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ABSTRACT 

Deterministic and Stochastic Responses of Smart Variable Stiffness 
and Damping Systems and Smart Tuned Mass Dampers 

by 

Ertan Sonmez 

Semi-active control algorithms are developed and examined for a variety of civil en

gineering applications subjected to a wide range of excitations. Except two control al

gorithms based on continuous variable structure control and Lyapunov control, the semi-

active controllers developed in this study are based on real-time estimation of instantaneous 

(dominant) frequency and the evolutionary power spectral density by time-frequency anal

ysis of either the excitation or the response of the structure. Time-frequency analyses are 

performed by either short-time Fourier transform or wavelet transform. 

The semi-active strategies are applied to three categories of structures: (1) smart single-

and multi- degree-of-freedom (sSDOF/sMDOF) systems subjected to pulse-type and ran

dom ground excitations, (2) single/multiple smart tuned mass dampers (sTMD/sMTMD) 

subjected to random wind and ground excitations, and (3) smart tuned liquid column 

dampers (sTLCD) subjected to random wind and ground excitations. 

For sSDOF/sMDOF systems, nonlinear control algorithms developed to independently 

vary stiffness (continuous variable structure control) and damping (Lyapunov control) are 

examined against near-fault earthquakes and pulse type of excitations fitted to them. An

other semi-active (time-frequency) controller is developed based on minimizing the instan-



taneous H2 norm of the response of the structure. 

Two time-frequency controllers (feedforward and feedback) are developed for single/ 

multiple smart tuned mass dampers (sTMD/sMTMD) subjected to either force or base ex

citation. In the feedforward control, the smart tuned mass damper stiffness and damping 

are varied based on the instantaneous (dominant) frequency of the excitation, whereas in 

the feedback control the smart tuned mass damper stiffness is varied based on the instanta

neous (dominant) frequency of the response. The developed algorithms are also extended 

to semi-active smart tuned liquid column dampers (sTLCD) subjected to either force or 

base excitation. 

The performance of the control algorithms are evaluated by studying the deterministic 

and stochastic responses of the examined semi-active structures. Stochastic responses are 

computed from Monte Carlo simulations of various target evolutionary spectra. It is shown 

that smart variable stiffness and variable damping systems and smart tuned mass/liquid 

column dampers lead to significant response reduction over a broad frequency range and 

under a wide set of excitations. 
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Chapter 1 

Introduction 

1.1 Objective and Scope of This Study 

Many studies in the literature (Housner et al. 1997; Spencer and Nagarajaiah 2003) 

have shown that adaptive structures have major advantages over passive ones. With this 

motivation, many structural control devices and control algorithms have been developed 

and examined on wind and ground excited structures. Structures respond differently to dif

ferent kind of excitations. Therefore, it is very important to be able to know the characteris

tics of the excitation signal fully and successfully incorporate it into the control algorithm. 

Although for stationary signals, classical spectral analysis based on Fourier transform de

scribe the signal satisfactorily, it is not capable of describing time-varying, evolutionary 

spectra. In reality most signals in nature have non-stationary characteristics and have time-

varying, evolutionary spectra. To be able to describe the evolutionary characteristics of 

a non-stationary signals, joint time-frequency methods such as short time Fourier trans

form (STFT) and wavelet transform (WT) need to be performed. In this study, the main 

objectives are (i) to employ time-frequency techniques such as STFT and WT to describe 

evolutionary spectra of the excitation and response signals, and to identify the instanta

neous (dominant) frequency in real-time; and (ii) to develop novel control algorithms for 

smart semi-active systems using the real-time evolutionary spectra and the instantaneous 

(dominant) frequency. 

In the remaining of this chapter, preliminary background and previous work in the liter

ature have been presented. In Chapter 2, mathematical formulation of linear time varying 

(LTV) systems is summarized with a specific case study on the formulation of the semi-
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active tuned mass damper (sTMD). Chapter 3 provides an introduction to time-frequency 

analysis with short time Fourier transform (STFT) and wavelet transform (WT). 

Chapter 4 presents the algorithms used for frequency tracking and evolutionary spec

trum estimation using STFT and WT. A discrete sine sweep and four different random 

processes are studied to compare the instantaneous frequency and evolutionary spectrum 

obtained by the two methods. 

Chapter 5 - differing from other chapters - studies two nonlinear control algorithms 

which are not based on time-frequency analysis. The nonlinear control algorithms devel

oped to independently vary stiffness and damping in structures are examined under near-

fault earthquake records and pulse type of excitations fitted to them. Three cases of semi-

active control are considered, which are (i) independently variable stiffness control, (ii) 

independently variable damping control, and (iii) combined variable stiffness and damping 

control. 

Chapter 6 introduces feedforward semi-active single and multiple tuned mass dampers 

(sTMD/sMTMD), which are tuned to the instantaneous frequency of the excitation signal. 

Their deterministic responses are studied under several harmonic and random excitations. 

Chapter 7 presents a novel control algorithm developed for semi-active single/multiple 

degree-of-freedom (sSDOF/sMDOF) systems based on adaptive H2 control. The algo

rithm involves obtaining the real-time time-frequency characteristics of the excitation and 

then applying instantaneous H2 control by an independently variable stiffness device. The 

proposed control basically keeps the fundamental frequency of the system away from the 

dominant frequencies of the excitation by minimizing the H2 norm of the instantaneous 

response spectrum. For MDOF systems, the scope is limited to the systems equipped with 

variable stiffness and variable damping devices between the base and first DOF. The per

formance of the control algorithm is evaluated for several random ground motion processes 
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and 1940 El Centra Earthquake. 

Chapter 8 studies single and multiple semi-active variable stiffness tuned mass dampers 

(sTMD/ sMTMD) under a broader range of random excitations. Two different classes of 

sTMD are investigated: (i) feedforward sTMD/sMTMD which are tuned to instantaneous 

frequency of the excitation (similar to Chapter 6) and (ii) feedback sTMD/sMTMD which 

are tuned to the instantaneous frequency of the displacement response. SDOF and MDOF 

systems equipped with sTMD and sMTMD subjected to narrow-band stationary force ex

citations, wide-band locally stationary base excitations, and 1940 El Centra earthquake are 

investigated. 

In chapter 9, feedforward and feedback control strategies of sTMD are extended to 

semi-active tuned liquid column dampers (sTLCD). SDOF and MDOF systems equipped 

with sTLCD subjected to narrow-band stationary force excitations, wide-band locally sta

tionary base excitations, and 1940 El Centra earthquake are investigated. 

The final chapter summarizes the main points of this study and presents the concluding 

remarks. 

1.2 Review of Previous Work 

1.2.1 Structural Control: Passive, Semiactive and Active Systems 

The field of structural control has its roots back more than 100 years to John Milne, a 

professor of engineering in Japan, who built a small house of wood and placed it on ball 

bearings to demonstrate that a structure could be isolated from earthquake sliding (Housner 

et al. 1997). But it was after 1960 when the first applications of passive structural control 

had been seen. In the last few decades many structural control devices were developed and 

significant progress has been made in the field. Today, there are four types of structural 
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control: (1) passive, (2) active, (3) hybrid and (4) semi-active. In passive control, passive 

devices are employed to absorb and dissipate energy to reduce the response of the struc

ture. No external energy is given to the system, so it is stable but not adaptive to varying 

structural and environmental conditions. Base isolation of low-rise and mid-rise buildings, 

and tuned mass dampers in tall buildings are such devices. Active control is the strategy 

to apply forces to the structure in a prescribed manner by an actuator powered by an ex

ternal energy source. Active devices can both dissipate and add energy in the structure. 

Therefore, they may cause instability of the structure. Active mass damper is an example 

of active devices. A hybrid control system is defined as one which employs a combination 

of passive and active devices to exploit their potential to increase the overall reliability and 

efficiency (Spencer and Nagarajaiah 2003). The hybrid control system can be more reliable 

than a fully active system, but it is also often more complicated. An example of such device 

is hybrid mass damper where a tuned mass damper and an active control actuator are com

bined. Semiactive control is the strategy based on changing the structural properties (i.e. 

damping, stiffness) of the control device to minimize the response of the structure with

out applying any external force. Semiactive control strategies are particularly promising in 

addressing many of the challenges of structural control, offering the reliability of passive 

devices, yet maintaining the versatility and adaptability of fully active systems, without 

requiring the associated large power sources and can operate on battery power (Spencer 

and Nagarajaiah 2003). Unlike active control devices, semi-active control devices do not 

have the potential to destabilize the structural system. Semiactive systems perform signifi

cantly better than passive devices and have comparable performance to fully active systems 

with orders of magnitude less power consumption. Examples of such devices are variable-

orifice fluid dampers, controllable friction devices, variable-stiffness devices, smart tuned 

mass dampers and tuned liquid dampers, and controllable fluid dampers. In the following 
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sections, some of these control devices are discussed in detail, further information can also 

be found in Housner et al. (1997) and Spencer and Nagarajaiah (2003). 

1.2.2 Semiactive Variable Damping and Stiffness Systems 

Various semi-active devices that can change stiffness and damping and the correspond

ing control algorithms have been developed (Spencer and Nagarajaiah 2003). One such 

device, the semi-active independently variable stiffness device (SAIVS) that varies the stiff

ness of a system smoothly and continuously, has been developed by Nagarajaiah and Mate 

(1998). The effectiveness of the device in producing a non-resonant structure has been 

demonstrated by Nagarajaiah and Mate (1998) and was further studied by Nagarajaiah 

etal. (1999). 

Kobori et al. (1993) developed the first active variable stiffness (AVS) system to control 

seismic response. In this system the input energy to the structure is reduced by changing 

its stiffness in real-time to avoid resonance phenomena. In addition, it can also provide 

additional damping by hysteretic energy dissipation. The effectiveness of the system has 

been demonstrated through several experiments and records obtained over a period of ten 

years after a three story steel building equipped with AVS was built in 1990 in Japan. 

Use of resettable actuator in reducing vibration had been proposed in the literature. The 

effective stiffness of the structure is kept high so that it stores energy. At appropriate times, 

when the energy stored in the system has reached a peak value, the force is reduced for a 

short time and reset to a high value. As a result of this resetting, stored strain energy is 

dissipated. Yang et al. (2000) have proposed a control law based on the Lyapunov theory 

for resetting a semi-active stiffness damper. 

Several researchers have investigated semi-active dampers (Karnopp et al. 1974; Ivers 

and Miller 1991; Spencer et al. 1997). The application of controllable MR fluid dampers 
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for seismic protection has been studied analytically and experimentally by Dyke et al. 

(1998). 

More recently, Agrawal (2004) examined the response of semi-active variable stiffness 

and damping systems to pulse type excitations both analytically and experimentally. The 

experimental setup involved a sliding SDOF system equipped with an SAIVS spring and an 

MR damper. Three semi-active control strategies are investigated (i) independently variable 

stiffness control based on a variable structure control (ii) independently variable damping 

control based on a Lyapunov control and (iii) combined variable stiffness and damping 

control. 

1.2.3 Base Isolation 

The basic concept of the base isolation is to uncouple the superstructure from ground 

to protect it from the damaging effects of earthquake excitations. There are two common 

types of base isolation system (Kelly 1993). Among those, the most widely adopted one 

is the system with elastomeric bearings. The system works by decoupling the superstruc

ture from the horizontal components of the ground motion by creating a layer with low 

stiffness between the superstructure and the foundation (substructure). The horizontal flex

ibility leads to a much lower fundamental frequency of the structure than both its fixed base 

frequency and the dominant frequencies of the ground motion. The dynamic response is 

mostly controlled by the fundamental (first) mode and the deformation of the base level 

only, keeping the decoupled superstructure linear and rigid. The second type of the isola

tion is the system with sliding bearings. The system works by providing only a low level 

friction across the isolation interface that will limit the transfer of the shear. Despite the 

simplicity of this system, there are several drawbacks that needs to addressed in the design. 

To sustain wind loads and unnecessary slip under small earthquakes, a considerable amount 
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of friction is needed. Additionally, the slip phenomenon is intrinsically nonlinear requiring 

a non-linear dynamic analysis and sudden changes between slipping and sticking condi

tions can generate high frequency vibrations exciting the higher modes of the structure. 

The application of controllable MR fluid dampers in smart base isolated buildings has 

been studied analytically and experimentally by Nagarajaiah and Varadarajan (2000), Sa-

hasrabudhe et al. (2000), Mao (2002), and is shown to be effective in reducing seismic 

response. The application of controllable electrorheological dampers for response control 

of elastomeric base isolated buildings was originally studied by Makris (1997), followed by 

Gavin (2001) and is shown to be effective in reducing response. Response control of slid

ing isolated buildings using variable orifice dampers has been studied experimentally by 

Madden et al. (2002). Makris and Chang (2000b) have shown the effectiveness of viscous, 

viscoplastic, and friction damping in response of seismically isolated structures. 

Narasimhan and Nagarajaiah (2005) developed an STFT semi-active controller for base 

isolated buildings with variable stiffness isolation systems. The controller varies the stiff

ness of the isolation system smoothly between minimum and maximum values when the 

energy of the excitation exceeds a predetermined threshold value. The algorithm is ex

amined analytically on a five-story base isolated reinforced concrete building with linear 

elastomeric isolation bearings and a variable stiffness system located at the isolation level, 

under several near-fault earthquakes. 

1.2.4 Tuned Mass Damper (TMD) 

Tuned mass damper (TMD) is a widely used passive energy absorbing device consisting 

of a secondary mass, a spring and a viscous damper, which is attached to a primary or main 

vibratory system to reduce its dynamic motion. Its effectiveness depended on the closeness 

of absorber's natural frequency to the excitation frequency. TMD was first suggested by 
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Frahm in 1909 (Den Hartog 1956). First closed form expressions for optimum parameters 

of a TMD were derived by Den Hartog (1956) for an undamped single degree of freedom 

(SDOF) main structure subjected to harmonic force. Since then, optimum parameters of 

TMD have been studied extensively. TMD is usually designed by modelling the main 

structure as an equivalent SDOF structure. McNamara (1977) studied the effectiveness 

of TMD under wind and white noise excitations, including a 400 ton TMD for Citicorp 

Center (a 900 ft high office building). Warburton (1981) studied the optimum parameters 

of a TMD system with a 2-DOF main structure and reported that the parameters determined 

for 2-DOF main structure are in close agreement with the ones for SDOF approximation of 

the same structure if the ratio of two natural frequencies of the main system is reasonably 

large. Abe and Igusa (1995) showed that for multi degree of freedom (MDOF) primary 

structures with widely spaced natural frequencies, the SDOF approximation of the primary 

structure is the dominant term in the perturbation series and higher order terms can be 

eliminated by suitably placing several additional TMDs on the structure. Abe and Igusa 

(1995) also reported that for structures with p closely spaced natural frequencies at least 

p TMDs are necessary to control the response and derived an analytical condition on the 

TMD placement that decouples the response of the system onto p SDOF structure/TMD 

systems. It is well accepted that TMD is effective in reducing the response due to harmonic 

(Den Hartog 1956) or wind excitations (McNamara 1977). For the seismic effectiveness of 

TMD, there is no general agreement. Kaynia et al. (1981) and Sladek and Klingner (1983) 

reported that TMD is not effective in reducing response due to earthquake excitation. 

1.2.5 Multiple Tuned Mass Dampers (MTMD) 

The effectiveness of a TMD is highly dependent to its optimum tuning frequency and 

optimum damping parameter. Mistuning due to error or change in the natural frequency 
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due to damage/deterioration of the primary structure or off-optimum damping will reduce 

the efficiency of a TMD significantly. In the past two decades, systems with multiple TMDs 

(MTMD) have been proposed to eliminate the disadvantages of single TMD systems. Sev

eral researchers (Xu and Igusa 1992; Igusa and Xu 1994; Yamaguchi and Harnpornchai 

1993) studied the performance and optimum parameters of MTMD systems under har

monic and white noise excitations, and showed that optimally designed MTMD system 

is more effective than the single TMD system. Yamaguchi and Harnpornchai (1993) in

vestigated the fundamental characteristics of MTMD with the parameters of the covering 

frequency range of MTMD, the damping ratio of each TMD and the total number of TMDs 

in comparison to a single TMD for harmonically forced primary structural vibration. Abe 

and Fujino (1994) reported that a properly designed MTMD can be much more robust than 

a conventional TMD. Kareem and Kline (1995) studied SDOF systems with MTMD under 

random loading. 

1.2.6 Semi-active Tuned Mass Damper (sTMD) 

The conditions of a real primary structural system often change with time due to de

terioration or damage and TMD can lose effectiveness due to mistuning. The need for 

adaptivity has led to development of semi-active and active TMDs. An extensive survey of 

passive, semi-active and active TMDs has been presented by Sun et al. (1995). The main 

advantage of semi-active TMD is the response reduction comparable to an active TMD, but 

with an order of magnitude less power consumption (Nagarajaiah and Varadarajan 2005). 

Semi-active TMDs have been investigated by Hrovat et al. (1983), Abe (1996), and Abe 

and Igusa (1996). Several variable damping devices, such as magnetorheological, vari

able orifice, and electrheological dampers have been developed (Spencer and Nagarajaiah 

2003). Variable stiffness systems, with either on or off states, have been developed by Ko-
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bori et al. (1993) and Yang et al. (2000). Using the SAIVS device (described in Section 

1.2.2) a new semi-active variable stiffness TMD (sTMD) has been developed by Nagaraja-

iah and Varadarajan (2000). The sTMD has the distinct advantage of continuously retuning 

its frequency in real time thus making it robust to changes in primary system stiffness and 

damping. Recently, the sTMD has been studied by developing online tuning using empir

ical mode decomposition-Hilbert transform and short time Fourier transform (STFT) al

gorithms by Varadarajan and Nagarajaiah (2004) and Nagarajaiah and Varadarajan (2005), 

which tune the frequency of sTMD and reduce the primary structural response; it has been 

shown that sTMD is effective in reducing wind induced response of buildings and is robust 

against the changes in building stiffness. Nagarajaiah (2009) introduced a new adaptive 

length pendulum sTMD along with the further development of the concepts of sTMD and 

adaptive passive TMD (APTMD). 

1.2.7 Optimization of TMD parameters 

In some literature, the TMD can also be referred as a dynamic vibration absorber (DVA) 

- a passive vibration control device which is attached to a vibrating member (called the pri

mary system) subjected to an exciting force or motion. As mentioned above, the first DVA 

(or TMD) was invented by Frahm, and it had no damping element, and it was useful only 

in a narrow range of frequencies close to the natural frequency of the DVA. In 1928, Or-

mondroyd and Den Hartog found that the DVAs with energy dissipation mechanisms are 

effective to an extended range of frequencies and the damped DVA systems proposed by 

them is now known as the Voigt type DVA in which a spring element and a dashpot are 

arranged in parallel, and it has been recognized as a standard model of the DVAs (Asami 

et al. 2002). Since then, many optimization criteria have been proposed. Two typical opti

mization criteria are given below. 
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Hoc Optimization: The objective of H^ optimization is to minimize the maximum 

amplitude magnification factor (called H^ norm) of the primary system. The method for 

deriving the optimum parameter is called the fixed-points theory, since two points of the 

response curves of the system are used for obtaining the optimum parameter and all curves 

pass through these points independent of the absorber damping. The most favorable curve 

is the one which passes with a horizontal tangent through the highest of the two fixed points. 

Past research on H^ optimization of the DVAs are given in detail by Asami et al. (2002). 

H2 Optimization: When the primary system is subjected to random excitation, the ex

citation contains infinitely many frequencies. Therefore, it is not necessary to stick to only 

the resonant frequencies of the system. The H2 optimization criterion in the design of the 

damped DVA was proposed by Crandall and Mark in 1963 (Asami et al. 2002). The objec

tive is to reduce the total vibration energy of the system over all frequency by minimizing 

the area (called H2 norm) under the frequency response curve of the system. Past research 

on H2 optimization of the DVAs are given in detail by Asami et al. (2002). 

1.2.8 Tuned Liquid Column Dampers (TLCD) 

Modern civil engineering structures being built are much lighter and slender than be

fore, especially for high rise building and long span bridges. For the advantages of low cost, 

easy installation and easy adjustment of damper frequency, liquid column mass dampers 

(LCDs) have been introduced as an alternative to TMDs as energy dissipation devices for 

suppression of structural vibrations. Tuned liquid dampers (TLD) are dampers whose 

damping effects depend on the liquid residing in the damper and which are specifically 

tuned to the natural frequency of the structure. TLCD is a U-shaped tube, which contains 
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liquid, usually water. The application of TLCD to civil engineering structures were stud

ied by Sakai et al. (1991), Xu and Samali (1992) and Balendra et al. (1999). The tuning 

ratio, which is the ratio of the natural frequency of the TLCD to that of the structures, is 

optimized in order to ensure an efficient transfer of shear force from the TLCD to structure. 

Many improvement ideas for the TLCD system have been proposed such as the variable 

orifice system or so called pressure control mechanism (Kareem and Kline 1995) and the 

studies on the characteristics of variable cross section between the horizontal and vertical 

tube (Gao et al. 1997), (Kavand and Zahrai 2006), the optimal setting for TLCD (Yalla, 

Kareem, and Kantor 2001). Recently, Ghosh and Basu (2004) studied the application of a 

spring connected TLCD to short period stiff structures subjected to earthquake excitations. 

1.2.9 Random Vibration 

A random process is a family, or ensemble, of n random variables related to a similar 

phenomenon which may be functions of one or more independent variables, such as time 

or space or both. In such cases the outcome of each trial is called a realization or a sam

ple function. A random process becomes a random variable when time is fixed at some 

particular value. The random variable will posses statistical properties, such as a mean 

value, moments, variance, etc. that are related to its probability density function (PDF). A 

random process is said to be stationary if its statistical properties do not change with time; 

otherwise it is called non-stationary. 

For a particular time t\, the cumulative distribution function (CDF) associated with 

random variable Xi = X(t\) is 

Fx{x\,t\) = P{X\ < xi) for any real number x\ (1.1) 

For two random variables X\ = X{t\) and X2 = X(t2), the second order joint distribution 
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function is 

Fx(x1,x2; h, t2) = P{XX < Xl, X2 < x2) (1.2) 

For TV random variables Xi = X(ti), i = 1,2,..., TV the Nth order joint distribution 

function is written as 

Fx(xi,...,xN;ti,...,tN) = P(X1 <xu...,XN <xN) (1.3) 

Joint density functions (PDF) for the above three cases can be derived as 

fx(x1,t1) = '- (1.4) 

dx\ 

fx(xi,x2; ti,t2) = 'dx~dx ^ 

fx{x1,...,xN;t1:...,tN) = (1.6) 
OXi . . . OXN 

The statistical properties of a single random variable X(ta) at any time ta of the random 

process are defined as below, 

Mean = E[X(ta)]=m (1.7) 

Mean square = E[X(ta)
2] (1.8) 

Variance = a2 = E[(X(ta) - m)f] (1.9) 

A random process is called stationary to order one if its first order density function (PDF) 

does not change with a shift in time origin. fx{x\, t\) = fx(xi,ti + A) must be true for 

any £i and any real number A. It is called stationary to order two if its first order density 

function satisfies 

fx(xx,x2- tx, t2) = fx(xux2; tx + A,*2 + A) (1.10) 
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By extending the above reasoning to N random variables, Nth order stationarity can be 

defined. The definition of stationary random processes imposes the mathematical require

ments that the realizations of these processes must extend from — oo to +00. Physically, 

stationarity implies a measure of temporal uniformity in the characteristics of the factors 

contributing to randomness. In practice, no random process can be truly stationary. How

ever, long segments of random process realizations exhibiting uniform characteristics can 

be treated as stationary. 

The autocorrelation function of a random process X(t) is the correlation E[X±X2] of 

two random variables X\ = X(t\) and X2 = X(t2) defined by the process at time t\ and 

R(t1,t2) = E[X(t1)X(t2)} (1.11) 

If the autocorrelation function of a stationary random process is dependent on only time 

differences, instead of absolute time, random process is said to be wide sense stationary. 

So for a wide sense stationary random process 

E[X(t)] =m = constant (1.12) 

R(ti, t2) = E[X(t)X(t + T)] = R(T) where r = t2 - h and t = tx (1.13) 

A process stationary to order 2 is clearly wide sense stationary. However, the converse 

is not necessarily true. The most useful form is the wide sense stationary process, since 

problem solutions are greatly simplified in such cases. 

In addition to ensemble averages it is possible to determine the average values by av

eraging the sample function with respect to time. A[] is used to denote time average in a 

manner analogous to E for the statistical average. The time average of a sample function is 

1 fT/2 

x{t) = A[x(t)] = lim - / x(t)dt (1.14) 
T->oo 1 J_T/2 
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Time average is taken over all time because, as applied to random processes, sample func

tions of processes are presumed to exist for all time. The time autocorrelation function is 

given by 

Rt(r) = A[x(t)x(t + T)] = lim - / x(t)x{t + r)dt (1.15) 
T->oo 1 J_T/2 

For any one sample function of the process X(t), x(t) and Rt(r) are two numbers. How

ever, when all sample functions are considered, x(t) and Rt(r) become actually random 

variables. 

E[xjt)] = E[X] (1.16) 

E[Rt(r)] = R(r) (1.17) 

A random process is said to be ergodic if the averages taken across the ensemble are the 

same as those taken along one representative outcome (sample function) history of the en

semble. Thus, ergodic random process means that all statistical family (ensemble) averages 

are equal to corresponding time averages for any specific family (ensemble) member. 

x!tj = E[X} (1.18) 

Rt{r) = R(T) (1.19) 

Ergodic property makes it possible to obtain the moment functions of a stationary random 

process from a single record. Physically, ergodicity implies that a sufficiently long record 

of a stationary random process contains all the statistical information about the random 

phenomenon. In practical applications, often only one or two records are available, so 

that ergodicity is commonly assumed; when more records become available, the ergodicity 

assumption can be verified. 

The Fourier transform of the autocorrelation function and its inverse are given by 

£ = M = T" f°° Rx{r)e-^Tdr (1.20) 
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and 

/

oo 

Sx(u)eiuTdu (1.21) 
-oo 

where ^(u;) is called die spectral density of the process X(t) and ui is the angular fre

quency. For a stationary process with zero mean the autocorrelation function at r = 0 

gives the mean square value of the process. 

/

oo 

Sx(u)du (1.22) 

-00 

If the spectral density Sx(u>) of a stationary random process is known, then the spectral 

density of the derivative of the process can be obtained as follows. 
dRx(r) d 

= d7 dr 
E[X(t)X(t + r)] = E 

= E 

X(t)±X(t + r) 

= E[X(t)X(t + r)] 

dr 

(1.23) 

Thus, 

dr 
(Rx(r)) = E[X(t)X(t + r)} 

For a stationary process, E[X(t)X(t + r)] = E[X(t - r)X(t)] leading to 

d 
dr 

(Rx (r)) = E[X(t - r)X(t)] 

Differentiating Equation (1.25) with respect to r, gives 

^ (Rx (r)) = -E[X(t - r)X(t)\ = -Rx(r) 

where Rx(r) is the autocorrelation function for x(t). 

Differentiating Equation (1.21) once and twice leads to 

d r°° 
— (RX(T))= / iuSx{uy"Tdw 
dr J . ^ 

(1.24) 

(1.25) 

(1.26) 

(1.27) 
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and 

dr2 /

oo 

u2Sx{uj)e^Tdw (1.28) 
•oo 

Substituting Equation (1.26) into Equation (1.28) leads to 

J 2 /"oo /-oo 

RX{T) = - — ( i ^ (r)) = / uj2Sx(uu)eiuTdu = / rfS^e^du; (1.29) 

From Equation (1.29), the following relation is obtained. 

Si(u)=u2Sx(u}) (1.30) 

Using this result, mean square values of first and second derivative of the process can be 

written as 

/

oo /-oo 

Sx(cu)eiuJTdu = / co2Sx(cu)eiujTdco (1.31) 
oo J—oo 

/

OO /"OO 

Sx{uj)e^Tduj = / u^S^e^du (1.32) 
•oo J—oo 

Similar to spectral density function, cross-spectral density of a pair of random process is 

defined as the Fourier transform of the corresponding cross-correlation function for the two 

processes. The direct and inverse transforms are written as 
1 f°° 

SXV(UJ) = — / Rxy(r)e-^Tdr (1.33) 
^ J-oo 

/

oo 

Sxy{u)eiurduj (1.34) 
•oo 

The response of a SDOF system (y(t)) to an arbitrary input (x(t)) can be computed by 

adding the separate responses to all the incremental impulses which make up the total time 

history of x(t). 

y(t)= / h(t-T)x(r)dT (1.35) 
J—oo 

or 

/

oo 

h(d)x(t - 6)d6 (1.36) 
•oo 
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in which h(t — r) is the impulse response function giving the response at time t to a unit 

impulse at time r and 9 = t — T. The complex frequency response function is the Fourier 

transform of the impulse response function h(t) written as 

H(u) = f h(t)e~iu}tdt (1.37) 
J — oo 

By applying the Fourier transform to both sides of Equation (1.35) the input-output relation 

can be obtained in frequency domain as 

Y(u) = H(U)X(UJ) (1.38) 

The stochastic characteristics of the response of a SDOF system (y (t)) to an arbitrary input 

(x(t)) depend on the input process and input-output characteristics of the system. The 

autocorrelation function for the output process is 

Ry(r) = E[y(t)y(t + r)} (1.39) 

Defining 9 = t — r,<j) = t-\-r — T = t and substituting the solutions y(t) = j _ Q o h(9)x(t — 

6)d6 and y(t + r) = f^ h(4>)x{t + r — 4>)d<j) into Equation (1.39) gives 

/

oo ^oo 

h(0)x{t - 6)d6 I h((j>)x{t + r - 0)d0 
oo J—oo 

/

OO /"OO 

/ h(9)h((p)x(t - 6)x(t + r - (j))d0d(f) 
oo J—oo 

/ o o /-oo 
/ h(6)h(<f>)E[x(t-9)x(t + T-<t>)]ddd(f> 

oo J—oo 
/ o o />oo 

/ h(0)h(4>)Rx(T - 4> + 6)d9d(f> (1.40) 
-oo J —oo 

The spectral density of the output process is 

Sy(u) = ± j^Ry(r)e-^dr 
1 /"OO /"OO /"OO 

= 5 - / h(9)d6 h(<f>)d<l> RX(T - 0 + 9)e~iu3rdr (1.41) 
^" J—00 J—00 J — 00 

Ry{r) = E 

= E 
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Multiplying the right hand side by ee+(t> e * = 1 results in 

/

OO /"OO 1 /-OO 

h(6)e-iu}<t>d6 / hi^e^d^— / i ^ ( r - 0 + e)e~iw{-T-*+9) dr 
•oo -/-oo ^ 7 r J-oc 

= H*(U)H(UJ)SX(UJ) = \H(U)\2SX(UJ) (1.42) 

The mean square response of the SDOF system can be computed by 

/

OO fOO 

Sy{uo)duj= \H(oo)\2Sx(uj)dw (1.43) 
OO J —OO 

The formulation above can be extended to MDOF systems with multiple inputs as 

Sy(a;) = H(w)Sx(o;)HT*(u;) (1.44) 

where H(u;) is the complex frequency response matrix and Sx(o;), Sy(u;) are the spectral 

density matrices for input and output processes, respectively. 

1.2.10 Evolutionary Spectra 

The theory of evolutionary spectra was developed by Priestley (1965) to provide a 

framework for interpreting the results of conventional spectral analysis applied to data from 

non-stationary processes. Using this approach a theory of linear prediction and filtering for 

non-stationary processes, which is similar to the classical Kolmogorov-Wiener theory for 

stationary process, was constructed (Priestley 1981; Priestley 1988). In this section, the 

theory is summarized with some of the important definitions and theorems from Priestley 

(1965,1981,1988). 

Let X(t) be a stochastic process with zero mean and finite variance (E[X(t)] = 0, 

£'[|X(t)|2] < oo) where t is a continuous parameter. The covariance function is defined by 

R(s,t) = E[X*(s)X(t)] (1.45) 
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lfX(t) is stationary, that R(s, t) is a function of \s —1\ only, then from Wiener-Khintchine 

theorem R(s,t) can be written as 

/

oo 

eMt-»)dS^ ( 1 > 4 6 ) 

•oo 

where 5(a;) (the integrated spectrum of X(t)) has the properties of a distribution function 

on die interval (—00,00). 

Using a Fourier-Stieltjes integral representation, stationary X(t) may be written in die 

form, 

/

oo 

e^dZiu) (1.47) 
-00 

where Z(u) is an orthogonal-increment process with the following properties: (i) E[dZ{u)} 

= 0, (ii) E[\dZ{tjj) |2] = dS(u), where S(u) is the integrated spectrum ofX(t), (iii) for any 

two distinct frequencies, u>, u/, (u> ^ a/), cov[dZ(ui),dZ(u>')] = E[dZ*(u>)dZ(ui')] = 0. 

When defining a time-dependent spectrum of a non-stationary signal which possesses 

a physical interpretation as a "local" power-frequency distribution, one must understand 

clearly what is it meant by "frequency". When X(t) is stationary, the process has the 

form of Equation (1.47) which shows that any stationary process can be represented as 

the sum of sine and cosine waves with varying frequencies and (random) amplitudes and 

phases. But a non-stationary process cannot be represented as a sum of sine and cosine 

waves (with orthogonal coefficients) - instead it has to be represented as a sum of other 

kind of functions. For the term "frequency" to be meaningful, the function X(t) must have 

an "oscillatory form" which means that the Fourier transform of such a function will be 

concentrated around a particular frequency ui0 (or around ±cu0 in die real case). Thus, coo 

where Fourier transform has an absolute maximum is considered to be "the frequency" of 

die non-periodic function X(t). In other words, X(t) behaves locally like a sine wave with 

frequency UIQ, modulated by a smootiily varying amplitude function. 
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Consider a family T of functions {<j>(t,uj)} defined on a real line, and indexed by the 

suffix t, and a measure /j,(u) on the real line, such that for each s, t the covariance function 

is written as 

/

oo 

4>*(s,u))<j>(t,u)dfji(u]) (1.48) 
-oo 

In order for var[X(t)} to be finite for each t, <f>(t, u>) must be quadratically integrable with 

respect to measure /j,, for each t. Then, whenever R(s, t) has the representation Equation 

(1.48), the process X(t) can be written in the form, 

/

oo 

<f>(t,u)dZ(u) (1.49) 
•oo 

where Z(UJ) is an orthogonal process, with ^[|c?Z(w)|2] = dfi(u), 

The measure //(a;) is similar to the integrated spectrum S(u) in the case of stationary 

processes, so that the analogous situation to an absolutely continuous spectrum is obtained 

by assuming that the measure ji(u) is absolutely continuous with respect to Lebesgue mea

sure. 

One family of functions {<p(t, u)} which possess the required structure may be obtained 

as follows. Suppose that, for each fixed u, <j>(t, cu) (considered as a function of t) possesses 

a (generalized) Fourier transform whose modulus has an absolute maximum at frequency 

9(u). Then <j)(t, to) may be regarded as an amplitude modulated sine wave with frequency 

6(UJ) and written in the form 

<t){t, w) = A(t, u)eie{u)t (1.50) 

when the modulating function A(t, cu) is such that the modulus of its (generalized) Fourier 

transform has an absolute maximum at the origin (i.e. zero frequency). 

