cell lung 

cancers with a mean tumor diameter of 29.8 cm, and 55 advanced-stage non-small 

lung cancers with a mean tumor diameter of 47.14 mm (excludes 1 O/I cancer). Es-

timated five-year survival in the screening arm of the MLP was estimated to be as 

high as 70% for Stage I-detected cancers and as low as 10% for advanced-stage and 

interval cancers. 

Computed tomography screening has demonstrated the ability to detect asymp-

tomatic lesions at an increased rate compared to chest radiography, lower the size 

threshold for Stage I detection and increase further the estimated survival rates of 

screen-detected early-stage cancers. Data from the Mayo CT indicated that the size 

threshold for detection of early-stage cancers declined significantly to a mean tumor 

diameter of 9.42 mm for incidence cancers and 10.75 for prevalence cancers in males. 

Over 67% of enrollees in the Mayo CT were found to have at least one detected asymp-

tomatic nodule. In the LSS study, the CT screening arm found 2.5 X as many Stage 

I cancers compared to the comparative chest x-ray arm. In the reported I-ELCAP 

study, 85% of all detected cancers were found to be Stage I, and the estimated sur-

vival was as high as 92% for Stage I-detected cancers that received surgical resection. 

It is less clear whether the detection of Stage I cancers at a smaller size threshold 

corresponds to a decline in the frequency of detection of advanced stage cancers. For 

males in the Mayo CT, approximately 50% of non-small cell incidence cancers were 

advanced-stage cancers. In the LSS study, despite the increased number of Stage I 

cancers detected by CT, there were also nearly twice as many advanced-stage cancers 
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detected by CT compared to chest x-ray. A key concern is that while CT decreases 

the size threshold for the detection of early-stage cancers, it has also been shown 

to decrease the size threshold of detection of advanced-stage cancers. The mean tu-

mor diameter of advanced-stage cancers in the Mayo CT was 14.76 mm among male 

incidence cancers, suggesting that the size threshold for curability of cancers with 

potential for stage transition may be low. 

3.3 Lung Tumor Growth Rate and Over-diagnosis 

Ultimately, natural history models are most useful when they accurately represent 

dynamic changes in tumor development. A key component of dynamic change is 

the rate of tumor growth over time. Given that the historical argument in favor of 

screening has been based on the relationship between tumor size and stage and cor-

responding survival improvements, the notion of over-diagnosis has taken on great 

importance. If small tumors detected by screening are very slow-growing, then the 

decrease in survival associated with increasing size is not relevant, because it will take 

a long time before small cancers exceed any given size threshold. In our view, of equal 

importance as the rate of over-diagnosis is the growth rate of advanced-stage cancers. 

In a worst case scenario, the bi-partite model suggests that all lung cancers are one 

of two types, either slow-growing, over-diagnosed cancers or else rapidly-growing ag-

gressive cancers [2], 

An accepted statistical methodology in the literature is to compare mortality rates 

between a screening and control arm and determine whether the difference in mortal-

ity is significant. The absence of a mortality reduction in the presence of a survival 

benefit for Stage I-detected cases has been attributed to over-diagnosis. We note 

however that other explanations are possible, including a systematic source of ex-
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cess lung cancer risk attributable to screening (Chapter 2) or low power to detect 

a significant difference between screening and control arms. Other studies directly 

measure tumor growth rates and define the extent of over-diagnosis as the proportion 

of cancers with a doubling time greater than 400 days. Estimates of over-diagnosis 

have ranged from 5 to 50%. We note that direct studies of tumor growth have as-

sumed an exponential growth model of lung cancer for which doubling times are 

constant. The assumption of constant tumor doubling times has more recently been 

challenged by more extensive longitudinal analyses of tumor growth [36]. Perhaps 

more importantly, traditional analyses of tumor growth introduce bias by exclud-

ing single-size measurements. Cancers arising due to single size measurements tend 

to be over-represented by larger prevalence cancers which are re-sected immediately 

and by incidence cancers that arise during annual-repeat screening, thereby biasing 

tumor growth measurements toward slower growth. An estimation methodology by 

Gorlova et al. (2005) incorporates both multiple and single-size measurements and es-

timates tumor growth from the Memorial Sloan Kettering Lung Screening Study [25]. 

3.4 Models of Lung Cancer Progression 

In order to model the impact of screening in a population, a mathematical formula-

tion of lung cancer natural course is needed. This natural history model assumes that 

cancer progresses in stages, beginning with an early, localized tumor, and progress-

ing to advanced, metastatic disease. A simple model may account for the stochastic 

progression times of two stages (early and advanced) or it may account for tumor 

size (and growth), nodal involvement, and metastases (i.e. a random path through 

the TNM space). Walter and Day describe a statistical methodology for fitting a 

stochastic model in which the total progression time is represented by the convolu-

tion of two random variables and the duration of the early stage, or sojourn time, is 



38 

directly estimated [12]. A model using exponential duration of progression times has 

been described and fit to the Mayo Lung Project data. A key assumption is that all 

cancers arise from a common statistical distribution. We note however that this es-

timation methodology can potentially fit a wide range of observations resulting from 

a single randomized clinical trial, and may miss the underlying presence of bi-partite 

progression. 