The function <f>(t, u) is called as an oscillatory function if, for some (necessarily unique) 
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6(UJ) it may be written in the form of Equation (1.48) where A(t, to) is of the form 

/

oo 

eitedKu(6) (1.51) 
-oo 

with \dKu(0) | (the Fourier transform of A(t, u>)) having an absolute maximum at 9 = 0. 

The function A(t, LO) may be regarded as the envelope of <j)(t, uo). If, further, the family 

{(p(t, ou)} is such that 9(u) is a single-valued function of u, then the variable u in Equation 

(1.48) can be changed to 6(UJ) and redefining A(t, oo), /i(oo) leads to 

/

oo 

A*(s, co)A(t, Lu)eiu,{t-s)d/i(Lu) (1.52) 
•oo 

and 

/

oo 

A(t,Lj)eiutdZ(co) (1.53) 
-oo 

where E[\dZ(u)\2] = dn(u). 

If there exists a family of oscillatory functions {<f>(t, a;)} in terms of which the process 

X(t) has a representation of the form Equation (1.49), X{t) is called an oscillatory process. 

Any family of oscillatory functions can be written in the form 

<f>(t,u) =A(t,u)eiut (1.54) 

For an oscillatory process of the form Equation (1.53) with autocovariance function of 

the form Equation (1.52) 

/

oo 

\A(t,cu)\2dfx(co) (1.55) 
-oo 

var[X(t)] may be interpreted as a measure of the total power of the process at time t 

giving a decomposition of total power in which the contribution from the frequency oo is 

\A(t, uj)\2dfj,(oj). The evolutionary power spectrum at time t with respect to the family T 

of oscillatory functions, dS(t, u) is defined by 

dS(t,oj) = \A(t,co)\2dn(co) (1.56) 
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When X(t) is stationary and F is chosen to be the family of complex exponentials, dS(t, u) 

reduces to the standard definition of integrated spectrum. The evolutionary spectrum de

scribes a distribution of power over frequency in the neighborhood of the time instant t 

unlike a stationary spectrum that describes the spectral content of the process over all time. 

When the measure fi(uj) is absolutely continuous with respect to Lebesgue measure, 

evolutionary spectrum can be written as 

dS(t,cu)=S(t,uj)duj (1.57) 

where S(t, to) is called the evolutionary spectral density function. The name is physically 

meaningful if S(t, cu) is a slowly varying function of t within a time interval considerably 

longer than 2TT/UJ for any given to. Otherwise, the name was purely mathematical. 

There is an interesting alternative interpretation of oscillatory processes in terms of 

time-varying filters. Let X(t) be defined by Equation (1.53). For each fixed t, 

/

oo 

e^uht{u)du (1.58) 
-oo 

/

oo 

M{t-u)ht{u)du (1.59) 
•oo 

where 

/

oo 

eiuJtdZ(u;) (1.60) 
•oo 

is a stationary stochastic process with spectrum dfj,(ui) (= E\dZ(u)\2). Thus, X(t) may be 

interpreted as the result of passing a stationary process through a time-varying filter ht(u). 

Conversely, any process of the form Equation (1.59) (with ht(u) chosen so that A(t,cu) 

is of the required form) may be interpreted as the spectrum (in the classical sense) of the 

stationary process which would have been obtained if the filter ht{u) was held fixed in the 

state which it attained at the time instant t. 
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A subclass within the class of evolutionary stochastic process is uniformly modulated 

process defined as 

/

oo 

eiu}tdZ(u) (1.61) 
•oo 

where A{t) is an envelope (or time-modulation) function. 

One of the most useful features of stationary processes is that the effect of linear trans

formations (i.e. filters) can be described purely in terms of the effect on individual spectral 

components. A linear transformation of a stationary process X(t) is written as 

/

oo 

g{u)X{t-u)du (1.62) 
•oo 

The spectra ofX(i) and Y(t) are related by 

dSy(u) = \T(u)\2dSx(u}) (1.63) 

where 

/

oo 

g(u)e-iu}Udu (1.64) 
•oo 

is the transfer function of the filter g(u). dSy{uJi) is determined purely by dSx{u\) and 

T(u>i), and is not affected by dSx(u) at other frequencies. It can be shown that this property 

holds (in an approximate sense) for evolutionary spectra in the case of linear transforma

tions of non-stationary processes. 

If X(t) satisfies a model of the form Equation (1.53), a more general form of the trans

formation Equation (1.62) can be written as 

/

oo 

g(u)X(t - u)e^-u)du (1.65) 
-oo 

where co0 is any constant frequency. 

/

oo 

rtiW+W0(w)yl(t, u + uo^'dZiu + OJO) (1.66) 
•oo 
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where for any t, A, 8, 

TtA9)=12 9{u)A%!\)X)e~medu (L67) 

The function Tt^{u) is the generalized transfer function of the filter g(u) with respect to 

the family T. 

The representation of Y(t) given by Equation (1.66) is not necessarily of the form 

Equation (1.53) since the modulus of (generalized) Fourier transform of r ia ;+a;o (co)A(t, co+ 

uio) may not have an absolute maximum at zero frequency. Even then, the function 

4>(t,u)(6) = TttU+iJo(co)A(t,co + co0)e
i"t (1.68) 

will still, in general, be oscillatory, but its dominant frequency will be slightly shifted from 

co. 

For each t, A, the function Tt,\(0) reduces approximately to T(0) when A(t — u, A) 

is, for each t, A, slowly varying compared with the function g(u). In other words, if it is 

assumed that g(u) decays rapidly to zero as \u\ —> oo, and that A(t — u, A) is approximately 

constant over the range of u for which g(u) is non-negligible, then for heuristically, for each 

t, A 

r t ,A(0)«r(0) , foral l 9 (1.69) 

Using Equation (1.65) 

/

oo 

A(t,co + co0)e
iuJtdZ(io) (1.70) 

•oo 

where 

E[\dZ(co)\2} = \T{co)\2dn(co + oo0) (1.71) 
Thus, 

dSy(t,co) w \T(Lo)\2dSx(t,co + co0) (1.72) 
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where the evolutionary spectra dSy(t, ui) and dSx(t, UJ) are both defined with respect to the 

same family of oscillatory functions J7 = {A(t, ui)eluJt}. 

If the input oscillatory process X(t) is locally (or semi) stationary such that the non-

stationary characteristics are changing 'slowly' and the measure /J,*(UJ) is absolutely con

tinuous with respect to Lebesgue measure, then for each t, 

dSx(t,u) = Sx(t,uj)duj (1.73) 

where Sx(t, UJ), the evolutionary spectral density function, exists for all UJ and time-varying 

mean square value of the non-stationary process is approximately given as 

/

oo 

\T(u)\2\Sx(t,u + uj0)\du (1.74) 

-oo 

with the condition 

Bg « Br 

where B? and Bg are characteristic widths for the family of oscillatory functions J and 

the filter g(u) given as 

BA") = 
UJ 

sup I / 1011 (̂0)1 
-1 

(1.75) 

B9 
/

oo 

\u\\g(u)\du (1.76) 

-oo 

the condition Bg « Bjr implies that dSx{t, UJ) is changing very slowly over the effective 

range of the filter g(u). The accuracy depends on the ratio Bg/Bjr. 

1.2.11 Digital Simulation of Random Processes 

Digital simulation is a powerful technique to obtain a realization of a random process 

and the response statistics of linear/nonlinear systems subjected to random excitation. It 
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also provides a useful tool to evaluate the accuracy of approximate techniques for nonlinear 

random vibration analysis. Three methods for simulation of stationary and non-stationary 

processes are discussed in this section. 

Approximate Spectral Analysis: 

A stationary random process can be simulated by the series (Shinozuka and Jan 1972) 

N 

X(t) = Y^ V2S(uj)Aojcos(ujkt + <j>k) (1.77) 
fc=i 

where S(u>) is the power spectral density function of X(t) and 4>k is the independent ran

dom phase uniformly distributed between 0 and 27r. 

4>k = the independent random phase uniformly distributed between 0 and 2n. 

ojk = uJ!+(k--jAuj ; k = l,2,...,N 

A non-stationary random process can be simulated from its evolutionary power spec

trum 
N 

x(t) = ^2 \/25,(^w)A(Jcos(a;fci + <j>k) (1.78) 
k=l 

in which S(t, ui) is the evolutionary power spectral density of the process. 

Time-Series Models: 

An alternative approach is simulation based on time series models like moving-average 

(MA), autoregressive (AR) and autoregressive moving average (ARMA) models. They are 

computationally more efficient than simulation based on a discrete representation of the 

power spectral density of the process. An ARMA model of order (p,q) can be defined as 

q p 

Y(n) = ^2 Kk)X(n - k ) - ^ a(i)y(n - i) (1.79) 
fe=0 i=l 
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where a(k) and b(k) are the system coefficients. Two useful models are simplifications of 

the ARMA model. When a(i) = 0 for i > 1, the model is reduced to the moving-average 

(MA) model of order q. When 6(0) = 1 and b(i) = 0 for i > 1, the model is reduced to the 

autoregressive (AR) model of order p. Below, simulations of stationary and non-stationary 

processes using MA and AR models are described. 

Moving-Average (MA) Method: 

A moving-average (MA) process can be written as 

Y(n) = ̂ 2b(k)X(n-k) (1.80) 
fc=0 

where X(t) is a normalized Gaussian white noise process whose autocorrelation function 

is represented by 

' 1, n = 0 
R(n) = E[X(k)X(k + n)] = Sn (1.81) 

0, n ^ O 

where E[ ] stands for the expectation value and Sn is the Dirac delta function. 

For a MA process of order iV 

Y(n) = b(l)X(n - 1) + b(2)X(n - 2) + . . . + b(N)X(n - N) 

Y(n + 1) = b(l)X(n) + b(2)X(n - 1) + . . . + b(N)X(n + 1-N) 

and etc. Using the definitions above and Equation (1.81), the autocorrelation function of 

Y (t) can be written as 

R(0) = b{l)2 + b(2)2 + ... + b(N)2 

R(l) = b(l)b(2) + b{2)b(3) + ... + b{N-l)b(N) 

; (i.82) 

R(0) = b(l)b(N) 

R(0) = 0 



29 

For k = N, Y(n) and Y(n + k) are uncorrelated. Equation (1.82) can be written in matrix 

form 

R(0) 

R(l) 

6(1) 6(2) . . . b(N-l) b(N) 

6(2) 6(3) . . . b(N) 0 

6(1) 

6(2) 

(1.83) 

R(N-2) b(N-l) b(N) . . . 0 0 b(N-l) 

R(N-l) b(N) 0 . . . 0 0 J [ b(N) 

One way to obtain the coefficients b(k) is to solve Equation (1.83). Another way is to 

calculate b(k) as the Fourier coefficients of the power spectral density of the process in 

cosine series form. 

b(k)=— r \—s(co) 
Wc Jo L 7T 

I1 /2 klXLO 
cos duj (1.84) 

where UJC = ir/At. The derivation can be found in Cacko et al. (1988). Using Equation 

(1.80), Y(t) is written as 

P N 

Y(t) = Y^ Kk)X{n -k) = J2b(k)X(n - *;) 
k=—p 

(1.85) 
fe=i 

in which N = 2p + 1 and b(k) = b(k — p + 1). In practice, p may be chosen according to 

the inequality 

^ E * 
- p 

< e (1.86) 

where a2 is the variance of the simulated process and e is a small positive number. This 

result can be obtained from the first equation in Equation (1.82) which states that the sum 

of the squares b(k) is equal to variance. 

N 

J2 b(k)2 = W) = «2 (1.87) 
fc=i 
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The procedure can easily be extended to non-stationary processes by replacing S(u>) with 

evolutionary PSD, S(t, UJ). 

Autoregressive (AR) Method: 

Considering two discrete random processes Yt = Y(t) and Xt = X(t), the auto- and 

cross-correlation functions are defined as below. 

CYY(t,k) = E[YtYt+k] (1.88) 

CYX(t,k) = E[YtXt+k] (1.89) 

CXY(t,k) = E[XtYt+k] (1.90) 

The auto- and cross-correlation functions are functions not only of the lag k, but also of t 

with following properties 

CYY{t,k) = CYY(t + k,-k) (1.91) 

CYX(t, k) = CYX(t + k, -k) (1.92) 

CXY(t,0) = CYX(t,0) (1.93) 

The general form of a non-stationary AR model with time-dependent coefficients a,(£) 

and bQ(t) is written as 
v 

Y,<t)yt-i = bo{t)Xt (1.94) 
i=0 

in which Xt is a normalized Gaussian white noise process satisfying 

1 when k = 0 
Cxx(t,k) = { (1.95) 

0 when k ^ 0 
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From Equation (1.94) 

CYX(t,k) = 0 for k>0 (1.96) 

Cxyfak) = 0 for k<0 (1.97) 

CYx(t, -k)=0 for k > t > 0 (1.98) 

It is also assumed that 

a0(t) = 1 W (1.99) 

The coefficients a,i(t) and b0(t) can be calculated from some prescribed autocorrelation 

function Cyy{t, k) as follows (Deodatis and Shinozuka 1988). For t = t*, Equation (1.94) 

can be written as 
v 

J2<t*)Yt*-i = bQ{t*)Xt* (1.100) 
2=0 

Post multiplying Equation (1.100) by Y^-j and taking expectations for j = 1,2,... ,p 

p 

J]ai(t*)Cyy(t* -i,i-j) = b0(t*)CXY(t*, -j) (1.101) 

Using Equation (1.97) 
v 

52ai(t*)CYY(t*-i,i-j) = 0 (1.102) 
i=0 

and using Equation (1.99) 

p 

~ CYy{t\ -j) = J2^(i*)Cyy(t* - i,i - j) j = 1,2, . . . ,P (1.103) 
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Equation (1.103) can be written in matrix form 

C y y ( r - 1,0) CYY(t* -2,1) 

Cyy(t*- 1,-1) CYY(t*~ 2,0) 

CYy(t*-p,p-l) 

CYY(t*-p,p-2) 

CYY(t* -1,1-P) CYY(t*-2,2-p) ... CYY(t*-p,0) 

CYY(t*,-l) 

CYY{t*,-2) 

ai(t*) 

ap(t*) 

(1.104) 

CYY(t*,-p) 

The coefficients a,i(t*);i = 1,2,... ,p can be calculated by solving this system of p equa

tions with p unknowns. Post multiplying Equation (1.100) by Yt* and taking expectations 

J2ai^)CYY{t* -i,i) = b0(t*)CXY(t*,0) (1.105) 
j = 0 

Post multiplying Equation (1.100) by Xt* and taking expectations 

]Tai(t*)CYX(t* -i,i)= bo(t*)Cxx(t*, 0) (1.106) 
i=0 

Using Equations (1.95,1.96,1.99), Equation (1.106) leads to 

CYX(t*,0) = bQ(t*) 

Using Equation (1.107), b0(t*) can be obtained as 

(1.107) 

&o(0 = 
\ 

J2ai(t*)CYY(t*-i,i) (1.108) 
i=0 

Thus, the coefficients a;(f) and b0(t*) can now be calculated from the prescribed autocor

relation function CYY(t, k) and Y(t) can be generated recursively using Equation (1.90). 
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The derivations above are also valid for stationary processes if the coefficients at and b0 are 

modified to be time-independent. 

If Y(t) is an oscillatory process of the form of Equation (1.53) and has an evolutionary 

spectrum dS(t,u) = S(t,u)dui = \A(t, ui)\2S(u>)duj, then the auto-correlation function 

can be calculated from the evolutionary power spectrum as 

/

oo 

A*{s,co)A(t,co)eiuj^s) S(uj)dw (1.109) 

-oo 

1.2.12 Analytical Models of Power Spectral Density for Ground and Wind Excita

tions 

Several analytical models of power spectral density are used to study the stochastic 

response of time-varying systems subjected to ground and wind excitations. They are sum

marized below. 

Ground excitation 

A shaping filter proposed by Narasimhan (2004) is used to simulate the random ground 

motion processes in this study. The shaping filter is obtained by least squares fit of the PSD 

of a set of near-fault earthquake records. The shaping filter for near-fault earthquakes is as 

follows: 

S(u) = — - ^ T (1.110) 

/-fe)2) +^2fey 
ug and £g in Equation (1.110) are the natural frequency and damping ratio corresponding 

to the soil condition. 
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Wind excitation 

The aerodynamic loads can be classified into four categories (Kareem 1987): (1) forces 

induced by incident turbulence, (2) forces induced by wake fluctuations, (3) forces due to 

interference of upstream and adjacent structures and (4) motion induced forces. Tall build

ings subjected to aerodynamic loads oscillate in the alongwind, acrosswind, and torsional 

directions (Kareem 1992; Simiu and Scanlan 1986). The alongwind load is primarily in

duced by alongwind turbulence and can be calculated analytically from the gust spectrum 

with reasonable accuracy. The acrosswind load is principally introduced by vortex shed

ding in the wake region which is formed by separated shear layers due to sharp corners of 

the building. Torsional moments can be induced by either eccentricity between elastic cen

ter and mass center of the building and/or pressure fluctuations in the wake flow. Since both 

acrosswind forces and torsional moments result mainly from pressure fluctuations caused 

by vortex shedding in the wake flow through a complex mechanism, there is no gener

ally accepted analytical method for calculating these loads. Thus, calculation acrosswind 

forces and torsional moments are generally relied on wind tunnel testing. It is reported 

that acrosswind response of tall buildings usually exceeds the alongwind response signif

icantly (Liang et al. 2002; Yang et al. 2004) and torsion-induced response is comparable 

to the acrosswind response (Kareem 1985). Neglecting the interference of upstream and 

adjacent structures, coupled lateral-torsional motion and assuming aerodynamic damping 

due to motion induced forces is taken into account in the structural damping, alongwind, 

acrosswind and torsional responses can calculated independently. 

The longitudinal wind velocity at a given time can be defined as 

U(z,t) = U(z)+u(x,y,z,t) (1.111) 

where U(z) is the mean wind velocity with respect to height z above ground and u(x, y,z,t) 
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is the fluctuating turbulence component in the longitudinal direction. 

The wind velocity is near zero at the surface due to the horizontal drag force exerted 

upon the moving air. It increases gradually from zero to a nearly constant value at the 

gradient height. This region varies from 300 to 500 m and is called earth's boundary layer 

(Nigam and Narayanan 1994). The mean velocity profile can be represented either by the 

power law 

or by the logarithmic law 

U(z) = U(zref)*[ ) (1.112) 
zref, 

U(z) = \u*\n- (1.113) 
k z0 

where k is von Karman's constant (k ~ 0.4), z is the height above the surface ground and 

z0 is the roughness length depending on the terrain type. The friction velocity u* is defined 

by 

u* = , / ^ (1.114) 
V P 

where TQ is the shear stress at the ground surface and p is the air density. 

The friction velocity tt* is related to the root mean square (rms) value of u, au by 

a2
u = Pul (1.115) 

in which f3 value depends on z0. 

There are many spectra defining the longitudinal turbulence in the literature. A simple 

spectral density proposed by Davenport (1961) to simulate alongwind is given by 

fS(z,f)_ 4.0/2 

ul (1 + 50/2)4/3 ^ • ° ; 

where / = 1200//Lr(10) , / is the frequency in Hertz and £7(10) is the mean wind speed 

in meters per second at z = 10 m. 
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Another alongwind spectra is proposed by Kaimal and and (1972) in the form of 

/ ^ / ) = _ 2 0 0 / _ 
ul (l + 50/)5/3 u " 1 1 / ; 

where / is the frequency in Hertz, / = fz/U(z) is the non-dimensional frequency. Equa

tion (1.113) implies f3 = 6 leading to 

<r2 _ ( l + 50/>/3 ( L 1 1 8 ) 

A simple power spectrum for the lateral turbulence component is approximately given in 

Simiu and Scanlan (1986) as 

fSv(z,f)__ 15/ 
ul (1 + 9.5/)V3 ^ -1 y) 

There are also other acrosswind force spectra available in the literature for square build

ings (Kareem 1984), chimneys (Vickery and Clark 1972) and square/rectangular buildings 

(Liang et al. 2002). 

The wind drag force for a point-like structure can be written as 

Fd(z,t) = ^pCAv2(z,t) 

= [v0(z)+v(z,t)}2 (1.120) 

= v2(z) + v2(z,t) + 2v0(z)v(z,t) 

Assuming the fluctuating wind speed v(z,t) is small compared to the mean wind speed 

VQ, the along-wind force spectrum for a the fluctuating component can be approximately 

written as 

SF(f) = p2C2v2(z)A2Sv(z,f) 
/ \2a 

= p2C2v2(zref)A
2( — ) Sv(z,f) (1.121) 

\ZrefJ 

file:///ZrefJ


The acceleration spectrum for a point mass m0 at height z can be written as 

SF/moif) — ~~2^F{f) 
rrin 
pCvl(zref)A 

m0 

1 

Wre/) V Zref 

2a 

Sv(zJ) (1 

and the root-mean-square (RMS) acceleration can be written as 

' pCv\{zrej)A^ 
&F/m0 — 

m0 
-r—A—YJr^w 
Vo(Zref) \ZrefJ ]j Jo 

file:///ZrefJ
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Chapter 2 

Mathematical Formulation of Linear Time Varying (LTV) 

Systems 

Fundamentals of linear time-varying (LTV) systems are presented in this chapter. Both 

continuous time and discrete time system are described (Kamen 1995). General formula

tion of a multi-degree of freedom building with SAIVS-TMD is presented. 

2.1 Continuous-Time Linear Time Varying Systems 

Consider a continuous-time system with single input u(t) and single output y(t), where 

u(t) and y(t) are real-valued functions of the continuous-time variable t. It is assumed that 

there is no initial energy in the system prior to the application of the input u(t), that is , the 

system is initially at rest before the application of the input. Then if the system is causal, it 

can be modelled by the input/output relationship 

y(t) = F(U(T) : 0 < r < t, t) (2.1) 

where y(t) is the output response resulting from u(t) and F is a function that may be 

nonlinear. If the system is linear, then F is linear and Equation (2.1) becomes 

y(t)= f h(t,r)u(r)dT (2.2) 
Jo 

where h(t, r) is the impulse response function, that is, h(t, r) is the response to the impulse 

8(t — T) applied at time r with no initial energy. It should be emphasized that y(t) given 

by Equation (2.2) is the output of the response assuming that the system is at rest prior to 

the application of the input u(t). Also, it is assumed that there are conditions on h(t, r ) , 

and/or u(t) which ensure that the integral in Equation (2.2) exists. 
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The linear system given by Equation (2.2) is time invariant (or constant) if and only if 

h(t + 7, T + 7) = h(t, T) for all real numbers t, r, 7 (2.3) 

Time invariance means that if y{t) is the response to u(t), then for any real number t\, the 

shifted output y(t — ti) is the response to the shifted input u(t — t\). Setting 7 = —r in 

Equation (2.3) gives 

h(t — T, 0) = h(t, T) for all real numbers t, r (2.4) 

Hence, the system defined by Equation (2.2) is time invariant if and only if the impulse 

response function h(t, r ) is a function only of the difference t — r. In the time-invariant 

case, Equation (2.2) reduces to the convolution relationship 

y(t) = h(t) * u(t) = h(t- T)U(T)CIT (2.5) 

Jo 

where h(t) = h(t, 0) is the impulse response (i.e., the response to the impulse S(t) applied 

at time 0). 
The linear system defined by Equation (2.2) is finite-dimensional or lumped if the input 

u(t) and the output y(t) are related by the ni/l-order differential equation 

n—1 m 

yM(t) + J>(0y(<)(*) = ^IhittfHt) (2-6) 
i=0 i=0 

where y^(t) is the ith derivative of y(t), u^\t) is the ith derivative of u(t), and ai(t) and 

bi(t) are real-valued functions of t. In Equation (2.6), it is assumed that m <n. The linear 

system given by Eq. (2.6) (2.6) is time invariant if, and only if, all coefficients in Equation 

(2.6) are constants, that is, a,i(t) = ai and bi{t) = b(i) for all i, where a; and bi are real 

constants. 
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2.1.1 State Model 

A state model for the system given by Equation (2.6) can be constructed as follows. 

First, suppose that m = 0 so that Eq. (2.6) becomes 

n - l 

y(nH0 + I>(*)y(i)(*) = W*M*) 

Then defining the state variables 

i=0 

xi(t)=yl-\t), i = l,2,...,n 

the system defined by Equation (2.7) has the state model, 

x(t) = A(t)x(t) + B{t)u(i) 

y{t) = Cx(t) 

where the coefficient matrices A(t), B(t),C are given by 

A(t) = 

0 

0 

0 

0 

-a0(t) 

1 

0 

0 

0 

~ai(t) • 

B(t) = [0 

0 

1 

0 

0 

-a2(t) • 

0 0 . . 

0 

0 

0 

0 

" • —&n-2 

. b0(t)f 

it) 

0 

0 

0 

1 

-an-i(t) 

(2.7) 

(2.8) 

(2.9a) 

(2.9b) 

C = [1 0 0 . . . 0 0 ] 

and x(t) is then-dimensional state vector given by x(t) = [x\{t) x2(t) ... xn-i(t) xn(t)]
T. 
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For an m- input, p- output, linear n-dimensional, time-varying continuous-time system, 

the general form of the state model is 

x(t) = A(t)x(t) + B(t)u(t) (2.10a) 

y(t) = C(t)x(t) + D(t)u(t) (2.10b) 

where Equation (2.10a) is the state equation and Eq. (2.10b) is is the output equation. In 

Equation (2.10), A(t) is the nxn system matrix, B(t) is the nxm input matrix, C(t) is the 

pxn output matrix, D(t) is the pxm direct feed matrix, u(t) is the m- dimensional input 

vector, x(t) is the n- dimensional state vector, and y(t) is the p- dimensional output vector. 

The term D(t)u(t) in Eq. (2.10b) is of little significance in the theory, and thus D(t)u(t) is 

usually omitted from Eq. (2.10b), which will be done here. 

To solve Equation (2.10a), first consider the homogeneous equation 

x(t) = A(t)x(t), t>t0 (2.11) 

with the initial condition x(t0) at initial time t0. For any A(t) whose entries are piecewise 

continuous, it is known that, for any initial condition x(t0), there is a unique continuous 

solution of Equation (2.11) given by 

x = $(t0,t)x(to), t>t0 (2.12) 

where <&(£, to) is a nxn matrix function of t and t0, called the state-transition matrix. The 

state-transition matrix has the following fundamental properties: 

$(t,t) = I = nxn identity matrix, for all t (2.13a) 

$(*, T) = $(*, ti)$(ti, r ) , for all tu t, T (2.13b) 

$-!(£, T) = $(r , t), for all t, r (2.13c) 
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d_ 
dt 

$(£, r) = A{t)$(t, r ) , for all t, r 

d_ 
dr 

^-\t,T) = -$-l(t,r)A(T), far alH, r 

det $(£, r) = exp / trace[A(a)]da 

(2.13d) 

(2.13e) 

(2.13f) 

Equation (2.13b) is called the composition property. It follows from this property $(£, r) 

can be written in the factored form 

$(*, r ) = $(*, 0)$(0, r) , for all t, r 

It follows from Equation (2.13e) that the adjoint equation 

(2.14) 

7(t) = -AT(th(t) (2.15) 

has state-transition matrix equal to 3>T(T, t), where again $(t, r) is the state-transition ma

trix for Equation (2.12). 

If the system A(t) is constant over the interval [tx, t2], that is, A(t) = A, for alH G 

[ii, ^ then the state-transition matrix is equal to matrix exponential over [t\, t2\. 

$(i, r ) = eA(*-r) for alH, r € [tx, *2] (2.16) 

If A(t) is time varying and A(t) commutes with its integral over the interval \t\t2], that is, 

A(t) I A{a)da = I A{a)da A(t), for alH,r £ [t^h] (2.17) 

then $(£, r) is given by 

$(£, r) = exp / A{a)da , for alH, r € [t\,t2] (2.18) 

Note that the commutativity condition in Equation (2.17) is always satisfied in the time in

variant case. It is also always satisfied in the one-dimensional case in = 1) because scalars 
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commute. Thus $(£, r) is given by exponential form in Equation (2.18) when n = 1. Un

fortunately, the exponential form for $(£, r) does not hold for an arbitrary time-varying 

matrix A{t) when n > 1. However, approximations to $(£, r) can be readily computed 

from A(t) by numerical techniques, such as the method of successive approximations. Ap

proximations to <3>(t, r ) can also be determined by discretizing the time variable as shown 

below. 

Given the state transition matrix $(£, r) , for any given initial state x(t0) and input u(t) 

applied for t > t0, the complete solution to Equation (2.10a) is 

x(t) = $(£o, t)x(t0) + I $(t, r)B(T)u(T)dr , t > t0 (2.19) 
Jto 

Then, when y{t) = C(t)x(t), the output response y(t) is given by 

y(t) = C(t)$(to, t)x(t0) + f C(t)$(t, T)B(r)u(r)dT , t > t0 (2.20) 
Jto 

If the initial time to is taken to be 0 and there is no initial energy at t = 0, Equation (2.20) 

becomes 

y(t) = f C(t)$(t,T)B(r)u(T)dT (2.21) 
Jo 

Comparing Equation (2.21) with the m- input, p- output version of the input/output Equa

tion (2.2) reveals that 

H(t,r) = { 
C(t)$(t,T)B(T)fort>T 

(2.22) 
0, for t < r 

where H(t, r) is the p x m impulse response function matrix. Inserting Equation (2.14) 

into Equation (2.22) reveals that H(t, r) can be expressed in the factored form, 

H(t,r) = Ht(t)H2(r),t>T (2.23) 
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where Hi(t) = C(t)$(t,0) and H2(T) = $(0,T)B(T). It turns out that a linear time-

varying system with impulse response matrix H(t,r) has a state realization given by Equa

tion (2.10) with D(t) — 0 if, and only if, H(t, r) can be expressed in the factored form 

given in Equation (2.23). 

2.1.2 Stability 

Given a system with n- dimensional state model [A(t), B(t), C(t)], again consider the 

homogeneous Equation 

x(t) = A(t)x(t) , t>t0 (2.24) 

with solution 

x(t) = $(t0,t)x(t0) , t>t0 (2.25) 

The system is said to be asymptotically stable if the solution x(t) satisfies the condition 

||a;(£)|| —> 0 as t —> oo for any initial state x(to) at initial time to. Here ||a;(t)|| denotes the 

Euclidean norm of the state x(t) given by 

IK*) II = y/x2i(t)+x2
2(t) + ... + xl(t) (2.26) 

where x(t) = [x\{t) x2(t) ... xn(t)]
T. A system is asymptotically stable if, and only 

if, 

||$(to,*)|| ->0 a s i ^ o o (2.27) 

where ||3>(t0, t)| | is the matrix norm equal to the square root of the largest eigenvalue of 

<l>T(t0,t)$(t0,t). 

It should be noted that semi-active systems investigated in this study are inherently 

stable since there is no active control force input into the system, and dissipative condition 

is always satisfied and the variation of stiffness and damping is bounded. 
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2.1.3 Controllability and Observability 

Given a system with n- dimensional state model [A(t), B(t), C(t)), it is now assumed 

that the entries of A(t), B(t), and C(t) are at least continuous functions of t. The system 

is said to be controllable on the interval [t0, ti], where t\ > t0, if for any states Xo and x±, 

a continuous input u(t) exists that drives the system to the state x(ti) = xx at time t = t\ 

starting from the state x{to) = x0 at time t = t0. 

Define the controllability Gramian which is the n x n matrix given by 

rti 

W{t0,t1) = $(t0,t)B{t)BT(t)<l>T(t0,t)dt (2.28) 
J to 

The controllability Gramian W(t0, ti) is symmetric positive semidefinite and is solution to 

the matrix differential equation 

jW{t, tx) = A(t)W(t, h) + W(t, h)AT(t) - B(t)BT(t) (2.29a) 

W(t1,t1)=0 (2.29b) 

Then the system is controllable on [t0, ti] if, and only if, W(t0, ti) is invertible, in which 

case a continuous input u(t) that drives the system from x(t0) = XQ to x{t\) = xx is 

u(t) = -BT{t)^T(t0,t)W'\tQM)[x0 - $(to,*i)xi] , t0<t<h (2.30) 

When A(t) is n — 2 times differentiable and B{t) is n — 1 times differentiable, a sufficient 

condition for controllability is that the matrix K(t) = [K0(t) K\{t) ... Kn-\{t)] with 

K0(t) = B(t); Ki(t) = -AtyKi-^t) + K^t); i = 1,2,... ,n - 1; and K(t) has rank 

n for at least one value of t G [to, ti]. The system is said to be uniformly controllable on 

[to, h] if the rank of K{t) is equal to n for alH G [to, ti]. 
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Now suppose that the system input u{t) is zero, so that the state model is given by 

x{t) = A(t)x{t) (2.31a) 

y(t) = C(t)x(t) (2.31b) 

From Equation (2.31), the output response y(t) resulting from initial state x(t0) is 

y(t) = C(t)$(t0,t)x(tQ) , t>t0 (2.32) 

Then the system is said to be observable on the interval [tQ, ti] if any initial state x(t0) — XQ 

can be determined from the output response y{t) given by Equation (2.32) for t E [to, ti}. 

Define the observability Gramian which is the n x n matrix given by 

rh 
M(t0,t1)= $T(t0,t)C

T(t)C(t)<f>(t0,t)dt (2.33) 
J to 

The observability Gramian M(t0, ti) is symmetric positive semidefinite and is the solution 

to the matrix differential equation 

^-M(t, h) = -AT(t)M(t, tx) - M(t, h)A(t) - CT(t)C(t) (2.34a) 
at 

M(t1,t1) = 0 (2.34b) 

Then the system is observable on [t0, ti] if, and only if, M(t0, t\) is invertible, in which 

case the initial state x(t0) is given by 

x0 = M-1(t0,t1) $T(t0,t)C
T(t)y(t)dt (2.35) 

Jto 

When A(t) is n — 2 times differentiable and C(t) is n — 1 differentiable, a sufficient 

condition for observability is that the matrix L(t) = [L0(t) L\(t) ... L„_i(i)]T with 

Lo(t) =C(t);Li(t) = Li-i(t)A(t)+Li-i(t);i = 1,2,..., n- 1; and L(t) has rank n for 

at least one value of t E [to, ti]. The system is said to be uniformly observable on [t0, t-y] if 

the rank of L(t) is equal to n for all t € [t0, ti\. 
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Again given a system with state model [A(t), B(t), C(t)], the adjoint system is the sys

tem with the state model [-AT(t), CT(i), BT(t)\. The system [A(t), B(t), C{t)\ is control

lable (resp., observable) on an interval [t0, ti] if, and only if, the adjoint system is observable 

(resp., controllable) on the interval [t0, ti). 

2.2 Discrete-Time Linear Time-Varying Systems 

A discrete-time linear time-varying causal system with single input u(k) and single 

output y(k) can be modeled by the input/output relationship, 

k 

y(k) = J^h(k,j)u(j) (2.36) 
3=0 

where k is an integer-valued variable (the discrete-time index) and h(k,j) is the output 

response resulting from the unit pulse S(k — j) (where 5(k — j) = 1 for k = j and = 0 

for k ^ j) applied at time j with no initial energy in the system. The output y{k) given by 

Equation (2.36) is the response resulting from the input u{k) assuming that the system is 

at rest prior to the application of u(k). It is assumed that u(k) and/or h(k, j) is constrained 

so that the summation in Equation (2.36) is well defined. The system defined in Equation 

(2.36) is well defined if, and only if, h(k,j) is a function of only the difference k — j , in 

which case Equation (2.36) reduces to the convolution relationship, 

k 

y(k) = h(k) * u(k) = ^h(k- j)u(j) (2.37) 
j=o 

where h(k — j) = h(k — j , 0) 

The system defined by Equation (2.36) is finite dimensional if the input u(k) and the 

output y(k) are related by the nth order difference equation, 

n—1 m 

y(k + n) + ] T CLi(k)y(k + i) = Y^ h{k)u{k + i) (2.38) 
i=0 i=0 
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where m <n and the a, (A;) and the hi (k) are real valued functions of the discrete time vari

able k. The system given by Equation (2.38) is time invariant if, and only if, all coefficients 

in Equation (2.38) are constants, that is a{(k) = ai and bi(k) = bt for all i, where a* and 6j 

are constants. 

When m < n, the system defined by Equation (2.38) has the n- dimensional state model 

x(k + 1) = A{k)x{k) + B(k)u(k) 

y(k) = Cx{k) 

(2.39a) 

(2.39b) 

where 
0 0 0 •• 

1 0 0 •• 

0 1 0 •• 

• 0 

• 0 

• 0 

-a0(k) 

-ai(fc-l) 

-a2(k - 2) 
A{k) = 

0 0 0 ••• 0 -a n _ 2 (A; -n + 2) 

0 0 0 ••• 1 -a.n-.xik - n + I) 

B(t) = [bo(k) h(k-l) b2(k-2) ... bn_2{k-n + 2) bn-2(k - n + 1)]T 

C = [0 0 0 . . . 0 1] 

where bi{k) = 0 for i > m. This particular state model is referred to as the observer 

canonical form. There are other state realizations of Equation (2.38), but these will not be 

considered here. It is interesting to note that the entries of A(k) and B(k) in the observer 

canonical form are simply time shifts of the coefficients of the input/output differential 

Equation (2.38), whereas in the continuous-time case, this relationship is rather compli

cated. 

http://-a.n-.xik
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2.2.1 State Model 

For an m- input p- output linear n- dimensional time-varying discrete-time system, the 

general form of the state model is 

x(k + 1) = A(k)x(k) + B(k)u{k) (2.40a) 

y(k) = Cx(k) + D(k)u(k) (2.40b) 

where A(k) is n x n, B(k) is n x m, C(k) is pxn and D(k) is pxra. The state model given 

by Equation (2.40) may arise as a result of sampling a continuous-time system given by 

Equation (2.10). If the sampling interval is equal to T, then setting t = kT in Equation 

(2.10) yields an output equation of the form in Eq. (2.45) where C(k) = C(t)\t=kT and 

D(k) = D(t) \t=kT- To discretize, first recall that the solution to Equation (2.10) is Equation 

(2.19). Then setting t = kT + Tmdt0 = kT in Equation (2.19) yields 

rkT+T 

x(kT + T) = $(kT + T, kT)x(kT) + / $(A;T + T, T)B(T)U(T)(1T (2.41) 
JkT 

The second term on the right hand side of the Equation (2.41) can be approximated by 

rkT+T r 
/ $>(kT + T,T)B(r)dT 

JkT 

u(kT) 

and thus Equation (2.41) is in the form of Equation (2.40) with 

A(k) = $(kT + T, kT) (2.42a) 
rkT+T 

B(k)= / $(kT + T,T)B(T)dr (2.42b) 
JkT 

Note that the matrix A(k) given by Equation (2.42) is always invertible since $(kT+T, kT) 

is always invertible (see Equation (2.13c)). As discussed below, this implies that discretized 

or sampled data systems are "reversible". 
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From Equation (2.42) it is seen that the computation of A(k) and B(k) requires knowl

edge of the state-transition matrix $(*, r) for T = kT + T and r G [kT, kT + T}. If A(t) 

in Equation (2.10) is a continuous function of t over each interval [kT + T, kT] and the 

variation of A(t) over each interval [kT + T, kT] is sufficiently small, then $(kT + T, T) 

can be approximated by 

§{kT + T,T)= e
A^kT^kT+T-^ for r e [kT, kT + T] (2.43) 

and hence A(k) and B(k) can be determined using 

A(k) = eA^T (2.44a) 

B{k) = / eA^T^kT+T-^B(r)dr (2.44b) 

JkT 

Given the discrete-time system defined by Equation (2.40), the solution to Equation 

(2.40a) is 
fe-i 

x(k) = $(fc, A;0)x(A;o) + J ] $(fc, j + l)B(j)u{j), k > k0 (2.45) 
J=ko 

where the nxn state transition matrix $(k,j) is given by 
f 

not defined for k < k0 

$(k, k0) = <J /, fc = fc0 (2.46) 

A(k~l)A(k-2)...A(k0), k>k0 

It follows directly from Equation (2.46) that $(fc, fco) is invertible for k > ko only if 

/!(&) is invertible for k > k0. Thus, in general, the initial state x(k0) cannot be determined 

from the relationship x(k) = $(fc, /c0)x(/c0). In other words, a discrete-time system is not 

necessarily reversible, although any continuous-time system given by Equation (2.10) is 

reversible since $(£o, t) is always invertible. However, as noted above, any sampled data 

system is reversible. 
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The state-transition matrix $(&, k0) satisfies the composition property: 

&(k, ko) = $(fc, ki)^(ki, k0) where k0<ki<k 

and in addition, 

<P(k + l,k0) =A(k)$(k,k0) , k>k0 

If .A(fc) is invertible for all k, $(fc, fc0) can be written in the factored form 

$(k,k0) = $1(k)$2(k0), k>k0 

where 

(2.47) 

(2.48) 

(2.49) 

A(k - l)A(k - 2 ) . . . A(0), k>\ 

$i{k)={ I, k = 0 (2.50a) 

A-1(k-2)A~1(k-3)...A-1(-l), k<0 
< 

A^^A'^^.-.A-^ko-l), kQ>0 

$2(^0) = { I, k0 = 0 (2.50b) 

4(- l ) ,4(-2) . . .A(fcb) , fc0<0 

When ?/(£:) = C(k)x(k), the output response y(fc) is given by 

fc-i 

y(k) = C(k)$(k, k0)x(k0) + ] T C(k)$(k, j + l)B(j)u(j) , k>k0 (2.51) 
j=k0 

If the initial time k0 is set equal to 0 and there is no initial energy at time k = 0, 

Equation (2.51) becomes 
jfc-i 

(2.52) y(k) = J2C(k)Hk,j + l)B(j)u(j) 
3=0 

Comparing Equation (2.52) with m- input, p- output version of the input/output Equa

tion (2.36) reveals that 

H(k,j) = { 
C(k)$(k,j + l)B(j), k>j 

0, k<j 
(2.53) 
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where H(k,j) is the px m unit-pulse response function matrix. Note that if A(k) is in-

vertible so that $(&;, k0) has the factorization given in Equation (2.49), then H(k, j) can be 

expressed in the factored form 

H(k,j) = [C{k)Q1{k)}[$2(j + l)B{j)] fork>j (2.54) 

As in the continuous-time case, this factorization is a fundamental property of unit-

pulse response matrices H(k, j) that are realizable by a state model (with invertible A(k)). 

2.2.2 Stability 

Given a discrete-time with n- dimensional state model [A(k), B(k), C(k)\, consider the 

homogeneous equation 

x(k + 1) = A(k)x(k) , k>k0 (2.55) 

The solution is 

x(k) = $(fc, ko)x(ko) , k > k0 (2.56) 

where $(&, ko) is the state-transition matrix defined by Equation (2.46). 

The system is said to be asymptotically stable if the solution x(k) satisfies the condition 

11a;(A;) || —> 0 as k —> oo for any initial state x(k0) at the initial time A;0. This is equivalent 

to requiring that 

||$(fc,fcb)|| ^ 0 asA;->oo (2.57) 

2.2.3 Controllability and Observability 

The system with state model [A(k) ,B(k), C(k)] is said to be controllable on the interval 

[ko, ki] with ki > k0 if, for any states x0 and xu an input u(k) exists that drives the system 

to the state x(ki) = x\ at time k = kx starting from the state x(ko) = x0 at time k — k0. 
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Define the n x nm controllability (or reachability) matrix 

B{h - 1) 

R{ko,ki) = 

$(k1,k1-l)B(ki-2) 

$(k1,k1-2)B(k1-3) (2.58) 

$(fci,fc0 + l)5(fcb) 

Then from Equation (2.45), the state x(kx) at time k = kx resulting from state x(k0) at 

time k = k0 and the input sequence u(k0), u(k0 + 1 ) , . . . , u{k\ — 1) is given by 

x(h) = $(fci, k0)x(kQ) + R(k0, kx)U{kQ, h) (2.59) 

where U(k0, ki) is the mn-element column vector of inputs given by 

U(k0, fci) = [^(h - 1) uT(kx - 2) . . . wT(A;o)]T (2.60) 

Now for any states x(fco) = x0 and x(A;i) = %\, from Equation (2.59) there is a sequence 

of inputs given by U(k0, k\) that drives the system from XQ to x\ if,and only if, the matrix 

R(k0, ki) has rank n. If this is the case Equation (2.59) can be solved for U(k0, ki), giving 

U(k0, fci) = i?J (feo, fci)[i2(fco, fci)i2J (fc0, *4)]~>i - $(&i, £o)zo (2.61) 

Hence rank R(k0, ki) = n is a necessary and sufficient condition for controllability 

over the interval [k0, ki]. 

Now set fc0 = k — n + 1 and fci = fc + 1 in i?(A;0, fci), which results in the matrix 

R(k — n + 1, k + 1) which will be denoted by R(k). The system is said to be uniformly 

n-step controllable if rank R(k) = n for all k. 

Suppose that system input u{k) is zero so that the state model is given by 

x(k + 1) = A(k)x(k) (2.62a) 

y(k) = C(k)x(k) (2.62b) 
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From Equation (2.62), the output response y(k) resulting from initial state x(ko) is 

given by 

y(k) = C(k)$(k, ko)x(k0) , k > ko (2.63) 

Then the system is said to be observable on the interval [&o,£4] if any initial state 

x(ko) = x0 can be determined from the output response y(k) given by Equation (2.63) 

for k = k0, ko + 1 , . . . , ki — 1. Using Equation (2.63), 

y(k0) 

y(k0 + 1 ) 

v(h - 2) 

y(h - 1 ) _ 

C(k0)x0 

C(k0 + l)<S>(k0 + l,ko)x0 

C(h - 2)$(fc! - 2, k0)x0 

C{k1~l)^(k1-l,k0)x0 

(2.64) 

The right hand side of Equation (2.64) can be written in the form O(ko, k — l)x0 where 

O(ko, ki) is the np x n observability matrix defined by 

C(k0 + l)$(ko + l,k0) 

O(k0,h) = (2.65) 

C(fci-2)$(fci-2,fcb) 

C(h-1)^(^-1, k0) 

Equation (2.64) can be always be solved for x0 if, and only if, rank O(k0, ki) = n, which 

is a necessary and sufficient condition for observability on [k0, fci]. If the rank condition 

holds, the solution for Equation (2.64) for x0 is 

xo = [OT(k0, k1)O(k0k1)]-1OT(k0, kJYiko, h) (2.66) 

where 

Y(k0,k1) = [yT(ko) yT(k0 + l) . . . yT(h-l)}'1 (2.67) 
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Setting k0 — k and k\ = k + n in O(k0, k\) yields the matrix 0(k, k + n) which will 

be denoted by 0(k). If rank 0(k) = n for all k, the system is said to be uniformly n-step 

observable. 

2.3 Mathematical Formulation of SDOF LTV System with sTMD 

Figure 2.1 shows a single degree of freedom LTV system with sTMD. The primary 

structure is of mass, mp, stiffness, kp, and damping, cp whereas the sTMD is composed of 

smaller secondary mass, ms, a spring of stiffness, ks + ksv(t), and a dashpot of viscous 

damping coefficient, cs + csv(t). The equation of motion for the primary mass is given by 

mpup + CpUp + kpup = (cs + csv (t)) ur + (ks + ksv it)) ur + Fp (2.68) 

where 

Cp . fop C-S . . Csv\t) . &S . K8V\t) , Fp ,~ rt\\ 

uv = uv up -\ ur H ur H ur -\ ur -\ (2.69) 
mp rnp rnp mp mp mp mp 

Substituting^ = •&-,£_ = ^-,co2
s = ^,u2

sv(t) = *=£*,& = T^-^sv(t) Csvjt) 
V mp'^P 2mvwp'' a rra s '•

i Msv\" J ms ' S s 2 m s w s ' SsuVV 2msujBV(t) 

and u = ma-. 
™ m p • 

F F 
lip — -2^pujpUp-UpUp + fi2^susur+jjJ2^sv(t)usv(t)+/icosur+iJXJ2(t)ur + ^-^- (2.70) 

'tb'Q 'fl"p 

The equation of motion for the secondary mass is given by 

msus + (cs + csv (t)) ur + (ks + ksv it)) ur = Fs (2.71) 

where ils = up + ur, Equation (2.71) can be rewritten as, 

ur = ur ur ur ur H up (2.72) 

m, m« ms m, m« 
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substituting for uv from Equation (2.69) 

u. = -2£SUJsur - 2£sv(t)ojsv(t)ur - co2ur - uj2
v(t)ur -\ + 2^pcupUp + u2up 

m* 

ti2£sousur - ii2£sv(t)ujsv(t)ur - fiu2ur - nuj2
sv(t)ur - (2.73) 

State Space Formulation 

Equation (2.70) and Eq. (2.73) can be rewritten in state space form as 

X = AX + Asv{t)X + EF (2.74) 

where 

A = 

•A.sv{t) — 

0 

0 

-<4 

0 

0 

0 

0 -

0 

0 

^l 
- ( 1 + //K2 

0 

0 

/Me\,(t) 

-(l+^2
sv(t) 

1 

0 

— 2^pU3p 

2£puip 

0 

0 

0 

0 - ( 1 

0 

0 

fj,2£sujs 

- (1 + n)2£aua 

0 

0 

sv 

+ li)2£sv(t)usv(t) 

E = 

0 

0 

1 
mp 

1 
mp 

0 

0 

0 

1 
Hmp 

;F = 
~ Fp~ 

. F * . 

; * = 

Up 

ur 

Up 

ur 

using 

BFsv(t) = Asv(t)X (2.75) 
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CS+£(1)77TW? 

v;///////;;////////////. •7777777777777777-77777777777 

Figure 2.1 Single Degree of Freedom System with TMD. 

Equation (2.74) can be written as 

where 

X = AX + BFsv(t) + EF 

B = 

F = 
•*- fill 

0 0 

0 0 

n o 

^ 0 - ( l + / x ) 

uj2
sv(t)ur + 2£s(t)u3v(t)ur 

ui2
sv(t)ur + 2£s(t)usv{t)iir 

(2.76) 

2.4 Mathematical Formulation of MDOF LTV System with sTMD 

In case of multi degree of freedom system with mass matrix Mp, damping matrix, Cp, 

stiffness matrix, Kp, the equations of motion are as follows 

MpUp + CPUP + KpUp = -Rfsv(t) + FP + R{csiir + ksur) (2.77) 

where fsv(t) = csv(t)ur + ksv{t)ur and R = [1 0 . . . 0]T. 

Up = -M^KpUp - MplCpUp - M~lRfsv{t) + M~lFp + M^R{csiir + ksur) 

(2.78) 
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msus = fsv(t) + FS 

ms(upn + ur) = fav(t) + Fs 

.. _ J_ J_ _ .. 
Ur Jsv -j- r s Upn 

ms ms 

ur = —fsv + —Fs + RTMZxKpup + RTMZlCpup ms ms
 v y 

+RTMZ1Rfsv + RTMz}R(caiir + ksur) - RTM~P
lFp 

(2.79) 

(2.80) 

(2.81) 

(2.82) 

In state space form 

X = AX + BFsv{t) + EF (2.83) 

where 

X=l 

B = 

up 

ur 

up 

ur 

y,A= 
oln 

-M~xKn 

0\\ Oln III 

-MZ1RK -MZ1Cn -M^Rc, 

RTMZlKp RTMZlRks RTMz}Cp RTMz1Rca 

0Xn 

Onl 

On 

M-XR 

-RTMZX RTMZ1R+± 
P P ms 

F = 
Om 

;E = 

Unn 

Om 

Ml1 

-RTMzl 

Om 

On 

Onl 

1 
ms 

F = 

If the semi-active stiffness is provided by a SAIVS device (Varadarajan 2005), the variable 

spring force is given by 

fsaivs(t)=fr(t)+ff(t,U) (2.84) 
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where fr(t) = ke cos2 9(t)u(t) with ke being the stiffness of one of the four springs, 9{t) is 

a time-varying angle of the spring elements with the horizontal, and / / being the frictional 

forces in the device. 
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Chapter 3 

Time-frequency Analysis 

This chapter presents a preliminary introduction to time-frequency analysis and the 

methods that will be employed in the following chapters. Classical time analysis and fre

quency analysis does not fully describe most signals in nature, where conditions change 

with time. Such individual approaches are adequate enough for signals that have the same 

spectral characteristics over time. For a signal whose frequency content changes with time, 

a time-varying spectrum needs to be defined to describe and analyze the non-stationary 

characteristics. Also, even if a signal is stationary, the response of a linear time vary

ing system leads to time-varying spectrum, which can only be obtained by time-frequency 

analysis. The two methods studied in this chapter are (1) Short Time Fourier Transform 

(STFT), and (2) Wavelet Transform (WT). 

3.1 Review of Time-Frequency Techniques 

The mathematics of the frequency representation was first derived by Fourier, whose 

main research was on heat flow. Fourier transform is simply an elegant tool to break down 

a signal to its harmonic components and re-synthesize it by adding these harmonic com

ponents. There are several versions of Fourier transform. The simplest one is Fourier 

series where a periodic arbitrary function with period T can be represented by an infinite 

trigonometric series of the form 

f{t) = a0 + ^2(akcosu)kt + bksmujkt) (3.1) 
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where ojk = 2nk/T and a0, ak and bk are constant Fourier coefficients given by 

1 fT/2 

a0 = - / f(t)dt 
1 J-Til 

1 fT/2 

ak = — f(t) cos u}ktdt k>\ (3.2) 
1 J-T/2 1 /-T/2 

bk = — / f(t) sm coktdt k>l 
1 J-T/2 

rT/2 

/ /(*) Sh 
J-T/2 

The Fourier series will converge to a periodically defined function in almost all practical 

situations. The function has to satisfy the following Dirichlet conditions: 

1. f(t) must have a finite number of discontinuities over the period. 

2. f(t) must have a finite number of maxima and minima over the period. 

3. f(t) must be bounded or absolutely integrable, 

/ 
\f(t)\dt <oo 

to 

For non-periodic functions Fourier series can be extended to Fourier transform (or Fourier 

integral) by assuming the period T goes to infinity. As the period T becomes large, the 

frequency spacing Au becomes small and in the limit the Fourier coefficients will merge 

together. Thus, Fourier series turns into a Fourier integral and the Fourier coefficients turn 

into continuous functions of frequency called Fourier transforms. The Fourier transform 

components are written as 

B 

and the inverse Fourier transform is 

1 f°° 
A(u) = — / f(t) cos cotdt 

27T./-00 

1 f°° 
(u>) = — / f(t)sincotdt 

27T. / -00 

(3.3) 

poo poo 

f(t)=2 A(UJ) cos ujtduj +2 B(cj)8mwtdu (3.4) 
Jo Jo 
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Using the Euler's formula of 

eie = cos0 + isin0 (3.5) 

Fourier series and Fourier transform can be written in exponential form as 

rT 
l r 

= - / f(t)e~lU}mtdt - oo < m < oo 
oo 

Diuimt 
(3.6) 

1 f00 

F{u) = 7T f(t)e-^dt 
f£-°° (3.7) 

/(£) = / F(u)eiojtdu 
J—oo 

There are also several forms of Fourier transform when both continuous and discrete time 

and frequency domains are considered. The Fourier series defines the relationship between 

continuous time and discrete frequency domains. The continuous time and frequency do

mains are related through the continuous time Fourier transform (CTFT). The transform 

and inverse transform pair in Equation (3.8) can also be written as 

/

oo 

f(t)e-i2*ftdt 
/•oo °° (3.8) 

/(*) = / FCTFT(f)ei2nftdf 
J—oo 

The discrete time and continuous frequency domains are related through the discrete time 

Fourier transform (DTFT). The transform and inverse transform pair are 

oo 

FDTFT(f)=^tJ2f(t)e'i27TfnAt 

fs ~°° ( 3 ' 9 ) 

f(nAt) = [N FDTFT(f)ei2wfnAtdf 
J-IN 

where fa = fs/2 = 1/(2At), fa, fs are the Nyquist and sampling frequency, respectively. 

For actual computer computation, both time and frequency domains must be discretized 
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(3.10) 

leading to the discrete Fourier transform (DFT) pair 

oo 

FDFT(mAf) = AtJ2f(nAt)e-i2"fnM 

—oo 
1 n—1 

f(nAt) = - ^ f e T K / ) e ' 2 ™ ^ 
ro=0 

The short-time Fourier transform (STFT) is one of the most popular methods for study

ing non-stationary signals. The basic idea of STFT is: to break up the signal into small time 

segments and Fourier analyze each time segment to identify the frequencies that existed in 

that segment. The totality of such spectra describes how the spectrum is varying in time 

(Cohen 1995). Mathematically, the short-time Fourier transform can be described by 

STFT(t,uj) = ^Jf(T)w(T~t)e-^TdT (3.11) 

where f(t) is the signal and w(r — t) is the window function which is chosen to leave the 

signal more or less unaltered around the time t but to suppress the signal for times distant 

from the time of interest. The short-time Fourier transform is best suited for signals with 

narrow instantaneous frequency bandwidth 

The short-time Fourier transform compute correlations between the signal and a fam

ily of functions. In this transform, the time-frequency resolution is governed by the limits 

imposed by the uncertainty principle. Therefore, it may not work well in some problems. 

Another type of time-frequency representation is Wigner-Ville distribution which is com

puted by correlating the signal with a time and frequency translated version of itself. 

WVD(t,co) = J°° f (t + | ) f* (t - ^) e-^dr (3.12) 

Unlike the short-time Fourier transform, there are no window functions causing to resolu

tion limitations. Although Wigner-Ville distribution has superior properties, its applications 

are very limited due to cross-term interference. 
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Wavelet transform is a linear decomposition similar to the Fourier transform, but it 

breaks down the signal into its wavelet components instead of harmonic sinusoids (or ex-

ponantials). Wavelet is a small wave which has finite energy concentrated around a point 

in time. This time-frequency localization property makes wavelet transform best suited for 

highly non-stationary signals with sudden peaks or discontinuities. The continuous wavelet 

transform (CWT) can be defined by 

CWT(a, 6) = J L f ° f(t)r (—) dt (3.13) 
vM ./-oo v ° / 

with an inverse transform of 

1 r°° r°° i /t — b\ 
/(*) = TT / ~2CWT(a, b)^[ dadb (3.14) 

0$ J_0O J_00 a1 \ a ) 

3.2 Preliminary Definitions 

A signal is a variation of a quantity in time, for example a seismic excitation character

ized by sharp bursts of energy and gradual decay. It may also depend on position, but the 

time dependence is of primary interest and is given by, 

\s(t)\2 = Instantaneous energy at time t, or 

\s(t) |2 = Intensity per unit time at time t, or 

\s(t)\2At = the energy in At at time t 

The instantaneous energy defined above is the energy used to produce the signal at time t. 

Total energy, normalized to one, is given by 

= J\s(t)\ E= / \s(t)\2dt (3.15) 
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The use of \s(t)\2 for the energy density comes from the fundamental laws. For example, 

if E(t) is the electric field then it is proven, from Maxwell's equations, that the energy 

density is given by \E(t)\2; or in case where the signal is the voltage then the energy 

density is proven to be \V(t) \2 per unit resistance. That is, in a small amount of time At it 

takes \s(t) |2 At amount of energy to produce the signal at time t. 

The averages are calculated in the standard way. The density function is multiplied with 

the function g(t) and integrated. Hence, the average of time function is 

W) = f g{t)\s{i)\2dt (3.16) 

Mean or average time is 

= ft\s(t)f dt (3.17) 

Duration is 

T2 = a2 = f(t - t)2\s(t)\2dt = t2-f (3.18) 

It is often very advantageous to examine a signal in the frequency representation for the 

following reason: it simplifies our understanding of the wave form. A complicated signal 

in the time domain may often be simply understood in the frequency domain. For example 

if a signal is made up of a few sine waves then the signal will look very complicated in the 

time domain but will be simple in the frequency domain because a Fourier analysis will 

indeed reveal that it is just a few sine waves. Therefore a complicated signal in the time 

domain may, in some cases, be easily recognized and classified in the frequency domain. 

For a signal s(t), its Fourier transform is 

S(u) = ^- Is(t)e-jujtdt (3.19) 
2n J 

where 
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|5"(a;)|2 = Energy density spectrum ui, or 

\S(u>)\2 = Intensity per unit frequency at frequency ui, or 

\S(u)\2Au) = the energy in Au at frequency UJ 

Total energy based on Parseval's theorem is: 

E = I \s(t)\2dt = f |S(u;) | 2^ (3.20) 

Average of frequency function is 

i M = J' g(oo)\S(uj)\2duj (3.21) 

Mean frequency and bandwidth are 

u = J oj\S{co)\2dw (3.22a) 

B2 = al = ZJ2 - uJ2 = f(u- u)2\S(uj)\2diu (3.22b) 

If the signal is written in terms of its amplitude and phase 

s(t) = A(t)eMt) (3.23) 

where A(t) is the envelope or amplitude and ip(t) is the phase. If A(t) depends on time 

then amplitude modulation occurs; the mean frequency can then be written as 

uj = / u)\S{uo)\2duj , or as, 

u = J\p'(t)\s{t)\2dt (3.24) 

where the derivative of the phase, ip'{t), which is the instantaneous frequency. The term 

frequency modulation is used in the sense that the instantaneous frequency is itself chang

ing. 
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This is an interesting and important result because it says that the average frequency 

may be calculated by integrating "something" with the density over all time. Therefore die 

"something" must be instantaneous value of the quantity for which the average is being 

calculated. Since the result is the average frequency; the derivative of the phase may then 

be appropriately called the frequency at each time or the instantaneous frequency a;, 

u>i(t) = <p'(t) (3.25) 

3.3 Uncertainty Principle 

The duration of the signal is defined by At where 

(At)2 = f(t~t)2\s(t)\2dt (3.26) 

and where the mean time is 

t= I t\s(t)\2dt (3.27) 

The bandwidth is defined by Au where 

(Au)2 = f(u - oJ)2\S(ou)\2doj (3.28) 

with UJ being the mean frequency, 

w = Iu\S(w)\2du (3.29) 

Note that these definitions are identical to the definitions for variance, spread or root mean 

square deviation as denned for standard quantities such as weight - they are an indication 

of concentration around mean. 

The time bandwidth relation or uncertainty principle is that for any signal 

AtAco > ]- (3.30) 
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The physical interpretation is that the duration and bandwidth cannot be both made narrow. 

Note that the uncertainty principle depends only on the time and frequency densities. The 

reason that the time-bandwidth relation holds is that indeed there is a relation between 

the two densities given by Equation (3.19); hence, \s(t)\2 and |5(a;)|2 cannot be changed 

independently. 

3.4 Short Time Fourier Transform (STFT) 

The short-time Fourier transform (STFT) was the first tool devised for analyzing a 

signal in time and frequency. The basic idea is that if one wants to know what frequencies 

exist at a particular time, then take a small piece of the signal around that time and Fourier 

analyze it, neglecting the rest of the signal as shown in Figure 3.1. Since time interval 

is short compared to the whole signal this process is called taking the short-time Fourier 

transform. 

STFT(t, u) = S(t, u) = -!- f sw(r)e-iUTdT (3.31) 
2-K J 

The energy per unit frequency at time t is \S(t,ui)\2. One wants to design a window 

function, w(r) which will emphasize the times around the time t as shown in Figure 3.1, 

such that, the weighted signal is centered around the time of interest r — t 

sw(r) = S(T)W(T - t) (3.32) 

The running time is r and the fixed time is t. Considering this signal as a function of r one 

can ask for the spectrum of it. Since the window has been chosen to emphasize time t the 

spectrum will emphasize the frequencies at that time and hence give an indication of the 
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Figure 3.1 Short Time Fourier Transform (STFT) 

frequencies at that time. In particular the spectrum is 

STFT(t,u) = ~fe-^Tsw(r)dr 

= 77" I e~iu}TS{T)W{T - t)dr 
2-K J 

The energy density of the modified signal at fixed time t is 

PSp(t,u) = \STFT(t,u)\2 or 

PSP(t, u) = - ^ J e-iujrs(r)w(r - t)dr 

(3.33a) 

(3.33b) 

(3.34a) 

(3.34b) 

For each time one gets a different spectrum and the totality of these gives the time-frequency 

distribution called spectrogram, which is a member of a general class of distributions. 
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The STFT in terms of the Fourier transforms of the signal and window is 

S(u) = ^- J s{t)e-iutdt (3.35a) 

H{u) = ^- I w{t)e~iu}tdt (3.35b) 

STFT(t,u) = ^- Isw{T)e~iuiTdT (3.35c) 

= ^~ I s(T)w{T-t)e'i0JTdT (3.35d) 
27T J 

= ^- f S(u')H(u - Jy^du' (3.35e) 
2n J 

The spectrogram is then given by Equation (3.34) or by 

Psp(t,u) = ^- f S(ou')H(uj-uj')eluJ'tduj' 
2n J 

2 

(3.36) 
|2TT 

By analogy with the previous discussion it can be used to study the behavior of the signal 

around the frequency point u. This is done by choosing a time window function whose 

transform is weighted relatively higher at the frequency UJ. 

The implementation procedure for the STFT in the discrete domain is carried out by 

extracting time windows of the original non-stationary signal s(t). After zero padding and 

convolving the signal with the window function, the DFT is computed for each windowed 

signal to obtain STFT, s{ui), of signal s(t) . If the window width is n.At (where n is 

number of points in the window, and At is the sampling rate of the signal), the i-th element 

in s(u>) is the Fourier coefficient that corresponds to the frequency, 

2n 
Ui = i—— (for window width n.At) (3.37) 

n.At 

3.5 Wavelet Transform (WT) 

Wavelets were introduced at the beginning of eighties by J. Morlet as a signal analysis 

tool to analyze seismic data. Although the original idea can be traced back to Haar, wavelets 
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gained popularity after eighties with contributions from many researchers who developed 

the mathematical foundation of wavelets. Wavelet transform is simply a linear transform 

which uses diluted (scaled) and translated (shifted) versions of a single prototype function 

ip(t) namely mother wavelet to represent a signal. Wavelets constitute a family of functions 

derived from one single function and indexed by two parameters, one for position and one 

for scale. 

4>a>b{t) = - ^ (—) (3.38) 
\/\a\ \ a J 

where a, b e R (with the constraint a ^ 0). The continuous wavelet transform can be 

defined by 

CWT(a, &) = - _ / f(t)r )dt= fW*atb(t)dt (3.39) 
vN J-°° \ a / J-°c 

with an inverse transform of 

1 r°° f°° 1 /t — b\ 
/(*) = 7T / -2CWT^ & W dadh (3-4°) 

W J-oo J-oo a V ° / 

The constant C^ is given by 

c* ~ L HeT^ (3'41) 

where ^(^) is the Fourier transform defined by 

/

oo 

^{t)e-^dt (3.42) 
•oo 

In order the inverse continuous wavelet transform exists, Q, is required to be finite (< oo). 

Thus, the integrand defining C$ should be integrable at £ = 0 which implies that ip(0) = 0 

leading to the result that the mean value of the wavelet tp(t) should be zero. 

Since the parameters a, b vary continuously over R, the continuous wavelet transform 

has highly redundant information about the signal. A signal can still be decomposed and 
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synthesized using discretized values of a, b. The discrete wavelet transform can be clas

sified into two groups: (1) Redundant discrete systems (frames) and (2) orthonormal (and 

other) bases of wavelets. In the redundant discrete wavelet transform (RDWT), the dis

cretization can be done by choosing a = â ~m where a0 > 1 and b — nb0dQm where bo > 0 

is fixed and n e Z . The corresponding wavelets can be written as 

VWW = ^ m / V ( * ~ y " ) = flflB/3Wt - nbo) (3.43) 

/

oo 

f(t)ip*{agx-nbo)dt (3.44) 
•oo 

In the redundant discrete wavelet transform, there does not exist, in general, a direct in

verse transform like Equation (3.40). Nevertheless, f(t) can be covered from the sampled 

wavelet transform by 
oo oo 

f(t)= Yl E DWT(m,n)^n(t) (3.45) 
m=—oo n=—oo 

where {tpm,n}m,nez denotes a dual frame of {tpm,n}m,n€Z- A central issue of the wavelet 

transform is how to build dual frames {VVn}m,nez and {4>m,n}m,nez with desired proper

ties 

The choice of wavelet ip used in continuous wavelet transform and in frames is only 

restricted by the requirement C$ is finite in order to recover the original function from the 

transformations. If the objective is only to analyze the signal, then the mother wavelet can 

be any function. For practical reasons, one usually chooses tp so that it is well concentrated 

in both time and frequency domain. 

Most popular discretization is dyadic grid in which a0 — 2 and b0 = 1. The diluted and 

translated mother wavelet is then defined by 

il>m,n{t) = 2m/2^(2™x - n) (3.46) 
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The continuous wavelet transform is shift-invariant whereas its sampled version is shift-

variant. The quantity DWT(m, n) is subject to exactly where on the signal one starts 

processing. 

For some very special choices of ip and a0, bo, the tym<n constitute an orthonormal basis 

for L2(K). Thus, f(t) can be recovered from the sampled wavelet transform by 

oo oo 

/(*)= J2 Yl DWT(m,n)^n(t) (3.47) 
m=—oo n=—oo 

Orthogonal basis functions allow simple calculation of wavelet coefficients and have Par-

seval's theorem that allows a partitioning of the signal energy in the wavelet transform 

domain. 
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Chapter 4 

Frequency Tracking and Evolutionary Spectrum by STFT 

andWT 

This chapter presents examples of real-time frequency tracking and evolutionary power 

spectral density (EPSD) estimation of several excitation signals, from simple harmonic 

signals to stationary and non-stationary processes. The results are obtained by both Short 

Time Fourier Transform (STFT) and Wavelet Transform (WT), and the two methods have 

been compared. The developed semi-active control algorithms throughout this study de

pend mainly on frequency tracking based on the evolutionary power spectral density of the 

excitation. The following sections present frequency tracking and evolutionary spectrum 

estimation on different types of excitation signals, which will be used in the subsequent 

chapters. 