A model of size-driven progression may be represented by escalating hazard rates of 

stage transition with increasing size. Given an underlying growth model, the hazard 

rate of transition to a more advanced stage can be expressed by the following equation: 

Pr[T C [t,t + St)\T > t, S(t) = s] = h(s)6t + o(St) 

where T is the random age at which a stage transition occurs. S(t) is the size at the 

stage transition and h(s) is the size-dependent hazard rate of transition [5]. This as-

sumption of size-dependent transition was adopted in the design of tumor progression 

models in breast cancer as well [54]. We note that the hazard rate of transition to 

a subsequent stage is typically assumed to be constant for a fixed size, independent 

of growth rate. Another important theoretical advance in modeling the relation-

ship between tumor size and metastasis relates to the estimation of size-dependent 

transition probabilities [35]. Under the assumption that the detection probability is 

size-independent, the empirical distribution of tumor size at metastases can be used 

to estimate the probability of metastases at a given size. This methodology uses the 

fact that while tumor size at metastases is not observable, tumor size and metastatic 

spread at detection are and can be used to empirically reconstruct the former prob-

ability distribution. 
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3.5 Methods and Models 

3.5.1 Simulation Analysis of Mayo CT Data 

We first test how well our existing mathematical model of the natural course of lung 

cancer (Table 5.16) predicts the frequency of advanced-stage and early-stage cancers 

arising during the Mayo CT trial. In order to simulate the age at lung cancer onset 

in the Mayo CT trial, we use parameter estimates of the complete two-stage clonal 

expansion (TSCE) model derived by Meza et al. (2008) using data from the Nurses' 

Health and Health Professionals' Follow-up Studies [44], This parameterization of 

the TSCE model incorporates Mayo CT participants' individual smoking histories as 

well as gender. We derive a hazard matrix for age at lung cancer onset using exact 

solutions to the hazard function of the TSCE model as given in Heidenreich (1997) 

[29], and condition each row of the matrix by participants' age at enrollment in the 

study. Furthermore, we increase the sensitivity of screen-detection in our model from 

0.245 to 0.9 to reflect the increase in sensitivity of CT compared to chest x-ray. We 

note that our existing stochastic model of lung cancer progression models the stochas-

tic duration of the early and advanced-stage of lung cancer but does not account for 

tumor growth or size-dependent stage transition. Therefore, this preliminary analysis 

is intended to examine whether the total numbers of early-stage and advanced-stage 

cancers identified in the Mayo CT study at baseline and during annual-repeat screen-

ing are consistent with the expected numbers of cancers and also to detect whether 

the increased sensitivity of CT results in a stage shift (reduction in advanced-stage 

cancers). 

In order to examine the goodness of fit of the observed Mayo CT data to our sim-

ulation model, we simulate 2,500 iterations of the Mayo CT trial and compute the 

expected numbers of a) prevalence early-stage cancers b) prevalence advanced-stage 

cancers c) incidence early-stage cancers and d) advanced stage cancers for males, fe-
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males, and both genders combined. Next, we compute a mean-squared error (MSE) 

statistic for males, females, and both genders combined based on the sum of squares of 

a) (total prevalence early-stage cancers - expected prevalence early-stage cancers) b) 

(total prevalence advanced-stage cancers - expected prevalence advanced-stage can-

cers) c) (total incidence early-stage cancers - expected incidence early-stage cancers) 

and d) (total incidence advanced-stage cancers - expected incidence advanced-stage 

cancers). For each of the simulated 2,500 iterations of the Mayo CT trial, we compute 

an MSE statistic in order to obtain a p-value reflecting the goodness of fit. We define 

the p-value as the proportion of simulated MSE values greater than or equal to the 

observed value. 

We further define an adjusted MSE statistic in order to remove the effect of variation 

between the total expected and observed number of cancers. We compute a ratio 

r for males, females, and both genders combined, defined as r = (total expected 

cancers)/(total observed cancers) and multiply it by the observed cancers in each 

grouping a), b), c) and d) as defined above. We re-compute the MSE statistic to 

reflect these adjusted values and compute the resulting p-value based on simulation 

of the MSE statistic as above, but with the incorporation of the ratio r for each itera-

tion. Finally, we test the overall ability of an exponential model of duration of tumor 

progression to produce a suitable fit to the Mayo CT data. As a single-parameter 

distribution, the exponential model has the constraint that the mean and variance 

of the distribution be equal. We allow the original parameter estimates derived from 

the MLP to vary and evaluate the MSE statistic over a wide range of parameter 

combinations. We interpret these findings, in part, with respect to the constraints 

imposed on the shape of the exponential distribution. 
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3.5.2 Homogeneity Analysis of Mayo CT and Mayo Lung 

Project Data 

Next, we examine the homogeneity between cancers arising during the MLP and 

the Mayo CT study with respect to the tumor size at stage transition. We assume 

an exponential model of tumor growth for which the exponential growth parameter 

is distributed according to the lognormal distribution. We incorporate estimates of 

log-normal tumor growth parameters for early and advanced cancers based on an 

examination of tumors arising during the Memorial Sloan Kettering study [25]. We 

assume that the size at stage transition x is governed by a Gaussian distribution 

<3>[x;<j], and is independent of tumor growth rate. Using this model, we estimate 

the mean size at stage transition for cancers in the Mayo Lung Project, the Mayo 

CT study, and for a combined data-set by maximum likelihood estimation. We test 

whether the maximum likelihood estimates (MLE) for the MLP and Mayo CT are 

significantly different by applying the likelihood ratio test having a chi-squared dis-

tribution with one degree of freedom. In order to derive a likelihood function for the 

mean size at stage transition //, we summarize the data on tumor size and distribution 

of total counts for incidence cancers detected by screening as follows: 