Simulations of random processes are generated from pre-defined target evolutionary 

spectra using the autoregressive (AR) method (described in Section 1.2.11). The target 

evolutionary spectra considered in this study are selected to demonstrate the benefits of the 

semi-active concepts. Earlier studies to describe the evolutionary power spectra of non-

stationary ground motion processes from a set of observed accelerogram records and to 

synthesize artificial acceleregrams are available in the literature (Conte and Peng 1997; 

Mukherjee and Gupta 2002; Giaralis and Spanos 2009). Spanos and Failla (2004) and 

Spanos et al. (2005) developed wavelet-based methods for evolutionary spectrum estima

tion. The aforementioned studies do not address real-time estimation of EPSD needed for 

instantaneous frequency tracking, which is the subject of this study. 
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4.1 Frequency Tracking and Evolutionary Spectrum Estimation by 

STFT 

The short-time Fourier transform (STFT) is one of the most popular methods for study

ing time-frequency characteristics of non-stationary signals. A detailed introduction on 

short-time Fourier transform is given in Chapter 3. The instantaneous (dominant) frequency 

of a signal can be estimated from its spectrogram (magnitude squared of the STFT). Simi

larly, the power spectral density of a random signal can be estimated from the spectrogram 

of the signal. The developed semi-active control algorithms in the following chapters use 

frequency tracking and/or evolutionary power spectral density for adjusting the smart vari

able damping and stiffness systems. 

The implementation of frequency tracking and evolutionary power spectral density es

timation in real-time using STFT is shown in Figure 4.1. Since the estimation is to be 

used in semi-active control algorithms in real-time, for any given time only the portion of 

signal data up to that time is assumed to be known. The procedure starts by selecting an 

STFT window and a window length (WL) of (n — 1) At (where n is the number of points 

in the window). A triangular window is employed for STFT throughout this study due to 

nature of real-time estimation where the information around the real-time tt is most critical. 

Time lapse (TX) of LAt is the time period between successive windows. The window is 

multiplied by the portion of the signal, s(t) up to the real-time ti and then zero padded for 

the desired frequency resolution. The instantaneous PSD (a time slice of the evolutionary 

PSD) is estimated by the FFT (fast Fourier transform) power spectrum of each windowed 

signal s(t)w(ti) as given in Equation (4.1) 

S(U,f) = j^\fft[s(t)w(ti)]\2 (4.1) 

where / is the cyclic frequency in Hz, fs = 1/At is the sampling frequency, and JV is the 
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total number of the signal data. 

The instantaneous (dominant) frequency is determined using Equation (4.2) by weight

ing the ridge frequency (corresponding to maximum PSD value) by its PSD value at the 

corresponding time. 

i 

/ j J max (}k 

)max [\S(ti,f)\2] 
f i. x _ k=max{l,i-m+\) 
Jins{ti) — i (4.Z) 

J2 maxllSiUj)]2] 
k=max(l,i—m+l) 

in which the averaging length, AL = (m — 1) At is the time length considered in weighted 

averaging of dominant frequency and m is the number of points used for averaging. fmax 

is the ridge frequency corresponding to the frequency with maximum instantaneous PSD 

value. 

4.2 Frequency Tracking and Evolutionary Spectrum Estimation by 

WT 

Wavelet transform (WT) is a more accurate and efficient method of time-frequency 

analysis compared to STFT (Kaiser 1992). A detailed introduction on wavelet transform is 

given in Chapter 3. In STFT, performing Fourier transform on a sliding window of length 

T and a time series with a time step of At, and total length of NAt results in a fixed 

frequency resolution of \/T between the frequency range of \/T to l/(2At). The limited 

frequency range of the window causes inaccuracy by aliasing of low and high frequency 

components outside the frequency range. The fixed frequency resolution of STFT is also 

inefficient when the signal has a wide range of dominant frequencies. Wavelet transform 

overcomes the limitations of STFT by scaling the time-frequency localized wavelet basis 

functions, hence analyzing the signal with different window sizes (scales) simultaneously. 
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Signal, s(t) 
t = [0:1:N]*At 
fs= 1/At 

Select the window 
length (WL), 
Time lapse b/w 
windows (TL) 

Multiply the window 
with the portion of the 
signal up to the real 
time tj 

Compute the fft 
power of the 
windowed signal 

Compute instantaneous PSD at real time t j 

Compute instantaneous frequency at real time tj 

Z/max('*)max[S(^,/)] 
/*,(',) = 

k=i-m+\ 

£max[S(^/)] 
k=i-m+\ 

m = AL/At + 1 where AL is the averaging length 

Figure 4.1 Frequency tracking and Evolutionary Spectrum Estimation by STFT 

This allows detecting the low frequencies in the signal by long windows (wavelets with 

larger scales) and the high frequencies by short windows (wavelets with smaller scales). 

There are many possible wavelet functions (continuous or discrete, orthogonal or non-

orthogonal, complex or real) to analyze any given signal. In this study, complex Morlet 

wavelet is employed for its good localization properties in both time and frequency do

mains. A complex wavelet is specifically selected to separate the phase and amplitude 

components within the signal. This provides consistent ridges at the dominant frequen

cies of the wavelet transform rather than large undulations due to moving of wavelet (at 

scale corresponding the dominant frequency) in and out of phase with the signal (Addison 

2002). The wavelet transform algorithm used in mis study is summarized below following 

the approach outlined in Torrence and Compo (1998). 
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The continuous wavelet transform of a discrete sequence xn is defined as the convolu

tion of xn with a scaled and translated version of mother wavelet, ipo(n) 

N~1 r(n'~n)At 

a 
(4.3) W(n, a) = ^2 xn^* 

n'=0 

where the * indicates the complex conjugate, a is the wavelet scale a and n is the localized 

time index n. 

The wavelet transform in Equation (4.3) can be calculated considerably faster in Fourier 

space. The DFT of xn is 
1 "-1 

Xk = Jj E xne-2*lkn/N (4.4) 
n=0 

where k = 0,1,... ,N — 1 is the frequency index. In the continuous limit, the Fourier 

transform of the scaled wavelet ip(t/s) is given by ^(au). By the convolution theorem, the 

wavelet transform is the inverse Fourier transform of the product Xk^{auo)*'. 
T V - 1 

W(n, a) = J2 Xk^*{auk)e^n^ (4.5) 
fc=0 

where the angular frequency is defined as 

I TV A t — 2 IA£\ 

ujk = < (4.6) 

2irk 
TV At 

2wk 
TV A* 

: f c < f 

:k>f 

In order to ensure the wavelet transforms in Equation (4.5) at each scale a are directly 

comparable to each other and to the transforms of other time series, the wavelet function at 

each scale a is normalized to have unit energy (Torrence and Compo 1998): 

*{auJk) = (^F) * o M = (aujN)1/2M^k) (4.7) 

with also Fourier transform of the mother wavelet defined to have unit energy. 

f + OO 

| t f(a/) |2&/ = l (4.8) 
/ 
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Using these normalizations, at each scale 

JV- l N-l 

J2 |*(«^fc)|2 = N Y^ l*o(ao;fc)|
2 (aAw) = N (4.9) 

fc=0 fc=0 

where AT is the number of points. Thus, the wavelet transform is weighted only by the 

amplitude of the Fourier coefficients Xk and not by the wavelet function. The normalization 

in time domain is 

v> (ri - n)At 
- ) ^ 

(n' - n)At 
(4.10) 

where ipo(n) is normalized to have unit energy. 

The normalized Morlet mother wavelet and its Fourier transform can be written as 

-1 /4 

Vo(aou) = 

(4.11) 

(4.12) 
0 for u<0 

where u>0 is the frequency parameter of the mother wavelet. In some literature, a correction 

term (—7r~1/4(fb/2)~1/4e~UJ /2e~* ^b) is included in Equation (4.11) to correct for non-zero 

mean of Equation (4.11) (i.e. the zero frequency term of its corresponding energy spectrum 

is non-zero) to satisfy the wavelet admissibility condition. In practice, the error becomes 

negligible for UJQ > 6) and can be ignored. The n~1^(fb/2)~1/4 is the normalization factor 

which ensures that the wavelet has unit energy. 

The wavelet scale can be related to an equivalent Fourier frequency by taking wavelet 

transform of a cosine wave of a known frequency and and computing the scale a at which 

the wavelet power spectrum reaches its maximum (Meyers et al. 1993). The relationship 

between the Morlet wavelet scale and the equivalent Fourier period is given by 
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For the Morlet wavelet with co0 = 6 and fb = 2, Equation (4.13) gives a value of A = 1.03, 

indicating that the wavelet scale is almost equal to Fourier period. 

The wavelet power spectrum (scalogram) can be defined as \W(n, a)\2. Using the nor

malization in Equation (4.7), the expectation value for \W(n, a)\2 is equal to TV times the 

expectation value of \Xk\
2. For a white noise time series, this expectation value is a2/N, 

where a2 is the variance. Thus, for a white noise process, the expectation value for the 

wavelet transform is |W(n, a)\2 = a2 at all n and a. 

For non-orthogonal wavelet analysis, an arbitrary set of scales can be used to obtain a 

more complete time-frequency picture. It is convenient to define the scales as fractional 

powers of two: 

aj = a02
jAj , j = 0,l,...,J (4.14) 

J = A 7 ^ 2 ( ^ ) (4.15) 

where a0 is the smallest resolvable scale and J is the largest scale. The o0 is chosen so that 

the equivalent Fourier period is approximately 2 At. The choice of a sufficiently small Aj 

depends on the width in spectral-space of the wavelet function. A j - 1 gives the number of 

voices per octave, in other words, the number of fractionally dilated versions of the wavelet 

in each scale. 

The redundancy of continuous wavelet transform makes it possible to reconstruct the 

time series using a completely different wavelet function, the easiest of which is a delta (5) 

function (Farge 1992). In this method, the reconstructed time series is just the sum of the 

real part of the wavelet transform over all scales. 

_AJAf/2'^[W(n,aJ)} 
Xn ~ CsMO) U «? 

The factor \&o(0) removes the energy scaling, while a- converts the wavelet transform to 

an energy density. The factor Cg comes from the reconstruction of a 8 function from its 
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wavelet transform using the function tpo(t). The C§ is a constant for each wavelet function 

and is equal to 0.776 for complex Morlet wavelet with OJ0 — 6 and fo = 2. Note that if 

original time series were complex, then the sum of the complex W(n, a) would be used in 

Equation (4.16). 

To derive Cs for a new wavelet function, first assume a time series with a 5 function 

at time n = 0, given by xn = 5n0. This time series has a Fourier transform Xk = AT-1, 

constant for all k. Substituting Xk into Equation (4.5), at time n = 0 (the peak), the wavelet 

transform becomes 
J V - l 

Ws(n = 0, a) = - J2 * * M (4.17) 
fc=0 

The reconstruction in Equation (4.16) then gives 

A j A t ' / 2 ^ S [ W i ( n = 0,»J-)] 

The total energy is conserved under the wavelet transform, and the equivalent of Parse-

val's theorem for wavelet analysis is 

0 n=0 j=0 •> 

where a2 is the variance and a 5 function has been assumed for reconstruction. 

The implementation of frequency tracking and evolutionary power spectral density es

timation in real-time using WT is shown in Figure 4.2. Since the estimation is to be used 

in semi-active control algorithms in real-time, for any given time only the portion of signal 

data up to that time is assumed to be known. The procedure starts by selecting a window 

and a window length (WL) of (n — 1) At (where n is the number of points in the window). 

Time lapse (TL) of LAt is the time period between successive windows. The window 

is multiplied by the portion of the signal, s(t) up to the real-time U and zero padded for 
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the desired frequency resolution. Then the Fourier transform of the windowed signal is 

multiplied by the Fourier transform of the wavelet and the inverse Fourier transform of 

the product gives the wavelet transform in real-time. The instantaneous PSD (a time slice 

of the evolutionary PSD) is estimated by the wavelet power spectrum of each windowed 

signal, s(t)w(ti) as given in Equation (4.21) 

S ( W i = A ) = ^£M! (4.20, 

where f0 = u0/(2n). 

The instantaneous (dominant) frequency is determined using Equation (4.22) by weight

ing the ridge frequency (corresponding to maximum PSD value) by its PSD value at the 

corresponding time. 

/ _, J max (,*fe 

)max [\S(U,f)\2] fUU) = ^ " " T ' (4.21) 
]T max[\S(tiJ)\2] 

k=max(l,i—m+l) 

in which the averaging length, AL = (m — 1) At is the time length considered in weighted 

averaging of dominant frequency and m is the number of points used for averaging. fmax 

is the ridge frequency corresponding to the frequency with maximum instantaneous PSD 

value. 

4.3 Numerical Examples 

Several excitation signals, from simple harmonic signals to stationary and non-stationary 

processes are analyzed in real-time by STFT and WT, as explained in the previous sections. 

The instantaneous (dominant) frequency of the excitation and evolutionary power spectral 

density estimated by two methods are compared. Although wavelet transform in general 
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Signal, s(t) 
t = [0:1 :N]*At 
fs= 1/At 

Select the window 
length (WL), 
Time lapse b/w 
windows (TL) 

Multiply the window 
with the portion of the 
signal up to the real 
time ti 

Compute the fft of the windowed 
signal and multiply with the Fourier 
transform of wavelet (normalized to 
have unit energy at each scale) at 
each scale 

Compute the wavelet transform by 
inverse Fourier transform of the above 
product (convolution theorem) 

W{t, = nM,a) = £ s , {o}k)ifr*{acok>' CfynAt 

Compute instantaneous PSD at real time tj 

',./,=: AjAtji[{m,a;f 
Cs % a'Aeo 

Compute instantaneous frequency at real time t j 

X/max(Omax[S(^,/)] 
k=i-m+l 

Xmax[S(ft,/)] 
k=i-m+\ 

m = AL/At + 1 where AL is the averaging length 

Figure 4.2 Frequency tracking and Evolutionary Spectrum Estimation by WT 

suits better for highly non-stationary signals, use of a window to analyze the signal in real

time imposes the inherent limitation of STFT to the wavelet transform in terms of aliasing 

low and high frequencies outside the frequency range of the window. Nevertheless, both 

methods give similar qualitative results and provide adequate time-frequency information 

for the signals considered. A triangular window is used for STFT whereas a rectangular 

window is used for WT in the examples of the following sections. The sample simula

tions for the random processes are generated using auto-regressive (AR) method defined in 

Section 1.2.10 with p = 40. 
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4.3.1 Discrete Simple Sweep 

A discrete sine sweep consisting of four different frequencies (1.6 Hz, 1.8 Hz, 2.0 Hz 

and 2.2 Hz) and amplitudes (0.5,1.0,2.0, and 1.0) is tracked in real-time by STFT and 

WT, and the results are compared in Figure 4.3. Both STFT and WT were able to track the 

dominant frequency quite accurately. 

o 
a. 

10 15 
t(sec) 

(c) EPSD by STFT 
(WL= 1.28s, TL= 0.16s) 

_ 4 
IT 

s 

^ 1 

(e) Instantaneous frequency (AL=0.£ 

signal 

C 
• • , f V 

10 15 20 25 
t(sec) 

10 15 20 
t(sec) 

25 

(d) EPSD by WT 
(cmorl: f =0.95 Hz, f =1 Hz, A" '=32) 

o b. j 
*- i . 

10 15 
t(sec) 

20 25 

10 15 20 25 
t(sec) 

Figure 4.3 Discrete sine sweep: (a) Signal, (b) RMS history, (c) EPSD by STFT, (d) EPSD by 
WT, (e) Frequency tracking by STFT, and (f) Frequency tracking by WT 
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4.3.2 Narrow-band Stationary Process 

500 narrow-band stationary force excitations are simulated using the same filter for the 

near-fault earthquake spectrum (defined in Section 1.2.10) with parameters fg = l Hz and 

£g = 0.05. Each sample is analyzed in real-time by STFT and WT, and the ensemble results 

are compared in Figure 4.4. The results indicate that both STFT and WT were able to track 

the dominant frequencies and estimate the EPSD quite accurately. 
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(c) EPSD-STFT (ensemble) 
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(cmorl: fQ=1 Hz, ffe=1 Hz, A. 1=8) 
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(f) RMS history 

20 

target 
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•wt 

10 
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Figure 4.4 Narrow-band stationary process: (a) Target EPSD, (b) Sample function, (c) EPSD 
by STFT, (d) EPSD by WT, (e) Frequency tracking, and (f) RMS history 
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4.3.3 Wide-band Stationary Process 

500 samples are generated from a wide-band stationary process defined by the near-

fault earthquake spectrum (Narasimhan 2004) given in Section 1.2.10. Each sample is an

alyzed in real-time by STFT and WT, and the ensemble results are compared in Figure 4.5. 

The results indicate that both STFT and WT were able to track the dominant frequencies 

and estimate the EPSD quite accurately. 
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(a) Target EPSD 

10 
t(sec) 

15 

'̂ T 3 

<2[ 

1 

(c) EPSD-STFT (ensemble) 
(WL= 5.12s, TL= 0.16s) 
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Figure 4.5 Wide-band stationary process: (a) Target EPSD, (b) Sample function, (c) EPSD by 
STFT, (d) EPSD by WT, (e) Frequency tracking, and (f) RMS history 
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4.3.4 Locally Stationary Process 

500 samples are generated from a locally stationary process defined by the near-fault 

earthquake spectrum. Each sample is analyzed in real-time by STFT and WT, and the 

ensemble results are compared in Figure 4.6. The results indicate that both STFT and 

WT were able to track the dominant frequencies and estimate the EPSD quite accurately. 

The target evolutionary spectrum has the following time envelope applied to the near-fault 

earthquake spectrum. 
g—at „-bt 

A(t) = - — (4.22) 
v ' max(e-at - e~bt) 

where a and b are selected as 0.2 and 0.25, respectively. 

4.3.5 Non-stationary Process 

500 samples are generated from a non-stationary process defined by the near-fault earth

quake spectrum. The target evolutionary spectrum has the time envelope given in Equation 

(4.22) and a dominant frequency shift from 0.5 Hz to 2.5 Hz. Each sample is analyzed 

in real-time by STFT and WT, and the ensemble results are compared in Figure 4.7. The 

results indicate that both STFT and WT were able to track the dominant frequencies and 

estimate the EPSD quite accurately. 

4.4 Concluding Remarks 

Wavelet transform (WT) has two major advantages over short-time Fourier transform 

(STFT): (i) it is more accurate due to variable window lengths (scales) instead of fixed win

dow length (as in STFT), which causes inaccuracy by aliasing of low and high frequency 

components outside the frequency range of the window; and (ii) it is more efficient due 

to variable frequency (or scale) resolution with high resolution in high frequency (small 
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Figure 4.6 Locally stationary process: (a) Target EPSD, (b) Sample function, (c) EPSD by 
STFT, (d) EPSD by WT, (e) Frequency tracking, and (f) RMS history 

scales) region and low resolution in low frequency (large scales) region, which allows 

identifying low and high frequency components of the signal efficiently. These advan

tages favor wavelet transform in time-frequency analysis of non-stationary signals, where 

sudden changes occur. 

Real-time estimation of instantaneous frequency and evolutionary power spectrum re

quires use of a window with only priori data at any given time instant. This imposes the 

same limitation of STFT to wavelet transform limiting its accuracy. 
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(c) EPSD-STFT (ensemble) 
(WL= 2.56s, TL= 0.16s) 

20 

10 
(e)AL=1s 

signal 
stft 
wt 

Figure 4.7 Non-stationary process: (a) Target EPSD, (b) Sample function, (c) EPSD by STFT, 
(d) EPSD by WT, (e) Frequency tracking, and (f) RMS history 

Both STFT and WT accurately track the instantaneous frequency of harmonic and sine 

sweep signals. 

For the target evolutionary spectra of random processes studied, the real-time instan

taneous frequency and root mean square (RMS) values obtained from Monte Carlo simu

lations indicate similar performances by STFT and WT. However, this is also partly due 

to averaging of the sample simulations. For individual sample simulations, it is likely that 

WT would detect the non-stationarity characteristics more accurately. 
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Chapter 5 

Semi-active Single/Multiple-Degree-Of-Freedom Systems 

(sSDOF/sMDOF) under Deterministic Excitations 

Two nonlinear control algorithms developed to independently vary stiffness and damp

ing in structures are studied under near-fault earthquake records and pulse type of exci

tations fitted to them. Three cases of semi-active control are considered, which are (i) 

independently variable stiffness control, (ii) independently variable damping control, and 

(iii) combined variable stiffness and damping control. The nonlinear control law for vari

able stiffness systems is designed to produce a variable structure without sliding mode. 

Semi-active damping control algorithm has been derived based on Lyapunov method, such 

that the derivative of a Lyapunov function (representing total energy) is always negative. 

Results for single-degree-of-freedom and multi-degree-of-freedom systems equipped with 

semi-active stiffness and damping devices on the base floor are presented. The control al

gorithms can be successfully implemented in base-isolated buildings. 

5.1 SDOF Structural Model and Formulation 

The semi-active single-degree-of-freedom structural model (sSDOF) equipped with 

both variable damping and stiffness devices is shown in Figure 5.1. The equation of motion 

is given by 

mu(t) + (cmin + csf (ua,ua,Ur)) u{t) + (kmax - ksf (ur,iir))u(t) = P(t) (5.1) 
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where m is the mass, cmin is the damping coefficient corresponding to conventional damp

ing mechanisms within the structures itself, cs is the maximum additional damping due to 

variable damping device (i.e. cmax = cmin + cs), kmax is the maximum stiffness, ks is the 

maximum reduction in stiffness (i.e. kmax = kmin + ks). u, u, u are the relative displace

ment, velocity and acceleration with respect to ground. f(ua, iia, iir) and f(ur, ur) are the 

appropriate functions for varying stiffness and damping. P(t) is the external force which 

is equal to —mug(t) for base excited systems where ug(t) is the ground acceleration. 

Figure 5.1 Analytical model of the SDOF system equipped with variable stiffness and variable 
damping device 

5.2 MDOF Structural Model and Formulation 

The semi-active multi-degree-of-freedom structural model (sMDOF) equipped with 

both variable damping and stiffness devices between the base and the first DOF is shown 

in Figure 5.2. The equations of motion are given by 

MU(t) + C(*)U(<) + K(t)U(t) = P(t) (5.2) 

where M is the mass matrix, C(t) is the time-varying damping matrix, and K(t) is the 

time-varying stiffness matrix. P(£) is the external force that is equal to — M.lug(t) for base 

excited systems, where ug{t) is the ground acceleration. 



92 

Limiting the MDOF system to have uniform structural properties, the system matrices can 

be written as 

vn\ 0 

0 m2 0 

: 0 

M = 

mN 

m0l 

C(t) = 

Ci(t) + C2 - C 2 

- c 2 c2 + c3 

0 

K(t) = 

-CJV-I 

0 

-CN-I 

CN 

= coC(t) 

= *k)K(t) 

(5.3) 

(5.4) 

(5.5) 

h(t) + k2 -k2 

-k2 k2 + k3 

0 "•• '•• -kN-i 

: •• — /CAT-I ^AT 

in which ci(t) = cmin + csf (ua,ua,ur) andki(t) = kmax-ksf (ur,ur). Similar to SDOF 

system, cmin is the damping coefficient corresponding to conventional damping mecha

nisms between the base and the first DOF, cs is the maximum additional damping due to 

variable damping device (i.e. cmax = cmin + cs), kmax is the maximum stiffness, ks is the 

maximum reduction in stiffness (i.e. kmax = kmin + ks). f(ua,ua,ur)) and f{ur,iir)) are 

the functions for varying stiffness and damping. 
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Figure 5.2 Analytical model of the MDOF system equipped with variable stiffness and variable 
damping device 

5.3 Control Algorithms 

5.3.1 Variable stiffness based on continuous variable structure control 

Variable structure control is a discontinuous nonlinear control method where a system 

switches frequently between two different structures based on the current position of the 

state trajectory. Consider two different undamped SDOF structures A and B, described as 

follows. 

k 
x H x = 

m 

k 
x x 

m 

= 0 

= 0 

or < 1 

or 

| Xi = X2 

{ *2 = - £ * ! 

I Xi = X2 
< 

*2 = &Ei 

(A) 

(B) 

(5.6) 

(5.7) 

The controller is implemented using a switching function (line). The instant position of a 

representative point (RP) is measured and the system is switched between from structure A 

to structure B or vice versa when RP goes through the switching line. The switching line is 

given by 

x2 + siXi = 0 (5.8) 

Two types of trajectories exist: one is the sliding mode switch and the other is variable 

structure switch. The types of the trajectory are determined by relative position of the 

switching line with respect to the asymptote line (si = y/k/m). The sliding regime exists 

within the range of 0 < si < ^Jk/m. 
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Consider a first order dynamical system 

-T£ = Mx1,..,xn,t) (i = l,..,n) (5.9) 

Selecting a certain hypersurface (switching surface) described by a = a(xi,..., xn) = 0 

and defining a Lyapunov function as 

V(a(x)) = ^aT(x)a(x) (5.10) 

a sufficient condition for the existence of the sliding regime can be written as 

dV , dV da , Tda 
lim - 3 - = lim - — - = lim aT— < 0 (5.11) 
<T-S-O at o->o c/cr dt <7->.o dt 

Assuming the system has always a control that can move the trajectory to the sliding 

mode, the system will stay on the sliding surface after it enters the sliding regime. Since 

along the sliding mode trajectories <r((x)) = constant, the following equations will hold. 

da \-~\ da „ 

*=£fl*/'-° (5-12) 

a(x1,x2,..,xn) = 0 (5.13) 

Equations (5.12) and (5.13) represent the motion of the system in a sliding regime, 

where RP always move on a = 0. 

The behavior of the variable structure is described by: 

.. c . k + V n I x1=ii = x2 

u-\ u-\ u = 0or < (5.14) 
m " m 

The control law is given by 

* ^ 
ka, X\a > 0 

fc/8, x\a < 0 
(5.15) 
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where a > 0, /3 < 0 and a = x2 + si^i. a = 0 is the switching plane (hyperplane). m, 

c, k, si are the known variables and ka, k/3 are the unknown variables. The objective is 

to obtain the values of ka and k/3 such that the sliding regime and the occurrence of the 

hitting of RP against the switching line exists. 

For the sliding regime to exist, Equations (5.11) and (5.12) should be satisfied. Substi

tuting a = x2 + siXi and Equation (5.14) into Equation (5.12) 

da 
— = X2 + SiXi 
at 

c k + ty 
= x2 x\ + six2 (5.16) 

m m 
k + V 

= si ) x2 xx 

\ mJ m 

The control law can be expressed as 

da 1 
lim ^ = - — ($ - csi + ms? + k)x1 (5.17) 

CT-s-o at m 

Thus, Equation (5.11) becomes 

i • da 1 . o 

lim a—- — (w — cs\ + ms-, + k)x\a 
T->O dt m 

— •^(ka — csi+msl + k)xia x\a > 0 
— ̂ (k{3 — csi + ms\ + k)xia X\a < 0 

The sufficient condition for this to be satisfied is 

ka > csi — ms\ — k 

k/3 < csi — ms\ — k 

which can be re-written as 

S > 2 ^ s i -4-"I 
% < 2iunsx -s\-ul 

(5.18) 

(5.19) 

(5.20) 
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where £ and un are the damping ratio and natural frequency of the system, respectively. 

ka + k and k(3 + k are the two switching states. From practical considerations minimum 

stiffness should be greater than zero. This condition is met when si < 2^un. 

In the sliding regime 

x2 + SiXi = 0 
(5.21) 

Xi = X2 

which has the following solution for the displacement 

u = xx = a;i(0)e-"l(t-to) (5.22) 

Equation (5.22) indicates that the displacement is independent of the structural parameters. 

RP takes a trajectory depending on the initial state of switching, characterized by the slope 

of the switching line (si) which has the dimension of circular frequency. 

The necessary and sufficient condition for the RP to hit the switching line is that the 

characteristic equation of the system with * = ka should have negative real roots. Thus, 

for the characteristic equation 

, c A; + ka 
y2 + -y + = o (5.23) 

m m 
one sufficient condition is 

A = — f — -4(k + ka)) < 0 (5.24) 
m \m J 

which can be written as 

ka > f k or 
4m (5.25) 

Setting si = 0 and the switching line a = x2 = ii = 0, a discontinuous variable structure 

control law can written as 

k{t) — k(ur,ur) = \ (5.26) 
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The discontinuous variable structure control law in Equation (5.26) can be replaced by the 

following continuous smooth control law for variable structures. 

KG 

fCt t- ) f C l l X y , Uf J A<7J (5.27) 

where p is the smoothness constant with appropriate dimensions, ur is the relative dis

placement, and ur is the relative velocity. The continuous controller in Equation (5.27) is 

designed to produce only a variable structure system and controller. 

5.3.2 Variable damping based on Lyapunov control 

Semi-active damping control algorithm developed by Nagarajaiah et al. (2000), is de

rived based on Lyapunov method, such that the derivative of a Lyapunov function (repre

senting total energy) is always negative. Consider the state space formulation of SDOF 

system given by 

X = AX - Bc(t)ur + Bkug (5.28) 

where 

A = 
0 1 

o 

B=l 
m 

x = 
Ua 

Va 

Defining a Lyapunav function (V) as 

1 
V = ^aT(X)a(X) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 
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where 

a(X) = PTX = ^k ^/m (5.33) 

in which P is a constant vector. 

Substituting Equation (5.33) into Equation (5.32), Lyapunov function V can be written 

as 

V = -ku2
a + ^yJmUaUa + -mill (5.34) 

where the first term represents the total strain energy in the spring, the second term repre

sents the dissipated energy, and the third term represents the total kinetic energy. 

Taking the first derivative of Equation (5.34) 

V = a(X)PTBur (-c(t) + ^- (Vky/mua - kur\ J (5.35) 

For V to be negative, the time-varying damping coefficient should satisfy 

(y/kua + ^/mua)ur > 0 

(s/kua + y/mua)ur < 0 

The variable damping control function in Equation (5.1) can be written as 

(5.36) 

. . . . 1 {\fkua + y/mua)ur > 0 
f(ua,ua,Ur) = \ (5.37) 

0 (vkua + ^Jrnua)ur < 0 

5.4 Pulse Type Excitations 

Studies of the near-source ground motion records have shown that such motions often 

resemble to long period pulses (especially in ground displacement and velocity) and the 

response of flexible structures subjected to near-source earthquakes also resemble to the 

response due to cycloidal pulses (Makris and Chang 2000b; Makris and Chang 2000a). Al

though such simple cycloidal pulses can capture many of the kinematic characteristics of 
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near-fault ground displacement and velocity, they do not capture the high-frequency com

ponents of the acceleration record and sometimes local, distinguishable acceleration pulses 

can override the long period velocity (and displacement) pulses. Despite their limitations, 

these cycloidal pulses are very useful for interpreting the kinematics of the earthquakes and 

the associated responses. They are particularly beneficial for longer period structures, such 

as base isolated buildings. The displacement, velocity and acceleration histories of some 

of these pulse type of excitations, shown in Figure 5.3, are summarized below: 

Type A pulse: 

ug(t) 

Type B pulse: 

ug{t) 

Type Cn pulse: 

u (t) = - ^ cos(o;pi + 9)- vptsm(9) + - ^ cos(0), 0<t< ( n + ^ - - ) TP (5.40) 
Up Up V 2 nj 

where vp is the maximum ground velocity, Tp is the time period of the excitation defined as 

the duration of a full-cycle acceleration pulse and up = 2ir/Tp is the pulse frequency. The 

value of the phase angle 6 can be obtained from the following transcendental equation: 

cos[(2n + 1)TT - 9} + [(2n + 1)TT - 29} sin(0) - cos(0) = 0 (5.41) 

For Type-Ci pulse (n = 1), 9 = 0.0697TT, and for Type-C2 pulse (n = 2), 9 = 0.0410TT. 

5.5 Nonlinear Least Squares Fitting of Single/Multiple Pulses to Near-

Fault Earthquakes 

Single pulses can lead to similar responses (especially in displacement and velocity) 

when compared to the response to the actual records near the region of the pulse period; 

= Jk--7T- sm(<V), 0 < t < Tp (5.38) 
Z AUp 

= ^Z_^E c o s ( a ; p f ) j o < t < Tp (5.39) 
Up Up 
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Figure 5.3 Pulse type of excitations 

their similarity decreases beyond that region in the spectra. However, acceleration response 

is not represented well by single pulse models. Hence, there is a need to fit the actual record 

with multiple pulses or even combinations using nonlinear least squares method. A new 

method is developed in this study. 

Nonlinear least squares fitting is based on determining the values of the parameters of 

nonlinear models (equations) by minimizing the sum of the squares of the residuals. One 

main difference from linear least squares is, the solution is obtained iteratively. 

The Gauss-Newton method is one algorithm for minimizing the sum of the squares of 

the residuals between data and nonlinear equations (Chapra and Canale 2002). The key 
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concept of the technique is expressing the original nonlinear equation in an approximate, 

linear form by a Taylor series expansion. Then, least squares theory can be used to obtain 

new estimates of the parameters that move in the direction of minimizing the residual. 

Given a function f(x) of a variable x and m parameters 

Vi = f{xi\ ai, a2,..., am) + e{ (5.42) 

where y; = a measured value of the dependent variable, /(#»; a,\, a2, • •., am) = nonlinear 

function of independent variable Xj and the parameters a\, a2,..., am, and ê  = a random 

error. Expanding the nonlinear model in a Taylor series around the parameter values up to 

the first derivative 
9f(xi)j 

f(Xi)j+1 = f{Xi)j + ] T 
fe=i 

dak 
-dak (5.43) 

where j = the initial guess, j + 1 = the prediction, dak = akj+i — akj-

Substituting Equation (5.43) into Equation (5.42), 

y% f(xi)j = ^2 
*;=i 

9f(xj)j ^ 
— dak + ti 

aak 

or in a matrix form 

D = ZdA + E 

(5.44) 

(5.45) 

where Zj is the matrix of partial derivatives of the function evaluated at the initial guess j . 

Zj = 

9A .. 
da i 

dh 
da\ 

dfn 
da i 

dam 

dam 

dam 

(5.46) 

where n = the number of data points and dfi/dak = the partial derivative of the function 

with respect to the kth parameter evaluated at the ith data point. The vector D contains the 
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differences between the measurements and the function values, 

D = 
Vi - f(x2) 

Vn ~ f{xn) 

and the vector dA contains the changes in the parameter values 

dA = 

da± 

da2 

dam 

Applying linear least squares theory to Equation (5.45) results in 

ZjZjdA = ZjD 

Solving Equation (5.48) for dA gives improved values for the parameters 

afcj+i = ak,j + Aafc k = l,...,m 

The above procedure is repeated until the solution converges such that 

ak,j+l ~ ak,j x 100% < tolerance k = 1 , . . . , m 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 
O'kJ+l 

Using nonlinear least squares technique, five different types of cycloidal pulses (A, B, C\, 

C2, C\ + C\ + C\) are fitted to several near-fault ground motion records to be used to 

evaluate the performance of the nonlinear control algorithms and to compare the responses 

of fitted pulses to that of the near-fault earthquakes. 

A Type-A pulse is fitted to 1992 Landers: Lucerne-270 record and is shown in Figure 

5.4. The pulse parameters are computed as vp = 128.08 m/s, Tp = 2.94 s, t0 = 8.59 s. 
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As seen in Figure 5.4(a,b,c), the fitted pulse captures the velocity and the displacement 

kinematics of the ground motion despite the poor fit in acceleration. The spectral responses 

(displacement, velocity, acceleration) of a SDOF (5% damped) are also computed and com

pared for both the pulse and the record in Figure 5.4(d,e,f). Similar trends are observed in 

the spectral responses with good approximation in displacement and velocity while there 

are differences in acceleration. 

A Type-S pulse is fitted to 1979 Imperial Valley: El Centro #5-230-FN record and is 

shown in Figure 5.5. The pulse parameters are computed as vp = 76.76 m/s, Tp = 3.18 s, 

t0 = 4.78 s. As seen in Figure 5.5(a,b,c), the fitted pulse captures the velocity and the 

displacement kinematics of the ground motion despite the poor fit in acceleration. The 

spectral responses (displacement, velocity, acceleration) of a SDOF (5% damped) are also 

computed and compared for both the pulse and the record in Figure 5.5(d,e,f). Similar 

trends are observed in the spectral responses with good approximation in displacement and 

velocity while there are differences in acceleration. 

A Type-Ci pulse is fitted to 1992 Erzincan-NS record and is shown in Figure 5.6. The 

pulse parameters are computed as vp = —60.86 m/s, Tp = 2.00 s, t0 = 2.00 s. As seen 

in Figure 5.6(a,b,c), the fitted pulse captures the velocity and the displacement kinematics 

of the ground motion despite the poor fit in acceleration. The spectral responses (displace

ment, velocity, acceleration) of a SDOF (5% damped) are also computed and compared 

for both the pulse and the record in Figure 5.6(d,e,f). Similar trends are observed in the 

spectral responses with good approximation in displacement and velocity while there are 

differences in acceleration. 

A Type-C2 pulse is fitted to 1994 Northridge: Sylmar-360-FN record and is shown 

in Figure 5.7. The pulse parameters are computed as vp = 35.85 m/s, Tp = 2.25 s, 

t0 = 2.24 s. As seen in Figure 5.7(a,b,c), the fitted pulse captures the velocity and the 
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displacement kinematics of the ground motion despite the poor fit in acceleration. The 

spectral responses (displacement, velocity, acceleration) of a SDOF (5% damped) are also 

computed and compared for both the pulse and the record in Figure 5.7(d,e,f). Similar 

trends are observed in the spectral responses with good approximation in displacement and 

velocity while there are differences in acceleration. 

Observations on Figures 5.4 to 5.7 indicate that although single pulses can lead to sim

ilar responses (especially in displacement and velocity) when compared to the response 

to the actual records near the region of the pulse period; their similarity decreases be

yond that region in the spectra. In order to improve the fitting, multiple C\ pulses (Type-

C\ + Cx + C\) are fitted to 1994 Northridge: Rinaldi-228-FN record and are shown in 

Figure 5.8. The pulse parameters are computed as vp = [—12.34 — 47.13 92.30] m/s, 

Tp = [3.21 1.87 1.06] s, t0 = [0.36 1.17 2.10] s. As seen in Figure 5.8(a,b,c), the fitted 

multiple pulses capture the kinematics of the ground motion better than the single pulse. 

The spectral responses (displacement, velocity, acceleration) of a SDOF (5% damped) are 

also computed and compared for both the pulse and the record in Figure 5.8(d,e,f). Similar 

trends are observed in the spectral responses with better approximation in all responses. 
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5.6 Results for Variable Stiffness Systems 

The five different type of pulses studied in Section 5.5 and the near-fault ground mo

tions that they were fitted to are used to evaluate the performance of the continuous variable 

structure control (VSC) given in Section 5.3.1. The spectral responses shown are maximum 

relative displacement Ur, maximum relative velocity Vr, and maximum absolute acceler

ation Aa, normalized appropriately. Tn is the period in seconds, 'pass, on' corresponds 

to the passive system with maximum stiffness (kmax), 'pass, off' corresponds to the pas

sive system with minimum stiffness (kmin), and 'controlled' corresponds to the semi-active 

system with variable stiffness. The ratio kmax/kmin is set as 2. 

Figures 5.9 and 5.10 show the response spectra and time histories of the SDOF system 

subjected to Lucerne-270 record and fitted pulse type A (Tp = 2.94 s). The VSC system 

provides response reduction in long period range (> Tp). The time history shown in Figure 

5.10 shows this response reduction due to VSC system. During VSC switching, stiffness 

from kmax to kmin the acceleration response is reduced also. 

Figures 5.11 and 5.12 show the response spectra and time histories of the SDOF system 

subjected to El Centro #5-230-FN record and fitted pulse type B (Tp = 3.18 s). The VSC 

system provides response reduction in long period range (> Tp). The time history shown 

in Figure 5.12 shows this response reduction due to VSC system. During VSC switching, 

stiffness from kmax to kmin the acceleration response is reduced also. 

Figures 5.13 and 5.14 show the response spectra and time histories of the SDOF system 

subjected to Erzincan-NS record and fitted pulse type Ci (Tp = 2.00 s). The VSC system 

provides response reduction in medium period range (Tp < T < 4 sec). The time history 

shown in Figure 5.14 shows this response reduction due to VSC system. During VSC 

switching, stiffness from kmax to kmin the acceleration response is reduced also. 
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Figures 5.15 and 5.16 show the response spectra and time histories of the SDOF system 

subjected to Sylmar-360-FN record and fitted pulse type C2 (Tp = 2.25 s). The VSC 

system provides response reduction in medium period range (Tp < T < 4 sec). The time 

history shown in Figure 5.16 shows this response reduction due to VSC system. During 

VSC switching, stiffness from kmax to kmin the acceleration response is reduced also. 

Figures 5.17 and 5.18 show the response spectra and time histories of the SDOF system 

subjected to Rinaldi-228-FN record and fitted pulse type C1+Ci+Ci(Tp = [3.21 1.87 1.06] s). 

The VSC system provides response reduction in medium period range (1 sec < T < 3 sec). 

The time history shown in Figure 5.18 shows this response reduction due to VSC system. 

During VSC switching, stiffness from kmax to kmin the acceleration response is reduced 

also. 

Figures 5.19 and 5.20 show the base floor time histories and the peak floor profiles 

of 4-DOF base isolated system subjected to Erzincan-NS record and fitted pulse type Ci 

(Tp = 2.00 s). The peak floor profiles in Figure 5.19 indicate that VSC system has the 

least displacement response compared to passive systems and has improved floor drifts and 

acceleration with respect to 'pass, on' system. 

In summary, VSC system provides reductions in medium period ranges from Tp <T < 

4 sec. The response spectra of fitted pulses provide good approximation for the response 

spectra of the actual earthquake records, especially in the neighborhood of the pulse period. 
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and fitted pulse type B (Tp = 3.18 s) 
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the SDOF system subjected to El Centro #5-230-FN record and fitted pulse type B (Tp = 3.18 s) 
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Figure 5.13 Response spectra of the SDOF system subjected to Erzincan-NS record and fitted 
pulse type Cx (Tp = 2.00 s) 
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Figure 5.16 Response time histories, force-displacement loops, and variable stiffness history of 
the SDOF system subjected to Sylmar-360-FN record and fitted pulse type C2 (Tp — 2.25 s) 
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Figure 5.18 Response time histories, force-displacement loops, and variable stiffness history 
of the SDOF system subjected to Rinaldi-228-FN record and fitted pulse type C1+C1+C1 (Tp — 
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Figure 5.19 Response time histories, force-displacement loops, and variable stiffness history 
of the 4-DOF system (base floor) subjected to Erzincan-NS record and fitted pulse type Ci (Tp = 
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123 

3 

O 

2 

[a) fitted pulse 

20 40 60 0 
Ur(cm) 

20 40 60 0 
Ur(cm) 
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fitted pulse type Ci (Tp = 2.00 s) 
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5.7 Results for Variable Damping Systems 

The five different type of pulses studied in Section 5.5 and the near-fault ground mo

tions that they were fitted to are used to evaluate the performance of the variable damping 

(Lyapunov) control given in Section 5.3.2. The spectral responses shown are maximum rel

ative displacement Ur, maximum relative velocity Vr, and maximum absolute acceleration 

Aa, normalized appropriately. Tn is the period in seconds, 'pass, on' corresponds to the 

passive system with maximum damping {cmax), 'pass, off' corresponds to the passive sys

tem with minimum damping (cmin), and 'controlled' corresponds to the semi-active system 

with variable damping. The ratio Cmax/cmin is set as 3. 

Figures 5.21 and 5.22 show the response spectra and time histories of the SDOF system 

subjected to Lucerne-270 record and fitted pulse type A (Tp — 2.94 s). The Lyapunov 

control provides similar or slightly higher response than 'pass, on' system in higher period 

range (> Tp). 

Figures 5.23 and 5.24 show the response spectra and time histories of the SDOF system 

subjected to El Centro #5-230-FN record and fitted pulse type B (Tp = 3.18 s). The 

Lyapunov control provides similar response reduction with 'pass, on' system over the 

entire period range. 

Figures 5.25 and 5.26 show the response spectra and time histories of the SDOF system 

subjected to Erzincan-NS record and fitted pulse type Cx (Tp = 2.00 s). The Lyapunov 

control provides response reduction in long period range (T > 3 sec). 

Figures 5.27 and 5.28 show the response spectra and time histories of the SDOF system 

subjected to Sylmar-360-FN record and fitted pulse type C2 (Tp = 2.25 s). The Lyapunov 

control provides response reduction in long period range (T > 4 sec). 

Figures 5.29 and 5.30 show the response spectra and time histories of the SDOF system 
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subjected to Rinaldi-228-FN record and fitted pulse type C1+Ci+Ci(Tp = [3.21 1.87 1.06] s). 

The Lyapunov control provides response reduction in long period range (T > 3 sec). 

Figures 5.31 and 5.32 show the base floor time histories and the peak floor profiles 

of 4-DOF base isolated system subjected to Erzincan-NS record and fitted pulse type Ci 

(Tp = 2.00 s). The peak floor profiles in Figure 5.32 indicate that Lyapunov control has 

similar response compared to passive-on system. 

From the spectra shown in Figures 5.21 to 5.32, it is evident that the variable damping 

provides reductions in response, primarily at long periods (> 3 sec), when compared to the 

passive-on case. The responses in the two cases are similar in most other period ranges. 

The response spectra of fitted pulses provide good approximation for the response spectra 

of the actual earthquake records, especially in the long period range and the neighborhood 

of the pulse period. 
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Figure 5.21 Response spectra of the SDOF system subjected to Lucerne-270 record and fitted 
pulse type A (Tp = 2.94 s) 
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Figure 5.22 Response time histories, force-displacement loops, and variable stiffness history of 
the SDOF system subjected to Lucerne-270 record and fitted pulse type A (Tp — 2.94 s) 
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and fitted pulse type B (Tp = 3.18 s) 
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Figure 5.24 Response time histories, force-displacement loops, and variable stiffness history of 
the SDOF system subjected to El Centro #5-230-FN record and fitted pulse type B (Tp = 3.18 s) 
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Figure 5.25 Response spectra of the SDOF system subjected to Erzincan-NS record and fitted 
pulse type Ci (Tp = 2.00 s) 
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Figure 5.26 Response time histories, force-displacement loops, and variable stiffness history of 
the SDOF system subjected to Erzincan-NS record and fitted pulse type Ci (Tp — 1.03 s) 
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Figure 5.27 Response spectra of the SDOF system subjected to Sylmar-360-FN record and 
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Figure 5.28 Response time histories, force-displacement loops, and variable stiffness history of 
the SDOF system subjected to Sylmar-360-FN record and fitted pulse type C2 (Tp = 2.25 s) 
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Figure 5.29 Response spectra of the SDOF system subjected to Rinaldi-228-FN record and 
fitted pulse type Ci+Ci+Ci (Tp = [3.21 1.87 1.06] s) 
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Figure 5.30 Response time histories, force-displacement loops, and variable stiffness history 
of the SDOF system subjected to Rinaldi-228-FN record and fitted pulse type C1+C1+C1 (Tp = 
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Figure 5.31 Response time histories, force-displacement loops, and variable stiffness history 
of the 4-DOF system (base floor) subjected to Erzincan-NS record and fitted pulse type Ci (Tp — 
2.00 s) 
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fitted pulse type Ci (Tp = 2.00 s) 
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5.8 Results for Combined Variable Damping and Stiffness Systems 

The five different type of pulses studied in Section 5.5 and the near-fault ground mo

tions that they were fitted to are used to evaluate the performance of the combined variable 

stiffness (Section 5.3.1) and variable damping (Lyapunov) control (Section 5.3.2). The 

spectral responses shown are maximum relative displacement Ur, maximum relative veloc

ity Vr, and maximum absolute acceleration Aa, normalized appropriately. Tn is the period 

in seconds. 'S-on' corresponds to the maximum stiffness (kmax), 'S-off' corresponds to the 

minimum stiffness (kmin), and 'S-contr' corresponds to the variable stiffness. Similarly, 

'D-on' corresponds to the maximum damping (cmax), 'D-off' corresponds to the minimum 

damping (cmin), and 'D-contr' corresponds to the variable damping. The ratio kmax/(kmin 

is set as 2 and the ratio cmax/(cmin is set as 3. 

Figures 5.33 and 5.34 show the response spectra and time histories of the SDOF system 

subjected to Lucerne-270 record and fitted pulse type A (Tp = 2.94 s). The combined 

VSC-VD system reduces the response in a broader period range (T > Tp). The acceleration 

response Aa is reduced significantly over the entire period range, in particular in the range 

0 to Tp. The time history shown in Figure 5.33 clearly shows the reduction in displacement 

response, as well as acceleration response. 

Figures 5.35 and 5.36 show the response spectra and time histories of the SDOF system 

subjected to El Centro #5-230-FN record and fitted pulse type B (Tp = 3.18 s). The 

combined VSC-VD system reduces the response in a broader period range (T > Tp). The 

acceleration response Aa is reduced significantly over the entire period range, in particular 

in the range 0 to Tp. The time history shown in Figure 5.36 clearly shows the reduction in 

displacement response, as well as acceleration response. 

Figures 5.37 and 5.38 show the response spectra and time histories of the SDOF system 
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subjected to Erzincan-NS record and fitted pulse type Cx (Tp = 2.00 s). The combined 

VSC-VD system reduces the response in a broader period range (T > Tp). The time 

history shown in Figure 5.38 clearly shows the reduction in displacement response, as well 

as acceleration response. 

Figures 5.39 and 5.40 show the response spectra and time histories of the SDOF system 

subjected to Sylmar-360-FN record and fitted pulse type C2 (Tp — 2.25 s). The combined 

VSC-VD system reduces the response in a broader period range (T > Tp). The acceleration 

response Aa is reduced significantly over the entire period range, in particular in the range 

0 to Tp. The time history shown in Figure 5.40 clearly shows the reduction in displacement 

response, as well as acceleration response. 

Figures 5.41 and 5.42 show the response spectra and time histories of the SDOF system 

subjected to Rinaldi-228-FN record and fitted pulse type Ci+Ci+Ci(Tp = [3.21 1.87 1.06] s) 

The combined VSC-VD system reduces the response in a broader period range (T > Tp). 

The time history shown in Figure 5.42 clearly shows the reduction in displacement re

sponse, as well as acceleration response. 

Figures 5.43 and 5.44 show the base floor time histories and the peak floor profiles 

of 4-DOF base isolated system subjected to Erzincan-NS record and fitted pulse type Ci 

(Tp = 2.00 s). The peak floor profiles in Figure 5.44 indicate that combined VSC-VD 

system effectively reduces the displacement, acceleration and drift responses. 

In summary, the combined VSC-VD system reduces the response in a broader period 

range. The VSC reduces response in the range Tp < T < 3 sec and VD reduces response 

in the long period range; thus VSD & VD provide complimentary response reductions. The 

system with combined VSC and VD is effective and has significant potential. The response 

spectra of fitted pulses provide good approximation for the response spectra of the actual 

earthquake records, especially in the long period range and the neighborhood of the pulse 
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Figure 5.33 Response spectra of the SDOF system subjected to Lucerne-270 record and fitted 
pulse type A (Tp = 2.94 s) 
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Figure 5.34 Response time histories, force-displacement loops, and variable stiffness history of 
the SDOF system subjected to Lucerne-270 record and fitted pulse type A (Tp — 2.94 s) 

5.9 Concluding Remarks 

Similar to passive systems, responses of sSDOF/sMDOF subjected to fitted cycloidal 

pulses provide good approximation to those of the actual records. The approximation is 

especially good for the higher period systems as commented above. 
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(a) Ground velocity 

Figure 5.35 Response spectra of the SDOF system subjected to El Centra #5-230-FN record 
and fitted pulse type B (Tp = 3.18 s) 

The variable structure control is very effective in reducing the response in the neigh

borhood of the resonant peaks of the passive systems for all types of pulses. 

The Lyapunov control for semi-active damping is effective in reducing the response for 

pulse type excitations, however its performance is about same as 'pass, on' system (with 
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Figure 5.36 Response time histories, force-displacement loops, and variable stiffness history of 
the SDOF system subjected to El Centro #5-230-FN record and fitted pulse type B (Tp = 3.18 s) 

higher damping). For Type-A pulse, the control leads to higher response in the high period 

region (higher T/Tp range, typically greater than T/Tp = 1.5—2.0) of the response spectra. 

For other pulses (B, C\, C2), Lyapunov control leads to slightly lower response than 'pass, 

on' system and its performance improves for higher damped systems. 
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Figure 5.37 Response spectra of the SDOF system subjected to Erzincan-NS record and fitted 
pulse type Ci (Tp = 2.00 s) 

When the two controls are executed simultaneously the benefits of both the controls are 

superimposed. Significant reduction in all the response quantities is observed for a wider 

range of T/Tp from spectra. This is because of the fact that the two control algorithms are 

effective in almost complementary T = TP ranges. 
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Figure 5.38 Response time histories, force-displacement loops, and variable stiffness history of 
the SDOF system subjected to Erzincan-NS record and fitted pulse type Ci (Tp = 2.00 s) 

The control strategies - variable structure control for stiffness and Lyapunov control for 

damping - can be effectively implemented in long period structures such as base-isolated 

structures either separately or together to reduce vibrations. 
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Figure 5.39 Response spectra of the SDOF system subjected to Sylmar-360-FN record and 
fitted pulse type C2 (Tp = 2.25 s) 
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(a) Disp. history - fitted pulse 
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Figure 5.40 Response time histories, force-displacement loops, and variable stiffness history of 
the SDOF system subjected to Sylmar-360-FN record and fitted pulse type C2 (Tp = 2.25 s) 
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Figure 5.41 Response spectra of the SDOF system subjected to Rinaldi-228-FN record and 
fitted pulse type Ci+Ci+Ci (Tp = [3.21 1.87 1.06] s) 
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Figure 5.42 Response time histories, force-displacement loops, and variable stiffness history 
of the SDOF system subjected to Rinaldi-228-FN record and fitted pulse type Ci+Ci+Ci (Tp = 
[3.21 1.87 1.06] s) 
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Figure 5.43 Response time histories, force-displacement loops, and variable stiffness history 
of the 4-DOF system (base floor) subjected to Erzincan-NS record and fitted pulse type Ci (Tp = 
2.00 s) 
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Figure 5.44 Peak response profiles for 4-DOF system subjected to Erzincan-NS record and 
fitted pulse type Ci (Tp = 2.00 s) 
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Chapter 6 

Semi-active Single/Multiple Tuned Mass Dampers 

(sTMD/sMTMD) under Deterministic Excitations 

In this chapter application of single and multiple semi-active variable stiffness tuned 

mass dampers (sTMD/ sMTMD) to reduce the the response of the main structure under 

several type of excitations is proposed. A new semi-active control algorithm is developed 

based on real-time frequency tracking of excitation signal by short time Fourier transform 

(STFT). It is shown that frequencies of simple harmonic signals can be tracked accurately 

using STFT. Based on this result, a parametric study is performed in the frequency do

main to investigate the dynamic characteristics and effectiveness of sTMDs. Time history 

responses of single-degree-of-freedom (SDOF) and five-degree-of-freedom (5-DOF) main 

structures equipped with sTMDs at the roof level, subjected to harmonic, stationary, and 

non-stationary excitations are presented. sTMD/ sMTMD are most effective when they 

have low damping ratios and the excitation frequency can be tracked accurately. They are 

superior to their passive counterparts in reducing the response of the main structure both 

under force and base excitations. 

6.1 Modelling of MDOF System with MTMD 

The main structure is modelled as a regular multistory shear building in which the 

structural properties (stiffness and damping) of each story are uniform. The model of N-

story building with n-TMD at the roof is presented in Figure 6.1. The frequencies of the 

n-TMD are distributed around the natural frequency of the main structure, as shown in 

Figure 6.2. Several definitions and assumptions made in this study are listed below: 
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1. The main structure is symmetric and has uniform mass (Mi = . . . = MN = M0), 

stiffness (Ki = . . . = KM = K0) and stiffness-proportional damping (C\ = ... = 

CN — Co) properties throughout its height. LU0 = ^KQ/MQ and Co = C0/(2MQu0) 

are the parameters chosen such that the first mode frequency and damping ratio of 

the main structure have the desired values. First modal damping ratio of the main 

structure is 1 percent (£nl = 0.01). Only SDOF (N = 1) and 5-DOF (N = 5) 

models of main structure are considered for simulations, without loss of generality. 

2. TMDs are modelled as SDOF systems with same mass (mi = . . . = mn — m0), 

damping ratio(£i = . . . = £„ = £0) but different stiffness (kj : j = 1,2, ...,n) 

properties. 

3. 7j is defined as the frequency of j t h TMD (u>j = y/kj/rrij) normalized by first natural 

frequency of the main structure (un{). 7C = ujc/coni is the normalized frequency of 

the central TMD (uc is the frequency of central TMD) and 70 (= 7C — 1) is the 

offset of the central frequency of the MTMD from the natural frequency of the main 

structure. A7 is the normalized frequency range of the MTMD. 

4. Each TMD has a slightly different damping coefficient depending on Uj (i.e. c, = 

277100^-). 

5. Total mass ratio (/x = ^ " m 0 / ^ f M)) is fixed to 1 percent such that/ '1 TMD mass 

ratio, Hj is equal to 0.01/n in an n-TMD system. 

6. The optimum frequency ratio ^opt and damping ratio £opt for TMD in a SDOF struc

ture is obtained numerically using frequency response functions. The central fre

quency of MTMD is set to the same frequency of the single TMD; then optimum 
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frequency range and individual TMD damping ratio are computed numerically. In 5-

DOF structure, TMD and MTMD are designed with respect to first mode properties 

of the 5-DOF structure (p = 0.0159). 

6.2 Modelling of MDOF System with SMTMD 

There are several semi-active variable stiffness devices that are proposed and studied 

in the literature. As described earlier the SAIVS device has been developed by Nagaraja-

iah (2000) with capability to continuously and independently vary stiffness. The SAIVS 

device, shown in Figure 6.3, consists of four spring elements arranged in a plane rhombus 

configuration with pivot joints at the vertices. A linear electromechanical actuator con

figures the aspect ratio of the rhombus configuration of SAIVS device. The aspect ratio 

changes between the fully closed (joint 1 and 2 are in closest position) and open configu

rations (joint 3 and 4 are in closest position) leading to maximum and minimum stiffness, 

respectively. A control algorithm and controller are used to regulate the linear electrome

chanical actuator. The power required by the actuator to change the aspect ratio of the 

device is nominal. The variable stiffness of the SAIVS device is described by: 

k{t) = ke cos2 (6 it)) (6.1) 

where k(t) = time varying stiffness of the device, ke — the constant spring stiffness of each 

spring element, and 9(t) = time varying angle of the spring elements with the horizontal 

in any position of the device. The SAIVS device has maximum stiffness in its fully closed 

(Q(t) = 0) and minimum stiffness in its fully open position (0(t) ~ 7r/2). The device can 

be positioned in any configuration, changing its stiffness continuously, independently and 

smoothly between maximum and minimum stiffness. 

The previous assumptions and definitions made for TMD and MTMD are also same 
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Figure 6.1 MDOF Structural Model with sMTMD (varying k\,..., kn) at the roof level: (a) 
Force Excited; (b) Base Excited 

for sTMD and sMTMD except that in the semi-active case central TMD is tuned to ex

citation frequency (u(t)) such that -)cif) = w(t)/u)ni. In each sTMD, damping coef

ficient is constant and damping ratio varies with time due to varying tuning frequency 

(CJ = 2£j(t)u}j(t)mo). For convenience damping coefficient is defined with respect to se

lected reference damping ratio (£̂  = £re-0 and corresponding passive TMD frequency 

(u;?) such that c, = 2^r
j
ef^mo = ^j(t)u}j{t)m0. Time dependent damping ratio can be 

obtained as £,•(£) = Cj/(2u)j(t)mo) or £,-(£) = $,jU>^/u}j(t). For ease of presenting and 

interpreting the results, sTMDs are parameterized with respect to reference damping ratio, 

which corresponds to the damping ratio when sTMD is tuned to the same frequency of 

corresponding passive TMD. 
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6.3 Formulation 

The equations of motion for the structural model given in Figure 6.1 can be written as 

follows 

M X + CX + KX = P(t) (6.2) 

where X = {Xi X2 . . . XN x\ x2 . . . xn} is the displacement vector in which 

Xi is the displacement of ith story and Xj is the displacement of j t h TMD. P(t) is the 

force vector. The coefficient matrices in Equation (6.2) are the mass, damping and stiffness 

matrices, defined as 

M = 

Mi 

0 

0 

M2 

0 

0 

MN 

mi 

0 

0 

ra2 

mn 

= Mn 
I 0 

0 fJLol 

= M0M (6.3) 
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C = 

~Cx + C2 -C2 0 

~c2 c2 + c3 -c3 

o -c3 c3 + cA 

—Cjv-i 

-Cjv-l CNA + r S™=1 CJ _ c l _ c 2 

— ci ci 0 

— C2 0 C2 

= CnC 

C n J 

(6.4) 

K = 

~K\ + if2 - t o o 

-K2 K2 + to - t o 

0 - t o to + to 

- t o v - i 

- tov-i ^JV-i + rE"=ifcj - * i -fc2 

-fci fci 0 

- fc2 0 fc2 

0 

= K0K 

• K n fen-

(6.5) 
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where M, C, K are the normalized mass, damping, stiffness matrices and yu0 = m0/M0. 

The force vector is defined for force and base excitations as 

{ Pp(t) = Ppo pit) (force excited) 
1 _ _ (6.6) 

-Mlz(t) = -M0Mlz0z{t) (base excited) 

A reference response value, X0tSt is defined as X0,st = Po/Ko for force excitation and 

X0)St = MQ'ZQ/KQ for base excitation. Substituting X0,st in Equation (6.2) gives 

_ . „ uJnXo stP p(t) (force excited) 
M X + 2Cow0CX + wgKX = I ' _ _ (6.7) 

—LjQXoiat'M.lz(t) (base excited) 

Dividing X, X, X by X0tSt leads to the normalized equations of motion as 
UJ, ;P m M X + 2C0u;oC X + UJ%K X = { _ _ (6.8) 

-wgMliJ(t) 

Equations (6.7-8) can be solved by Newmark's method to obtain the actual or normalized 

response, respectively. 

The aforementioned formulation can also be specified in state space in the form 

X = AX + As (t) X + BF (6.9) 

where X = [X X]T is the state vector, A is the time independent state matrix (corre

sponding to passive properties), As(t) is the time dependent state matrix (corresponding to 

semi-active properties), B is the input coupling matrix and F is the input force vector. 

6.4 Results 

6.4.1 Excitation Frequency Tracking by STFT 

In this chapter, the tracking of instantaneous frequency of the excitation is obtained by 

short-time Fourier transform (STFT). The details of STFT and frequency tracking algo-
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rithm are given in Chapters 3 and 4. Mathematical expression of the short-time Fourier 

transform given in Equation (3.31) is repeated below: 

STFT(t, u>) = S(t, u) = Y j S{T)W(T - t)e~jUTdT (6.10) 

where s(t) is the signal and w(r — t) is the window function which is chosen to leave the 

signal more or less unaltered around the time t but to suppress the signal for times distant 

from the time of interest. The instantaneous (or dominant) frequency of the excitation 

signal at discrete time U is computed by 

i 

max [\S(tk,f)\
2] 

. k=max(l,i-m+l) . , . , . 

JinstXH) = -. (6.11) 
J2 max[\S(tk,f)\

2} 
k=max(l,i—m+1) 

where m is the number of points used for averaging, and / is the cyclic frequency in Hz. 

The block diagram for control algorithm is given in Figure 6.4. Note that the feedback 

shown in Figure 6.4 is only for adjusting the proper positioning of semi-active device. 

Further details in implementation of frequency tracking and tuning of sTMD are shown 

in Figure 6.5. The procedure starts by selecting an STFT window and a window length 

(WL) of nAt (n + 1 is the number of points in the window). Time lapse (TX) of LAt 

is the time period between successive windows. The signal is convolved with window 

function, W(T) and then zero padded for the desired frequency resolution. FFT power 

spectrum of each window is calculated and dominant excitation frequency is determined 

using Equation (6.11) by weighting the dominant frequency by its maximum FFT power 

at the corresponding time. Averaging length, AL = mAt is the time length considered 

in weighted averaging of dominant frequency. t0 is the time required before starting to 

tune sTMDs to ensure sufficient number of signal points are collected for FFT calculation. 
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Figure 6.4 Control Algorithm 

Once t > t0, dominant frequency is checked if it is satisfying the lower and upper frequency 

limits (/ami and jum-i). If it is within lower and upper bounds, sTMD is tuned to dominant 

frequency; if it is not within the bounds or t < t0, sTMD is tuned to optimum passive TMD 

frequency. 

Three kinds of harmonic signals and their frequency tracking are shown in Figure 6.6. 

The first signal is harmonic sinusoidal with 2 Hz frequency, the second signal is discrete 

sinusoidal sweep with consecutive 10 cycles of five frequencies (1.6 Hz, 1.8 Hz, 2.0 Hz, 

2.2 Hz, 2.4 Hz) and the third signal is a linear chirp with frequencies varying from 1.6 Hz 

to 2.4 Hz continuously. A rectangular window with a length of WL = 2 sec, TL = 

At = 0.02 sec, AL = 1 sec and t0 = 1.5 sec are used to track the harmonic sinusoidal 

signal; for the discrete sinusoidal sweep and linear chirp signal the parameters are selected 

as WL = 1 sec, TL = At = 0.02 sec, AL = 0.5 sec and t0 = 1.5 sec. It is clear from the 

figure that such signals can be tracked satisfactorily. 

6.4.2 Parametric Study 

In order to study the parameters governing sTMD/sMTMD systems, the main structure 

is considered as a SDOF system (representing the fundamental mode of a MDOF system). 
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Figure 6.6 Frequency Tracking for (a) Harmonic Sinusoidal; (b) Discrete Sinusoidal Sweep; (c) 
Linear Chirp 

Thus, parameters UJ0, Co become natural frequency, un and damping ratio, (n of the main 

structure. The excitation is limited to harmonic loading and it is assumed that the exact 

excitation frequency is known or can be tracked as in Figure 6.6. Defining the excitation as 

a complex harmonic function such that p(t) — eluJt, z(t) = eiU}t, Equation (6.8) becomes 

n _ (6.12) 

Assuming a harmonic solution as 

$ e iut (6.13) 
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Substituting force and solution expressions above into equations of motion leads to 

(-u;2M + 2(nuniuC + u2
nK) * = 

UJ2P n 

- w ? M l 
(6.14) 

The frequency response functions can be obtained by 

-

< 

- ( ^ ) 2 M + 2 C „ ( ^ ) i 

- -fe)2M + 2C„(̂ )i 

1 
C + K 

C + K 

- i 

P 

- l 

Ml 
(6.15) 

The frequency response functions of force excited and base excited SDOF are presented 

in Figure 6.7a,b for several passive and semi-active cases. The optimum frequency, damp

ing ratio, and frequency range of passive TMDs are slightly different for force excited and 

base excited SDOF; however, they have very similar frequency response characteristics. In 

both figures, semi-active TMDs reduce the response more than their passive counterparts. 

The passive TMDs lose their efficiency beyond resonance frequency; they have even higher 

response than "No TMD" case for u/uin < ~ 0.95 and uj/uin > ~ 1.05. 

The optimum frequency, damping ratio, and frequency range of passive TMDs in a 

forced-excited SDOF are computed numerically from the minimum value of curves shown 

in Figures 6.8 and 6.9. The corresponding figures for base excited SDOF are essentially 

the same; therefore are not presented here to avoid duplicity. As seen in both Figures 6.8 

and 6.9, passive TMDs have specific optimum damping ratio and frequency range whereas 

sTMD decreases the response further as frequency range, A7 and reference damping ratio, 

CstLd decrease. Also sMTMD can behave as a single sTMD by decreasing the frequency 

range to zero. Another interesting observation in Figure 6.9 is the convergence of maxi

mum frequency response in both passive and semi-active TMDs as damping ratio of TMDs 

increases. 
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Figure 6.7 Frequency Response Functions of SDOF Main Structure (£n = 0.01) for No TMD, 
TMD, MTMD, sTMD, and sMTMD (LI = 0.01): (a) Force Excitation; (b) Base Excitation 

C l r ^ o . 0 0 5 

Figure 6.8 Maximum Frequency Response versus MTMD Frequency Range for Force Excited 
SDOF with 5-TMD ( - - - ) / 5-sTMD (—) 
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Figure 6.9 Maximum Frequency Response versus TMD Damping Ratio for Force Excited 
SDOF with TMD/sTMD and 5-TMD(- - -) / 5-sTMD (—) 

6.4.3 Time Histories 

In order to verify the results in the previous section, SDOF and 5-DOF main structures 

equipped with real-time tuned sTMDs are subjected to several force and base excitations; 

time history responses are computed and compared with passive TMDs. Optimum param

eters of passive TMD and 5-TMD used in the following simulations are listed in Table 

6.1. For 5-DOF primary structure, mass ratio /i is calculated with respect to first modal 

mass and optimum parameters are computed numerically for an equivalent SDOF primary 

structure. 

First, time histories of force excited SDOF and 5-DOF structures are studied for har

monic type signals shown in Figure 6.6. The fundamental frequency is 2 Hz and funda

mental damping ratio is 1% for both SDOF and 5-DOF system. Both structures equipped 

with sTMD and 5-sTMD are compared with their passive counterparts in Figures 6.10-15. 
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Table 6.1 H^ Optimized Parameters of Passive TMD and 5-TMD 

TMD 

5-TMD 

A* 

7 

Ztmd 

M 

7c 

A7 

Stmd 

Force Excitation 

SDOF 

0.01 

0.989 

0.062 

0.01 

0.989 

0.11 

0.031 

5-DOF 

0.0159 

0.982 

0.079 

0.0159 

0.982 

0.15 

0.031 

Base Excitation 

SDOF 

0.01 

0.985 

0.062 

0.01 

0.985 

0.12 

0.023 

5-DOF 

0.0159 

0.978 

0.080 

0.0159 

0.978 

0.14 

0.035 

For 2 Hz harmonic sinusoidal force excitation the dynamic response of SDOF is shown 

in Figure 6.10. Semiactive systems reduce the steady state response significantly. Similar 

performance is observed in 5-DOF structure in Figure 6.11, which shows the normalized 

maximum steady state story displacements (normalized with respect to maximum steady 

state response of top floor displacement of the original structure without any passive or 

semi-active TMDs). For harmonic sinusoidal excitation, sTMD leads to least response, 

which is in agreement with results in frequency domain (see Figure 6.9). However, it was 

found that if the excitation frequency is not tracked very accurately, 5-sTMD becomes more 

effective since 5-sTMD tuned within a small frequency range compensates for tracking er

rors. 