Table 3.1: Data Summary for Mayo CT and Mayo Lung Project data 

Early--Stage Advanced-Stage 

Mayo Lung Project 5*111, nlu S\2i, nm 

Mayo CT Study S2u, n21i S22i, n22i 

Totals S.li-, ,n.u S.2i, n.2 i 

For an early-stage cancer, we can express Pr[x > ,SYh|/j] = 1 — ^[.S'i \i\jj,, <x] , estimat-

ing the variance in size at stage transition as the variance in observed sizes among 

observed early-stage cancers. For late-stage cancers, the likelihood function for the 

size at stage transition depends on the size at detection as well as the possible tumor 
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growth trajectories preceding cancer detection and the detection probability for early 

and advanced-stage cancers. We let m = the number of times an early cancer was 

missed on a prior screen, n — the number of times late cancer was missed, r\ = the 

growth rate of the early-stage, and r2 = the growth rate of the late-stage. Then, for 

a given combination of (to, n, 7*1, and r2), the size at stage transition x is confined to 

a fixed range defined by f(m,n,r1,r2)• We can express: 

Pr[x < S12i\n] = 

- $ (mm/(m,n , r 1 , r2 ) | /u ,a ) ] / ( r i ) / ( r 2 ) ( l - p i ) m ( l - p2)™-detection ats12i 

Using these equations, we can formulate likelihoods and obtain the maximum like-

lihood estimates of yui, /12, the mean size at stage transition for the Mayo Lung 

Project, the Mayo CT, and the pooled group, respectively and determine whether 

the MLE estimates from the two data-sets are significantly different. 

3.5.3 Data Visualization and Clustering of Mayo CT and 

Mayo Lung Project Data Based on Branching Fraction 

( / ) and Cell Mutation Rate (/x) 

We describe a new model used to represent the growth and size-driven transition for 

cancers in the Mayo Lung Project as well as the Mayo CT as a function of two evolu-

tionary parameters, namely the stem cell branching fraction (/) and the cell mutation 

rate (/i). For each cancer, we simulate a likelihood function over the defined range of / 

and fx, which serves as a data visualization tool as well as a framework for clustering 

cancers into distinct categories reflecting growth rate and tumor aggressiveness. The 

model assumes that cancer arises from a single stem-like malignant progenitor cell. 

We assume that at the time of cell division, this progenitor cell gives rise to two iden-
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tical stem-like cells with probability / and gives rise to one stem-like progenitor cell 

and one terminally differentiated cell with probability 1-/. Tumor growth occurs as 

the result of the accumulation of cells from multiple cell divisions. We assume a pure-

birth process in which terminally differentiated cells contribute to the overall size of 

the tumor but, unlike stem-like progenitor cells, do not undergo cell division events. 

We assume that the accumulation of n key mutations in a stem-like progenitor cell 

results in the development of an aggressive, advanced-stage tumor with invasive and 

metastatic properties. The probability of each of the n key mutations occurring at a 

cell division step is fi. 

We collect data on tumor size, tumor stage, and the history of screens for incidence 

cancers arising during the MLP and Mayo CT studies. Since our model depends 

on the total cell count in the tumor, the assumption that the diameter of a single 

tumor cell is equal to 50 /j,m allows for conversion of tumor diameter to cell number 

based on the volume equation: V = |7rr3. We fix the range of parameter values for 

f and /z to be / e [0.0025,0.0525] and /i 6 [0.00001,0.001]. This range of parameter 

values encompasses the spectrum of doubling times reported in the literature and is 

consistent with estimates of a stem cell fraction of up to 5%. The mean size at stage 

transition over this parameter set ranges from 5 mm to 100 mm based on simulation 

studies (Table 5.15). In order to simulate the joint likelihood function of / and fi, we 

select a random value of f and // from the joint uniform distribution and simulate the 

tumor trajectory. The decision to retain the sampled values of / and n is contingent 

on the following conditions being satisfied: 

1) For early-stage cancers, the simulated size at stage transition is larger than the 

size at detection 

2) For advanced-stage cancers, the simulated size at stage transition is smaller than 

the size at detection 

3) Given a screen history of prior screens, p, over the detectable range of tumor de-
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tection and a random uniform variable U 6 [0,1], with screen sensitivity s, we retain 

(f,/i) iff U < (1 — S)P. For each cancer incidence case, replacement sampling is allowed 

to continue until 1,000 values of / and /J are generated. In order to perform sensi-

tivity analysis with respect to the impact of the estimate for screen sensitivity s for 

chest x-ray detected cancers, we vary condition 3) to reflect a size-dependent model 

of screen detection. We assume that the probability of screen detection increases 

linearly with tumor diameter such that the probability of detection at a given screen 

equals .1 + 0.12(diam — 5). 

The simulated likelihoods are reserved for each tumor case separately. We fit a 

smoothed likelihood over a 10 x 10 grid using the Matlab gridfit function. For each 

data-set separately, we sum over the log likelihoods, obtain the maximum likelihood 

parameter estimates for the Mayo CT and MLP data-sets and perform a likelihood 

ratio test based on a chi-squared distribution with two degrees of freedom in order 

to test whether the MLP and Mayo CT data-sets are significantly different with re-

spect to / and //. We also consider the possibility that there are unique subsets of 

tumors governed by distinct combinations of the parameters / and /J. We construct 

a similarity matrix for the incidence cancers in the MLP data-set on the basis of like-

lihood similarity. For the ri\ incidence cancers in the MLP data-set, we construct an 

rii x rii matrix reflecting the percent of overlap between all pair-wise comparisons of 

the likelihoods in which each likelihood is normalized to sum to one. The threshold for 

discordance for any given likelihood pair is set to be 10%. Clustering of MLP cancers 

allows for local optimization (minimizes total discordance) over the entire combinato-

rial space having 2ni elements. Clustering separates MLP cancers into three groups: 

Cluster A, Cluster B, and Cluster C. Cluster C is comprised of cancers that cannot 

be distinguished between Clusters A and B on the basis of likelihood dissimilarity. 