Figures 6.12-13 show the responses of SDOF and 5-DOF structure under discrete sinu

soidal sweep load with consecutive 10 cycles of five frequencies (1.6 Hz, 1.8 Hz, 2.0 Hz, 

2.2 Hz, 2.4 Hz). Figure 6.12 presents the normalized maximum transient story displace-
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ments (normalized with respect to maximum transient response of top floor displacement of 

the original structure without any passive or semi-active TMDs). In Figure 6.13, 5-sTMD 

leads to smaller response than others. 5-sTMD distributed within a small frequency range 

is more effective due to the capability to compensate the small errors/delays in frequency 

tracking in the excitation signal (Figure 6.6b). The third harmonic signal is a linear chirp 

with frequencies varying from 1.6 Hz to 2.4 Hz continuously. The responses shown in 

Figures 6.14 and 6.15 are similar to discrete sinusoidal sweep case. In linear chirp signal, 

the excitation frequency changes gradually with time and delay is small. The advantage 

of whole TMD mass tuned to single frequency in sTMD balances with benefit of cover

ing a frequency range in 5-sTMD. Therefore, in both cases (Figures 6.14-15) sTMD and 

5-sTMD perform almost same. 

Time histories clearly prove that excitation frequency of simple harmonic signals can be 

tracked accurately and semi-active TMDs tuned to excitation frequency with low damping 

ratios outperforms their passive counterparts. Next, response to narrow band stationary 

excitation is evaluated. Therefore, dynamic responses of SDOF and 5-DOF structures (with 

0.5 Hz fundamental frequency) under a narrow-band force excitation are studied. Figure 

6.16 shows the excitation signal and its frequency tracking. STFT parameters are selected 

as: a rectangular window of length, WL = 4 sec, TL = At = 0.02 sec, AL = 1 sec and 

t0 = 3 sec. As observed from Figures 6.17-18, sTMDs are superior than passive systems in 

reducing the response of the force excited SDOF and 5-DOF main structures. To investigate 

the potential of sTMDs in non-stationary signals, time history responses of SDOF and 5-

DOF structures (with 2 Hz fundamental frequency) subjected to first 10 seconds of 1940 

El Centro Earthquake are computed. The ground acceleration and frequency tracking are 

shown in Figure 6.19. Time step for the acceleration record is 0.01 sec. STFT parameters 

are selected as: a rectangular window of length, WL = 1 sec, TL = At = 0.01 sec, 
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AL = 1 sec and t0 = 1.5 sec. The main structure response is reduced most by sTMD 

and 5-sTMD as seen in Figures 6.20-21, whereas passive TMD and 5-TMD increase the 

response of the main structure. 

It is also interesting to study the performance of sTMDs when some damage occurs 

in the main structure. 5-DOF main structure subjected to stationary and non-stationary 

excitations (shown in Figures 6.16a and 6.19a, respectively) is considered. The damage is 

modelled such that K0 reduces to 0.8 K0 at the first story. Figures 6.22-23 show the top 

floor displacement and normalized maximum response of 5-DOF structure (/„! = 0.5 Hz) 

subjected to stationary excitation presented in Figure 6.16a. The damage is a step function 

at t = 20 sec. Similarly, Figures 6.24-25 show the top floor displacement and normalized 

maximum response of 5-DOF structure (/ni = 2 Hz) subjected to first 10 seconds of 1940 

El Centro Earthquake presented in Figure 6.16a. The damage is a step function at t = 

2.5 sec. In both cases semi-active TMDs have superior performance compared to passive 

ones. sTMDs have significant potential against stationary and non-stationary signals as 

evident from preliminary simulations presented here. A more extensive study is needed to 

generalize the results of this study for random excitations. 

6.5 Concluding Remarks 

For harmonic signals, if the excitation frequency is known or tracked very accurately, 

single sTMD leads to the least response of the main structure compared to multiple sTMDs, 

since sTMD has the advantage of greater mass tuned to exact excitation frequency. But in 

practice, the excitation frequency is either not known or can be tracked with some error 

and/or delay. Therefore, multiple sTMDs distributed within a small frequency range may 

be more effective due to the capability to compensate the small errors/delays in frequency 
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(a) 

Figure 6.10 Dynamic Response of Force Excited SDOF Main Structure (/„ — 2 Hz) un
der Harmonic Sinusoidal Load (/ = 2 Hz): (a) No TMD, TMD, sTMD; (b) No TMD, MTMD, 
sMTMD 

/^5.ss.max of "No TMD" Case 

Figure 6.11 Maximum Steady-State Response of Force Excited 5-DOF Main Structure {fn\ = 
2 Hz) under Harmonic Sinusoidal Loading (/ = 2 Hz) for No TMD, TMD, MTMD, sTMD, 
sMTMD 
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Figure 6.12 Dynamic Response of Force Excited SDOF Main Structure (/„ = 0.5 Hz) under 
Discrete Sinusoidal Sweep Load (1.6 Hz < f < 2.4 Hz): (a) No TMD, TMD, sTMD; (b) No 
TMD, MTMD, sMTMD 

tracking and/or randomness in the excitation signal. If the sMTMD frequency range is 

increased further, its effectiveness would decrease because of distributing the mass away 

from the resonance frequency and sTMD would be superior again in agreement with results 

of parametric study. 

MTMD has an optimum frequency range and an optimum damping ratio for a given 

number of TMDs similar to optimum frequency and damping ratio of a single TMD. Once 

the number of TMDs is decided, optimum values of the frequency range and damping ratio 

can be found for the design of MTMD. In case of sMTMD, there are no specific opti

mum values. The lower the damping ratio and the frequency range, the better performance 

sMTMD will have for the mono-component harmonic signals or random signals with sig

nificant energy at a specific instantaneous (dominant) frequency. 

sMTMD can also behave as a single sTMD in real-time by reducing the frequency 
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STMD, % 
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Xm o l /X5 ,m ax of "No TMD" Case 

Figure 6.13 Maximum Transient Response of Force Excited 5-DOF Main Structure (/„i = 
2 Hz) under Discrete Sinusoidal Sweep Loading (1.6 Hz < f < 2.4 Hz) for No TMD, TMD, 
MTMD, sTMD, sMTMD 
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-40. 

=tmd 
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• 5-STMD ft1!' =0.01, Av=0.05) 
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Figure 6.14 Dynamic Response of Force Excited SDOF Main Structure (/„ = 2 Hz) under 
Linear Chirp Load (1.6 Hz < f < 2.4 Hz): (a) No TMD, TMD, sTMD; (b) No TMD, MTMD, 
sMTMD 
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TMD, ^=0 .079 

5-STMD (^ d =0 .01 , Ay=0.05) 

a -5-TMD (^md=0.031, A-pO.15) 
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X-max/X5]7nax of "No TMD" Case 

Figure 6.15 Maximum Transient Response of Force Excited 5-DOF Main Structure (fni — 
2 Hz) under Linear Chirp Loading (1.6 Hz < f < 2.4 Hz) for No TMD, TMD, MTMD, sTMD, 
sMTMD 
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Figure 6.16 (a) Narrow Band Stationary Excitation; (b) Frequency Tracking; (c) STFT Spec
trum 
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Figure 6.17 Dynamic Response of Force Excited SDOF Main Structure (/„ = 0.5 Hz) under 
Stationary Excitation: (a) No TMD, TMD, sTMD; (b) No TMD, MTMD, sMTMD 

Figure 6.18 Maximum Transient Response of Force Excited 5-DOF Main Structure (/„i — 
0.5 Hz) under Stationary Excitation for No TMD, TMD, MTMD, sTMD, sMTMD 
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Figure 6.19 (a) 1940 El Centro Earthquake ; (b) Frequency Tracking; (c) STFT Spectrum 
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Figure 6.20 Dynamic Response of Base Excited SDOF Main Structure (fn — 2 Hz) under 
1940 El Centro Earthquake: (a) No TMD, TMD, sTMD; (b) No TMD, MTMD, sMTMD 
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I 
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Figure 6.21 Maximum Transient Response of Base Excited 5-DOF Main Structure (/n l 

2 Hz) under 1940 El Centra Earthquake for No TMD, TMD, MTMD, sTMD, sMTMD 
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Figure 6.22 Top Floor Displacement of Force Excited 5-DOF Main Structure {fn\ = 0.5 Hz) 
under under Stationary Excitation: (a) Step Stiffness Change (b) No TMD, TMD, sTMD; (c) No 
TMD, MTMD, sMTMD 
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Figure 6.23 Maximum Transient Response of Force Excited 5-DOF Main Structure (/„i = 
0.5 Hz) with a Step Stiffness Change under Stationary Excitation for No TMD, TMD, MTMD, 
sTMD, sMTMD 
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Figure 6.24 Top Floor Displacement of Base Excited 5-DOF Main Structure (/„i = 2 Hz) 
under under 1940 El Centro Earthquake: (a) Step Stiffness Change (b) No TMD, TMD, sTMD; (c) 
No TMD, MTMD, sMTMD 
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Figure 6.25 Maximum Transient Response of Base Excited 5-DOF Main Structure (/„i = 
2 Hz) with a Step Stiffness Change under 1940 El Centra Earthquake for No TMD, TMD, MTMD, 
sTMD, sMTMD 

range to zero. They can be tuned as a single sTMD depending on the time-frequency 

characteristics of the excitation signal. The redundancy in sMTMD makes it more reliable 

in the sense that if one sTMD fails, the rest can be readjusted instantaneously. 

Feedforward sTMD and sMTMD are more robust against changes in individual TMD 

damping ratio and changes in main structure natural frequency compared to passive TMD 

and MTMD. 
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Chapter 7 

Semi-active Single/Multi-Degree-Of-Freedom Systems 

(sSDOF/sMDOF) under Stochastic Excitations 

Two control algorithms - one for variable stiffness (variable structure control) and one 

for variable damping (Lyapunov control) - have been presented in Chapter 5 for semi-

active single/multi-degree-of-freedom (sSDOF/sMDOF) systems under near-fault earth

quakes and fitted cycloidal pulses. This chapter presents another novel control algorithm 

developed for semi-active SDOF/MDOF systems based on adaptive H2 control. The al

gorithm involves obtaining the real-time time-frequency characteristics of the excitation 

and then applying instantaneous H2 control by an independently variable stiffness device. 

The proposed control basically keeps the fundamental frequency of the system away from 

the dominant frequencies of the excitation by minimizing the H2 norm of the instanta

neous response spectrum. For MDOF systems, the scope is limited to application of vari

able damping and stiffness between the base and first DOF, which can be considered as 

a semi-active base-isolation system. The proposed control is formulated for a combined 

independently variable stiffness and independently variable damping. However, unless the 

excitation is a narrow band signal, the algorithm always picks the maximum damping in 

a given range making the use of a semi-active damping system unnecessary or limited. 

Therefore, systems which can independently vary stiffness only are primarily investigated 

herein. The performance of the control algorithm is evaluated for several random ground 

motion processes and 1940 El Centro Earthquake. Stochastic responses are computed from 

Monte Carlo simulations of the target evolutionary spectra describing the ground motion 

processes. 
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7.1 SDOF Structural Model and Formulation 

The single-degree-of-freedom structural model equipped with both variable damping 

and stiffness devices (sSDOF) is shown in Figure 7.1. The equation of motion is given by 

mu(t) + c(t)u(t) + k(t)u(t) = P(t) = -mz(t) (7.1) 

where m is the mass, c(t) is the time-varying damping coefficient, k(t) is the time-varying 

stiffness coefficient, u, ii, u are the relative displacement, velocity and acceleration with 

respect to ground. P(i) is the external force which is equal to —mz(t) for base excited 

systems where z(t) is the ground acceleration. The time-varying coefficients of damping 

and stiffness are defined as 

c(t) = cmin + cs(t) = cmin + /3(t)Ac (7.2) 

and 

k{t) = kmax - ks(t) = kmax - a(t)Ak (7.3) 

where cmin is the damping coefficient corresponding to conventional damping mechanisms 

within the structures itself, Ac is the maximum additional damping due to variable damp

ing device, kmin is the original stiffness of the structure, and AA; is the maximum addi

tional stiffness due to variable stiffness device. The time-varying stiffness and damping 

coefficients ks(i) and cs(t) varies such that —AA; < ks(t) < 0 and 0 < cs(t) < Ac. 

a(t) and /3(t) are the normalized values of the variable stiffness and damping such that 

-Ak/kmax < a(t) < 0 and 0 < P(t) < Ac/cmin. 

Rewriting Equation (7.1) 

mu + 2(n(t)un(t)mu + un(t)
2mu = —mz(t) (7.4) 

Dividing by m, 

ii + 2(n(t)un(t)u + ojn(t)
2 = -z(t) (7.5) 
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Figure 7.1 Analytical model of the SDOF system equipped with variable stiffness and variable 
damping device 

Time-varying damping is implemented in the formulation through the damping ratio. The 

damping ratio ((n(t)) can be varied such that damping coefficient (c(t) = 2(n(t)oun(t)m) 

has the target value determined by the control algorithm independent from the time-varying 

stiffness. Since the largest values of damping is always the most optimum for wide-band 

excitations, there is no need for independently variable damping. However, for better com

parison of passive and semi-active systems, the damping ratio is kept same for all systems, 

leading to a variable damping coefficient depending on the time-varying stiffness in the 

semi-active system. 

For a slowly time-varying sSDOF system, instantaneous complex frequency response 

function can be written approximately as 

1 
H(t,u) (7.6) 

-uj2 - 2Cn(t)un(t)ui + oon(t)
2 

As shown in Chapter 4, evolutionary spectrum of an excitation can be obtained by 

time-frequency methods. Following the evolutionary spectrum approach in Section 1.2.10, 

the instantaneous power spectral density (PSD) of the responses (relative displacement, 

velocity, and acceleration) of the sSDOF system can be written approximately as 

Gu{t = ti,u) « \H(t = thuj)\2Gz{t = U,u) 

Gu{t = ti,u) « co2\H(t = ti,u)\2Gz(t = tuu) 

(7.7) 

(7.8) 
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Gu(t = U,u) « u*\H(t = U,oo)\2Gz(t = ti,u) (7.9) 

where Gz(ti,u) is the instantaneous PSD of z(t). The root-mean-square (RMS) responses 

can be approximated by 
/»oo 

<7U(*)« / Gu(t,u)du (7.10) 
Jo 

a6(t) » / Gu(t,co)dcu (7.11) 
JO 

/>oo 

<Tu(*)« / Gu{t,uj)du; (7.12) 

The proposed control algorithm determines the optimum natural frequency that min

imizes the H2 norm of the instantaneous PSD of the responses (Equations (7.10-7.12)) 

depending on the position of instantaneous fundamental frequency with respect to domi

nant excitation frequency. The flowcharts of the control algorithm are given in Figures 7.3 

and 7.4. 

7.2 MDOF Structural Model and Formulation 

The formulation for the SDOF model can be extended straightforward to the multi-

degree-of-freedom (MDOF) system. The structural model equipped with both variable 

damping and stiffness devices between the base and first DOF (sMDOF) is shown in Figure 

7.2. The equations of motion can be written as 

Figure 7.2 Analytical model of the MDOF system equipped with variable stiffness and variable 
damping device 
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M U + C U + K U = P(t) (7.13) 

where U = {ui u2 . . . un} is the displacement vector in which Ui is the displacement 

of ith dof. P( t ) is the force vector, which is —MI2 for a base excited system. The co

efficient matrices in Equation (7.13) are the mass, damping and stiffness matrices defined 

as 

m\ 

0 

0 

0 

m2 

0 

0 •• 

0 •• 

m3 '• 

• 0 

• 0 

. 0 

c = 

M 

0 0 0 

Ci(t) + C2 — C2 0 

- C 2 C2 + C3 - C 3 

0 - c 3 c3 + c4 

TTlr, 

m0M 

K 

0 

/ci(*) + fc2 

- * 2 

0 

: 

0 

- f c 2 

k2 +h 

-h 

* 

0 

-h 

h + kA 

-c„_ i 

* , 

- C n - 1 

Cn 

0 

0 

: 

= c0C 

"•n—1 

fc0K 

(7.14) 

(7.15) 

(7.16) 

0 0 •• • -fe„-i kn 

where M, C, K are the normalized mass, damping, stiffness matrices and /x0 = m0/M0. 

The force vector is defined as 

P(t) = -Mlz(t) = -m0Mlz0z(t) (7.17) 
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where z0 is a reference normalization factor for the ground acceleration. For simulated 

random motions it is selected as y/fNyqGo in which fNyq is the Nyquist frequency of the 

simulated history and Go the spectral intensity. For actual recorded motions, z0 is the 

maximum ground acceleration. 

The structure is assumed to have uniform distribution of mass, damping and stiffness 

except the first DOF, such that mi = m2 = . . . = mn = m0, c2 = . . . = cn = CQ, and 

k2 = ... = kn = k0. The variable damping and stiffness are formulated similar to SDOF 

system as 

ci(t) = cmin + c,(t) = cmin + P(t)Ac (7.18) 

and 

ki(t) = kmax - ka(t) = kmax - a(t)Ak (7.19) 

where a and /3 are the normalized values of the variable stiffness and damping as described 

in Section 7.1. 

Using modal analysis technique, the equations of motion can be uncoupled. Substitut

ing the modal transformation U = <I>Q and multiplying the equations of motion by <&T 

$ T M * Q + $ r C $ Q + $ T K $ Q = -$TMlz(t) (7.20) 

The uncoupled equation of motion for the 1st mode is 

m„i$i(t) + c„i(*)gi(t) + knl(t)qi(t) = -<t>{Mlz(t) (7.21) 

For a slowly time-varying sMDOF system, instantaneous complex frequency response 

function of the first mode can be written approximately as 

rj , . s (fiMl/mni 
Hl{t,W)& = -——T -T ; j-rz (7.22) 

-U2 - 2(ni(t)UJnl(t)u +Uni(t)
2 
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Similar to previous section for sSDOF, the instantaneous PSD of the first modal responses 

(relative displacement, velocity, and acceleration) of the sMDOF system can be written 

approximately as 

G^(t = tuu) « |#i(* = U,Lo)\2Gz(t = ti,u) (7.23) 

G$\t = tuu}) « u2\Hx(t = U,u)\2Gz{t = ti,u) (7.24) 

G<i\t = tuu) « w*\Hx(t = ti,oo)\2Gz(t = U,u) (7.25) 

where Gz(ti,co) is the instantaneous PSD of z(t). The root-mean-square (RMS) responses 

contributed from the Is* mode can be approximated by 

/•oo 

tfKt)* / G^\t^)dw (7.26) 

/•oo 

^\t)~ / G%\tM&> (7-27) 
Jo 

poo 

4 1 } (* )~ / G{}\t,u)dco (7.28) 
Jo 

The proposed control algorithm determines the optimum natural frequency that mini

mizes the H2 norm of the instantaneous PSD of the first modal responses (Equations (7.26-

7.28)) depending on the position of instantaneous fundamental frequency with respect to 

dominant excitation frequency. The flowcharts of the control algorithm are given in Figures 

7.3 and 7.4. 

7.3 Control Algorithm 

The block diagram for the control algorithm is given in Figure 7.3. Further details in 

implementation of evolutionary spectrum estimation and tuning the semi-active stiffness 

and damping devices are shown in Figure 7.4. The control algorithm operates as follows: 
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1. At time t = 0, variable stiffness and damping devices are set to their maximum value. 

2. A moving window of n time steps of signal is chosen at certain time instants U. WL 

is the window length of nAt and ij = 0 : LAt : t(end) is the new time array for the 

time-frequency spectra incremented with LAt between successive windows. 

3. Stiffness and damping variation starts after t = t0 to allow sufficient amount of data 

to be collected for accurate estimation. 

4. If the excitation amplitude is less than a pre-defined level zum, stiffness and damping 

values from previous time step do not change. zum is set to 15% of the reference 

acceleration value z0 in this study. 

5. Instantaneous power spectral density of the excitation is estimated by STFT or WT. 

Instantaneous (dominant) frequency of the excitation is tracked by averaging the 

highest energy frequencies detected over an averaging time length AL. 

6. Assuming a slowly time-varying system, instantaneous power spectral densities of 

the responses (displacement, velocity and acceleration) for a range of variable stiff

ness and damping are estimated. For MDOF system, only fundamental modal re

sponse is considered since the scope is limited to semi-active base isolation systems. 

7. Depending on the location of instantaneous (dominant) excitation frequency, an op

timum stiffness (and damping value) is selected minimizing the H2 norm of the in

stantaneous PSD of the selected response (displacement, velocity, or acceleration). 

If fni(U) > l l / ins(^) (where the structure is stiffer compared to excitation fre

quency) the variable parameters are selected to minimize the displacement RMS re

sponse (in which the displacement response instantaneous (dominant) frequency is 
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closer and more sensitive to the higher frequency components of the excitation). If 

fni(U) < 0-9fins(ti) (where the structure is softer compared to excitation frequency) 

the variable parameters are selected to minimize the acceleration RMS response (in 

which the acceleration response instantaneous (dominant) frequency is closer and 

more sensitive to the lower frequency components of the excitation). In between re

gion where 0.9fins(ti) < fni(U) < l-l/ms^i), the variable parameters are selected 

to minimize the RMS velocity response. 

8. Based on the optimum values of the parameters a and (3, the time-varying damping 

and the target stiffness are computed. If the target stiffness is different than the 

current stiffness, a local time parameter r is defined for smooth stiffness variation as 

r = U + r0 in which To = 0.06 sec. 

9. A smoothing function A = 1/ (l + ecp*^~T^) is applied to the selected stiffness pa

rameter to ensure a slowly varying system and avoiding jumps in acceleration re

sponse, c is the smoothing constant set to 50 in this study. 

10. In order to ensure the stiffness change is dissipative, a constraint is defined as follows: 

if the target stiffness is higher than the current stiffness and any of the product uii for 

the last TO = 10 time steps is less than zero, the stiffness is kept same as the previous 

time step. 

7.4 Results for sSDOF 

Several random ground motion processes and 1940 El Centro earthquake are used to 

evaluate the the proposed control algorithm. For random ground motion processes, a tar

get evolutionary spectrum is specified and 500 sample functions have been simulated for 
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excitation acceleration history. Each simulation has 1024 data points with a time step of 

At = 0.02sec. The time history responses of different sSDOF systems have been computed 

for each sample excitation and the response statistics have been obtained. Semiactive stiff

ness coefficient, ka(t) varies between 0 and —AA; = —0.bkmax (or —0.5 < a(t) < 0). 

The damping ratio of both passive and semi-active systems is set to be constant such that 

Cn(t) = Co = 0.05. The damping coefficient in the semi-active system varies in time 

due to the time varying stiffness. In the following sections, response time histories are 

presented for sample responses, instantaneous RMS responses are presented for ensemble 

responses, and response spectra are presented for sSDOF systems with different reference 

fundamental frequencies. sSDOF responses (referred as 'controlled') are compared with 

two reference passive systems: one with highest stiffness ('pass, on') and one with lowest 

stiffness of the sSDOF system ('pass. off'). 

Since the responses are normalized and fundamental frequency of the sSDOF system 

is changing with time, an equivalent fundamental frequency is obtained from the response 

of every simulation. This equivalent fundamental frequency is used to present the response 

spectra results in a consistent manner and is obtained by 

^ . §1*$® a.29) 

The displacement responses are normalized to present the dynamic amplification factor for 
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the considered passive and semi-active systems such that 

u 
- r = < u st 

in which 

Ust = < 

The RMS values of the normalized responses are 

ul,onu 

20 

I i'o 

20 
W n , o / / 

20 
W2 

Jo_ 

(passive-ofFj 

(passive-on) 

(controlled) 

(passive-off) 

(passive-on) 

(controlled) 

V < t = \ 

(passive-off) 

(passive-on) 

(controlled) 

(7.30) 

(7.31) 

(7.32) 

where z0 is a reference normalization factor for the ground acceleration. For simulated 

random motions, it is selected as y\fiv<^Go in which fNyq is the Nyquist frequency of the 

simulated ground acceleration and G0 the spectral intensity. For actual recorded motions, 

ZQ is the maximum ground acceleration. 

7.4.1 Wide-band Stationary Excitations 

500 wide-band stationary excitations are simulated using the near-fault earthquake spec

trum given by Equation (1.110). The soil parameters are selected as uog = 2ir rad/sec 

(fg = ug/(2ir) = 1 Hz) and £g — 0.3. The estimated evolutionary excitation spectrum 
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(by STFT), a sample excitation are shown in Figure 7.5 along with the RMS responses and 

the response spectra. The response spectra points correspond to the reference fundamen

tal frequency, which is the fundamental frequency of the 'pass, on' system. Time history 

responses and variable stiffness corresponding to two different reference fundamental fre

quencies are presented in Figures 7.6. Response spectra in Figure 7.5 clearly show that 

sSDOF successfully adapts to the optimum passive system for a given excitation. Same 

observation can me made for specific cases shown in the ensemble RMS response histories 

in Figure 7.5 and sample response histories in Figure 7.6 for specific reference frequencies 

(i.e. f™ = \Hz and 2Hz (pass. on)). 

7.4.2 Locally Stationary Excitations 

500 locally stationary excitations are simulated using the near-fault earthquake spec

trum given by Equation (1.110). The soil parameters are selected as u>9 = 2ir rad/sec 

(fg = ojg/(2n) = 1 Hz) and £g = 0.3. A time envelope is applied in the form of 

g—at g—bt 

9 = rr^ z^T <7-33) 
max [e at — e m\ 

in which a = 0.20 and b = 0.25. 

The estimated evolutionary excitation spectrum (by STFT), a sample excitation are 

shown in Figure 7.7 along with the RMS responses and the response spectra. Time his

tory responses and variable stiffness corresponding to two different reference fundamental 

frequencies are presented in Figures 7.8. Response spectra in Figure 7.7 clearly show that 

sSDOF successfully adapts to the optimum passive system for a given excitation. Same 

observation can me made for specific cases shown in the ensemble RMS response histories 

in Figure 7.7 and sample response histories in Figure 7.8 for specific reference frequencies 

(i.e. / ° n = \Hz and 1Hz (pass. on)). 
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7.4.3 Non-stationary Excitations 

500 non-stationary excitations are simulated using the near-fault earthquake spectrum 

given by Equation (1.110). The soil parameters are selected as fg = 0.5 — 2.5 Hz and 

£g = 0.3. A time envelope as given in Equation (7.33) and a linear shift in the dom

inant frequency are applied to model non-stationarity in amplitude and frequency. The 

estimated evolutionary excitation spectrum (by STFT), a sample excitation are shown in 

Figure 7.9 along with the RMS responses and the response spectra. Time history responses 

and variable stiffness corresponding to two different reference fundamental frequencies are 

presented in Figures 7.10. Response spectra in Figure 7.10 clearly show that sSDOF suc

cessfully adapts to the optimum passive system for a given excitation. Same observation 

can me made for specific cases shown in the ensemble RMS response histories in Figure 

7.9 and sample response histories in Figure 7.10 for specific reference frequencies (i.e. 

f™ = lHz and 3 Hz (pass. on)). 

7.4.4 Recorded Earthquake 

The performance of the sSDOF is further examined under 1940 El Centro Earthquake. 

The estimated evolutionary excitation spectrum (by WT), the acceleration record are shown 

in Figure 7.11 along with the RMS responses and the response spectra. Time history re

sponses and variable stiffness corresponding to two different reference fundamental fre

quencies are presented in Figures 7.12. Response spectra in Figure 7.11 clearly show that 

sSDOF successfully adapts to the optimum passive system. Same observation can me made 

for specific cases shown in the ensemble RMS response histories in Figure 7.11 and sample 

response histories in Figure 7.12 for specific reference frequencies (i.e. f™ — 1Hz and 

2Hz (pass. on)). 
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7.5 Results for sMDOF 

One 4-DOF example is studied next to study the effectiveness of sMDOF. 500 locally-

stationary excitations are simulated using the near-fault earthquake spectrum given by 

Equation (1.124). The soil parameters are selected as fg = 0.5 — 2.5 Hz and £g = 0.3. 

A linear shift in the dominant frequency is applied to model non-stationarity in frequency. 

The time history responses of a specific s4DOF system (0.95Hz < / n l < 1.53Hz) have 

been computed for each sample excitation and the response statistics have been obtained. In 

the following section, instantaneous and peak RMS responses are presented for ensemble 

responses. sMDOF responses are compared with two reference passive MDOF systems: 

one with highest stiffness ('pass, on') and one with lowest stiffness ('pass, off') between 

the first and second DOFs. Semiactive stiffness coefficient (ki(t)) varies between 0.13fc0 

and 0.42A;0. The modal damping ratio of both passive and semi-active systems are set to 

be same such that Cni = 0.09, Cn2 = 0.12, £n3 = 0.17, and £n4 = 0.21. The damping 

coefficient in the semi-active system varies in time due to the time varying stiffness. 

7.5.1 Locally Stationary Excitations 

The evolutionary excitation spectrum (obtained by STFT) and a sample excitation are 

shown in Figure 7.13 along with the RMS responses. Maximum RMS responses for each 

DOF are presented in Figure 7.14. The target EPSD for the excitation is constructed with 

a linear shift in the dominant frequency in order to create a spectrum that can excite both 

passive systems that sMDOF varies in between. The RMS histories shown in Figure 7.13 

show the sMDOF can successfully adapt to the optimum passive system as the frequency 

characteristics of the excitation changes. Significant reduction in the peak RMS responses 

are also observed in Figure 7.14. 
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7.6 Approximate Response of sSDOF Systems through Time-Varying 

Complex Frequency Response Function 

Using the evolutionary spectrum approach (described in Section 1.2.10), a non-stationary 

input process x(t) can be written as 

/

oo 

A(t, wy^dXiu) 
'OO 

(7.34) 

whereas dX(u) is a zero-mean random orthogonal process and A(t,u) is a deterministic 

modulation function. 

The evolutionary power spectral density (EPSD) function of the non-stationary process 

x(t) can be written as 

Sx(t,u)) = \A(t,u)\2Sx(u) (7.35) 

where Sx(u) is the power spectral density function of the stationary process x(t). 

For a linear time invariant (LTI) SDOF system that is initially rest, the response can be 

obtained from the impulse response function h(t) as 

y(t) = h(t- T)X{T)CLT 
Jo 

Substituting Equation (7.34) into Equation (7.36) 

(7.36) 

y(t) •f U 
JT=o U-

A(T,cu)eiuTdX{uj) h(t - r)dr (7.37) 

Substituting t — r = 9 and changing the order of integtation leads to 

y(t) = 
Mt [ A{t-9,uj)e-iujeh(e)d9 dX(u) (7.38) 

Defining the stationary output process dY(u) for the stationary input process dX(u) as 

dY(u) = Hxi^dXiu) (7.39) 
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and substituting it into Equation (7.38) gives 

1 />oo pt 

y(t)= eiwt I A(t-0,uj)e-iojeh(e)de 
J(jj=-oc Ue=o 

-dY(u) (7.40) 
ffi(w) 

Employing a similar definition of Equation (7.34) for the non-stationary output process 

y(t) as 

/

oo 

B(t,uj)eiu,tdY(uj) (7.41) 
•oo 

the output power spectral density function can be written as 

Sy(t,u) = \B(t,u)\2Sy(u) = IBit^lH^Lj^S^u) (7.42) 

where 

B(t, w) = —^— / A[t - r, co)e-^Th(r)dT (7.43) 
H\{U) JT=o 

The corresponding time-varying transfer function is approximately given by 

H(t,uj)= [ A(t- r, uj)e-iujTh{r)dT » A(t, u)Hx (u) (7.44) 
JT=0 

Equations (7.42) and (7.44) are valid approximations as long as A(t, cu) varies slowly with 

respect to the impulse response function h(t). 

The above formulation can be extended to linear time varying (LTV) systems by re

placing HI{UJ) with Hi(t,uj). The time-varying transfer function and evolutionary power 

spectral density function of the response of an LTV system can be approximately written 

as 

H(t,u) w A(t,u)Hi(t,cu) (7.45) 

and 

Sy(t,u)**\H{t,u)\2Sx(u) (7.46) 



194 

Equations (7.45) and (7.46) are valid approximations as long as A(t, ui) varies slowly with 

respect to the time varying impulse response function h(t, r) where h(t, r) is the response 

to the impulse 8(t — T) applied at time r with no initial energy. 

The developed control algorithm for the semi-active systems in this chapter uses the 

evolutionary PSD estimate for each sample excitation to determine the instantaneous opti

mum stiffness (and damping) resulting in a time-varying linear system with a time-varying 

complex frequency response function. Using the above formulation, the response of the 

semi-active SDOF system can be estimated directly from the time-varying complex fre

quency response function determined for a given ensemble evolutionary PSD of a slowly 

varying excitation process. In this section time-varying complex frequency response func

tion for the sSDOF subjected to a non-stationary excitation process denned by an ensemble 

(500 sample) evolutionary PSD is determined and used to obtain the evolutionary PSD 

of the displacement response. The evolutionary PSD for the excitation, the correspond

ing displacement response spectra are presented in Figure 7.15 along with the stiffness 

variation and the RMS displacement responses for one specific sSDOF system with funda

mental frequency ranging from IAIHZ (pass, off) and 2.0Hz (pass. on). The approximate 

results obtained by the time-varying complex frequency response function are compared 

with results of Monte Carlo simulation. For the given example, it is shown that the mean 

stiffness variation in the Monte Carlo simulation is similar to the stiffness variation deter

mined directly based on the ensemble evolutionary PSD of the excitation. RMS displace

ment response history obtained from time-varying complex frequency response function 

also follows the Monte Carlo simulation result closely. This example shows the potential 

of using time-varying complex frequency response function determined from an ensemble 

excitation EPSD for approximate results of a sSDOF system, with the limitation of a slowly 

varying linear system subjected to a slowly varying excitation process. 
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7.7 Concluding Remarks 

Semi-active SDOF system with variable stiffness based on adaptive H2 control can 

successfully adapt to the optimum passive system as the excitation evolves. 

Semi-active MDOF systems, which can be described accurately by their first mode, 

can similarly adapt the optimum passive system with minimum H2 norm of the first modal 

response determined for the instantaneous PSD of the excitation. 

The time-varying RMS response of the sSDOF/sMDOF can be approximated from the 

evolutionary PSD and the time-varying complex frequency response function. 
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Figure 7.5 Wide-band stationary base excitation of SDOF: (a) EPSD for 500 sample, (b) Sample 
ground acceleration, (c) Displacement response spectra, (d) Acceleration response spectra, (e) RMS 
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Figure 7.13 Locally stationary base excitation of s4DOF (/£" = 1.53Hz - pass, on) (a) EPSD 
for 500 sample (0.5Hz < fg < 2.5Hz), (b) Sample ground acceleration, (c) RMS displacement 
response - top floor, (d) RMS acceleration response - top floor, (e) RMS displacement response -
1st floor, and (f) RMS acceleration response - 1st floor 



206 

(a) 

o 
Q 

eo-

! 