We cluster Mayo CT cancers similarly into three clusters and perform a likelihood 

ratio test based on a chi-squared distribution with two degrees of freedom for each 
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pair-wise comparison between the Mayo CT and MLP cluster sub-sets. 

3.6 Results 

3.6.1 Simulation Analysis of Mayo CT Data 

A comparison of the mean numbers of simulated Mayo CT cancers with the actual 

trial findings are illustrated in Table 5.16. While the overall simulation predicted the 

total number of non-small cell lung cancers nearly exactly (57.5 simulated cancers 

versus 58 actual cases of NSCLC), the simulation model over-predicts the number of 

cancers in males (30.2 simulated cancers versus 25 actual cases of NSCLC), whereas 

it under-predicts the number of cancers in females (27.3 simulated cancers versus 33 

actual cases of NSCLC). In males, an evaluation of the model fit with respect to 

the MSE statistic, gave a resulting un-adjusted p-value of p — 0.042, whereas the 

adjusted p-value was p=0.022. The largest contributor to the MSE statistic (48%) 

in males was the difference between simulated advanced-stage incidence cancers and 

(2 simulated) and the observed advanced-stage incidence cancers (9 observed). In 

females, an evaluation of the model fit with respect to the MSE statistic, gave a 

resulting un-adjusted p-value of p = 0.284, whereas the adjusted p-value = 0.386. 

The largest contributor to the MSE statistic (85%) in females was the difference 

between simulated early-stage incidence cancers (8.9 simulated) and the observed 

early-stage incidence cancers (14 observed). In the MSE evaluation of both genders 

combined, the un-adjusted p-value was p = 0.126 and the adjusted p-value was p = 

0.06. 

In order to test the ability of the exponential model to fit the Mayo CT data in males, 

we allowed the early-stage duration to range from two years to eight years and the 

advanced-stage duration to range from one year to five years. Over this parameter 

range, the minimum MSE statistic for the male Mayo CT data gave an un-adjusted 
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p-value of p = 0.154. 

3.6.2 Homogeneity Analysis of Mayo CT and Mayo Lung 

Project Data 

We generate the maximum likelihood estimate for the mean size at stage transition 

using the Mayo Lung Project and the Mayo CT study incidence data for males only. 

For the Mayo Lung Project, we estimate that the mean size at stage transition is 29.5 

mm whereas in the Mayo CT, we estimate that the mean size at stage transition is 

20.82 mm. In the pooled group, the estimated mean size at stage transition is 27.9 

mm. Using the likelihood ratio test based on the chi-squared distribution with one 

degree of freedom, we obtain that the p-value is p = 0.089, suggesting that there 

is weak evidence that the data are not homogeneous with respect to the size-driven 

transition model. 

3.6.3 Data Visualization and Clustering of Mayo CT and 

Mayo Lung Project Data Based on Branching Fraction 

( / ) and Cell Mutation Rate (/i) 

We simulate the likelihood distributions for 105 out of the 115 incidence non-small 

cell lung cancers in the MLP and for 15 out of 16 incidence non-small cell lung 

cancers in the Mayo CT, omitting cases that have non-measurable tumor sizes. Af-

ter smoothing the likelihood function and combining the log likelihoods for each 

data-set individually, we obtain that the maximum likelihood estimates of / and /J 

in the MLP are (f,/j,)=(0.04,0.00015) for a size-independent model of screen detec-

tion and (/,/i)=(0.025,0.00015) for a size-dependent model of screen detection, and 

in the Mayo CT data-set are (/,//)=(0.04, 0.0045), a three-fold increase in the es-

timated cell mutation rate parameter //. For the combined data-set, we estimate 

(/,/i)=(0.04,0.0025) under the size-independent detection model for MLP cancers and 
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we estimate (f,/j,)=(0.025,0.0025) under the size-dependent detection model for MLP 

cancers. After performing a likelihood ratio test on the data, we obtain that p — 

0.004, p = 0.0055, respectively suggesting that a common parameter set does not 

define the two data-sets. 

We cluster the MLP data-set on the basis of a concordance of 0.1 and achieve a 

loss function of zero, using a k-means clustering algorithm. For the size-independent 

model of detection, three clusters are obtained: Cluster A, Cluster B, and Cluster C. 

Cluster A contains 35 N0M0 cancers ranging in size from 16 mm to 70 mm. Cluster B 

contains 44 N1M0 or N1M1 cancers ranging in size from 14 mm to 80 mm and Cluster 

C contains 25 N0M0 cancers ranging in size from 5 mm to 15 mm and one N1M1 

cancer of size 90 mm. We test whether the Mayo CT cancers are consistent with MLP 

clusters A, B, and C separately. The maximum likelihood estimates for Clusters A, B, 

and C respectively are (/,//)=(0.04,0.00005),(0.04.00075), and (0.04,0.00015). When 

we compare these clusters with the Mayo CT cancers collectively and perform a 

likelihood ratio test on the data, as described above, we obtain that p < 0.00001, p 

= 0.31957, and p = 0.01969284, respectively suggesting that the 15 pooled Mayo CT 

incidence cancers are not inconsistent with the Cluster B N1M0/N1M1 cancers, but 

are inconsistent with the predominantly N0M0 cancers in Clusters A and C. Using a 

size-dependent model of detection, Cluster A, B, and C contain 34, 44, and 26 cases 

respectively. The maximum likelihood estimates for Clusters A, B, and C respectively 

are (j»=(0.04,0.00005),(0.04.00075), and (0.04,0.00015). When we compare these 

clusters with the Mayo CT cancers collectively and perform a likelihood ratio test 

on the data, as described above, we obtain that p < 0.00001, p = 0.3906, and p = 

0.01438. 
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3.7 Discussion 

Our aim was to combine information on lung cancers detected prospectively by chest 

x-ray or CT, in order to obtain a more complete picture of lung cancer natural course. 

The combination of multiple data sources allows us to challenge the usual assumption 

that all cancers arising during screening derive from a single statistical model. We 

obtain the best fit to the combined data-sets when we isolate cancers into distinct 

clusters. We find that the cancers arising during the Mayo CT screening trial are con-

sistent with the collection of aggressive cancers in the MLP, despite the smaller size of 

advanced Mayo CT cancers. In our view, these findings lend additional credibility to a 

bi-modal model of tumor progression, in which the subset of large early-stage cancers 

in the MLP may progress only slowly to advanced-stage disease and advanced-stage 

cancers, such as those detected in the Mayo CT undergo stage transition at a small 

size than expected. However, these results do not preclude the possibility of mortal-

ity reduction under a scenario of aggressive nodule management, rapid diagnosis and 

treatment. 

We restrict our comparison in these analyses to lung cancers arising in male screen 

participants in the Mayo Lung Project and the Mayo CT study (approx. 50% female). 

Based on a simulation model calibrated to the MLP, the distribution of early-stage 

and advanced-stage cancers in the Mayo CT was un-expected (p=0.022). The model 

predicted a three-fold greater number of advanced-stage prevalence cancers compared 

to advanced-stage incidence cancers, whereas the reverse scenario was observed: 9 

advanced-stage incidence cancers compared to one advanced-stage prevalence cancer. 

Furthermore, the model constraint of the exponential distribution of stochastic pro-

gression times appears to be challenged by this data-set suggesting that a distribution 

with greater density at both extremes is preferred. This scenario is consistent with a 

version of a bi-partite like model of tumor growth and progression. 
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A key finding is that advanced-stage cancers detected during the Mayo CT study were 

smaller than early-stage cancers detected during the Mayo Lung Project. An analy-

sis based on the size at stage transition indicated that there was weak evidence that 

the mean size at stage transition was significantly smaller among Mayo CT cancers 

than Mayo Lung Project cancers. We interpret this result as indicating an overall 

lack of homogeneity between the two groups of incidence cancers given the model 

framework. A lack of homogeneity suggests a violation of the model assumption that 

tumor growth rate is independent of size at stage transition and likewise that distinct 

strata of tumor progression growth and progression have not been accounted for by 

the proposed model of growth and progression. 

We construct a new model framework consistent with stem-cell driven tumor pro-

gression in which the accumulation of mutations in a subset of stem-like cells drives 

stage transition. The stochastic portion of the model is embedded in variable rates of 

stem-cell proliferation as well as variation in the rate of accumulation of mutations. 

This model framework has a data visualization component, given that the joint sim-

ulated likelihood for each detected cancer can be interpreted in terms of the model 

parameters / and //. Similar to the homogeneity analysis described above, we find 

that the Mayo CT study and MLP cancers are not mutually consistent with a single 

parameter combination of / and //. When we cluster the MLP cancers on the basis of 

likelihood concordance, we find that the Mayo CT study cancers are consistent with 

Cluster B, containing nearly all advanced-stage cancers in the MLP data-set, despite 

the larger size of the advanced-stage cancers in the MLP. These findings were robust 

against changes in the assumption of screen detection, in that a switch to a model of 

size-dependent screen detection did not alter the findings. 

Given evidence of a stage shift in the Mayo CT study, one might expect screen-

detected advanced-stage cancers to be small. In this scenario, screen-detected cancers 
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found in an advanced-stage will likely be smaller cancers that progressed before inter-

vention could be implemented. However, absence of a stage shift and a small mean 

size of advanced-stage cancers suggests that the required clinical threshold for detec-

tion and curability is also quite small. The median size of advanced-stage cancers in 

the Mayo CT study was 11.97 mm, compared to 40.00 mm in the Mayo Lung Project. 

We note that CT screening protocols implemented in different studies and different 

medical institutions differ with respect to nodule management and are not likely to 

have similar outcomes. The management of detected nodules in the Mayo CT was left 

to the discretion of the attending physician, as in the ongoing NLST trial. In contrast, 

the I-ELCAP protocol requires that fine needle aspiration be more aggressively and 

consistently employed as a diagnostic tool. Our analysis suggests that rapid diagnosis, 

appropriate classification of positive screen-detected nodules, and rapid treatment is 

expected to have a large effect on mortality reduction, if the threshold for clinical 

detection is set below 10 mm. In the I-ELCAP, despite the lack of a non-screened 

arm, there was an equal frequency (15%) of advanced-stage cancers among baseline 

cancers as among annual-repeat cancers, an improvement over the Mayo CT [30]. 