7 1 
y / 

1 

, a— 
- o - pass, otf 

- B - pass. <4n 
— 0 — controlled 

m 
i 

i 
i 

i 

m 
i 

i 
i 

i 

ri 1 

3 

o o 

2 

pass, off 
y v — a - pass, on 

\ r - 0 — controlled 

(C) 

o 
Q 

-o 
- B 

— © 
1 

- pass 
-'pass 

—icontt 
I 1 

0 4> 1 / 
i / / i / ' 

i t o w 

i 
i 

i 

-&m—1 

/oh 
>lled 

0 

2 4 0 2 4 0 0.5 1 

ia^K,)maX ( ^ /u ; , ) , , , ^ X10"3 {"Wit) max 

1.5 

Figure 7.14 Peak RMS responses of s4DOF ( /° n = 1.53Fz - pass, on, 0.5Hz < fg < 2.5Hz) 
(a) Displacements, (b) Drifts and (c) Accelerations 

s 1 

2 

0.5 

-0.5 

monte carlo sim. 
approximate 

1.5 
(d)fqn=1.5>fe monte carlo slm. 

approximate 

10 
t(sec) 

15 20 

Figure 7.15 Approximate solution via evolutionary complex frequency response function (a) 
EPSD for 500 sample (1Hz < fg < SHz), (b) Displacement response spectrum, (c) Mean stiffness 
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207 

Chapter 8 

Semi-active Single/Multiple Timed Mass Dampers 

(sTMD/sMTMD) under Stochastic Excitations 

Single and multiple semi-active variable stiffness tuned mass dampers (sTMD/ sMTMD) 

are studied under a broader range of random excitations in this chapter. Two semi-active 

control algorithms - one based on feedforward control by tracking excitation frequency 

(similar to the one proposed in Chapter 6) and the other based on feedback control by 

tracking the displacement response frequency - are examined under ensembles of differ

ent random excitation processes. SDOF and MDOF systems equipped with sTMD and 

sMTMD subjected to narrow-band stationary force excitations, wide-band locally station

ary base excitations, and 1940 El Centro earthquake are investigated. Stochastic responses 

are computed from Monte Carlo simulations of the target evolutionary spectra describ

ing the ground motion processes. It is shown that both feedforward and feedback control 

provide similar performance to passive TMD and MTMD when the structure's natural fre

quency is accurately identified and passive TMDs are tuned with optimum stiffness and 

damping. However, when a stiffness change is imposed to the primary structure and the 

passive TMDs becomes off-tuned, they lose their efficiency in vibration control whereas 

the sTMD and sMTMD successfully reduces the response. Although the proposed feed

forward control has a significant potential, it is important to note certain limitations. Its 

efficiently depends on the presence of a distinct dominant frequency range and sufficient 

intensity of the excitation. As the excitation intensity decreases, the response will be con

trolled more by its natural frequency and less by the excitation's instantaneous (dominant) 

frequency, leading to a decrease in the efficiency of the feedforward control. 
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8.1 Structural Model and Formulation 

The detailed information on modelling of sMTMD systems are presented in Chapter 6. 

Figure 6.1 is re-plotted in Figure 8.1, showing the MDOF structural model with sMTMD 

for force and base excitations. The normalized equations of motion given in Equation (6.7) 

is re-written in Equation (8.1), which is slightly modified for a more convenient presenta

tion for random excitation processes. 

_ . . _ . 0 _ f -E2-P f(t) (forceexcited) 
MX + 2(0UJ0CX + U*KX= I m»_Jyj (8.1) 

I —'Mlzo'z{t) (base excited) 

where p0 = pCv\{zref)A and P = ([1 2 3 . . . N]T * h/zref)
 a for wind excitations, p is 

the density of the air, C is the drag coefficient, v0 is the mean wind velocity at the reference 

height (zref = 10 m), A is the effective cross-section area at each floor, h = 0.3 zref is 

the story height and a = 0.4 (for urban areas). z0 is selected as ^JJN^GQ for simulated 

random ground motions or maximum ground acceleration for real earthquake records. 

8.2 Control Algorithm 

The control algorithm developed in Chapter 6 is slightly modified for stochastic excita

tions. The block diagrams for the control algorithms are given in Figure 8.2. It should be 

noted that the feedback shown in Figure 8.2(a) is only for adjusting the proper positioning 

of semi-active device. Further details in implementation of evolutionary spectrum estima

tion and tuning the semi-active stiffness and damping devices are shown in Figure 8.3. The 

control algorithms operate as follows: 

1. At time t = 0, variable stiffness and damping of the sTMDs are set to the optimum 

values for passive TMDs. 
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Figure 8.1 MDOF Structural Model with sMTMD (varying fci,..., kn) at the roof level: (a) 
Force Excited; (b) Base Excited 

2. A moving window of n time steps of signal is chosen at certain time instants U. WL 

is the window length of nAt and U = 0 : LAt : t(end) is the new time array for the 

time-frequency spectra incremented with LAt between successive windows. 

3. Instantaneous power spectral density of the excitation (in feedforward control) and 

the response (in feedback control) is estimated by STFT or WT. Instantaneous (dom

inant) frequency is tracked by averaging the highest energy frequencies detected over 

an averaging time length (AL). 

4. Stiffness and damping variation starts after t = t0 to allow sufficient amount of data 

to be collected for accurate estimation. 

5. For feedforward control, several checks are performed as follows: (i) if the excitation 

amplitude is less than a pre-defined level zum, sTMD stiffness and damping values 

from the previous time step are not changed; (ii) if the normalized energy (Eband) 
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in the region of instantaneous frequency is higher than the threshold value (Eiim = 

0.9) and the instantaneous frequency is within the pre-defined limits (i.e. / i i m l < 

fins{U) < fiim.2), sTMD is tuned to the instantaneous frequency and a minimal value 

of damping ratio (0.01); otherwise sTMD is tuned to the instantaneous frequency and 

optimum damping ratio for passive TMD. The limit frequencies are set as fumi = 

0.5/„i and // im2 = 2/„i in this study. The threshold intensity level is selected as 15% 

of maximum intensity occurred before any given instant of the excitation. It should 

be noted that Eum = 0.9 for the wide-band processes considered in this chapter is 

too high, therefore, sTMD damping ratio is practically constant and is equal to the 

optimum damping ratio for passive TMD. 
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Figure 8.2 Control Algorithm 
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8.3 Results for sTMD/sMTMD Systems under Stochastic Excitations 

One stationary narrowband force excitation process, one stationary along-wind exci

tation process and one locally stationary ground motion process are used to examine the 

proposed control algorithms under stochastic excitations. For the excitation processes, a 

target evolutionary spectrum is specified and 500 sample functions have been simulated. 

Each simulation for the narrowband excitation has 1024 data points with a time step of 

At = 0.02 sec and each simulation for the along-wind velocity has 1024 data points with 

a time step of At = 0.1 sec. Ground motion simulations have 1024 data points with 

a time step of At = 0.02 sec. The time history responses of different sTMD/sMTMD 

systems have been computed for each sample excitation and the response statistics have 

been obtained. In the following sections, response time histories are presented for sam

ple responses, instantaneous RMS responses are presented for ensemble responses, and 

response spectra are presented for different fundamental frequencies of the main structure. 

sTMD/sMTMD responses are compared with passive TMD and MTMD systems. Further, 

1940 El Centro Earthquake is used to study the performance of the sTMD/sMTMD un

der a real, highly non-stationary ground motion record. The displacement responses are 

normalized to present the dynamic amplification factor as follows. 

(8.2) 

in which 

u UJftU 

U*st Z0 

Ust ~ 2 

3ns 

\ 

es are 

E 
fu2

QuV 

\z0 J _ 

(8.3) 

The RMS values of the normalized responses are 
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8.1 H2 Optimized Parameters of 

TMD 

5-TMD 

V-

1 

Ktmd 

H 

1c 

A7 

Stmd 

Force Excitation 

SDOF 

0.01 

0.992 

0.05 

0.01 

0.996 

0.12 

0.02 

5-DOF 

0.0159 

0.988 

0.06 

0.0159 

0.995 

0.16 

0.02 

Jassive TMD and 5 

Base Excitation 

SDOF 

0.01 

0.985 

0.05 

0.01 

0.987 

0.12 

0.02 

5-DOF 

0.0159 

0.977 

0.06 

0.0159 

0.981 

0.16 

0.02 

where z0 is the reference acceleration value. z0 is selected as ^JfNyqGa for simulated 

random ground motions and random force excitations or maximum ground acceleration for 

real earthquake records. For force excitations, z0 = po/m0 in which p0 — pCv1(zref)A if 

the force excitation is obtained from wind velocity spectrum. 

Optimum parameters for the passive TMD and 5-TMD, which are studied in the fol

lowing sections, are numerically calculated based on minimum H2 norm and are shown 

in Table 8.1. For 5-DOF primary structure, mass ratio // is calculated with respect to first 

modal mass and optimum parameters are computed for an equivalent SDOF primary struc

ture. The number of the tuned mass dampers in the multiple tuned mass damper case are 

set to 5, therefore MTMD and sMTMD abbreviations in the text or figures correspond to 

5-TMD and 5-sTMD, respectively. 
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8.3.1 Narrow-band Stationary Excitations 

To study the feedforward sTMD/sMTMD performance, 500 narrow-band stationary 

force excitations are simulated using the same filter for the near-fault earthquake spectrum 

with parameters fg = 1 Hz and £g = 0.05. Another 500 narrow-band stationary excitations 

are simulated using Davenport along-wind spectrum given by Equation (1.116) to study 

the feedback sTMD/sMTMD performance. The wind parameters are selected as u* = 

1.76 m/sec and v0 = 45 m/sec. The mean velocity profile is defined by the power law 

[Eq. (1.112)] with a = 0.4 and story heights are assumed to be uniform as h/zref = 0.3 

where zref = 10 m. 

The results for sTMD/sMTMD with feedforward control are presented in Figures 8.4 

through 8.7. The estimated evolutionary excitation spectrum (by STFT), a sample exci

tation are shown in Figure 8.4 along with the RMS responses and the response spectra. 

Figure 8.4 (c, d) correspond to the SDOF primary structure without any damage whereas 

Figure 8.4 (e,f) correspond to the damaged SDOF primary structure after t = 4.1 sec. 

sTMD/sMTMD with feedforward control provides similar response reduction with respect 

to passive TMD/MTMD in no damage case. For damaged case, both passive TMDs become 

off-tuned and inefficient while sTMDs continue to provide significant response reduction 

at the resonance region. Sample time history responses of the SDOF primary structure 

(damaged at t = 4.1 sec and fn — 1.5 Hz —>• 1.1 Hz) along with variable stiffness and 

damping of sTMDs are presented in Figure 8.5. The response of a 5-DOF primary struc

ture is studied next for further investigation of the sTMD/sMTMD performance. The peak 

floor displacements of a 5-DOF uniform primary structure are presented in Figures 8.6 for 

undamaged case ((a) /„ = 1 Hz) and for damaged case ((b) fn = 1.2 Hz —> 1.0 Hz). 

The damage is induced by decreasing the stiffness of the first DOF by half. The top floor 
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displacement response history for the damaged case is presented in Figure 8.7. Similar ob

servations can me made for these specific cases as in the ensemble RMS response histories 

and spectra presented in Figure 8.4. 

The results for sTMD/sMTMD with feedback control are presented in Figures 8.8 

through 8.11. The estimated evolutionary excitation spectrum (by STFT), a sample ex

citation are shown in Figure 8.8 along with the RMS responses and the response spectra. 

Figure 8.8 (c, d) correspond to the SDOF primary structure without any damage whereas 

Figure 8.8 (e,f) correspond to the damaged SDOF primary structure after t = 20 sec. Re

sponse spectra in Figure 8.8 clearly show that sTMD/sMTMD with feedback control have 

similar efficiencies compared to passive ones for undamaged structures. For damaged case, 

passive TMDs become off-tuned and inefficient while sTMD/sMTMD leads to significant 

response reduction. Sample time history responses of the SDOF primary structure (dam

aged at t = 20 sec and fn = 0.3 Hz —> 0.21 Hz) along with variable stiffness and damping 

of sTMDs are presented in Figure 8.9. The response of a 5-DOF primary structure is studied 

next for further investigation of the sTMD/sMTMD performance. The peak floor displace

ments of a 5-DOF uniform primary structure are presented in Figures 8.10 for undamaged 

case ((a) /„ = 0.3 Hz) and for damaged case ((b) /„ = 0.3 Hz —>• 0.21 Hz). The damage 

is induced by decreasing the stiffness of the first DOF by half. The top floor displacement 

response history for the damaged case is presented in Figure 8.11. Similar observations can 

me made for these specific cases as in the ensemble RMS response histories and spectra 

presented in Figure 8.8. 

8.3.2 Locally Stationary Excitations 

500 locally stationary excitations are simulated using the near-fault earthquake spec

trum given by Equation (1.124). The soil parameters are selected as UJ9 = 2n rad/sec and 
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Figure 8.4 Narrow-band stationary force excitation of SDOF (feedforward): (a) EPSD for 500 
sample, (b) Sample acceleration, (c) Displacement response spectra, (d) RMS displacement re
sponse (fn — 1.0 Hz), (e) Displacement response spectra - damaged, (f) RMS displacement re
sponse - damaged (/n = 1.5 —> 1.1 Hz for t > 4.1 sec) 

£g — 0.3. A time envelope is applied in the form of Equation (7.32). 

The results for sTMD/sMTMD with feedforward control are presented in Figures 8.12 

through 8.15. The estimated evolutionary excitation spectrum (by STFT), a sample ex

citation are shown in Figure 8.12 along with the RMS responses and the response spec

tra. Figure 8.12 (c, d) correspond to the SDOF primary structure at 1.0 Hz without any 

damage whereas Figure 8.12 (e,f) correspond to the damaged SDOF primary structure af

ter t = 4.1 sec. sTMD/sMTMD with feedforward control provides response reduction 
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Figure 8.7 Narrow-band stationary force excitation of 5-DOF (feedforward): (a,b) Top floor 
displacement response history, (c,d) variable stiffness and damping 

close to passive TMD/MTMD in no damage case. For damaged case, passive TMDs be

come off-tuned and inefficient while sTMD/sMTMD lead to significant response reduction. 

Sample time history responses of the SDOF primary structure (damaged at t = 4.1 sec 

and /„ = 1.5 Hz —> 1.1 Hz) along with variable stiffness and damping of sTMDs are 

presented in Figure 8.13. The response of a 5-DOF primary structure is studied next for 

further investigation of the sTMD/sMTMD performance. The peak floor displacements of 

a 5-DOF uniform primary structure are presented in Figure 8.14 for undamaged case ((a) 

fn — 1.0 Hz) and for damaged case ((b) fn = 1.3 Hz -» 1.1 Hz). The damage is induced 

by decreasing the stiffness of the first DOF by half. The top floor displacement response 

history for the damaged case is presented in Figure 8.15. Similar observations can me made 

for these specific cases as in the ensemble RMS response histories and spectra presented in 

Figure 8.12. 

The results for sTMD/sMTMD with feedback control are presented in Figures 8.16 

through 8.19. The estimated evolutionary excitation spectrum (by STFT), a sample exci

tation are shown in Figure 8.16 along with the RMS responses and the response spectra. 
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Figure 8.8 Narrow-band stationary wind excitation of SDOF (feedback): (a) EPSD for 500 sam
ple, (b) Sample wind velocity, (c) Displacement response spectra, (d) RMS displacement response 
(/n = 0.2 Hz), (e) Displacement response spectra - damaged, (f) RMS displacement response -
damaged (/„ = 0.3 -»• 0.21 Hz for t > 20 sec) 

Figure 8.16 (c, d) correspond to the SDOF primary structure without any damage whereas 

Figure 8.16 (e,f) correspond to the damaged SDOF primary structure after t — A.l sec. Re

sponse spectra in Figure 8.16 clearly show that sTMD/sMTMD with feedback control have 

similar efficiencies compared to passive ones for undamaged structures. For damaged case, 

passive TMDs become off-tuned and inefficient while sTMD/sMTMD leads to significant 

response reduction. Sample time history responses of the SDOF primary structure (dam

aged at t = 4.1 sec and fn = 1.5 Hz —>• 1.1 Hz) along with variable stiffness and damping 

of sTMDs are presented in Figure 8.17. The response of a 5-DOF primary structure is 
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Figure 8.11 Narrow-band stationary wind excitation of 5-DOF (feedback): (a,b) Top floor dis
placement response history, (c,d) variable stiffness and damping 

studied next for further investigation of the sTMD/sMTMD performance. The peak floor 

displacements of a 5-DOF uniform primary structure are presented in Figure 8.18 for un

damaged case ((a) fn = 1.0 Hz) and for damaged case ((b) /„ = 1.2 Hz —>• 1.0 Hz). The 

damage is induced by decreasing the stiffness of the first DOF. The top floor displacement 

response history for the damaged case is presented in Figure 8.19. Similar observations can 

me made for these specific cases as in the ensemble RMS response histories and spectra 

presented in Figure 8.16. 
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Figure 8.13 Locally stationary base excitation of SDOF (feedforward): (a,b) Time history re
sponse, (c,d) variable stiffness and damping 
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Figure 8.14 Locally stationary base excitation of 5-DOF (feedforward): (a) Peak RMS dis
placements (/„ = 1.0 Hz), (b) Peak RMS displacements - damaged (/„ = 1.3 -> 1.1 Hz for 
t > 4.1 sec) 
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Figure 8.15 Locally stationary base excitation of 5-DOF (feedforward): (a,b) Top floor dis
placement response history, (c,d) variable stiffness and damping 
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Figure 8.16 Locally stationary base excitation of SDOF (feedback): (a) EPSD for 500 sample, 
(b) Sample ground acceleration, (c) Displacement response spectra, (d) RMS displacement response 
(fn = 1.0 Hz), (e) Displacement response spectra - damaged, (f) RMS displacement response -
damaged (/„ = 1.5 -> 1.1 Hz for t > 4.1 sec) 
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Figure 8.17 Locally stationary base excitation of SDOF (feedback): (a,b) Time history re
sponse, (c,d) variable stiffness and damping 
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Figure 8.18 Locally stationary base excitation of 5-DOF (feedback): (a) Peak RMS displace
ments (fn = 1.0 Hz), (b) Peak RMS displacements - damaged (/„ = 1.2 ->• 1.0 Hz for 
t > 4.1 sec) 
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Figure 8.19 Locally stationary base excitation of 5-DOF (feedback): (a,b) Top floor displace
ment response history, (c,d) variable stiffness and damping 

8.3.3 Recorded Earthquake 

1940 El Centra Earthquake is used to study the performance of the sTMD/sMTMD 

under a real, highly non-stationary ground motion record. 

The results for sTMD/sMTMD with feedforward control are presented in Figures 8.20 

through 8.23. The estimated evolutionary excitation spectrum (by STFT), the accelera

tion record are shown in Figure 8.20 along with the RMS responses and the response 

spectra. Figure 8.20 (c, d) correspond to the SDOF primary structure without any dam

age whereas Figure 8.20 (e,f) correspond to the damaged SDOF primary structure after 

t = 2.6 sec. sTMD/sMTMD with feedforward control provides response reduction close 

to passive TMD/MTMD in no damage case. For damaged case, passive TMDs become off-

tuned and inefficient while sTMD/sMTMD lead to significant response reduction. Sam

ple time history responses of the SDOF primary structure (damaged at t = 2.6 sec and 

fn = 2.0 Hz —> 1.4 Hz) along with variable stiffness and damping of sTMDs are pre

sented in Figure 8.21. The response of a 5-DOF primary structure is studied next for 
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further investigation of the sTMD/sMTMD performance. The peak floor displacements of 

a 5-DOF uniform primary structure are presented in Figure 8.22 for undamaged case ((a) 

/„ = 1.7 Hz) and for damaged case ((b) fn = 1.7 Hz —>• 1.5 Hz). The damage is induced 

by decreasing the stiffness of the first DOF by half. The top floor displacement response 

history for the damaged case is presented in Figure 8.23. Similar observations can me made 

for these specific cases as in the ensemble RMS response histories and spectra presented in 

Figure 8.20. 

The results for sTMD/sMTMD with feedback control are presented in Figures 8.24 

through 8.27. The estimated evolutionary excitation spectrum (by STFT), a sample exci

tation are shown in Figure 8.24 along with the RMS responses and the response spectra. 

Figure 8.24 (c, d) correspond to the SDOF primary structure without any damage whereas 

Figure 8.24 (e,f) correspond to the damaged SDOF primary structure after t = 2.6 sec. Re

sponse spectra in Figure 8.24 clearly show that sTMD/sMTMD with feedback control have 

similar efficiencies compared to passive ones for undamaged structures. For damaged case, 

passive TMDs become off-tuned and inefficient while sTMD/sMTMD leads to significant 

response reduction. Sample time history responses of the SDOF primary structure (dam

aged at t = 2.6 sec and fn = 3.0 Hz —> 2.1 Hz) along with variable stiffness and damping 

of sTMDs are presented in Figure 8.25. The response of a 5-DOF primary structure is 

studied next for further investigation of the sTMD/sMTMD performance. The peak floor 

displacements of a 5-DOF uniform primary structure are presented in Figures 8.26 for un

damaged case ((a) fn = 2.5 Hz) and for damaged case ((b) /„ = 2.5 Hz —> 2.0 Hz). The 

damage is induced by decreasing the stiffness of the first DOF. The top floor displacement 

response history for the damaged case is presented in Figure 8.27. Similar observations can 

me made for these specific cases as in the ensemble RMS response histories and spectra 

presented in Figure 8.24. 
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Figure 8.20 1940 El Centro Earthquake excitation of SDOF (feedforward): (a) EPSD, (b) 
Ground acceleration, (c) Displacement response spectra, (d) RMS displacement response (/n = 
2.0 Hz), (e) Displacement response spectra - damaged, (f) RMS displacement response - damaged 
(/„ = 2.0 -> 1.4 Hz for t > 2.6 sec) 

8.4 Concluding Remarks 

For random signals, feedforward sTMD/ sMTMD have similar RMS responses com

pared to the passive counterparts. However, if the primary structure's natural frequency 

changes, passive TMDs become off-tuned and ineffective, whereas sTMD and sMTMD 

continues to suppress the vibration robustly. 

Feedback sTMD/ sMTMD are slightly more effective and robust than feedforward 

sTMD/ sMTMD since the response signal is smoother and slowly varying due to filter-
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Figure 8.21 1940 El Centro Earthquake excitation of SDOF (feedforward): (a,b) Time history 
response, (c,d) variable stiffness and damping 
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Figure 8.22 1940 El Centro Earthquake excitation of 5-DOF (feedforward): (a) Peak RMS 
displacements (fn = 1.7 Hz), (b) Peak RMS displacements - damaged (fn — 1.7 —> 1.5 Hz for 
t > 2.6 sec) 
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Figure 8.23 1940 El Centre Earthquake excitation of 5-DOF (feedforward): (a,b) Top floor 
displacement response history, (c,d) variable stiffness and damping 

ing effect of the structure with respect to the random excitation process. 

Feedback sTMD/sMTMD have again similar RMS responses compared to the passive 

counterparts and their advantage becomes apparent when the primary structure's natural 

frequency changes and passive TMDs become off-tuned and ineffective. 



233 

_>2 
-e-

O no TMD 
- B - T M D 
- B - MTMD 
—0—STMD 

0 sMTMD 
- a • - . $ 

2 
MHz) 

(e) damaged at t = 2.6 s 
no TMD 

^ . E T - t M D 
B *MTMD 

(d) /„ = 1.5 Hz no TMD 
TMD 
MTMD 
STMD 
sMTMD 

10 
t(sec) 

(f) fn 2.1 Hz no TMD 
^ - c - T M D 
- -X-yMTMD 

sTMTJ 

Figure 8.24 1940 El Centro Earthquake excitation of SDOF (feedback): (a) EPSD, (b) Ground 
acceleration, (c) Displacement response spectra, (d) RMS displacement response (/„ — 1.5 Hz), 
(e) Displacement response spectra - damaged, (f) RMS displacement response - damaged (fn — 
3.0 ->• 2.1 Hz for * > 2.6 sec) 



234 

(a) SDOF (/„ = JTTHY 

, i'No Th/ID (8.5) 
- TMD (8.6) 
- sTMD (7) 

(b) SDOF (/„ '= 

* 'mo'rMD (8.5) 
- - 5-TMD (8.7) 

5-sTMD (6.9) 

8 10 

sTMD 
--sMTMD 

4 6 
t (sec) 

10 

Figure 8.25 1940 El Centro Earthquake excitation of SDOF (feedback): (a,b) Time history 
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Figure 8.26 1940 El Centro Earthquake excitation of 5-DOF (feedback): (a) Peak RMS dis
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Chapter 9 

Semi-active Tuned Liquid Column Dampers (sTLCD) 

Tuned liquid column dampers (TLCDs) are a class of mechanical dampers similar to 

tuned mass dampers (TMDs) and are typically used for flexible structures since the damper 

has long period. In this chapter, a semi-active spring-connected TLCD (sTLCD) is pro

posed to overcome the restriction on the applicability of TLCD to stiff structures subjected 

to earthquake excitation, and to make it adaptive against frequency variations in the ex

citation or the primary structure response. The semi-active control algorithms (feedfor

ward and feedback) developed in the previous chapter for sTMD are extended to sTLCD 

and their performances are evaluated for a broad range of random excitations. SDOF and 

MDOF systems equipped with sTLCD subjected to narrow-band stationary force excita

tions, wide-band locally stationary base excitations, and 1940 El Centro earthquake are 

investigated. Stochastic responses are computed from Monte Carlo simulations of the tar

get evolutionary spectra describing the wind or ground excitation processes. It is shown 

that both feedforward and feedback control provide similar performance to passive spring-

connected TLCD (pTLCD) when the structure's natural frequency is accurately identified 

and passive TLCD is tuned with optimum stiffness. However, when a stiffness change 

is imposed to the primary structure and the passive TLCD becomes off-tuned, it loses its 

efficiency in vibration control whereas the sTLCD successfully reduces the response. Al

though the proposed feedforward control has a significant potential, it is important to note 

certain limitations. Its efficiently depends on the presence of a distinct dominant frequency 

range and sufficient intensity of the excitation. As the excitation intensity decreases, the 

response will be controlled more by its natural frequency and less by the excitation's in-
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stantaneous (dominant) frequency, leading to a decrease in the efficiency of the feedforward 

control. 

9.1 Structural Model and Formulation 

The model of the MDOF structure equipped with sTLCD is shown in Figure 9.1. The 

formulation is developed for a SDOF primary structure first, and then is extended to MDOF 

primary structure. The LCD is composed of a U-shaped tube-like container of arbitrary 

configuration with orifice(s) installed in it. The mass, damping, and stiffness parameters of 

the SDOF primary structure are denoted by Mx, d and K\, respectively. The damping and 

stiffness coefficients of the spring connecting the LCD to the primary system are denoted 

by c2 and k2. The following parameters are used in the formulation: cross-sectional area 

of the tube, A, cross-sectional area of the orifice, Ai, total length of the liquid column in 

the tube, L, horizontal dimension, B, density of the liquid, p. The coefficient of head loss, 

controlled by the opening ratio of the orifice (A/Ai), is denoted by £. The mass of the 

container of the LCD, excluding the liquid mass, is denoted by Mc. Thus, the total mass of 

the structure and damper system is (Mi + Mc + pAL). 

The SDOF version of the primary structure (shown as MDOF in Figure 9.1) equipped 

with pTLCD or sTLCD has three degrees-of-freedom (DOF). The DOFs, which are the 

motions of the primary mass, the LCD container and the liquid column elevation, are de

noted by x(t), y(t), z(t), respectively. The relative acceleration of the LCD container to the 

primary system is denoted by y(t). The structure is subjected to a base acceleration, z(t). 

The equation of motion of the liquid column may be written as (Saoka et al. 1988) 

pALu(t) + -pAQ\u(t)\u(t) + 2pAgu{t) = -pAB {y + x + z(t)} (9.1) 

where Q is the damping ratio of the LCD. 
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Figure 9.1 MDOF Structural Model with sTLCD: (a) Force excited, (b) Base excited 

The detailed formulation of the passive spring connected TLCD (pTLCD) is given in 

Ghosh and Basu (2004). By adopting an equivalent linearization procedure and normaliz

ing with respect to mass, the equivalent linear equation of motion of the liquid column may 

be written as 

(9.2) u(t) + 2-^u(t) + u2
Lu(t) = -a {y + x + z(t)} 

Li 

where uL = y/2g/L, natural frequency of the LCD and a = B/L, the ratio of the hori

zontal length to the total length. Cp represents the equivalent linearized damping coefficient 

expressed as 

Cp — Vu£ (9.3) 

in which a^ is the standard deviation of the liquid velocity, u(t). 
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The normalized equation of the motion for the damper system may be written as 

a {y + x + z(t)} + r-—u{t) + 2&uj2y{t) + u2y{t) = 0 
1 + T 

(9.4) 

where u2 = y/k2/{pAL + Mc) and £2 = c2/[2co2(pAL + Mc)] represent the natural fre

quency and damping ratio of the damper system, r = Mc/pAL is the ratio of the container 

mass to liquid mass. 

The normalized equation of motion for the primary system 

a {x + z(t)} + 7—«(*) + 2C2co2y(t) + u2y(t) = 0 
1 +T 

(9.5) 

where /x[= (Mc + pAL)/Mi] is the ratio of total mass of damper to the primary system. 

Re-writing Equations (9.5), (9.4) and (9.2) in matrix form and modifying the right hand 

side of the equations to include force excitations in the formulation 

M1 0 0 

(pAL + Mc) (pAL + Mc) pAB 

pAB pAB pAL 

x 

y > + 

Ci - c 2 

0 c2 

0 

0 

+ 

Kx -k2 0 

0 k2 0 

0 0 2pAg 

x 

y 

u 

> = < 

0 0 2pACp 

- M i 

(pAL + Mc) 

-pAB 

1 

x 

y 

ii 

>m 

0 

(9.6) 

} Pof(t) 
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Normalizing the each equation of motion by Mx, {pAL + Mc), and pAL, respectively 

in which 

1 0 0 

1 1 r ^ 
1+T 

a a 1 

x 

y 

u 

> + 

2Ci^i -//2C2W2 0 

0 2C2a;2 0 

0 0 2CP 

L 

X 

y 

u 

+ 

(jj\ —pjjj\ 0 

0 u\ 0 

0 0 u2
T 

< 

X 

y 

u 

> = < 

' ("I) 6 

~b 

—ba 

\z(t) 

V 
pAL + Mc 

M~x 

U>L = 

B 
a = T 

T — 

(2 = 

Ci = 

C2 

pAL 

Ci 
2wi Mi 

c2 

2u2(pAL + Mc) 2u2pMi 

Wi = 

cu2 

Afi 

/xMx 

6 = 
0 force excitation 

1 base excitation 

(9.7) 

(9.8) 

(9.9) 

(9.10) 

(9.11) 

(9.12) 

(9.13) 

(9.14) 

(9.15) 

(9.16) 
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Assuming a complex harmonic excitation and and a corresponding solution, Equation 

(9.7) can be written in the frequency domain as follows. 

/ 1 0 0 

- o r 1 1 ^ 

a a 1 

uf -\MJJ\ 0 

+ iuj 

2Ci^i -fx2(2cj2 0 

0 2(2cu2 0 

0 0 2CP 

L 

+ 0 

0 

uf; 0 

UJr 

\ 

J 

' 

< 

K 

Hy(u) 

HU(UJ) 

(-1)6 

-b 

—ba 

>m (9.17) 

Multiplying the third equation with (1 + T)/(a2u>2) and adding the matrices on the left side 

•ffi(w) 

-CO2 

1+T 
Q 

-/j,(2(2oj2oji + w2) 0 

l 
H2(O>) 

1+T 
a 

1+T 

1 
ft") 

> = < 

(-1)6 

- 6 

-^(1±5) 

(9.18) 

where 

0M = 
a2a;2 

(1 + r) (w£ - cu2 + i 2 ^ w ) 

H2(w) = 

1 
-cu2 + i2(icu±u) + OJ2 

1 

(9.19) 

(9.20) 

(9.21) 
-u)2 + i2C,2ui2ui + UJ2 

Hi(u) and H2(ui) are the transfer functions of the primary system and the LCD, re 

spectively as if they were individual SDOF systems excited by the input z(t). 

Re-arranging Equation 9.18 leads to 

1 
0(w) 

qui-' 
' l + T 

1 + r 
a 

1 

-OJ2 

1 + r 
a 

-^(2C,2u2uji +<JJ\) 

H2(u) 

' Hx(u) ' 

Hy(u) 

Hu{u) 

> = < 

-HB) 
(-1)6 (9.22) 
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Multiplying the first row by /3(u>)a u> / ( l + r) and adding it to the third row 

1 

0 

1+r 
a 

1 

1+r 
a 

Hi(«) -/x(2C2W2o;i+a;|) 

0 -a;2 (1 + 0w) ^ y - u;2/3(a;) 

< 

Hx(u) 

HV(U) 

Hu(ou) 
K. J 

f 

> = < 

k 

-bm) 
Kau*) 

(-1)6 

- 6 ( l + /3(w)) (9.23) 

Multiplying the second row by H\ (u) [u2 + u>2f3(u))} and adding it to the third row 

1 

0 

0 

1+r 
a 

1 
# i M 

0 

1+r 
a 

—/j,(2(2uj2ui + ^ | ) 

^ - ^ ( ^ - ^ ^ ( ^ ( l + ^a;)) 

= < (-1)6 

6(l + /3(a;))(a;2Hi(a;)-6) 

The system transfer functions can be written as follows. 

-H2(u) {1 + /3(u>)} (b - ( - l j V i f x M ) 

(9.24) 

Hu(u) = 

(9.25) 
1 - UJ2/3(U)H2(CO) - w2if1(o;)if2(a;)/x(26w2a;i + a;2)(l + /3(w)) 

gx(a;)[(-l)6[l-a;2)8(a;)g2(a;)] - 6^ 2 (w) (2&tt2a;z-faffi {1+ /?(a;)}] 
1 - U2P(U)H2(LJ) - a;2/f1(a;)i/2(a;)//(242a;2a;z + u2){\ + (3{ou)) 

(1 + r)/?M 
(eta;2 

CJ2#2(W) {1 + p{u)} {ou2Hx(u) - 1} 
+ u2Hx{u>)-b 

(9.26) 

(9.27) 
{ 1 - W W F 2 H } 

For a SDOF primary structure equipped with sTLCD, the frequency and damping ratio 

of the sTLCD in the above formulation become time-varying. The SDOF system formula

tion can be extended to a MDOF system equipped with sTLCD by the following equations 
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of motion: 
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(9.28) 

M = m0 

C = c0 

1 0 0 

0 1 0 

0 0 1 

2 - 1 0 

- 1 2 - 1 

0 - 1 1 

(9.29) 

(9.30) 

2 - 1 0 

K = fcn - 1 2 - 1 (9.31) 

0 - 1 1 

The corresponding frequency and damping ratio for the uniform building floors are defined 

as u0 = y/k0/m0 and Co = c0/(2uj0m0). 
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The value of linear equivalent damping coefficient Cp needs to be estimated for both 

pTLCD and sTLCD. One approach is estimating a constant Cp iteratively using the trans

fer function of liquid velocity Hu(u) and a white noise excitation with a target spectral 

intensity as given in Ghosh and Basu (2004). The orifice head loss coefficient (£) can be 

optimized for the design spectral intensity and kept constant. However, the value of the 

Cp is closely related to the intensity of the excitation as it is apparent from Equation (9.3). 