Given the ongoing National Lung Screening Trial (NLST) comparing chest xray to 

CT, we believe that model-based methodology and insights may prove to be partic-

ularly important, in addition to more established analysis methods of randomized 

clinical trial data. 



Chapter 4 

Summary and Future Directions 

The overall theme of this thesis is the use of a model-based estimation framework in 

the analysis of clinical trial data in order to extract optimal information, generate 

insights and recommendations that may optimize clinical strategies in lung cancer 

screening. Based on this study, we can suggest two key ways in which lung cancer 

screening may be optimized. The first is by maximum dose reduction of lung cancer 

screening modalities. Using a model-based framework specific to excess risk of lung 

cancer in individuals with a prior smoking history, we find that there is a significant 

excess lung cancer risk associated with repeated screening by chest x-ray. While early 

detection by screening remains a promising means of lung cancer mortality reduction, 

it must be applied judiciously, given its potentially high risk. From the standpoint of 

a public health message, this study also re-iterates that lung cancer screening should 

not be viewed as a replacement for primary prevention by smoking cessation, given 

the risks. The second is optimal nodule management at a low clinical size threshold. 

Our analysis suggests that the size threshold for clinical detection and cure may be 

small. Key differences in trial protocol may therefore imply a large difference in mor-

tality outcomes. In particular, the optimal use of diagnostic and treatment techniques 

such as fine needle aspiration, ablation, and other minimally invasive surgery is a key 

component of screening success. The evaluation of screening outcomes and screening 
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effectiveness should consider the entirety of the detection and treatment continuum. 

Furthermore, if a low clinical threshold for detection is to be established, the improved 

ability to distinguish between aggressive and non-aggressive cancers is essential. If 

stem-like cells are responsible for driving tumor aggressiveness, then there may be a 

role for computational bioinformatic approaches and algorithms to identify cancers 

with large stem cell fractions, as an alternative to biomarker approaches in which a 

single protein marker is presumed to represent a uniform population of cells. Due to 

the proliferative capacity of stem-cells and the genetic instability of cancer, it will be 

interesting to examine tumor classification techniques dependent on the cellular-based 

mutation patterns present in diagnosed tumors. There is still much room for improve-

ment in the classification of T1 tumors free of lymphatic spread or distant metastases. 

Another extension of this research is the use of clinical trial data in lung cancer drug 

trials in order to test biological hypotheses. Whereas a dominant trend in statistical 

methodology of clinical trials has been to implement Bayesian methods in order to 

reduce the number of patients enrolled in a given clinical trial, such an approach 

ignores the potential of clinical trial data to test biological hypotheses. In this the-

sis, we show two examples of the value of model-based methods to give biological 

insights based on lung screening data. Other treatment models that incorporate pa-

tient response covariates may be optimally combined and considered in a model-based 

framework. In addition to genetic approaches, the use of additional and novel pa-

tient response variables is a way to incorporate patient heterogeneity into optimal 

treatment strategies, currently a limiting factor in progress against cancer, and lung 

cancer in particular. Model fitting is currently challenged by small data sizes and will 

be further challenged by additional efforts at data reduction. It will be of interest to 

explore further the statistical properties of model-fitting in a clinical trial setting as 

well as mining additional data-sets. 



Chapter 5 

Tables and Figures 
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Table 5.1: Total number of lung cancers found in screening and control subjects 

during the Mayo Lung Project (ending July 1, 1983) in the 7-year period after the 

initial screen. 
Trial Arm Mode of Detection N Stage I Stage II Stage 111/IV 

Screening Arm 

Routine Xray 66 41 3 22 

Routine sputum 18 16 1 1 

Routine Xray and Sputum 6 4 1 1 

Interval Xray 22 13 2 7 

Interval Symptoms 37 5 0 32 

Interval death 2 0 0 2 

Total 151 79 7 65 

Control Arm 

Routine Xray . . . 

Routine sputum -

Routine Xray and Sputum -

Interval Xray 34 24 1 9 

Interval Symptoms 86 10 1 75 

Total 120 34 2 84 
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Table 5.2: Lung cancer (LC) incidence and mortality and other-cause (OC) mortality 

in the seven-year period after the prevalence screen and after long-term follow-up in 

the Mayo Lung Project (median of 20.5 years for mortality data and 23.5 years for 

incidence data) 

Screening Arm Control Arm Difference (S-C) 

Years 1-7 

LC Incidence 151 120 31 

LC Deaths 82 70 12 

Post-Follow-up 

OC Death 608 601 7 

LC Incidence 585 500 85 

LC Deaths 337 303 34 

OC Death 2151 2139 12 
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Table 5.3: Summary of Distributions and Parameter Values Used in the Simulation 

of the Natural Course of Lung Cancer 
Variable Distribution Parameters, NSCLC Parameters, SCLC 

Age at Enrollment Empirical N/A N/A 

Lifetime Susceptibility Bernoulli p= 0.174 p=0.0520 

Duration of Early Stage 

(years) Exponential Mean = 4 Mean = 1.75 

Duration of Late Stage 

(years) Exponential Mean = 2 Mean = 1 

Cure Probability Bernoulli p=0.35 p=0 

Age at Onset Left-Skew 

Triangular Min=40, Max=80 Min=40, Max=80 

Detection Probability Bernoulli p=0.245 p=0.245 

Adherence to Screening 

Regimen Bernoulli p=0.75 p=0.75 

Duration of Screen-Free 

Intervals (years) 

in Non-adherent group Exponential Mean = 2.2 Mean = 2.2 
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Table 5.4: Simulated Lung Cancer Incidence and Deaths Compared to MLP data in 

the 7-year period after the prevalence screen 
Outcome Measure Simulated Mayo Lung Project 

Screening Arm 

Control Arm 

Stage I Incidence 

Advanced-stage Incidence 

Lung Cancer Deaths 

Other-Cause Deaths 

Stage I Incidence 

Advanced-stage Incidence 

Lung Cancer Deaths 

Other-Cause Deaths 

70.7 

71.4 

71.2 

675.3 

38.1 

85.9 

74.4 

675.7 

79 (1) 

72 (2) 

82 

608 

34 

86 

70 

601 

(1) 

Includes 16 sputum-detected cancers that were not visible by chest radiograph at 

the time of detection. 

(2) Includes 2 sputum-detected cancers that were not visible by chest radiograph at 

the time of detection. 
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Table 5.5: Simulated Lung Cancer Incidence and Deaths Compared to Mayo Lung 

Project Follow-Up data 
Outcome Measure SS Model OS Model MLP 

Screening Arm 

LC Incidence 453.6 460.5 585 

LC Deaths 296.1 293.9 337 

OC Deaths 2425.6 2425.9 2151 

Control Arm 

LC Incidence 447.1 447.7 500 

LC Deaths 302.4 302.8 303 

OC Deaths 2421.1 2420.5 2139 

Table 5.6: Measures of Variation in Cumulative Lung Cancer Incidence and Deaths 

Within 2,500 Simulated Trajectories Over the Median Follow-Up Period (Median of 

20.5 Years for Mortality Data and 23.5 Years for Incidence Data) 

Measure of Variation SS Model OS Model 

Min. Incidence Diff. (S-C) - 100 -95 

Max. Incidence Diff. (S-C) 105 128 

Number of Trajec. with Inc. Diff. > 85 10 (p=0.004) 26 (p=0.0104) 

Min. Diff. in LC Deaths -96 -99 

Max Diff. in LC Deaths 78 73 

Number of Trajec. with Diff. in LC Deaths > 34 132 (p=0.0528) 106 (p=0.0424) 
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Table 5.7: Lung Cancer Incidence During the Follow-up Period by the Number of 

Screens Received During the Mayo Lung Project (excludes participants who received 

a lung cancer diagnosis or died during the first seven years of the MLP and those who 

declined long-term follow-up) 

Trial Screens No LC LC Unknown Status % LC (Known) 

Screening Arm 

1-5 349 54 157 13.40% 

6-10 136 20 52 12.82% 

11-15 145 23 65 13.69% 

16-20 1875 328 603 14.89% 

21-29 33 9 8 21.43% 

Total 2538 434 885 14.6% 

Control Arm 

1-5 2542 380 943 13.00% 
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Table 5.8: Lung Cancer Deaths During the Follow-up Period by the Number of 

Screens Received During the Mayo Lung Project (excludes participants who died 

during the first seven years of the MLP and those who were ineligible for long-term 

mortality follow-up) 

Trial Screens Alive OC Death LC Death ' % LC Death 

Screening Arm 

1-5 328 208 34 5.96% 

6-10 118 92 13 5.83% 

11-15 147 87 17 6.77% 

16-20 1500 1129 186 6.61% 

21-29 21 27 5 9.43% 

Total 2114 1543 255 6.52% 

Control Arm 

1-5 2140 1538 233 5.96% 

Table 5.9: Measures of Variation in Cumulative Lung Cancer Incidence and Mortality 

Within 1,000 Simulated Trajectories Over the Median Follow-Up Period (median of 

20.5 years for mortality data and 23.5 years for incidence data). We incorporate the 

excess risk parameter rr into a stop-screen (SS) model and an ongoing screen (OS) 

model 
Measure of Variation SS Model OS Model 

Mean. Incidence Diff. (S-C) 29.9 37.8 

Number of Trajec. with Inc. Diff. > 85 42 (p=0.042) 26 (p=0.053) 

Mean. Diff. in LC Deaths 7.8 4.5 

Number of Trajec. with Diff. in LC Deaths > 34 147 (p=0.147) 115 (p=0.115) 
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Table 5.10: Summary of Mayo CT Incidence, Prevalence, and Interval Lung Cancer 

Detection 
Totals Stage I Stage II Stage l l l / lV Unknown Small Cell 

Males 

Prev. 9 8 1 0 0 1 

Inc. 12 6 2 3 1 1 

Inc-R. 3 1 1 1 0 0 

Int. 1 0 0 0 1 0 

Totals 25 15 4 4 2 2 

Females 

Prev. 20 14 3 3 0 1 

Inc. 9 7 1 1 0 3 

Inc-R. 4 3 0 1 0 0 

Int. 0 0 0 0 0 2 

Totals 33 24 4 5 0 6 

Both Genders 

Prev. 29 22 4 3 0 2 

Inc. 21 13 3 4 1 4 

Inc-R. 7 4 1 2 0 0 

Int. 1 0 0 0 1 2 

Totals 58 39 8 9 2 8 



62 

Table 5.11: Distribution of Lung Cancer Deaths among Mayo CT Participants 
Totals Stage I Stage II Stage III/IV Unknown Small Cell 