Therefore, it is more appropriate to use a time-varying Cv for evolutionary excitation pro

cesses. Varying the orifice opening ratio (and therefore the head loss coefficient) is beyond 

the scope of this study, but it is worth noting that a gain scheduled control strategy (Yalla 

et al. 2001) to vary the orifice opening ratio can be included for further improvement of the 

sTLCD. 

The PSD of liquid velocity in pTLCD or sTLCD can be estimated as 

Su(t,uj) ^u2\Hu(t,uj)\2S(t,uj) (9.32) 

Similarly, the PSD of the primary structure displacement response can be estimated as, 

S x (£ ,u ; )« | # x ( a ; , ^ ) | 2 S(^ ) (9.33) 

The root-mean-square (RMS) of the liquid velocity and primary structure displacement 

response can be obtained by 

°u ~ 4 / / Sx(t, u)du (9.34) 

and 

<*x ~ J / Sx(t,uj)doj (9.35) 

Once the head loss coefficient is optimized using a iterative solution of Equations (9.34) 

and (9.3) for a design spectral intensity, which can be selected as mean spectral intensity 
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of a design evolutionary PSD, time-varying Cp can be obtained iteratively for each slice of 

an evolutionary PSD at a given time U. 

9.2 Control Algorithm 

The control algorithms developed in Chapter 8 are extended to sTLCD. The block di

agrams for the control algorithms are given in Figure 9.2. Note that the feedback shown 

in Figure 9.2(a) is only for adjusting the proper positioning of semi-active device. Further 

details in implementation of evolutionary spectrum estimation and tuning the semi-active 

stiffness device are shown in Figure 9.3. The control algorithms operate as follows: 

1. At time t = 0, variable stiffness of the sTLCD is set to the optimum value for passive 

TLCD. Since the main source for damping is provided by the fluid motion in the 

TLCD, C2 is set to a minimal value of 0.01 for both pTLCD and sTLCD. 

2. A moving window of n time steps of signal is chosen at certain time instants U. WL 

is the window length of nAt and U = 0 : LAt: t(end) is the new time array for the 

time-frequency spectra incremented with LAt between successive windows. 

3. Instantaneous power spectral density of the excitation (in feedforward control) and 

the response (in feedback control) is estimated by STFT or WT. Instantaneous (dom

inant) frequency is tracked by averaging the highest energy frequencies detected over 

an averaging time length (AL). 

4. Stiffness and damping variation starts after t = t0 to allow sufficient amount of data 

to be collected for accurate estimation. 

5. For feedforward control, if the instantaneous frequency is within the pre-defined lim

its (i.e. fumi < fins(U) < fum.2), sTLCD is tuned to the instantaneous frequency; 



246 

otherwise sTLCD is tuned to the nearest frequency limit for the sTLCD. The limit 

frequencies are set as fHml = 0.5/„i and fHm2 = 2fnl in this study. 

Tracking of 
Instantaneous 

Frequency 

sTLCD Stiffness 
and Damping 

Selection 

" 

Structure with 
sTLCD 

(a) Feedforward control based on tracking of instantenous frequency of the excitation 

Excitation 

sTLCD Stiffness 
and Damping 

Selection 

' ' 

Structure with 
sTL .CD 

Tracking of 

• insianianeous 
Frequency 

a 

(b) Feedback control based on tracking of instantenous frequency of the response 

Figure 9.2 Control Algorithm 
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Figure 9.3 Variable Stiffness Parameter Selection 

9.3 Results for sTLCD Systems 

9.3.1 Parametric Study 

A parametric study similar to the one in Chapter 6 is conducted to demonstrate the 

potential of sTLCD with feedforward control and to understand the parameters governing 

the effectiveness of pTLCD and sTLCD. sTLCD with feedback control will have a similar 

performance of an optimum pTLCD without off-tuning and therefore it is not considered 



248 

within this section. The primary structure is considered as a SDOF system (representing 

the fundamental mode of a MDOF system). Assuming a slowly varying mono-component 

excitation, the transfer function for the damper system (sTLCD with feedforward control) 

can be approximated by substituting u2 — u into Equation (9.21), 

H2,M » ^ (9.36) 

After substituting H2s(uo) into Equations (9.26) and (9.27), HX(UJ) and HU{UJ) for the 

sTLCD system may be expressed as 

= ffxM [(-l) fe [1 - U2(3(UJ)H2S(CU)] - byH2s(u) (2&Lj2ui + u2) {1 + P(u)}] 
xs{U) 1 - ou2(3(u)H2s(u;) - w2#1(a;)#2e(u;)/z(26w2a;i + u2)(l + 0(u)) 

(9.37) 

+ OJ2HXS(U) - b 
(1 + T)P(«,) U2H2S(UJ){1 + (3(U;)}{UJ2HXS(U;)-1} , 2 

{1-UJ2I5{U)H2S{U)} 

(9.38) 

It is important to note that Equation (9.36) is exact only for the single harmonic ex

citation. However, it will still be a good approximation for a broad class of excitations 

where the input processes are slowly varying and have significant energy about a particular 

dominant frequency at a given instant. 

The RMS values of the primary structure displacement response with respect to head 

loss coefficient (normalized by L) are given in Figure 9.4 for both pTLCD and feedforward 

sTLCD for two different primary structures (one with fn = 0.3 Hz under force excitation, 

and the other with /„ = 1.5 Hz). The results are obtained by iterative solution of Cp 

using Equation (9.34). The excitation is assumed to be a white noise process with S0 = 

0.2 m2/s3. The damping ratio of the primary structure is taken as 1%. The ratio of total 

mass of damper to the primary system, //, is 0.05. The ratio of the horizontal length to 

the total length of the liquid column tube (a = B/L) is set to 0.9. The tuning ratio of 

the damper system is selected as 1/(1 + //) for pTLCD (for the parametric study). The 
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liquid column mass is assumed to be same as the LCD container mass (r = Mc/(pAL) = 

1). The optimal values of £ for the two systems are listed in Table 9.1 along with the 

corresponding RMS displacement responses of the primary structure with no damper, with 

pTLCD and with sTLCD. Figure 9.4 indicates that the RMS displacement response of 

the primary structure can be more effectively reduced using an sTLCD. For pTLCD, there 

exists an optimal value for £ corresponding to a minimum response, whereas in feedforward 

sTLCD the larger the coefficient £ is, the better vibration reduction it is. Despite this 

observation, £ is set to the value that is optimum for pTLCD and kept same for sTLCD 

within the scope of this study. 

The transfer functions for the two SDOF primary structures studied in Figure 9.4 are 

shown in Figure 9.5. Five cases are considered: (i) primary structure with no damper, (ii) 

primary structure with pTLCD, (iii) primary structure equipped with sTLCD, (iv) damaged 

primary structure with off-tuned pTLCD, and (iv) damaged primary structure equipped 

with sTLCD. sTLCD - with the assumption of perfect frequency tracking of the mono-

component excitation - leads to a much smaller transfer function for the primary structure 

compared to the fixed and pTLCD cases. Since the feedforward sTLCD tunes itself to 

excitation frequency, the transfer function of the primary structure has only a single peak 

as opposed to the optimized two peaks in the pTLCD case. More importantly, pTLCD 

loses its efficiency when it becomes off-tuned due to a change in the natural period of the 

primary structure whereas sTLCD is robust to the change in the primary structure. 

For the random excitations in the following sections, tuning ratio for the passive spring 

in pTLCD is set to the H2 optimum tuning ratio (7opt) of TMD with the same mass ratio 

(fi), which is selected as 5% for the examples studied in the following sections. For force-

excited SDOF primary structure 7opi = 0.963 and for base-excited SDOF primary structure 

lopt = 0.935. For 5-DOF primary structure, mass ratio // (=7.94%) is calculated with 
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Table 9.1 Comparis 

Case 

Natural Frequency (Hz) 

S0 [m2/s3] 

Optimal f (pTLCD) 

RMS Disp. (Fixed) [l(T3m] 

RMS Disp. (pTLCD) [10"3m] 

RMS Disp. (sTLCD) [lQ-3m] 

on of pTLCD and sTLCD 

Force excitation 

0.3 

0.2 

25 

484.3 

274.5 

113.3 

Base excitation 

1.5 

0.2 

212 

43.3 

24.1 

15.3 

respect to first modal mass and optimum tuning ratio is 0.943 for force-excited system and 

0.901 for base-excited system. 

100 200 300 

i/L (1/m) 
100 200 300 400 

Figure 9.4 RMS value of SDOF system with sTLCD: (a) /„ = 0.3 Hz (force excited), (b) 
fn = 1.5 Hz (base excited) 
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Figure 9.5 Transfer functions for SDOF system with sTLCD: (a) /„ = 0.3 Hz (force excited), 
(b) fn — 1-5 Hz (base excited) 

9.3.2 Narrow-band Stationary Excitations 

To study the feedforward sTLCD performance, 500 narrow-band stationary force ex

citations are simulated using the same filter for the near-fault earthquake spectrum with 

parameters fg = l Hz and £g = 0.05. Another 500 narrow-band stationary excitations are 

simulated using Davenport along-wind spectrum given by Equation (1.116) to study the 

feedback sTLCD performance. The wind parameters are selected as w» = 1.76 m/sec and 

v0 = 45 m/sec. The mean velocity profile is defined by the power law [Eq. (1.112)] with 

a = 0.4 and story heights are assumed to be uniform as h/zref = 0.3 where zref = 10 m. 

The results for sTLCD with feedforward control are presented in Figures 9.6 through 

9.9. The estimated evolutionary excitation spectrum (by STFT), a sample excitation are 

shown in Figure 9.6 along with the RMS responses and the response spectra. Figure 9.6 

(c, d) correspond to the SDOF primary structure without any damage whereas Figure 9.6 

(e,f) correspond to the damaged SDOF primary structure after t = 4.1 sec. sTLCD with 
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feedforward control provides similar response reduction with respect to passive TLCD in 

no damage case. For damaged case, passive TLCD becomes off-tuned and inefficient while 

sTLCD continues to provide significant response reduction. Sample time history responses 

of the SDOF primary structure (damaged at t = 4.1 sec and /„ = 1.5 Hz —> 1.1 Hz) 

along with variable spring frequency of sTLCD are presented in Figure 9.7. The response 

of a 5-DOF primary structure is studied next for further investigation of the sTLCD per

formance. The peak floor displacements of a 5-DOF uniform primary structure are pre

sented in Figures 9.8 for undamaged case ((a) /„ — 1.0 Hz) and for damaged case ((b) 

fn = 1.2 Hz —> 1.0 Hz). The damage is induced by decreasing the stiffness of the 

first DOF by half. The top floor displacement response history for the damaged case is 

presented in Figure 9.9. Similar observations can me made for these specific cases as in the 

ensemble RMS response histories and spectra presented in Figure 9.6. 

The results for sTLCD with feedback control are presented in Figures 9.10 through 

9.13. The estimated evolutionary excitation spectrum (by STFT), a sample excitation are 

shown in Figure 9.10 along with the RMS responses and the response spectra. Figure 

9.10 (c, d) correspond to the SDOF primary structure without any damage whereas Figure 

9.10 (e,f) correspond to the damaged SDOF primary structure after t — 20 sec. Response 

spectra in Figure 8.8 clearly show that sTLCD with feedback control have similar effi

ciencies compared to passive ones for undamaged structures. For damaged case, passive 

TLCD become off-tuned and less efficient while sTLCD continues to provide significant 

response reduction. Sample time history responses of the SDOF primary structure (dam

aged at t = 20 sec and /„ = 0.2 Hz —> 0.14 Hz) along with variable spring frequency of 

sTLCD are presented in Figure 9.11. The response of a 5-DOF primary structure is studied 

next for further investigation of the sTLCD performance. The peak floor displacements of 

a 5-DOF uniform primary structure are presented in Figures 9.12 for undamaged case ((a) 
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Figure 9.6 Narrow-band stationary force excitation of SDOF (feedforward): (a) EPSD for 500 
sample, (b) Sample acceleration, (c) Displacement response spectra, (d) RMS displacement re
sponse (/„ — 1.0 Hz), (e) Displacement response spectra - damaged, (f) RMS displacement re
sponse - damaged (/n = 1.5 -> 1.1 Hz for t > 4.1 sec) 

fn = 0.2 Hz) and for damaged case ((b) /„ = 0.2 Hz ->• 0.17 #2) . The damage is 

induced by decreasing the stiffness of the first DOF by half. The top floor displacement 

response history for the damaged case is presented in Figure 9.13. Similar observations can 

me made for these specific cases as in the ensemble RMS response histories and spectra 

presented in Figure 9.10. 
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Figure 9.7 Narrow-band stationary force excitation of SDOF (feedforward): (a) Time history 
response, (b) Variable spring frequency 
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Figure 9.8 Narrow-band stationary force excitation of 5-DOF (feedforward): (a) Peak RMS 
displacements (/„ = 1.0 Hz), (b) Peak RMS displacements - damaged (/„ — 1.2 —> 1.0 Hz for 
t > 4.1 sec) 
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Figure 9.9 Narrow-band stationary force excitation of 5-DOF (feedforward): (a) Top floor dis
placement response history, (b) variable spring frequency 
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Figure 9.10 Narrow-band stationary wind excitation of SDOF (feedback): (a) EPSD for 500 
sample, (b) Sample wind velocity, (c) Displacement response spectra, (d) RMS displacement re
sponse (fn = 0.2 Hz), (e) Displacement response spectra - damaged, (f) RMS displacement re
sponse - damaged (/„ = 0.2 —>• 0.14 Hz for t > 20 sec) 
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Figure 9.11 Narrow-band stationary wind excitation of SDOF (feedback): (a) Time history 
response, (b) Variable spring frequency 
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Figure 9.13 Narrow-band stationary wind excitation of 5-DOF (feedback): (a) Top floor dis
placement response history, (b) Variable spring frequency 

9.3.3 Locally Stationary Excitations 

500 locally stationary excitations are simulated using the near-fault earthquake spec

trum given by Equation (1.124). The soil parameters are selected as LO9 = 27r rad/sec and 

£g = 0.3. A time envelope is applied in the form of Equation (7.32). 

The results for sTLCD with feedforward control are presented in Figures 9.14 through 

9.17. The estimated evolutionary excitation spectrum (by STFT), a sample excitation are 

shown in Figure 9.14 along with the RMS responses and the response spectra. Figure 9.14 

(c, d) correspond to the SDOF primary structure without any damage whereas Figure 9.14 

(e,f) correspond to the damaged SDOF primary structure after t = 4.1 sec. sTLCD with 

feedforward control provides response reduction close to passive TLCD in no damage case. 

For damaged case, passive TLCD becomes off-tuned and inefficient while sTLCD leads to 

significant response reduction. Sample time history responses of the SDOF primary struc

ture (damaged at t = 4.1 sec and /„ = 1.5 Hz —> 1.1 Hz) along with variable spring 
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frequency of sTLCD are presented in Figure 9.15. The response of a 5-DOF primary struc

ture is studied next for further investigation of the sTLCD performance. The peak floor 

displacements of a 5-DOF uniform primary structure are presented in Figure 9.16 for un

damaged case ((a) /„ = 1.0 Hz) and for damaged case ((b) fn = 1.3 Hz —>• 1.1 Hz). 

The damage is induced by decreasing the stiffness of the first DOF by half. The top floor 

displacement response history for the damaged case is presented in Figure 9.17. Simi

lar observations can me made for these specific cases as in the ensemble RMS response 

histories and spectra presented in Figure 9.14. 

The results for sTLCD with feedback control are presented in Figures 9.18 through 

9.20. The estimated evolutionary excitation spectrum (by STFT), a sample excitation are 

shown in Figure 9.18 along with the RMS responses and the response spectra. Figure 9.18 

(c, d) correspond to the SDOF primary structure without any damage whereas Figure 9.18 

(e,f) correspond to the damaged SDOF primary structure after t = 4.1 sec. Response spec

tra in Figure 9.18 clearly show that sTLCD with feedback control have similar efficiencies 

compared to passive ones for undamaged structures. For damaged case, passive TLCD 

becomes off-tuned and inefficient while sTLCD leads to significant response reduction. 

Sample time history responses of the SDOF primary structure (damaged at t = 4.1 sec and 

/„ = 1.5 Hz —>• 1.1 Hz) along with variable spring frequency of sTLCD are presented 

in Figure 9.19. The response of a 5-DOF primary structure is studied next for further in

vestigation of the sTLCD performance. The peak floor displacements of a 5-DOF uniform 

primary structure are presented in Figures 9.20 for undamaged case ((a) fn = 1.0 Hz) and 

for damaged case ((b) /„ = 1.2 Hz —> 1.0 Hz). The damage is induced by decreasing 

the stiffness of the first DOF by half. The top floor displacement response history for the 

damaged case is presented in Figure 9.21. Similar observations can me made for these 

specific cases as in the ensemble RMS response histories and spectra presented in Figure 
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Figure 9.14 Locally stationary base excitation of SDOF (feedforward): (a) EPSD for 500 sam
ple, (b) Sample ground acceleration, (c) Displacement response spectra, (d) RMS displacement 
response (/„ = 1.0 Hz), (e) Displacement response spectra - damaged, (f) RMS displacement 
response - damaged (fn = 1.5 —> 1.1 Hz for t > 4.1 sec) 

9.18. 
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Figure 9.15 Locally stationary base excitation of SDOF (feedforward): (a) Time history re
sponse, (b) Variable spring frequency 
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Figure 9.16 Locally stationary base excitation of 5-DOF (feedforward): (a) Peak RMS dis
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t > 4.1 sec) 
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Figure 9.17 Locally stationary base excitation of 5-DOF (feedforward): (a) Top floor displace
ment response history, (b) Variable spring frequency 
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Figure 9.18 Locally stationary base excitation of SDOF (feedback): (a) EPSD for 500 sample, 
(b) Sample ground acceleration, (c) Displacement response spectra, (d) RMS displacement response 
(fn = 1.0 Hz), (e) Displacement response spectra - damaged, (0 RMS displacement response -
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Figure 9.21 Locally stationary base excitation of 5-DOF (feedback): (a) Top floor displacement 
response history, (b) Variable spring frequency 

9.3.4 Recorded Earthquake 

1940 El Centra Earthquake is used to study the performance of the sTLCD under a real, 

highly non-stationary ground motion record. 

The results for sTLCD with feedforward control are presented in Figures 9.22 through 

9.25. The estimated evolutionary excitation spectrum (by STFT), the acceleration record 

are shown in Figure 9.22 along with the RMS responses and the response spectra. Figure 

9.22 (c, d) correspond to the SDOF primary structure without any damage whereas Figure 

9.22 (e,f) correspond to the damaged SDOF primary structure after t = 2.6 sec. sTLCD 

with feedforward control provides response reduction close to passive TLCD in no damage 

case. For damaged case, passive TLCD becomes off-tuned and inefficient while sTLCD 

lead to significant response reduction. Time history response of the SDOF primary struc

ture (damaged at t = 2.6 sec and /„ = 2.0 Hz —> 1.4 Hz) along with variable spring 

frequency of sTLCD are presented in Figure 9.23. The response of a 5-DOF primary struc-
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ture is studied next for further investigation of the sTLCD performance. The peak floor 

displacements of a 5-DOF uniform primary structure are presented in Figure 9.24 for un

damaged case ((a) /„ = 1.6 Hz) and for damaged case ((b) /„ = 1.6 Hz ->• 1.4 Hz). 

The damage is induced by decreasing the stiffness of the first DOF by half. The top floor 

displacement response history for the damaged case is presented in Figure 9.25. Simi

lar observations can me made for these specific cases as in the ensemble RMS response 

histories and spectra presented in Figure 9.22. 

The results for sTLCD with feedback control are presented in Figures 9.26 through 

9.29. The estimated evolutionary excitation spectrum (by STFT), a sample excitation are 

shown in Figure 9.26 along with the RMS responses and the response spectra. Figure 9.26 

(c, d) correspond to the SDOF primary structure without any damage whereas Figure 9.26 

(e,f) correspond to the damaged SDOF primary structure after t = 2.6 sec. Response 

spectra in Figure 9.26 clearly show that sTLCD with feedback control have similar effi

ciencies compared to passive ones for undamaged structures. For damaged case, passive 

TLCD becomes off-tuned and inefficient while sTLCD leads to significant response reduc

tion. Time history response of the SDOF primary structure (damaged at t = 2.6 sec and 

/„ = 2.0 Hz —>• 1.4 Hz) along with variable spring frequency of sTLCD are presented 

in Figure 9.27. The response of a 5-DOF primary structure is studied next for further in

vestigation of the sTLCD performance. The peak floor displacements of a 5-DOF uniform 

primary structure are presented in Figures 9.28 for undamaged case ((a) /„ = 2.6 Hz) and 

for damaged case ((b) /„ = 1.6 Hz —> 1.4 Hz). The damage is induced by decreasing 

the stiffness of the first DOF by half. The top floor displacement response history for the 

damaged case is presented in Figure 9.29. Similar observations can me made for these 

specific cases as in the ensemble RMS response histories and spectra presented in Figure 

9.26. 
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Figure 9.22 1940 El Centro Earthquake excitation of SDOF (feedforward): (a) EPSD, (b) 
Ground acceleration, (c) Displacement response spectra, (d) RMS displacement response (fn — 
1.5 Hz), (e) Displacement response spectra - damaged, (f) RMS displacement response - damaged 
(/„ = 2.0 ->• 1.4 Hz for t > 2.6 sec) 
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Figure 9.23 1940 El Centra Earthquake excitation of SDOF (feedforward): (a) Time history 
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Figure 9.27 1940 El Centro Earthquake excitation of SDOF (feedback): (a) Time history re
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9.4 Concluding Remarks 

Passive TLCD has an optimum head loss coefficient affecting the equivalent linear 

damping coefficient Cp, whereas in feedforward sTLCD, the primary structure response 

decreases as the head loss coefficient increases. 

Similar to sTMD, feedforward sTLCD has superior performance than the passive coun

terpart for mono-component harmonic signals or random signals with significant energy at 

a specific instantaneous (dominant) frequency. 

For random signals, feedforward sTLCD has similar RMS responses compared to the 

passive counterpart. However, if the primary structure's natural frequency changes, pas

sive TLCD becomes off-tuned and ineffective, whereas sTLCD continues to suppress the 

vibration robustly. 

Feedback sTLCD is slightly more effective than feedforward sTLCD since the response 

signal is smoother and slowly varying due to filtering effect of the structure with respect to 

the random excitation process. 

Feedback sTLCD has again similar RMS responses compared to the passive counter

part and its advantage becomes apparent when the primary structure's natural frequency 

changes and passive TLCD becomes off-tuned and ineffective. 
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Chapter 10 

Conclusions and Future Work 

10.1 Conclusions 

Semi-active control has been successfully applied on many civil structures in the past 

and it has been proved to be an effective solution for vibration control. Its main advantage 

is making the structure smart and adaptive to varying structural and environmental condi

tions while keeping the inherent stability characteristic of passive systems. In this thesis, 

semi-active control algorithms are developed and examined for a variety of civil engineer

ing applications subjected to a wide range of excitations. Except two control algorithms 

based on continuous variable stiffness and Lyapunov method, the developed semi-active 

controllers are based on real-time estimation of instantaneous (dominant) frequency and 

the evolutionary power spectral density by time-frequency analysis of either the excita

tion or the response of the structure. Time-frequency analyses are performed by either 

short-time Fourier transform (STFT) or wavelet transform (WT) method. While STFT 

is more suited for harmonic and stationary signals, WT is more successful in identifying 

sudden changes in non-stationary signals. The performance of the control algorithms are 

evaluated by studying the deterministic and stochastic responses of the examined semi-

active structures. Stochastic responses are computed from Monte Carlo simulations of 

various target evolutionary spectra. The semi-active applications considered in this study 

can be grouped in three main categories: (1) semi-active single/multiple degree-of-freedom 

systems (sSDOF/sMDOF) subjected to pulse-type excitations and random ground excita

tions, (2) semi-active tuned mass dampers (sTMD/sMTMD) subjected to random wind and 

ground excitations, and (3) semi-active tuned liquid column dampers (sTLCD) subjected 
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to random wind and ground excitations. 

For semi-active SDOF/MDOF systems, nonlinear control algorithms developed to in

dependently vary stiffness and damping in structures are examined against near-fault earth

quakes and pulse type of excitations fitted to them. Studies of the recorded near source 

ground motions in the literature have shown that such motions resemble to long period 

pulses (especially in ground displacement and velocity) in many occasions and the re

sponse of structures also resemble to that of long period pulses. Although such simple 

cycloidal pulses can capture many of the kinematic characteristics of near-fault ground 

displacement and velocity, they do not capture the high-frequency components of the ac

celeration record and sometimes local, distinguishable acceleration pulses can override the 

long period velocity (and displacement) pulses. Despite their limitations, these cycloidal 

pulses are worth considering for longer period structures, such as base isolated buildings. 

Using nonlinear least squares technique, five different types of cycloidal pulses (A, B,C\, 

C2, C\ + C\ + C\) are fitted to several near-fault ground motion records and used to eval

uate the performance of two nonlinear control algorithms: continuous variable structure 

control and Lyapunov control. The algorithms are examined individually and combined 

as (i) independently variable stiffness control, (ii) independently variable damping control, 

and (iii) combined variable stiffness and damping control. The nonlinear control law for 

variable stiffness systems is designed to produce a variable structure without sliding mode. 

Semi-active damping control algorithm has been derived based on Lyapunov method, such 

that the derivative of a Lyapunov function (representing total energy) is always negative. 

A novel semi-active (time-frequency) controller for semi-active SDOF/MDOF systems 

is developed based on minimizing the instantaneous H2 norm of the response of the struc

ture. The proposed control basically keeps the fundamental frequency of the system away 

from the dominant frequencies of the excitation by minimizing the H2 norm of the instan-
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taneous response spectrum. 

Two novel time-frequency controllers (feedforward and feedback) are developed for 

single and multiple tuned mass dampers (sTMD/sMTMD) subjected to either force or 

base excitation. In the feedforward control, the tuned mass damper stiffness and damp

ing are varied based on the instantaneous (dominant) frequency of the excitation, whereas 

in the feedback control the tuned mass damper stiffness is varied based on the instanta

neous (dominant) frequency of the response. The developed algorithms are also extended 

to tuned liquid column dampers (sTLCD) subjected to force or base excitation. 

The presented results verify that semi-active control strategies have great potential for 

a wide range of applications. The main conclusions of this study are as follows: 

Approximation of near-fault earthquakes by cycloidal pulses: 

1. Responses of a SDOF system subjected to fitted single cycloidal pulses provide good 

approximation for those of the actual near-fault earthquake records, especially in the 

region of fitted pulse period. Beyond that region, the quality of the approximation 

reduces based on the kinematic characteristics of the actual record. 

2. The difference in the absolute acceleration response between the actual record and 

the fitted pulse is significant in the low period (high frequency) region of the spectra 

since the fitted pulse acceleration is usually smaller in value and unable to match the 

local high-frequency fluctuations. Therefore, use of long period velocity pulses is 

best suited for flexible structures such as base-isolated buildings. 

3. Using multiple pulses improves the resemblance between the responses to actual 

records and its fitted pulse. 
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Semi-active single/multi degree-of-freedom (sSDOF/sMDOF) systems - continuous vari

able structure control and Lyapunov control: 

1. Similar to passive systems, responses of sSDOF/sMDOF subjected to fitted cycloidal 

pulses provide good approximation for those of the actual records. The approxima

tion is especially good for the higher period systems as commented above. 

2. The variable structure control is very effective in reducing the response in the neigh

borhood of the resonant peaks of the passive systems for all types of pulses. 

3. The Lyapunov control for semi-active damping is effective in reducing the response 

for pulse type excitations, however its performance is about same as 'pass, on' sys

tem (with higher damping). For Type-A pulse, the control leads to higher response in 

the high period region (higher T/Tp range, typically greater than T/Tp = 1.5 — 2.0) 

of the response spectra. For other pulses (B, C\, C2), Lyapunov control leads to 

slightly lower response than 'pass, on' system and its performance improves for 

higher damped systems. 

4. When the two controls are executed simultaneously the benefits of both the controls 

are superimposed. Significant reduction in all the response quantities is observed for 

a wider range of T/Tp from spectra. This is because of the fact that the two control 

algorithms are effective in almost complementary T = TP ranges. 

5. The control strategies, namely, variable structure control for stiffness and Lyapunov 

control for damping can be effectively implemented in long period structures such as 

base-isolated structures either separately or together to reduce vibrations. 
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Frequency tracking and evolutionary power spectrum: 

1. Wavelet transform (WT) has two major advantages over short-time Fourier trans

form (STFT): (i) it is more accurate due to variable window lengths (scales) instead 

of fixed window length (as in STFT), which causes inaccuracy by aliasing of low 

and high frequency components outside the frequency range of the window; and (ii) 

it is more efficient due to variable frequency (or scale) resolution with high reso

lution in high frequency (small scales) region and low resolution in low frequency 

(large scales) region, which allows identifying low and high frequency components 

of the signal efficiently. These advantages favor wavelet transform in time-frequency 

analysis of non-stationary signals, where sudden changes occur. 

2. Real-time estimation of instantaneous frequency and evolutionary power spectrum 

requires use of a window with only priori data at any given time instant. This imposes 

the same limitation of STFT to wavelet transform limiting its accuracy. 

3. Both STFT and WT accurately track the instantaneous frequency of harmonic and 

sine sweep signals. 

4. For the target evolutionary spectra of random processes studied, the real-time instan

taneous frequency and root mean square (RMS) values obtained from Monte Carlo 

simulations indicate similar performances by STFT and WT. However, this is also 

partly due to averaging of the sample simulations. For individual sample simulations, 

it is likely that WT would detect the non-stationarity characteristics more accurately. 
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Semi-active single/multi degree-of-freedom (sSDOF/sMDOF) systems - adaptive H2 

control: 

1. sSDOF with variable stiffness based on adaptive H2 control can successfully adapt 

to the optimum passive system as the excitation evolves. 

2. sMDOF systems, which can be described accurately by their first mode, can simi

larly adapt the optimum passive system with minimum H2 norm of the first modal 

response determined for the instantaneous PSD of the excitation. 

3. The time-varying RMS response of the sSDOF/sMDOF can be approximated from 

the evolutionary PSD and the time-varying complex frequency response function. 

Feedforward semi-active tuned mass dampers (Feedforward sTMD/sMTMD): 

1. For harmonic signals, if the excitation frequency is known or tracked very accurately, 

single sTMD leads to the least response of the main structure compared to multiple 

sTMDs, since sTMD has the advantage of greater mass tuned to exact excitation fre

quency. But in practice, the excitation frequency is either not known or can be tracked 

with some error and/or delay. Therefore, multiple sTMDs distributed within a small 

frequency range may be more effective due to the capability to compensate the small 

errors/delays in frequency tracking and/or randomness in the excitation signal. If the 

sMTMD frequency range is increased further, its effectiveness would decrease be

cause of distributing the mass away from the resonance frequency and sTMD would 

be superior again in agreement with results of parametric study in Chapter 6. 

2. MTMD has an optimum frequency range and an optimum damping ratio for a given 

number of TMDs similar to optimum frequency and damping ratio of a single TMD. 
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Once the number of TMDs is decided, optimum values of the frequency range and 

damping ratio can be found for the design of MTMD. In case of sMTMD, there are 

no specific optimum values. The lower the damping ratio and the frequency range, 

the better performance sMTMD will have for the mono-component harmonic sig

nals or random signals with significant energy at a specific instantaneous (dominant) 

frequency. 

3. sMTMD can also behave as a single sTMD in real-time by reducing the frequency 

range to zero. They can be tuned as a single sTMD depending on the time-frequency 

characteristics of the excitation signal. The redundancy in sMTMD makes it more 

reliable in the sense that if one sTMD fails, the rest can be readjusted instantaneously. 

4. Feedforward sTMD and sMTMD are more robust against changes in individual TMD 

damping ratio and changes in main structure natural frequency compared to passive 

TMD and MTMD. This is observed both in frequency domain and time domain re

sponses for harmonic and stationary excitations. 

5. For random signals, feedforward sTMD/sMTMD have similar RMS responses com

pared to the passive counterparts. However, if the primary structure's natural fre

quency changes, passive TMDs become off-tuned and ineffective, whereas sTMD 

and sMTMD continues to suppress the vibration robustly. 

Feedback semi-active tuned mass dampers (Feedback sTMD/sMTMD): 

1. Feedback sTMD/sMTMD are slightly more effective than feedforward sTMD/sMTMD 

since the response signal is smoother and slowly varying due to filtering effect of the 

structure with respect to the random excitation process. 
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2. Feedback sTMD/sMTMD have again similar RMS responses compared to the pas

sive counterparts and their advantage becomes apparent when the primary structure's 

natural frequency changes and passive TMDs become off-tuned and ineffective. 

Feedforward semi-active tuned liquid column dampers (Feedforward sTLCD): 

1. Passive TLCD has an optimum head loss coefficient affecting the equivalent linear 

damping coefficient Cp, whereas in feedforward sTLCD, the primary structure re

sponse decreases as the head loss coefficient increases. It is important to note the 

variable head loss coefficient (that can be obtained by varying the orifice opening ra

tio) can be employed for a complementary variable damping; however, it was beyond 

the scope of this study, and therefore optimum head loss coefficient selected for the 

passive TLCD is also used in sTLCD. 

2. Similar to sTMD, feedforward sTLCD has superior performance than the passive 

counterpart for mono-component harmonic signals or random signals with significant 

energy at a specific instantaneous (dominant) frequency. 

3. For random signals, feedforward sTLCD has similar RMS responses compared to the 

passive counterpart. However, if the primary structure's natural frequency changes, 

passive TLCD becomes off-tuned and ineffective, whereas sTLCD continues to sup

press the vibration robustly. 

Feedback semi-active tuned liquid column dampers (Feedback sTLCD): 

1. Feedback sTLCD is slightly more effective than feedforward sTLCD since the re

sponse signal is smoother and slowly varying due to filtering effect of the structure 

with respect to the random excitation process. 



282 

2. Feedback sTLCD has again similar RMS responses compared to the passive coun

terpart and its advantage becomes apparent when the primary structure's natural fre

quency changes and passive TLCD becomes off-tuned and ineffective. 

10.2 Future Work 

The presented research in this study can be further improved and extended on several 

areas. The recommended areas for future research are as follows: 

1. The possible benefits of variable damping in the adaptive H2 control can be further 

investigated. 

2. The feedforward and feedback control strategies for the semi-active TMD/MTMD 

and semi-active TLCD can be implemented together to increase the efficiency and 

robustness of the semi-active tuned mass/liquid dampers. 

3. Considering the proposed semi-active (time-frequency) control concepts are mostly 

based on the evolutionary power spectrum estimation, approximate stochastic solu

tion for the semi-active linear time varying systems can be further investigated. 

4. More realistic target evolutionary spectra and synthetic accelerograms compatible 

to aseismic design response spectra or sets of actual accelerogram records can be 

considered. 

5. Semi-active damping strategy can be further investigated in semi-active TLCD (by 

varying the orifice opening ratio) and in semi-active feedback TMD/MTMD. 
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