Males 

Prev. 1/9 0/8 1/1 0/0 0/0 1/1 
Inc. 7/12 2/6 2/2 2/3 1/1 1/1 
Inc-R. 1/3 0/1 1/1 0/1 0/0 0/0 

Int. 1/1 0/0 0/0 0/0 1/1 0/0 

Totals 10/25 2/15 4/4 2/4 2/2 2/2 

Females 

Prev. 2/20 2/14 0/3 0/3 0/0 0/1 

Inc. 0/9 0/7 0/1 0/1 0/0 1/3 

Inc-R. 1/4 0/3 0/0 1/1 0/0 0/0 

Int. 0/0 0/0 0/0 0/0 0/0 1/2 

Totals 3/33 2/24 0/4 1/5 0/0 2/6 

Both Genders 

Prev. 3/29 2/22 1/4 0/3 0/0 2/2 

Inc. 7/21 2/13 2/3 2/4 1/1 2/4 

Inc-R. 2/7 0/4 1/1 1/2 0/0 0/0 

Int. 1/1 0/0 0/0 0/0 1/1 1/2 

Totals 13/58 4/39 4/8 3/9 2/2 4/8 
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Table 5.12: Size Comparison of NSCLC Incidence Cancers in the Mayo Lung Project 

and the Mayo CT Study in males and females 
N Median Diam. (mm) Mean Diam. (mm) 

MLP 

Males 

Stage I 49/56 24.00 23.65 

Stage 11/111 30/48 40.00 41.07 

Mayo CT 

Males 

Females 

Stage I 7 7.96 9.42 

Stage 11/111 7 11.97 14.76 

Unknown 2 11.43 11.43 

Stage I 10 8.00 9.56 

Stage II/III 3 14.00 17.75 
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Table 5.13: Size Comparison of NSCLC Prevalence Cancers in the Mayo Lung Project, 

Mayo CT, And ELCAP Studies in males and females 
N Median Diam. (mm) Mean Diam. (mm) 

MLP 

Males 

Stage I 25/28 22.00 31.44 

Stage 11/111 29/39 55.00 54.76 

Mayo CT 

Males 

Females 

ELCAP 

Males 

Females 

Stage I 8 9.21 10.75 

Stage 11/111 1 15.00 15.00 

Stage I 14 8.62 9.44 

Stage II/III 6 12.99 19.23 

Stage I 21 10.88 13.24 

Stage II/III 2 23.75 23.75 

Stage I 47 12.00 13.13 

Stage II/III 7 12.00 13.43 
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Table 5.14: Total Lung Cancer Cases in the Lung Screening Study in Baseline and 

Year 1 
CT Arm Chest Xray Arm 

Baseline 

Stage I 16 6 

Stage II 3 0 

Stage III 6 0 

Stage IV 3 0 

Unknown 2 1 

Totals 30 7 

Year 1 

Stage I 2 2 

Stage II 0 1 

Stage III 5 4 

Stage IV 1 1 

Unknown 0 1 

Totals 8 9 

Interval 

Stage I 1 0 

Stage II 0 0 

Stage III 0 1 

Stage IV 1 3 

Unknown 0 0 

Totals 2 4 



66 

Table 5.15: Expected Size at Stage Transition as a Function of Parameters f and u 

Branching Fraction 

Log (Mutation Rate (u)) 0.0025 0.005 0.01 0.02 0.03 0.04 0.05 

-5.0 84.43 96.4 100 100 100 100 100 

-4.5 34.0 65.1 80.4 100 100 100 100 

-4.0 7.9 12.6 20.5 37.3 42.3 62.1 66.1 

-3.5 5 5.5 7.2 10.6 13.9 14.0 22.1 

-3.0 5 5 5 5 5 5 6.3 
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Table 5.16: Simulation of Mayo CT Incidence, Prevalence, Non-Small Cell Lung 

Cancers by Stage and Detection 
Sim, Sens. = 0.9 Sim, Sens. = 0.8 Actual 

Males 

Females 

Both Genders 

Prev, Early-Stage. 

Prev, Adv.-Stage 

Inc, Early-Stage 

Inc, Adv.-Stage 

Totals 

Prev, Early-Stage. 

Prev, Adv.-Stage 

Inc, Early-Stage 

Inc, Adv.-Stage 

Totals 

Prev, Early-Stage. 

Prev, Adv.-Stage 

Inc, Early-Stage 

Inc, Adv.-Stage 

Totals 

10.5 

6.3 

11.5 

1.9 

30.2 

5.1 

11.5 

1.8 

27.3 

19.4 

11.4 

23 

3.7 

57.5 

10.1 

6.5 

10.9 

2.1 

29.6 

8.7 

5.2 

11.2 

2.2 

27.3 

18.8 

11.7 

2 2 . 1 

4.3 

56.9 

1 

7 

9 

25 

14 

6 

10 

3 

33 

22 

7 

17 

12 
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Figure 2. Simulated annual incidence, annual mortality and cumulative differences in incidence 
and mortality (screening-control) over long-term follow-up: a) Mean counts of lung cancer cases 



per year assuming a stop-screen model, b) Mean counts of lung cancer cases per year assuming 
an ongoing screening model c) Mean counts of lung cancer deaths per year assuming a stop-

screen model. Screening arm (A), control arm (o) and cumulative difference (*). 



Figure 3. Model-predicted excess 10-year probability of lung cancer at the conclusion of 
the MLP by attained age and the number of chest Xrays received. 50 years-old (A) 60 

years-old (o) and 70 years-old (x). 
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